1/*-
2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause)
3 *
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * Copyright (c) 1982, 1986, 1989, 1993
35 *	The Regents of the University of California.  All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 *    may be used to endorse or promote products derived from this software
47 *    without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
62 */
63
64#include <sys/cdefs.h>
65__FBSDID("$FreeBSD$");
66
67#include "opt_quota.h"
68
69#include <sys/param.h>
70#include <sys/capsicum.h>
71#include <sys/systm.h>
72#include <sys/bio.h>
73#include <sys/buf.h>
74#include <sys/conf.h>
75#include <sys/fcntl.h>
76#include <sys/file.h>
77#include <sys/filedesc.h>
78#include <sys/priv.h>
79#include <sys/proc.h>
80#include <sys/vnode.h>
81#include <sys/mount.h>
82#include <sys/kernel.h>
83#include <sys/syscallsubr.h>
84#include <sys/sysctl.h>
85#include <sys/syslog.h>
86#include <sys/taskqueue.h>
87
88#include <security/audit/audit.h>
89
90#include <geom/geom.h>
91#include <geom/geom_vfs.h>
92
93#include <ufs/ufs/dir.h>
94#include <ufs/ufs/extattr.h>
95#include <ufs/ufs/quota.h>
96#include <ufs/ufs/inode.h>
97#include <ufs/ufs/ufs_extern.h>
98#include <ufs/ufs/ufsmount.h>
99
100#include <ufs/ffs/fs.h>
101#include <ufs/ffs/ffs_extern.h>
102#include <ufs/ffs/softdep.h>
103
104typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
105				  int size, int rsize);
106
107static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
108static ufs2_daddr_t
109	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
110static void	ffs_blkfree_cg(struct ufsmount *, struct fs *,
111		    struct vnode *, ufs2_daddr_t, long, ino_t,
112		    struct workhead *);
113#ifdef INVARIANTS
114static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
115#endif
116static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int);
117static ino_t	ffs_dirpref(struct inode *);
118static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
119		    int, int);
120static ufs2_daddr_t	ffs_hashalloc
121		(struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
122static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
123		    int);
124static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
125static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
126static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
127static void	ffs_ckhash_cg(struct buf *);
128
129/*
130 * Allocate a block in the filesystem.
131 *
132 * The size of the requested block is given, which must be some
133 * multiple of fs_fsize and <= fs_bsize.
134 * A preference may be optionally specified. If a preference is given
135 * the following hierarchy is used to allocate a block:
136 *   1) allocate the requested block.
137 *   2) allocate a rotationally optimal block in the same cylinder.
138 *   3) allocate a block in the same cylinder group.
139 *   4) quadradically rehash into other cylinder groups, until an
140 *      available block is located.
141 * If no block preference is given the following hierarchy is used
142 * to allocate a block:
143 *   1) allocate a block in the cylinder group that contains the
144 *      inode for the file.
145 *   2) quadradically rehash into other cylinder groups, until an
146 *      available block is located.
147 */
148int
149ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp)
150	struct inode *ip;
151	ufs2_daddr_t lbn, bpref;
152	int size, flags;
153	struct ucred *cred;
154	ufs2_daddr_t *bnp;
155{
156	struct fs *fs;
157	struct ufsmount *ump;
158	ufs2_daddr_t bno;
159	u_int cg, reclaimed;
160	int64_t delta;
161#ifdef QUOTA
162	int error;
163#endif
164
165	*bnp = 0;
166	ump = ITOUMP(ip);
167	fs = ump->um_fs;
168	mtx_assert(UFS_MTX(ump), MA_OWNED);
169#ifdef INVARIANTS
170	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
171		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
172		    devtoname(ump->um_dev), (long)fs->fs_bsize, size,
173		    fs->fs_fsmnt);
174		panic("ffs_alloc: bad size");
175	}
176	if (cred == NOCRED)
177		panic("ffs_alloc: missing credential");
178#endif /* INVARIANTS */
179	reclaimed = 0;
180retry:
181#ifdef QUOTA
182	UFS_UNLOCK(ump);
183	error = chkdq(ip, btodb(size), cred, 0);
184	if (error)
185		return (error);
186	UFS_LOCK(ump);
187#endif
188	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
189		goto nospace;
190	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
191	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
192		goto nospace;
193	if (bpref >= fs->fs_size)
194		bpref = 0;
195	if (bpref == 0)
196		cg = ino_to_cg(fs, ip->i_number);
197	else
198		cg = dtog(fs, bpref);
199	bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
200	if (bno > 0) {
201		delta = btodb(size);
202		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
203		if (flags & IO_EXT)
204			ip->i_flag |= IN_CHANGE;
205		else
206			ip->i_flag |= IN_CHANGE | IN_UPDATE;
207		*bnp = bno;
208		return (0);
209	}
210nospace:
211#ifdef QUOTA
212	UFS_UNLOCK(ump);
213	/*
214	 * Restore user's disk quota because allocation failed.
215	 */
216	(void) chkdq(ip, -btodb(size), cred, FORCE);
217	UFS_LOCK(ump);
218#endif
219	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
220		reclaimed = 1;
221		softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
222		goto retry;
223	}
224	if (reclaimed > 0 &&
225	    ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
226		UFS_UNLOCK(ump);
227		ffs_fserr(fs, ip->i_number, "filesystem full");
228		uprintf("\n%s: write failed, filesystem is full\n",
229		    fs->fs_fsmnt);
230	} else {
231		UFS_UNLOCK(ump);
232	}
233	return (ENOSPC);
234}
235
236/*
237 * Reallocate a fragment to a bigger size
238 *
239 * The number and size of the old block is given, and a preference
240 * and new size is also specified. The allocator attempts to extend
241 * the original block. Failing that, the regular block allocator is
242 * invoked to get an appropriate block.
243 */
244int
245ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp)
246	struct inode *ip;
247	ufs2_daddr_t lbprev;
248	ufs2_daddr_t bprev;
249	ufs2_daddr_t bpref;
250	int osize, nsize, flags;
251	struct ucred *cred;
252	struct buf **bpp;
253{
254	struct vnode *vp;
255	struct fs *fs;
256	struct buf *bp;
257	struct ufsmount *ump;
258	u_int cg, request, reclaimed;
259	int error, gbflags;
260	ufs2_daddr_t bno;
261	int64_t delta;
262
263	vp = ITOV(ip);
264	ump = ITOUMP(ip);
265	fs = ump->um_fs;
266	bp = NULL;
267	gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
268
269	mtx_assert(UFS_MTX(ump), MA_OWNED);
270#ifdef INVARIANTS
271	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
272		panic("ffs_realloccg: allocation on suspended filesystem");
273	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
274	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
275		printf(
276		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
277		    devtoname(ump->um_dev), (long)fs->fs_bsize, osize,
278		    nsize, fs->fs_fsmnt);
279		panic("ffs_realloccg: bad size");
280	}
281	if (cred == NOCRED)
282		panic("ffs_realloccg: missing credential");
283#endif /* INVARIANTS */
284	reclaimed = 0;
285retry:
286	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
287	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
288		goto nospace;
289	}
290	if (bprev == 0) {
291		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
292		    devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev,
293		    fs->fs_fsmnt);
294		panic("ffs_realloccg: bad bprev");
295	}
296	UFS_UNLOCK(ump);
297	/*
298	 * Allocate the extra space in the buffer.
299	 */
300	error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
301	if (error) {
302		brelse(bp);
303		return (error);
304	}
305
306	if (bp->b_blkno == bp->b_lblkno) {
307		if (lbprev >= UFS_NDADDR)
308			panic("ffs_realloccg: lbprev out of range");
309		bp->b_blkno = fsbtodb(fs, bprev);
310	}
311
312#ifdef QUOTA
313	error = chkdq(ip, btodb(nsize - osize), cred, 0);
314	if (error) {
315		brelse(bp);
316		return (error);
317	}
318#endif
319	/*
320	 * Check for extension in the existing location.
321	 */
322	*bpp = NULL;
323	cg = dtog(fs, bprev);
324	UFS_LOCK(ump);
325	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
326	if (bno) {
327		if (bp->b_blkno != fsbtodb(fs, bno))
328			panic("ffs_realloccg: bad blockno");
329		delta = btodb(nsize - osize);
330		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
331		if (flags & IO_EXT)
332			ip->i_flag |= IN_CHANGE;
333		else
334			ip->i_flag |= IN_CHANGE | IN_UPDATE;
335		allocbuf(bp, nsize);
336		bp->b_flags |= B_DONE;
337		vfs_bio_bzero_buf(bp, osize, nsize - osize);
338		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
339			vfs_bio_set_valid(bp, osize, nsize - osize);
340		*bpp = bp;
341		return (0);
342	}
343	/*
344	 * Allocate a new disk location.
345	 */
346	if (bpref >= fs->fs_size)
347		bpref = 0;
348	switch ((int)fs->fs_optim) {
349	case FS_OPTSPACE:
350		/*
351		 * Allocate an exact sized fragment. Although this makes
352		 * best use of space, we will waste time relocating it if
353		 * the file continues to grow. If the fragmentation is
354		 * less than half of the minimum free reserve, we choose
355		 * to begin optimizing for time.
