1#include "jemalloc/internal/jemalloc_preamble.h"
2
3#include "jemalloc/internal/assert.h"
4#include "jemalloc/internal/bit_util.h"
5#include "jemalloc/internal/bitmap.h"
6#include "jemalloc/internal/pages.h"
7#include "jemalloc/internal/sc.h"
8
9/*
10 * This module computes the size classes used to satisfy allocations.  The logic
11 * here was ported more or less line-by-line from a shell script, and because of
12 * that is not the most idiomatic C.  Eventually we should fix this, but for now
13 * at least the damage is compartmentalized to this file.
14 */
15
16sc_data_t sc_data_global;
17
18static size_t
19reg_size_compute(int lg_base, int lg_delta, int ndelta) {
20	return (ZU(1) << lg_base) + (ZU(ndelta) << lg_delta);
21}
22
23/* Returns the number of pages in the slab. */
24static int
25slab_size(int lg_page, int lg_base, int lg_delta, int ndelta) {
26	size_t page = (ZU(1) << lg_page);
27	size_t reg_size = reg_size_compute(lg_base, lg_delta, ndelta);
28
29	size_t try_slab_size = page;
30	size_t try_nregs = try_slab_size / reg_size;
31	size_t perfect_slab_size = 0;
32	bool perfect = false;
33	/*
34	 * This loop continues until we find the least common multiple of the
35	 * page size and size class size.  Size classes are all of the form
36	 * base + ndelta * delta == (ndelta + base/ndelta) * delta, which is
37	 * (ndelta + ngroup) * delta.  The way we choose slabbing strategies
38	 * means that delta is at most the page size and ndelta < ngroup.  So
39	 * the loop executes for at most 2 * ngroup - 1 iterations, which is
40	 * also the bound on the number of pages in a slab chosen by default.
41	 * With the current default settings, this is at most 7.
42	 */
43	while (!perfect) {
44		perfect_slab_size = try_slab_size;
45		size_t perfect_nregs = try_nregs;
46		try_slab_size += page;
47		try_nregs = try_slab_size / reg_size;
48		if (perfect_slab_size == perfect_nregs * reg_size) {
49			perfect = true;
50		}
51	}
52	return (int)(perfect_slab_size / page);
53}
54
55static void
56size_class(
57    /* Output. */
58    sc_t *sc,
59    /* Configuration decisions. */
60    int lg_max_lookup, int lg_page, int lg_ngroup,
61    /* Inputs specific to the size class. */
62    int index, int lg_base, int lg_delta, int ndelta) {
63	sc->index = index;
64	sc->lg_base = lg_base;
65	sc->lg_delta = lg_delta;
66	sc->ndelta = ndelta;
67	sc->psz = (reg_size_compute(lg_base, lg_delta, ndelta)
68	    % (ZU(1) << lg_page) == 0);
69	size_t size = (ZU(1) << lg_base) + (ZU(ndelta) << lg_delta);
70	if (index == 0) {
71		assert(!sc->psz);
72	}
73	if (size < (ZU(1) << (lg_page + lg_ngroup))) {
74		sc->bin = true;
75		sc->pgs = slab_size(lg_page, lg_base, lg_delta, ndelta);
76	} else {
77		sc->bin = false;
78		sc->pgs = 0;
79	}
80	if (size <= (ZU(1) << lg_max_lookup)) {
81		sc->lg_delta_lookup = lg_delta;
82	} else {
83		sc->lg_delta_lookup = 0;
84	}
85}
86
87static void
88size_classes(
89    /* Output. */
90    sc_data_t *sc_data,
91    /* Determined by the system. */
92    size_t lg_ptr_size, int lg_quantum,
93    /* Configuration decisions. */
94    int lg_tiny_min, int lg_max_lookup, int lg_page, int lg_ngroup) {
95	int ptr_bits = (1 << lg_ptr_size) * 8;
96	int ngroup = (1 << lg_ngroup);
97	int ntiny = 0;
98	int nlbins = 0;
99	int lg_tiny_maxclass = (unsigned)-1;
100	int nbins = 0;
101	int npsizes = 0;
102
103	int index = 0;
104
105	int ndelta = 0;