356		 */
357		request = nsize;
358		if (fs->fs_minfree <= 5 ||
359		    fs->fs_cstotal.cs_nffree >
360		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
361			break;
362		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
363			fs->fs_fsmnt);
364		fs->fs_optim = FS_OPTTIME;
365		break;
366	case FS_OPTTIME:
367		/*
368		 * At this point we have discovered a file that is trying to
369		 * grow a small fragment to a larger fragment. To save time,
370		 * we allocate a full sized block, then free the unused portion.
371		 * If the file continues to grow, the `ffs_fragextend' call
372		 * above will be able to grow it in place without further
373		 * copying. If aberrant programs cause disk fragmentation to
374		 * grow within 2% of the free reserve, we choose to begin
375		 * optimizing for space.
376		 */
377		request = fs->fs_bsize;
378		if (fs->fs_cstotal.cs_nffree <
379		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
380			break;
381		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
382			fs->fs_fsmnt);
383		fs->fs_optim = FS_OPTSPACE;
384		break;
385	default:
386		printf("dev = %s, optim = %ld, fs = %s\n",
387		    devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt);
388		panic("ffs_realloccg: bad optim");
389		/* NOTREACHED */
390	}
391	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
392	if (bno > 0) {
393		bp->b_blkno = fsbtodb(fs, bno);
394		if (!DOINGSOFTDEP(vp))
395			/*
396			 * The usual case is that a smaller fragment that
397			 * was just allocated has been replaced with a bigger
398			 * fragment or a full-size block. If it is marked as
399			 * B_DELWRI, the current contents have not been written
400			 * to disk. It is possible that the block was written
401			 * earlier, but very uncommon. If the block has never
402			 * been written, there is no need to send a BIO_DELETE
403			 * for it when it is freed. The gain from avoiding the
404			 * TRIMs for the common case of unwritten blocks far
405			 * exceeds the cost of the write amplification for the
406			 * uncommon case of failing to send a TRIM for a block
407			 * that had been written.
408			 */
409			ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize,
410			    ip->i_number, vp->v_type, NULL,
411			    (bp->b_flags & B_DELWRI) != 0 ?
412			    NOTRIM_KEY : SINGLETON_KEY);
413		delta = btodb(nsize - osize);
414		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
415		if (flags & IO_EXT)
416			ip->i_flag |= IN_CHANGE;
417		else
418			ip->i_flag |= IN_CHANGE | IN_UPDATE;
419		allocbuf(bp, nsize);
420		bp->b_flags |= B_DONE;
421		vfs_bio_bzero_buf(bp, osize, nsize - osize);
422		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
423			vfs_bio_set_valid(bp, osize, nsize - osize);
424		*bpp = bp;
425		return (0);
426	}
427#ifdef QUOTA
428	UFS_UNLOCK(ump);
429	/*
430	 * Restore user's disk quota because allocation failed.
431	 */
432	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
433	UFS_LOCK(ump);
434#endif
435nospace:
436	/*
437	 * no space available
438	 */
439	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
440		reclaimed = 1;
441		UFS_UNLOCK(ump);
442		if (bp) {
443			brelse(bp);
444			bp = NULL;
445		}
446		UFS_LOCK(ump);
447		softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
448		goto retry;
449	}
450	if (reclaimed > 0 &&
451	    ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
452		UFS_UNLOCK(ump);
453		ffs_fserr(fs, ip->i_number, "filesystem full");
454		uprintf("\n%s: write failed, filesystem is full\n",
455		    fs->fs_fsmnt);
456	} else {
457		UFS_UNLOCK(ump);
458	}
459	if (bp)
460		brelse(bp);
461	return (ENOSPC);
462}
463
464/*
465 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
466 *
467 * The vnode and an array of buffer pointers for a range of sequential
468 * logical blocks to be made contiguous is given. The allocator attempts
469 * to find a range of sequential blocks starting as close as possible
470 * from the end of the allocation for the logical block immediately
471 * preceding the current range. If successful, the physical block numbers
472 * in the buffer pointers and in the inode are changed to reflect the new
473 * allocation. If unsuccessful, the allocation is left unchanged. The
474 * success in doing the reallocation is returned. Note that the error
475 * return is not reflected back to the user. Rather the previous block
476 * allocation will be used.
477 */
478
479SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
480
481static int doasyncfree = 1;
482SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
483"do not force synchronous writes when blocks are reallocated");
484
485static int doreallocblks = 1;
486SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
487"enable block reallocation");
488
489static int dotrimcons = 1;
490SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0,
491"enable BIO_DELETE / TRIM consolidation");
492
493static int maxclustersearch = 10;
494SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
4950, "max number of cylinder group to search for contigous blocks");
496
497#ifdef DEBUG
498static volatile int prtrealloc = 0;
499#endif
500
501int
502ffs_reallocblks(ap)
503	struct vop_reallocblks_args /* {
504		struct vnode *a_vp;
505		struct cluster_save *a_buflist;
506	} */ *ap;
507{
508	struct ufsmount *ump;
509
510	/*
511	 * We used to skip reallocating the blocks of a file into a
512	 * contiguous sequence if the underlying flash device requested
513	 * BIO_DELETE notifications, because devices that benefit from
514	 * BIO_DELETE also benefit from not moving the data. However,
515	 * the destination for the data is usually moved before the data
516	 * is written to the initially allocated location, so we rarely
517	 * suffer the penalty of extra writes. With the addition of the
518	 * consolidation of contiguous blocks into single BIO_DELETE
519	 * operations, having fewer but larger contiguous blocks reduces
520	 * the number of (slow and expensive) BIO_DELETE operations. So
521	 * when doing BIO_DELETE consolidation, we do block reallocation.
522	 *
523	 * Skip if reallocblks has been disabled globally.
524	 */
525	ump = ap->a_vp->v_mount->mnt_data;
526	if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) ||
527	    doreallocblks == 0)
528		return (ENOSPC);
529
530	/*
531	 * We can't wait in softdep prealloc as it may fsync and recurse
532	 * here.  Instead we simply fail to reallocate blocks if this
533	 * rare condition arises.
534	 */
535	if (DOINGSOFTDEP(ap->a_vp))
536		if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
537			return (ENOSPC);
538	if (ump->um_fstype == UFS1)
539		return (ffs_reallocblks_ufs1(ap));
540	return (ffs_reallocblks_ufs2(ap));
541}
542
543static int
544ffs_reallocblks_ufs1(ap)
545	struct vop_reallocblks_args /* {
546		struct vnode *a_vp;
547		struct cluster_save *a_buflist;
548	} */ *ap;
549{
550	struct fs *fs;
551	struct inode *ip;
552	struct vnode *vp;
553	struct buf *sbp, *ebp, *bp;
554	ufs1_daddr_t *bap, *sbap, *ebap;
555	struct cluster_save *buflist;
556	struct ufsmount *ump;
557	ufs_lbn_t start_lbn, end_lbn;
558	ufs1_daddr_t soff, newblk, blkno;
559	ufs2_daddr_t pref;
560	struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
561	int i, cg, len, start_lvl, end_lvl, ssize;
562
563	vp = ap->a_vp;
564	ip = VTOI(vp);
565	ump = ITOUMP(ip);
566	fs = ump->um_fs;
567	/*
568	 * If we are not tracking block clusters or if we have less than 4%
569	 * free blocks left, then do not attempt to cluster. Running with
570	 * less than 5% free block reserve is not recommended and those that
571	 * choose to do so do not expect to have good file layout.
572	 */
573	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
574		return (ENOSPC);
575	buflist = ap->a_buflist;
576	len = buflist->bs_nchildren;
577	start_lbn = buflist->bs_children[0]->b_lblkno;
578	end_lbn = start_lbn + len - 1;
579#ifdef INVARIANTS
580	for (i = 0; i < len; i++)
581		if (!ffs_checkblk(ip,
582		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
583			panic("ffs_reallocblks: unallocated block 1");
584	for (i = 1; i < len; i++)
585		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
586			panic("ffs_reallocblks: non-logical cluster");
587	blkno = buflist->bs_children[0]->b_blkno;
588	ssize = fsbtodb(fs, fs->fs_frag);
589	for (i = 1; i < len - 1; i++)
590		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
591			panic("ffs_reallocblks: non-physical cluster %d", i);
592#endif
593	/*
594	 * If the cluster crosses the boundary for the first indirect
595	 * block, leave space for the indirect block. Indirect blocks
596	 * are initially laid out in a position after the last direct
597	 * block. Block reallocation would usually destroy locality by
598	 * moving the indirect block out of the way to make room for
599	 * data blocks if we didn't compensate here. We should also do
600	 * this for other indirect block boundaries, but it is only
601	 * important for the first one.
602	 */
603	if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
604		return (ENOSPC);
605	/*
606	 * If the latest allocation is in a new cylinder group, assume that
607	 * the filesystem has decided to move and do not force it back to
608	 * the previous cylinder group.
609	 */
610	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
611	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
612		return (ENOSPC);
613	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
614	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
615		return (ENOSPC);
616	/*
617	 * Get the starting offset and block map for the first block.
618	 */
619	if (start_lvl == 0) {
620		sbap = &ip->i_din1->di_db[0];
621		soff = start_lbn;
622	} else {
623		idp = &start_ap[start_lvl - 1];
624		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
625			brelse(sbp);
626			return (ENOSPC);
627		}
628		sbap = (ufs1_daddr_t *)sbp->b_data;
629		soff = idp->in_off;
630	}
631	/*
632	 * If the block range spans two block maps, get the second map.
633	 */
634	ebap = NULL;
635	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
636		ssize = len;
637	} else {
638#ifdef INVARIANTS
639		if (start_lvl > 0 &&
640		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
641			panic("ffs_reallocblk: start == end");
642#endif
643		ssize = len - (idp->in_off + 1);
644		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
645			goto fail;
646		ebap = (ufs1_daddr_t *)ebp->b_data;
647	}
648	/*
649	 * Find the preferred location for the cluster. If we have not
650	 * previously failed at this endeavor, then follow our standard
651	 * preference calculation. If we have failed at it, then pick up
652	 * where we last ended our search.
653	 */
654	UFS_LOCK(ump);
655	if (ip->i_nextclustercg == -1)
656		pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
657	else
658		pref = cgdata(fs, ip->i_nextclustercg);
659	/*
660	 * Search the block map looking for an allocation of the desired size.
661	 * To avoid wasting too much time, we limit the number of cylinder
662	 * groups that we will search.
663	 */
664	cg = dtog(fs, pref);
665	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
666		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
667			break;
668		cg += 1;
669		if (cg >= fs->fs_ncg)
670			cg = 0;
671	}
672	/*
673	 * If we have failed in our search, record where we gave up for
674	 * next time. Otherwise, fall back to our usual search citerion.
675	 */
676	if (newblk == 0) {
677		ip->i_nextclustercg = cg;
678		UFS_UNLOCK(ump);
679		goto fail;
680	}
681	ip->i_nextclustercg = -1;
682	/*
683	 * We have found a new contiguous block.
684	 *
685	 * First we have to replace the old block pointers with the new
686	 * block pointers in the inode and indirect blocks associated
687	 * with the file.
688	 */
689#ifdef DEBUG
690	if (prtrealloc)
691		printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
692		    (uintmax_t)ip->i_number,
693		    (intmax_t)start_lbn, (intmax_t)end_lbn);
694#endif
695	blkno = newblk;
696	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
697		if (i == ssize) {
698			bap = ebap;
699			soff = -i;
700		}
701#ifdef INVARIANTS
702		if (!ffs_checkblk(ip,
703		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
704			panic("ffs_reallocblks: unallocated block 2");
705		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
706			panic("ffs_reallocblks: alloc mismatch");
707#endif
708#ifdef DEBUG
709		if (prtrealloc)
710			printf(" %d,", *bap);
711#endif
712		if (DOINGSOFTDEP(vp)) {
713			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
714				softdep_setup_allocdirect(ip, start_lbn + i,
715				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
716				    buflist->bs_children[i]);
717			else
718				softdep_setup_allocindir_page(ip, start_lbn + i,
719				    i < ssize ? sbp : ebp, soff + i, blkno,
720				    *bap, buflist->bs_children[i]);
721		}
722		*bap++ = blkno;
723	}
724	/*
725	 * Next we must write out the modified inode and indirect blocks.
726	 * For strict correctness, the writes should be synchronous since
727	 * the old block values may have been written to disk. In practise
728	 * they are almost never written, but if we are concerned about
729	 * strict correctness, the `doasyncfree' flag should be set to zero.
730	 *
731	 * The test on `doasyncfree' should be changed to test a flag
732	 * that shows whether the associated buffers and inodes have
733	 * been written. The flag should be set when the cluster is
734	 * started and cleared whenever the buffer or inode is flushed.
735	 * We can then check below to see if it is set, and do the
736	 * synchronous write only when it has been cleared.
737	 */
738	if (sbap != &ip->i_din1->di_db[0]) {
739		if (doasyncfree)
740			bdwrite(sbp);
741		else
742			bwrite(sbp);
743	} else {
744		ip->i_flag |= IN_CHANGE | IN_UPDATE;
745		if (!doasyncfree)
746			ffs_update(vp, 1);
747	}
748	if (ssize < len) {
749		if (doasyncfree)
750			bdwrite(ebp);
751		else
752			bwrite(ebp);
753	}
754	/*
755	 * Last, free the old blocks and assign the new blocks to the buffers.
756	 */
757#ifdef DEBUG
758	if (prtrealloc)
759		printf("\n\tnew:");
760#endif
761	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
762		bp = buflist->bs_children[i];
763		if (!DOINGSOFTDEP(vp))
764			/*
765			 * The usual case is that a set of N-contiguous blocks
766			 * that was just allocated has been replaced with a
767			 * set of N+1-contiguous blocks. If they are marked as
768			 * B_DELWRI, the current contents have not been written
769			 * to disk. It is possible that the blocks were written
770			 * earlier, but very uncommon. If the blocks have never
771			 * been written, there is no need to send a BIO_DELETE
772			 * for them when they are freed. The gain from avoiding
773			 * the TRIMs for the common case of unwritten blocks
774			 * far exceeds the cost of the write amplification for
775			 * the uncommon case of failing to send a TRIM for the
776			 * blocks that had been written.
777			 */
778			ffs_blkfree(ump, fs, ump->um_devvp,
779			    dbtofsb(fs, bp->b_blkno),
780			    fs->fs_bsize, ip->i_number, vp->v_type, NULL,
781			    (bp->b_flags & B_DELWRI) != 0 ?
782			    NOTRIM_KEY : SINGLETON_KEY);
783		bp->b_blkno = fsbtodb(fs, blkno);
784#ifdef INVARIANTS
785		if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize))
786			panic("ffs_reallocblks: unallocated block 3");
787#endif
788#ifdef DEBUG
789		if (prtrealloc)
790			printf(" %d,", blkno);
791#endif
792	}
793#ifdef DEBUG
794	if (prtrealloc) {
795		prtrealloc--;
796		printf("\n");
797	}
798#endif
799	return (0);
800
801fail:
802	if (ssize < len)
803		brelse(ebp);
804	if (sbap != &ip->i_din1->di_db[0])
805		brelse(sbp);
806	return (ENOSPC);
807}
808
809static int
810ffs_reallocblks_ufs2(ap)
811	struct vop_reallocblks_args /* {
812		struct vnode *a_vp;
813		struct cluster_save *a_buflist;
814	} */ *ap;
815{
816	struct fs *fs;
817	struct inode *ip;
818	struct vnode *vp;
819	struct buf *sbp, *ebp, *bp;
820	ufs2_daddr_t *bap, *sbap, *ebap;
821	struct cluster_save *buflist;
822	struct ufsmount *ump;
823	ufs_lbn_t start_lbn, end_lbn;
824	ufs2_daddr_t soff, newblk, blkno, pref;
825	struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
826	int i, cg, len, start_lvl, end_lvl, ssize;
827
828	vp = ap->a_vp;
829	ip = VTOI(vp);
830	ump = ITOUMP(ip);
831	fs = ump->um_fs;
832	/*
833	 * If we are not tracking block clusters or if we have less than 4%
834	 * free blocks left, then do not attempt to cluster. Running with
835	 * less than 5% free block reserve is not recommended and those that
836	 * choose to do so do not expect to have good file layout.
837	 */
838	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
839		return (ENOSPC);
840	buflist = ap->a_buflist;
841	len = buflist->bs_nchildren;
842	start_lbn = buflist->bs_children[0]->b_lblkno;
843	end_lbn = start_lbn + len - 1;
844#ifdef INVARIANTS
845	for (i = 0; i < len; i++)
846		if (!ffs_checkblk(ip,
847		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
848			panic("ffs_reallocblks: unallocated block 1");
849	for (i = 1; i < len; i++)
850		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
851			panic("ffs_reallocblks: non-logical cluster");
852	blkno = buflist->bs_children[0]->b_blkno;
853	ssize = fsbtodb(fs, fs->fs_frag);
854	for (i = 1; i < len - 1; i++)
855		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
856			panic("ffs_reallocblks: non-physical cluster %d", i);
857#endif
858	/*
859	 * If the cluster crosses the boundary for the first indirect
860	 * block, do not move anything in it. Indirect blocks are
861	 * usually initially laid out in a position between the data
862	 * blocks. Block reallocation would usually destroy locality by
863	 * moving the indirect block out of the way to make room for
864	 * data blocks if we didn't compensate here. We should also do
865	 * this for other indirect block boundaries, but it is only
866	 * important for the first one.
867	 */
868	if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
869		return (ENOSPC);
870	/*
871	 * If the latest allocation is in a new cylinder group, assume that
872	 * the filesystem has decided to move and do not force it back to
873	 * the previous cylinder group.