106	int lg_base = lg_tiny_min;
107	int lg_delta = lg_base;
108
109	/* Outputs that we update as we go. */
110	size_t lookup_maxclass = 0;
111	size_t small_maxclass = 0;
112	int lg_large_minclass = 0;
113	size_t large_maxclass = 0;
114
115	/* Tiny size classes. */
116	while (lg_base < lg_quantum) {
117		sc_t *sc = &sc_data->sc[index];
118		size_class(sc, lg_max_lookup, lg_page, lg_ngroup, index,
119		    lg_base, lg_delta, ndelta);
120		if (sc->lg_delta_lookup != 0) {
121			nlbins = index + 1;
122		}
123		if (sc->psz) {
124			npsizes++;
125		}
126		if (sc->bin) {
127			nbins++;
128		}
129		ntiny++;
130		/* Final written value is correct. */
131		lg_tiny_maxclass = lg_base;
132		index++;
133		lg_delta = lg_base;
134		lg_base++;
135	}
136
137	/* First non-tiny (pseudo) group. */
138	if (ntiny != 0) {
139		sc_t *sc = &sc_data->sc[index];
140		/*
141		 * See the note in sc.h; the first non-tiny size class has an
142		 * unusual encoding.
143		 */
144		lg_base--;
145		ndelta = 1;
146		size_class(sc, lg_max_lookup, lg_page, lg_ngroup, index,
147		    lg_base, lg_delta, ndelta);
148		index++;
149		lg_base++;
150		lg_delta++;
151		if (sc->psz) {
152			npsizes++;
153		}
154		if (sc->bin) {
155			nbins++;
156		}
157	}
158	while (ndelta < ngroup) {
159		sc_t *sc = &sc_data->sc[index];
160		size_class(sc, lg_max_lookup, lg_page, lg_ngroup, index,
161		    lg_base, lg_delta, ndelta);
162		index++;
163		ndelta++;
164		if (sc->psz) {
165			npsizes++;
166		}
167		if (sc->bin) {
168			nbins++;
169		}
170	}
171
172	/* All remaining groups. */
173	lg_base = lg_base + lg_ngroup;
174	while (lg_base < ptr_bits - 1) {
175		ndelta = 1;
176		int ndelta_limit;
177		if (lg_base == ptr_bits - 2) {
178			ndelta_limit = ngroup - 1;
179		} else {
180			ndelta_limit = ngroup;
181		}
182		while (ndelta <= ndelta_limit) {
183			sc_t *sc = &sc_data->sc[index];
184			size_class(sc, lg_max_lookup, lg_page, lg_ngroup, index,
185			    lg_base, lg_delta, ndelta);
186			if (sc->lg_delta_lookup != 0) {
187				nlbins = index + 1;
188				/* Final written value is correct. */
189				lookup_maxclass = (ZU(1) << lg_base)
190				    + (ZU(ndelta) << lg_delta);
191			}
192			if (sc->psz) {
193				npsizes++;
194			}
195			if (sc->bin) {
196				nbins++;
197				/* Final written value is correct. */
198				small_maxclass = (ZU(1) << lg_base)
199				    + (ZU(ndelta) << lg_delta);
200				if (lg_ngroup > 0) {
201					lg_large_minclass = lg_base + 1;
202				} else {
203					lg_large_minclass = lg_base + 2;
204				}
205			}
206			large_maxclass = (ZU(1) << lg_base)
207			    + (ZU(ndelta) << lg_delta);
208			index++;
209			ndelta++;
210		}
211		lg_base++;
212		lg_delta++;
213	}
214	/* Additional outputs. */
215	int nsizes = index;
216	unsigned lg_ceil_nsizes = lg_ceil(nsizes);
217
218	/* Fill in the output data. */
219	sc_data->ntiny = ntiny;
220	sc_data->nlbins = nlbins;
221	sc_data->nbins = nbins;
222	sc_data->nsizes = nsizes;
223	sc_data->lg_ceil_nsizes = lg_ceil_nsizes;
224	sc_data->npsizes = npsizes;
225	sc_data->lg_tiny_maxclass = lg_tiny_maxclass;
226	sc_data->lookup_maxclass = lookup_maxclass;
227	sc_data->small_maxclass = small_maxclass;
228	sc_data->lg_large_minclass = lg_large_minclass;
229	sc_data->large_minclass = (ZU(1) << lg_large_minclass);
230	sc_data->large_maxclass = large_maxclass;
231
232	/*
233	 * We compute these values in two ways:
234	 *   - Incrementally, as above.