874	 */
875	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
876	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
877		return (ENOSPC);
878	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
879	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
880		return (ENOSPC);
881	/*
882	 * Get the starting offset and block map for the first block.
883	 */
884	if (start_lvl == 0) {
885		sbap = &ip->i_din2->di_db[0];
886		soff = start_lbn;
887	} else {
888		idp = &start_ap[start_lvl - 1];
889		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
890			brelse(sbp);
891			return (ENOSPC);
892		}
893		sbap = (ufs2_daddr_t *)sbp->b_data;
894		soff = idp->in_off;
895	}
896	/*
897	 * If the block range spans two block maps, get the second map.
898	 */
899	ebap = NULL;
900	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
901		ssize = len;
902	} else {
903#ifdef INVARIANTS
904		if (start_lvl > 0 &&
905		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
906			panic("ffs_reallocblk: start == end");
907#endif
908		ssize = len - (idp->in_off + 1);
909		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
910			goto fail;
911		ebap = (ufs2_daddr_t *)ebp->b_data;
912	}
913	/*
914	 * Find the preferred location for the cluster. If we have not
915	 * previously failed at this endeavor, then follow our standard
916	 * preference calculation. If we have failed at it, then pick up
917	 * where we last ended our search.
918	 */
919	UFS_LOCK(ump);
920	if (ip->i_nextclustercg == -1)
921		pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
922	else
923		pref = cgdata(fs, ip->i_nextclustercg);
924	/*
925	 * Search the block map looking for an allocation of the desired size.
926	 * To avoid wasting too much time, we limit the number of cylinder
927	 * groups that we will search.
928	 */
929	cg = dtog(fs, pref);
930	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
931		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
932			break;
933		cg += 1;
934		if (cg >= fs->fs_ncg)
935			cg = 0;
936	}
937	/*
938	 * If we have failed in our search, record where we gave up for
939	 * next time. Otherwise, fall back to our usual search citerion.
940	 */
941	if (newblk == 0) {
942		ip->i_nextclustercg = cg;
943		UFS_UNLOCK(ump);
944		goto fail;
945	}
946	ip->i_nextclustercg = -1;
947	/*
948	 * We have found a new contiguous block.
949	 *
950	 * First we have to replace the old block pointers with the new
951	 * block pointers in the inode and indirect blocks associated
952	 * with the file.
953	 */
954#ifdef DEBUG
955	if (prtrealloc)
956		printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
957		    (intmax_t)start_lbn, (intmax_t)end_lbn);
958#endif
959	blkno = newblk;
960	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
961		if (i == ssize) {
962			bap = ebap;
963			soff = -i;
964		}
965#ifdef INVARIANTS
966		if (!ffs_checkblk(ip,
967		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
968			panic("ffs_reallocblks: unallocated block 2");
969		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
970			panic("ffs_reallocblks: alloc mismatch");
971#endif
972#ifdef DEBUG
973		if (prtrealloc)
974			printf(" %jd,", (intmax_t)*bap);
975#endif
976		if (DOINGSOFTDEP(vp)) {
977			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
978				softdep_setup_allocdirect(ip, start_lbn + i,
979				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
980				    buflist->bs_children[i]);
981			else
982				softdep_setup_allocindir_page(ip, start_lbn + i,
983				    i < ssize ? sbp : ebp, soff + i, blkno,
984				    *bap, buflist->bs_children[i]);
985		}
986		*bap++ = blkno;
987	}
988	/*
989	 * Next we must write out the modified inode and indirect blocks.
990	 * For strict correctness, the writes should be synchronous since
991	 * the old block values may have been written to disk. In practise
992	 * they are almost never written, but if we are concerned about
993	 * strict correctness, the `doasyncfree' flag should be set to zero.
994	 *
995	 * The test on `doasyncfree' should be changed to test a flag
996	 * that shows whether the associated buffers and inodes have
997	 * been written. The flag should be set when the cluster is
998	 * started and cleared whenever the buffer or inode is flushed.
999	 * We can then check below to see if it is set, and do the
1000	 * synchronous write only when it has been cleared.
1001	 */
1002	if (sbap != &ip->i_din2->di_db[0]) {
1003		if (doasyncfree)
1004			bdwrite(sbp);
1005		else
1006			bwrite(sbp);
1007	} else {
1008		ip->i_flag |= IN_CHANGE | IN_UPDATE;
1009		if (!doasyncfree)
1010			ffs_update(vp, 1);
1011	}
1012	if (ssize < len) {
1013		if (doasyncfree)
1014			bdwrite(ebp);
1015		else
1016			bwrite(ebp);
1017	}
1018	/*
1019	 * Last, free the old blocks and assign the new blocks to the buffers.
1020	 */
1021#ifdef DEBUG
1022	if (prtrealloc)
1023		printf("\n\tnew:");
1024#endif
1025	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
1026		bp = buflist->bs_children[i];
1027		if (!DOINGSOFTDEP(vp))
1028			/*
1029			 * The usual case is that a set of N-contiguous blocks
1030			 * that was just allocated has been replaced with a
1031			 * set of N+1-contiguous blocks. If they are marked as
1032			 * B_DELWRI, the current contents have not been written
1033			 * to disk. It is possible that the blocks were written
1034			 * earlier, but very uncommon. If the blocks have never
1035			 * been written, there is no need to send a BIO_DELETE
1036			 * for them when they are freed. The gain from avoiding
1037			 * the TRIMs for the common case of unwritten blocks
1038			 * far exceeds the cost of the write amplification for
1039			 * the uncommon case of failing to send a TRIM for the
1040			 * blocks that had been written.
1041			 */
1042			ffs_blkfree(ump, fs, ump->um_devvp,
1043			    dbtofsb(fs, bp->b_blkno),
1044			    fs->fs_bsize, ip->i_number, vp->v_type, NULL,
1045			    (bp->b_flags & B_DELWRI) != 0 ?
1046			    NOTRIM_KEY : SINGLETON_KEY);
1047		bp->b_blkno = fsbtodb(fs, blkno);
1048#ifdef INVARIANTS
1049		if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize))
1050			panic("ffs_reallocblks: unallocated block 3");
1051#endif
1052#ifdef DEBUG
1053		if (prtrealloc)
1054			printf(" %jd,", (intmax_t)blkno);
1055#endif
1056	}
1057#ifdef DEBUG
1058	if (prtrealloc) {
1059		prtrealloc--;
1060		printf("\n");
1061	}
1062#endif
1063	return (0);
1064
1065fail:
1066	if (ssize < len)
1067		brelse(ebp);
1068	if (sbap != &ip->i_din2->di_db[0])
1069		brelse(sbp);
1070	return (ENOSPC);
1071}
1072
1073/*
1074 * Allocate an inode in the filesystem.
1075 *
1076 * If allocating a directory, use ffs_dirpref to select the inode.
1077 * If allocating in a directory, the following hierarchy is followed:
1078 *   1) allocate the preferred inode.
1079 *   2) allocate an inode in the same cylinder group.
1080 *   3) quadradically rehash into other cylinder groups, until an
1081 *      available inode is located.
1082 * If no inode preference is given the following hierarchy is used
1083 * to allocate an inode:
1084 *   1) allocate an inode in cylinder group 0.
1085 *   2) quadradically rehash into other cylinder groups, until an
1086 *      available inode is located.
1087 */
1088int
1089ffs_valloc(pvp, mode, cred, vpp)
1090	struct vnode *pvp;
1091	int mode;
1092	struct ucred *cred;
1093	struct vnode **vpp;
1094{
1095	struct inode *pip;
1096	struct fs *fs;
1097	struct inode *ip;
1098	struct timespec ts;
1099	struct ufsmount *ump;
1100	ino_t ino, ipref;
1101	u_int cg;
1102	int error, error1, reclaimed;
1103
1104	*vpp = NULL;
1105	pip = VTOI(pvp);
1106	ump = ITOUMP(pip);
1107	fs = ump->um_fs;
1108
1109	UFS_LOCK(ump);
1110	reclaimed = 0;
1111retry:
1112	if (fs->fs_cstotal.cs_nifree == 0)
1113		goto noinodes;
1114
1115	if ((mode & IFMT) == IFDIR)
1116		ipref = ffs_dirpref(pip);
1117	else
1118		ipref = pip->i_number;
1119	if (ipref >= fs->fs_ncg * fs->fs_ipg)
1120		ipref = 0;
1121	cg = ino_to_cg(fs, ipref);
1122	/*
1123	 * Track number of dirs created one after another
1124	 * in a same cg without intervening by files.
1125	 */
1126	if ((mode & IFMT) == IFDIR) {
1127		if (fs->fs_contigdirs[cg] < 255)
1128			fs->fs_contigdirs[cg]++;
1129	} else {
1130		if (fs->fs_contigdirs[cg] > 0)
1131			fs->fs_contigdirs[cg]--;
1132	}
1133	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1134					(allocfcn_t *)ffs_nodealloccg);
1135	if (ino == 0)
1136		goto noinodes;
1137	error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
1138	if (error) {
1139		error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1140		    FFSV_FORCEINSMQ);
1141		ffs_vfree(pvp, ino, mode);
1142		if (error1 == 0) {
1143			ip = VTOI(*vpp);
1144			if (ip->i_mode)
1145				goto dup_alloc;
1146			ip->i_flag |= IN_MODIFIED;
1147			vput(*vpp);
1148		}
1149		return (error);
1150	}
1151	ip = VTOI(*vpp);
1152	if (ip->i_mode) {
1153dup_alloc:
1154		printf("mode = 0%o, inum = %ju, fs = %s\n",
1155		    ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
1156		panic("ffs_valloc: dup alloc");
1157	}
1158	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
1159		printf("free inode %s/%lu had %ld blocks\n",
1160		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
1161		DIP_SET(ip, i_blocks, 0);
1162	}
1163	ip->i_flags = 0;
1164	DIP_SET(ip, i_flags, 0);
1165	/*
1166	 * Set up a new generation number for this inode.
1167	 */
1168	while (ip->i_gen == 0 || ++ip->i_gen == 0)
1169		ip->i_gen = arc4random();
1170	DIP_SET(ip, i_gen, ip->i_gen);
1171	if (fs->fs_magic == FS_UFS2_MAGIC) {
1172		vfs_timestamp(&ts);
1173		ip->i_din2->di_birthtime = ts.tv_sec;
1174		ip->i_din2->di_birthnsec = ts.tv_nsec;
1175	}
1176	ufs_prepare_reclaim(*vpp);
1177	ip->i_flag = 0;
1178	(*vpp)->v_vflag = 0;
1179	(*vpp)->v_type = VNON;
1180	if (fs->fs_magic == FS_UFS2_MAGIC) {
1181		(*vpp)->v_op = &ffs_vnodeops2;
1182		ip->i_flag |= IN_UFS2;
1183	} else {
1184		(*vpp)->v_op = &ffs_vnodeops1;
1185	}
1186	return (0);
1187noinodes:
1188	if (reclaimed == 0) {
1189		reclaimed = 1;
1190		softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1191		goto retry;
1192	}
1193	if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
1194		UFS_UNLOCK(ump);
1195		ffs_fserr(fs, pip->i_number, "out of inodes");
1196		uprintf("\n%s: create/symlink failed, no inodes free\n",
1197		    fs->fs_fsmnt);
1198	} else {
1199		UFS_UNLOCK(ump);
1200	}
1201	return (ENOSPC);
1202}
1203
1204/*
1205 * Find a cylinder group to place a directory.
1206 *
1207 * The policy implemented by this algorithm is to allocate a
1208 * directory inode in the same cylinder group as its parent
1209 * directory, but also to reserve space for its files inodes
1210 * and data. Restrict the number of directories which may be
1211 * allocated one after another in the same cylinder group
1212 * without intervening allocation of files.
1213 *
1214 * If we allocate a first level directory then force allocation
1215 * in another cylinder group.
1216 */
1217static ino_t
1218ffs_dirpref(pip)
1219	struct inode *pip;
1220{
1221	struct fs *fs;
1222	int cg, prefcg, dirsize, cgsize;
1223	u_int avgifree, avgbfree, avgndir, curdirsize;
1224	u_int minifree, minbfree, maxndir;
1225	u_int mincg, minndir;
1226	u_int maxcontigdirs;
1227
1228	mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED);
1229	fs = ITOFS(pip);
1230
1231	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1232	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1233	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1234
1235	/*
1236	 * Force allocation in another cg if creating a first level dir.
1237	 */
1238	ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1239	if (ITOV(pip)->v_vflag & VV_ROOT) {
1240		prefcg = arc4random() % fs->fs_ncg;
1241		mincg = prefcg;
1242		minndir = fs->fs_ipg;
1243		for (cg = prefcg; cg < fs->fs_ncg; cg++)
1244			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1245			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1246			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1247				mincg = cg;
1248				minndir = fs->fs_cs(fs, cg).cs_ndir;
1249			}
1250		for (cg = 0; cg < prefcg; cg++)
1251			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1252			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1253			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1254				mincg = cg;
1255				minndir = fs->fs_cs(fs, cg).cs_ndir;
1256			}
1257		return ((ino_t)(fs->fs_ipg * mincg));
1258	}
1259
1260	/*
1261	 * Count various limits which used for
1262	 * optimal allocation of a directory inode.
1263	 */
1264	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1265	minifree = avgifree - avgifree / 4;
1266	if (minifree < 1)
1267		minifree = 1;
1268	minbfree = avgbfree - avgbfree / 4;
1269	if (minbfree < 1)
1270		minbfree = 1;
1271	cgsize = fs->fs_fsize * fs->fs_fpg;
1272	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1273	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1274	if (dirsize < curdirsize)
1275		dirsize = curdirsize;
1276	if (dirsize <= 0)
1277		maxcontigdirs = 0;		/* dirsize overflowed */
1278	else
1279		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1280	if (fs->fs_avgfpdir > 0)
1281		maxcontigdirs = min(maxcontigdirs,
1282				    fs->fs_ipg / fs->fs_avgfpdir);
1283	if (maxcontigdirs == 0)
1284		maxcontigdirs = 1;
1285
1286	/*
1287	 * Limit number of dirs in one cg and reserve space for
1288	 * regular files, but only if we have no deficit in
1289	 * inodes or space.
1290	 *
1291	 * We are trying to find a suitable cylinder group nearby
1292	 * our preferred cylinder group to place a new directory.
1293	 * We scan from our preferred cylinder group forward looking
1294	 * for a cylinder group that meets our criterion. If we get
1295	 * to the final cylinder group and do not find anything,
1296	 * we start scanning forwards from the beginning of the
1297	 * filesystem. While it might seem sensible to start scanning
1298	 * backwards or even to alternate looking forward and backward,
1299	 * this approach fails badly when the filesystem is nearly full.
1300	 * Specifically, we first search all the areas that have no space
1301	 * and finally try the one preceding that. We repeat this on
1302	 * every request and in the case of the final block end up
1303	 * searching the entire filesystem. By jumping to the front
1304	 * of the filesystem, our future forward searches always look
1305	 * in new cylinder groups so finds every possible block after
1306	 * one pass over the filesystem.
1307	 */
1308	prefcg = ino_to_cg(fs, pip->i_number);
1309	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1310		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1311		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1312		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1313			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1314				return ((ino_t)(fs->fs_ipg * cg));
1315		}
1316	for (cg = 0; cg < prefcg; cg++)
1317		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1318		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1319		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1320			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1321				return ((ino_t)(fs->fs_ipg * cg));
1322		}
1323	/*
1324	 * This is a backstop when we have deficit in space.
1325	 */
1326	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1327		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1328			return ((ino_t)(fs->fs_ipg * cg));
1329	for (cg = 0; cg < prefcg; cg++)
1330		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1331			break;
1332	return ((ino_t)(fs->fs_ipg * cg));
1333}
1334
1335/*
1336 * Select the desired position for the next block in a file.  The file is
1337 * logically divided into sections. The first section is composed of the
1338 * direct blocks and the next fs_maxbpg blocks. Each additional section
1339 * contains fs_maxbpg blocks.
1340 *
1341 * If no blocks have been allocated in the first section, the policy is to
1342 * request a block in the same cylinder group as the inode that describes
1343 * the file. The first indirect is allocated immediately following the last
1344 * direct block and the data blocks for the first indirect immediately
1345 * follow it.
1346 *
1347 * If no blocks have been allocated in any other section, the indirect
1348 * block(s) are allocated in the same cylinder group as its inode in an
1349 * area reserved immediately following the inode blocks. The policy for
1350 * the data blocks is to place them in a cylinder group with a greater than
1351 * average number of free blocks. An appropriate cylinder group is found
1352 * by using a rotor that sweeps the cylinder groups. When a new group of
1353 * blocks is needed, the sweep begins in the cylinder group following the
1354 * cylinder group from which the previous allocation was made. The sweep
1355 * continues until a cylinder group with greater than the average number
1356 * of free blocks is found. If the allocation is for the first block in an
1357 * indirect block or the previous block is a hole, then the information on
1358 * the previous allocation is unavailable; here a best guess is made based
1359 * on the logical block number being allocated.
1360 *
1361 * If a section is already partially allocated, the policy is to
1362 * allocate blocks contiguously within the section if possible.
1363 */
1364ufs2_daddr_t
1365ffs_blkpref_ufs1(ip, lbn, indx, bap)
1366	struct inode *ip;
1367	ufs_lbn_t lbn;
1368	int indx;
1369	ufs1_daddr_t *bap;
1370{
1371	struct fs *fs;
1372	u_int cg, inocg;
1373	u_int avgbfree, startcg;
1374	ufs2_daddr_t pref, prevbn;
1375
1376	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1377	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1378	fs = ITOFS(ip);
1379	/*
1380	 * Allocation of indirect blocks is indicated by passing negative
1381	 * values in indx: -1 for single indirect, -2 for double indirect,
1382	 * -3 for triple indirect. As noted below, we attempt to allocate
1383	 * the first indirect inline with the file data. For all later
1384	 * indirect blocks, the data is often allocated in other cylinder
1385	 * groups. However to speed random file access and to speed up
1386	 * fsck, the filesystem reserves the first fs_metaspace blocks
1387	 * (typically half of fs_minfree) of the data area of each cylinder
1388	 * group to hold these later indirect blocks.