235	 *   - In macros, in sc.h.
236	 * The computation is easier when done incrementally, but putting it in
237	 * a constant makes it available to the fast paths without having to
238	 * touch the extra global cacheline.  We assert, however, that the two
239	 * computations are equivalent.
240	 */
241	assert(sc_data->npsizes == SC_NPSIZES);
242	assert(sc_data->lg_tiny_maxclass == SC_LG_TINY_MAXCLASS);
243	assert(sc_data->small_maxclass == SC_SMALL_MAXCLASS);
244	assert(sc_data->large_minclass == SC_LARGE_MINCLASS);
245	assert(sc_data->lg_large_minclass == SC_LG_LARGE_MINCLASS);
246	assert(sc_data->large_maxclass == SC_LARGE_MAXCLASS);
247
248	/*
249	 * In the allocation fastpath, we want to assume that we can
250	 * unconditionally subtract the requested allocation size from
251	 * a ssize_t, and detect passing through 0 correctly.  This
252	 * results in optimal generated code.  For this to work, the
253	 * maximum allocation size must be less than SSIZE_MAX.
254	 */
255	assert(SC_LARGE_MAXCLASS < SSIZE_MAX);
256}
257
258void
259sc_data_init(sc_data_t *sc_data) {
260	assert(!sc_data->initialized);
261
262	int lg_max_lookup = 12;
263
264	size_classes(sc_data, LG_SIZEOF_PTR, LG_QUANTUM, SC_LG_TINY_MIN,
265	    lg_max_lookup, LG_PAGE, 2);
266
267	sc_data->initialized = true;
268}
269
270static void
271sc_data_update_sc_slab_size(sc_t *sc, size_t reg_size, size_t pgs_guess) {
272	size_t min_pgs = reg_size / PAGE;
273	if (reg_size % PAGE != 0) {
274		min_pgs++;
275	}
276	/*
277	 * BITMAP_MAXBITS is actually determined by putting the smallest
278	 * possible size-class on one page, so this can never be 0.
279	 */
280	size_t max_pgs = BITMAP_MAXBITS * reg_size / PAGE;
281
282	assert(min_pgs <= max_pgs);
283	assert(min_pgs > 0);
284	assert(max_pgs >= 1);
285	if (pgs_guess < min_pgs) {
286		sc->pgs = (int)min_pgs;
287	} else if (pgs_guess > max_pgs) {
288		sc->pgs = (int)max_pgs;
289	} else {
290		sc->pgs = (int)pgs_guess;
291	}
292}
293
294void
295sc_data_update_slab_size(sc_data_t *data, size_t begin, size_t end, int pgs) {
296	assert(data->initialized);
297	for (int i = 0; i < data->nsizes; i++) {
298		sc_t *sc = &data->sc[i];
299		if (!sc->bin) {
300			break;
301		}
302		size_t reg_size = reg_size_compute(sc->lg_base, sc->lg_delta,
303		    sc->ndelta);
304		if (begin <= reg_size && reg_size <= end) {
305			sc_data_update_sc_slab_size(sc, reg_size, pgs);
306		}
307	}
308}
309
310void
311sc_boot(sc_data_t *data) {
312	sc_data_init(data);
313}
314