1389	 */
1390	inocg = ino_to_cg(fs, ip->i_number);
1391	if (indx < 0) {
1392		/*
1393		 * Our preference for indirect blocks is the zone at the
1394		 * beginning of the inode's cylinder group data area that
1395		 * we try to reserve for indirect blocks.
1396		 */
1397		pref = cgmeta(fs, inocg);
1398		/*
1399		 * If we are allocating the first indirect block, try to
1400		 * place it immediately following the last direct block.
1401		 */
1402		if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1403		    ip->i_din1->di_db[UFS_NDADDR - 1] != 0)
1404			pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1405		return (pref);
1406	}
1407	/*
1408	 * If we are allocating the first data block in the first indirect
1409	 * block and the indirect has been allocated in the data block area,
1410	 * try to place it immediately following the indirect block.
1411	 */
1412	if (lbn == UFS_NDADDR) {
1413		pref = ip->i_din1->di_ib[0];
1414		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1415		    pref < cgbase(fs, inocg + 1))
1416			return (pref + fs->fs_frag);
1417	}
1418	/*
1419	 * If we are at the beginning of a file, or we have already allocated
1420	 * the maximum number of blocks per cylinder group, or we do not
1421	 * have a block allocated immediately preceding us, then we need
1422	 * to decide where to start allocating new blocks.
1423	 */
1424	if (indx ==  0) {
1425		prevbn = 0;
1426	} else {
1427		prevbn = bap[indx - 1];
1428		if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1429		    fs->fs_bsize) != 0)
1430			prevbn = 0;
1431	}
1432	if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1433		/*
1434		 * If we are allocating a directory data block, we want
1435		 * to place it in the metadata area.
1436		 */
1437		if ((ip->i_mode & IFMT) == IFDIR)
1438			return (cgmeta(fs, inocg));
1439		/*
1440		 * Until we fill all the direct and all the first indirect's
1441		 * blocks, we try to allocate in the data area of the inode's
1442		 * cylinder group.
1443		 */
1444		if (lbn < UFS_NDADDR + NINDIR(fs))
1445			return (cgdata(fs, inocg));
1446		/*
1447		 * Find a cylinder with greater than average number of
1448		 * unused data blocks.
1449		 */
1450		if (indx == 0 || prevbn == 0)
1451			startcg = inocg + lbn / fs->fs_maxbpg;
1452		else
1453			startcg = dtog(fs, prevbn) + 1;
1454		startcg %= fs->fs_ncg;
1455		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1456		for (cg = startcg; cg < fs->fs_ncg; cg++)
1457			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1458				fs->fs_cgrotor = cg;
1459				return (cgdata(fs, cg));
1460			}
1461		for (cg = 0; cg <= startcg; cg++)
1462			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1463				fs->fs_cgrotor = cg;
1464				return (cgdata(fs, cg));
1465			}
1466		return (0);
1467	}
1468	/*
1469	 * Otherwise, we just always try to lay things out contiguously.
1470	 */
1471	return (prevbn + fs->fs_frag);
1472}
1473
1474/*
1475 * Same as above, but for UFS2
1476 */
1477ufs2_daddr_t
1478ffs_blkpref_ufs2(ip, lbn, indx, bap)
1479	struct inode *ip;
1480	ufs_lbn_t lbn;
1481	int indx;
1482	ufs2_daddr_t *bap;
1483{
1484	struct fs *fs;
1485	u_int cg, inocg;
1486	u_int avgbfree, startcg;
1487	ufs2_daddr_t pref, prevbn;
1488
1489	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1490	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1491	fs = ITOFS(ip);
1492	/*
1493	 * Allocation of indirect blocks is indicated by passing negative
1494	 * values in indx: -1 for single indirect, -2 for double indirect,
1495	 * -3 for triple indirect. As noted below, we attempt to allocate
1496	 * the first indirect inline with the file data. For all later
1497	 * indirect blocks, the data is often allocated in other cylinder
1498	 * groups. However to speed random file access and to speed up
1499	 * fsck, the filesystem reserves the first fs_metaspace blocks
1500	 * (typically half of fs_minfree) of the data area of each cylinder
1501	 * group to hold these later indirect blocks.
1502	 */
1503	inocg = ino_to_cg(fs, ip->i_number);
1504	if (indx < 0) {
1505		/*
1506		 * Our preference for indirect blocks is the zone at the
1507		 * beginning of the inode's cylinder group data area that
1508		 * we try to reserve for indirect blocks.
1509		 */
1510		pref = cgmeta(fs, inocg);
1511		/*
1512		 * If we are allocating the first indirect block, try to
1513		 * place it immediately following the last direct block.
1514		 */
1515		if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1516		    ip->i_din2->di_db[UFS_NDADDR - 1] != 0)
1517			pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1518		return (pref);
1519	}
1520	/*
1521	 * If we are allocating the first data block in the first indirect
1522	 * block and the indirect has been allocated in the data block area,
1523	 * try to place it immediately following the indirect block.
1524	 */
1525	if (lbn == UFS_NDADDR) {
1526		pref = ip->i_din2->di_ib[0];
1527		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1528		    pref < cgbase(fs, inocg + 1))
1529			return (pref + fs->fs_frag);
1530	}
1531	/*
1532	 * If we are at the beginning of a file, or we have already allocated
1533	 * the maximum number of blocks per cylinder group, or we do not
1534	 * have a block allocated immediately preceding us, then we need
1535	 * to decide where to start allocating new blocks.
1536	 */
1537	if (indx ==  0) {
1538		prevbn = 0;
1539	} else {
1540		prevbn = bap[indx - 1];
1541		if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1542		    fs->fs_bsize) != 0)
1543			prevbn = 0;
1544	}
1545	if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1546		/*
1547		 * If we are allocating a directory data block, we want
1548		 * to place it in the metadata area.
1549		 */
1550		if ((ip->i_mode & IFMT) == IFDIR)
1551			return (cgmeta(fs, inocg));
1552		/*
1553		 * Until we fill all the direct and all the first indirect's
1554		 * blocks, we try to allocate in the data area of the inode's
1555		 * cylinder group.
1556		 */
1557		if (lbn < UFS_NDADDR + NINDIR(fs))
1558			return (cgdata(fs, inocg));
1559		/*
1560		 * Find a cylinder with greater than average number of
1561		 * unused data blocks.
1562		 */
1563		if (indx == 0 || prevbn == 0)
1564			startcg = inocg + lbn / fs->fs_maxbpg;
1565		else
1566			startcg = dtog(fs, prevbn) + 1;
1567		startcg %= fs->fs_ncg;
1568		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1569		for (cg = startcg; cg < fs->fs_ncg; cg++)
1570			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1571				fs->fs_cgrotor = cg;
1572				return (cgdata(fs, cg));
1573			}
1574		for (cg = 0; cg <= startcg; cg++)
1575			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1576				fs->fs_cgrotor = cg;
1577				return (cgdata(fs, cg));
1578			}
1579		return (0);
1580	}
1581	/*
1582	 * Otherwise, we just always try to lay things out contiguously.
1583	 */
1584	return (prevbn + fs->fs_frag);
1585}
1586
1587/*
1588 * Implement the cylinder overflow algorithm.
1589 *
1590 * The policy implemented by this algorithm is:
1591 *   1) allocate the block in its requested cylinder group.
1592 *   2) quadradically rehash on the cylinder group number.
1593 *   3) brute force search for a free block.
1594 *
1595 * Must be called with the UFS lock held.  Will release the lock on success
1596 * and return with it held on failure.
1597 */
1598/*VARARGS5*/
1599static ufs2_daddr_t
1600ffs_hashalloc(ip, cg, pref, size, rsize, allocator)
1601	struct inode *ip;
1602	u_int cg;
1603	ufs2_daddr_t pref;
1604	int size;	/* Search size for data blocks, mode for inodes */
1605	int rsize;	/* Real allocated size. */
1606	allocfcn_t *allocator;
1607{
1608	struct fs *fs;
1609	ufs2_daddr_t result;
1610	u_int i, icg = cg;
1611
1612	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1613#ifdef INVARIANTS
1614	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1615		panic("ffs_hashalloc: allocation on suspended filesystem");
1616#endif
1617	fs = ITOFS(ip);
1618	/*
1619	 * 1: preferred cylinder group
1620	 */
1621	result = (*allocator)(ip, cg, pref, size, rsize);
1622	if (result)
1623		return (result);
1624	/*
1625	 * 2: quadratic rehash
1626	 */
1627	for (i = 1; i < fs->fs_ncg; i *= 2) {
1628		cg += i;
1629		if (cg >= fs->fs_ncg)
1630			cg -= fs->fs_ncg;
1631		result = (*allocator)(ip, cg, 0, size, rsize);
1632		if (result)
1633			return (result);
1634	}
1635	/*
1636	 * 3: brute force search
1637	 * Note that we start at i == 2, since 0 was checked initially,
1638	 * and 1 is always checked in the quadratic rehash.
1639	 */
1640	cg = (icg + 2) % fs->fs_ncg;
1641	for (i = 2; i < fs->fs_ncg; i++) {
1642		result = (*allocator)(ip, cg, 0, size, rsize);
1643		if (result)
1644			return (result);
1645		cg++;
1646		if (cg == fs->fs_ncg)
1647			cg = 0;
1648	}
1649	return (0);
1650}
1651
1652/*
1653 * Determine whether a fragment can be extended.
1654 *
1655 * Check to see if the necessary fragments are available, and
1656 * if they are, allocate them.
1657 */
1658static ufs2_daddr_t
1659ffs_fragextend(ip, cg, bprev, osize, nsize)
1660	struct inode *ip;
1661	u_int cg;
1662	ufs2_daddr_t bprev;
1663	int osize, nsize;
1664{
1665	struct fs *fs;
1666	struct cg *cgp;
1667	struct buf *bp;
1668	struct ufsmount *ump;
1669	int nffree;
1670	long bno;
1671	int frags, bbase;
1672	int i, error;
1673	u_int8_t *blksfree;
1674
1675	ump = ITOUMP(ip);
1676	fs = ump->um_fs;
1677	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1678		return (0);
1679	frags = numfrags(fs, nsize);
1680	bbase = fragnum(fs, bprev);
1681	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1682		/* cannot extend across a block boundary */
1683		return (0);
1684	}
1685	UFS_UNLOCK(ump);
1686	if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0)
1687		goto fail;
1688	bno = dtogd(fs, bprev);
1689	blksfree = cg_blksfree(cgp);
1690	for (i = numfrags(fs, osize); i < frags; i++)
1691		if (isclr(blksfree, bno + i))
1692			goto fail;
1693	/*
1694	 * the current fragment can be extended
1695	 * deduct the count on fragment being extended into
1696	 * increase the count on the remaining fragment (if any)
1697	 * allocate the extended piece
1698	 */
1699	for (i = frags; i < fs->fs_frag - bbase; i++)
1700		if (isclr(blksfree, bno + i))
1701			break;
1702	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1703	if (i != frags)
1704		cgp->cg_frsum[i - frags]++;
1705	for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1706		clrbit(blksfree, bno + i);
1707		cgp->cg_cs.cs_nffree--;
1708		nffree++;
1709	}
1710	UFS_LOCK(ump);
1711	fs->fs_cstotal.cs_nffree -= nffree;
1712	fs->fs_cs(fs, cg).cs_nffree -= nffree;
1713	fs->fs_fmod = 1;
1714	ACTIVECLEAR(fs, cg);
1715	UFS_UNLOCK(ump);
1716	if (DOINGSOFTDEP(ITOV(ip)))
1717		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1718		    frags, numfrags(fs, osize));
1719	bdwrite(bp);
1720	return (bprev);
1721
1722fail:
1723	brelse(bp);
1724	UFS_LOCK(ump);
1725	return (0);
1726
1727}
1728
1729/*
1730 * Determine whether a block can be allocated.
1731 *
1732 * Check to see if a block of the appropriate size is available,
1733 * and if it is, allocate it.
1734 */
1735static ufs2_daddr_t
1736ffs_alloccg(ip, cg, bpref, size, rsize)
1737	struct inode *ip;
1738	u_int cg;
1739	ufs2_daddr_t bpref;
1740	int size;
1741	int rsize;
1742{
1743	struct fs *fs;
1744	struct cg *cgp;
1745	struct buf *bp;
1746	struct ufsmount *ump;
1747	ufs1_daddr_t bno;
1748	ufs2_daddr_t blkno;
1749	int i, allocsiz, error, frags;
1750	u_int8_t *blksfree;
1751
1752	ump = ITOUMP(ip);
1753	fs = ump->um_fs;
1754	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1755		return (0);
1756	UFS_UNLOCK(ump);
1757	if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0 ||
1758	   (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1759		goto fail;
1760	if (size == fs->fs_bsize) {
1761		UFS_LOCK(ump);
1762		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1763		ACTIVECLEAR(fs, cg);
1764		UFS_UNLOCK(ump);
1765		bdwrite(bp);
1766		return (blkno);
1767	}
1768	/*
1769	 * check to see if any fragments are already available
1770	 * allocsiz is the size which will be allocated, hacking
1771	 * it down to a smaller size if necessary
1772	 */
1773	blksfree = cg_blksfree(cgp);
1774	frags = numfrags(fs, size);
1775	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1776		if (cgp->cg_frsum[allocsiz] != 0)
1777			break;
1778	if (allocsiz == fs->fs_frag) {
1779		/*
1780		 * no fragments were available, so a block will be
1781		 * allocated, and hacked up
1782		 */
1783		if (cgp->cg_cs.cs_nbfree == 0)
1784			goto fail;
1785		UFS_LOCK(ump);
1786		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1787		ACTIVECLEAR(fs, cg);
1788		UFS_UNLOCK(ump);
1789		bdwrite(bp);
1790		return (blkno);
1791	}
1792	KASSERT(size == rsize,
1793	    ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1794	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1795	if (bno < 0)
1796		goto fail;
1797	for (i = 0; i < frags; i++)
1798		clrbit(blksfree, bno + i);
1799	cgp->cg_cs.cs_nffree -= frags;
1800	cgp->cg_frsum[allocsiz]--;
1801	if (frags != allocsiz)
1802		cgp->cg_frsum[allocsiz - frags]++;
1803	UFS_LOCK(ump);
1804	fs->fs_cstotal.cs_nffree -= frags;
1805	fs->fs_cs(fs, cg).cs_nffree -= frags;
1806	fs->fs_fmod = 1;
1807	blkno = cgbase(fs, cg) + bno;
1808	ACTIVECLEAR(fs, cg);
1809	UFS_UNLOCK(ump);
1810	if (DOINGSOFTDEP(ITOV(ip)))
1811		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1812	bdwrite(bp);
1813	return (blkno);
1814
1815fail:
1816	brelse(bp);
1817	UFS_LOCK(ump);
1818	return (0);
1819}
1820
1821/*
1822 * Allocate a block in a cylinder group.
1823 *
1824 * This algorithm implements the following policy:
1825 *   1) allocate the requested block.
1826 *   2) allocate a rotationally optimal block in the same cylinder.
1827 *   3) allocate the next available block on the block rotor for the
1828 *      specified cylinder group.
1829 * Note that this routine only allocates fs_bsize blocks; these
1830 * blocks may be fragmented by the routine that allocates them.
1831 */
1832static ufs2_daddr_t
1833ffs_alloccgblk(ip, bp, bpref, size)
1834	struct inode *ip;
1835	struct buf *bp;
1836	ufs2_daddr_t bpref;
1837	int size;
1838{
1839	struct fs *fs;
1840	struct cg *cgp;
1841	struct ufsmount *ump;
1842	ufs1_daddr_t bno;
1843	ufs2_daddr_t blkno;
1844	u_int8_t *blksfree;
1845	int i, cgbpref;
1846
1847	ump = ITOUMP(ip);
1848	fs = ump->um_fs;
1849	mtx_assert(UFS_MTX(ump), MA_OWNED);
1850	cgp = (struct cg *)bp->b_data;
1851	blksfree = cg_blksfree(cgp);
1852	if (bpref == 0) {
1853		bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1854	} else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1855		/* map bpref to correct zone in this cg */
1856		if (bpref < cgdata(fs, cgbpref))
1857			bpref = cgmeta(fs, cgp->cg_cgx);
1858		else
1859			bpref = cgdata(fs, cgp->cg_cgx);
1860	}
1861	/*
1862	 * if the requested block is available, use it
1863	 */
1864	bno = dtogd(fs, blknum(fs, bpref));
1865	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1866		goto gotit;
1867	/*
1868	 * Take the next available block in this cylinder group.
1869	 */
1870	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1871	if (bno < 0)
1872		return (0);
1873	/* Update cg_rotor only if allocated from the data zone */
1874	if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1875		cgp->cg_rotor = bno;
1876gotit:
1877	blkno = fragstoblks(fs, bno);
1878	ffs_clrblock(fs, blksfree, (long)blkno);
1879	ffs_clusteracct(fs, cgp, blkno, -1);
1880	cgp->cg_cs.cs_nbfree--;
1881	fs->fs_cstotal.cs_nbfree--;
1882	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1883	fs->fs_fmod = 1;
1884	blkno = cgbase(fs, cgp->cg_cgx) + bno;
1885	/*
1886	 * If the caller didn't want the whole block free the frags here.
1887	 */
1888	size = numfrags(fs, size);
1889	if (size != fs->fs_frag) {
1890		bno = dtogd(fs, blkno);
1891		for (i = size; i < fs->fs_frag; i++)
1892			setbit(blksfree, bno + i);
1893		i = fs->fs_frag - size;
1894		cgp->cg_cs.cs_nffree += i;
1895		fs->fs_cstotal.cs_nffree += i;
1896		fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1897		fs->fs_fmod = 1;
1898		cgp->cg_frsum[i]++;
1899	}
1900	/* XXX Fixme. */
1901	UFS_UNLOCK(ump);
1902	if (DOINGSOFTDEP(ITOV(ip)))
1903		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0);
1904	UFS_LOCK(ump);
1905	return (blkno);
1906}
1907
1908/*
1909 * Determine whether a cluster can be allocated.
1910 *
1911 * We do not currently check for optimal rotational layout if there
1912 * are multiple choices in the same cylinder group. Instead we just
1913 * take the first one that we find following bpref.
1914 */
1915static ufs2_daddr_t
1916ffs_clusteralloc(ip, cg, bpref, len)
1917	struct inode *ip;
1918	u_int cg;
1919	ufs2_daddr_t bpref;
1920	int len;
1921{
1922	struct fs *fs;
1923	struct cg *cgp;
1924	struct buf *bp;
1925	struct ufsmount *ump;
1926	int i, run, bit, map, got, error;
1927	ufs2_daddr_t bno;
1928	u_char *mapp;
1929	int32_t *lp;
1930	u_int8_t *blksfree;
1931
1932	ump = ITOUMP(ip);
1933	fs = ump->um_fs;
1934	if (fs->fs_maxcluster[cg] < len)
1935		return (0);
1936	UFS_UNLOCK(ump);
1937	if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) {
1938		UFS_LOCK(ump);
1939		return (0);
1940	}
1941	/*
1942	 * Check to see if a cluster of the needed size (or bigger) is
1943	 * available in this cylinder group.
1944	 */
1945	lp = &cg_clustersum(cgp)[len];
1946	for (i = len; i <= fs->fs_contigsumsize; i++)
1947		if (*lp++ > 0)
1948			break;
1949	if (i > fs->fs_contigsumsize) {
1950		/*
1951		 * This is the first time looking for a cluster in this
1952		 * cylinder group. Update the cluster summary information
1953		 * to reflect the true maximum sized cluster so that
1954		 * future cluster allocation requests can avoid reading
1955		 * the cylinder group map only to find no clusters.
1956		 */
1957		lp = &cg_clustersum(cgp)[len - 1];
1958		for (i = len - 1; i > 0; i--)
1959			if (*lp-- > 0)
1960				break;
1961		UFS_LOCK(ump);
1962		fs->fs_maxcluster[cg] = i;
1963		brelse(bp);
1964		return (0);
1965	}
1966	/*
1967	 * Search the cluster map to find a big enough cluster.
1968	 * We take the first one that we find, even if it is larger
1969	 * than we need as we prefer to get one close to the previous
1970	 * block allocation. We do not search before the current
1971	 * preference point as we do not want to allocate a block
1972	 * that is allocated before the previous one (as we will
1973	 * then have to wait for another pass of the elevator
1974	 * algorithm before it will be read). We prefer to fail and
1975	 * be recalled to try an allocation in the next cylinder group.
1976	 */
1977	if (dtog(fs, bpref) != cg)
1978		bpref = cgdata(fs, cg);
1979	else
1980		bpref = blknum(fs, bpref);
1981	bpref = fragstoblks(fs, dtogd(fs, bpref));
1982	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1983	map = *mapp++;
1984	bit = 1 << (bpref % NBBY);
1985	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1986		if ((map & bit) == 0) {
1987			run = 0;
1988		} else {
1989			run++;
1990			if (run == len)
1991				break;
1992		}
1993		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1994			bit <<= 1;
1995		} else {
1996			map = *mapp++;
1997			bit = 1;
1998		}
1999	}
2000	if (got >= cgp->cg_nclusterblks) {
2001		UFS_LOCK(ump);
2002		brelse(bp);
2003		return (0);
2004	}
2005	/*
2006	 * Allocate the cluster that we have found.
2007	 */
2008	blksfree = cg_blksfree(cgp);
2009	for (i = 1; i <= len; i++)
2010		if (!ffs_isblock(fs, blksfree, got - run + i))
2011			panic("ffs_clusteralloc: map mismatch");
2012	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
2013	if (dtog(fs, bno) != cg)
2014		panic("ffs_clusteralloc: allocated out of group");
2015	len = blkstofrags(fs, len);
2016	UFS_LOCK(ump);
2017	for (i = 0; i < len; i += fs->fs_frag)
2018		if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
2019			panic("ffs_clusteralloc: lost block");
2020	ACTIVECLEAR(fs, cg);
2021	UFS_UNLOCK(ump);
2022	bdwrite(bp);
2023	return (bno);
2024}
2025
2026static inline struct buf *
2027getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags)
2028{
2029	struct fs *fs;
2030
2031	fs = ITOFS(ip);
2032	return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs,
2033	    cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
2034	    gbflags));
2035}
2036
2037/*
2038 * Synchronous inode initialization is needed only when barrier writes do not
2039 * work as advertised, and will impose a heavy cost on file creation in a newly
2040 * created filesystem.
2041 */
2042static int doasyncinodeinit = 1;
2043SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN,
2044    &doasyncinodeinit, 0,
2045    "Perform inode block initialization using asynchronous writes");
2046
2047/*
2048 * Determine whether an inode can be allocated.
2049 *
2050 * Check to see if an inode is available, and if it is,
2051 * allocate it using the following policy:
2052 *   1) allocate the requested inode.
2053 *   2) allocate the next available inode after the requested
2054 *      inode in the specified cylinder group.
2055 */
2056static ufs2_daddr_t
2057ffs_nodealloccg(ip, cg, ipref, mode, unused)
2058	struct inode *ip;
2059	u_int cg;
2060	ufs2_daddr_t ipref;
2061	int mode;
2062	int unused;
2063{
2064	struct fs *fs;
2065	struct cg *cgp;
2066	struct buf *bp, *ibp;
2067	struct ufsmount *ump;
2068	u_int8_t *inosused, *loc;
2069	struct ufs2_dinode *dp2;
2070	int error, start, len, i;
2071	u_int32_t old_initediblk;
2072
2073	ump = ITOUMP(ip);
2074	fs = ump->um_fs;
2075check_nifree:
2076	if (fs->fs_cs(fs, cg).cs_nifree == 0)
2077		return (0);
2078	UFS_UNLOCK(ump);
2079	if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) {
2080		UFS_LOCK(ump);
2081		return (0);
2082	}
2083restart:
2084	if (cgp->cg_cs.cs_nifree == 0) {
2085		brelse(bp);
2086		UFS_LOCK(ump);
2087		return (0);
2088	}
2089	inosused = cg_inosused(cgp);
2090	if (ipref) {
2091		ipref %= fs->fs_ipg;
2092		if (isclr(inosused, ipref))
2093			goto gotit;
2094	}
2095	start = cgp->cg_irotor / NBBY;
2096	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2097	loc = memcchr(&inosused[start], 0xff, len);
2098	if (loc == NULL) {
2099		len = start + 1;
2100		start = 0;
2101		loc = memcchr(&inosused[start], 0xff, len);
2102		if (loc == NULL) {
2103			printf("cg = %d, irotor = %ld, fs = %s\n",
2104			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2105			panic("ffs_nodealloccg: map corrupted");
2106			/* NOTREACHED */
2107		}
2108	}
2109	ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2110gotit:
2111	/*
2112	 * Check to see if we need to initialize more inodes.
2113	 */
2114	if (fs->fs_magic == FS_UFS2_MAGIC &&
2115	    ipref + INOPB(fs) > cgp->cg_initediblk &&
2116	    cgp->cg_initediblk < cgp->cg_niblk) {
2117		old_initediblk = cgp->cg_initediblk;
2118
2119		/*
2120		 * Free the cylinder group lock before writing the
2121		 * initialized inode block.  Entering the
2122		 * babarrierwrite() with the cylinder group lock
2123		 * causes lock order violation between the lock and
2124		 * snaplk.
2125		 *
2126		 * Another thread can decide to initialize the same
2127		 * inode block, but whichever thread first gets the
2128		 * cylinder group lock after writing the newly
2129		 * allocated inode block will update it and the other
2130		 * will realize that it has lost and leave the
2131		 * cylinder group unchanged.
2132		 */
2133		ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2134		brelse(bp);
2135		if (ibp == NULL) {
2136			/*
2137			 * The inode block buffer is already owned by
2138			 * another thread, which must initialize it.
2139			 * Wait on the buffer to allow another thread
2140			 * to finish the updates, with dropped cg
2141			 * buffer lock, then retry.
2142			 */
2143			ibp = getinobuf(ip, cg, old_initediblk, 0);
2144			brelse(ibp);
2145			UFS_LOCK(ump);
2146			goto check_nifree;
2147		}
2148		bzero(ibp->b_data, (int)fs->fs_bsize);
2149		dp2 = (struct ufs2_dinode *)(ibp->b_data);
2150		for (i = 0; i < INOPB(fs); i++) {
2151			while (dp2->di_gen == 0)
2152				dp2->di_gen = arc4random();
2153			dp2++;
2154		}
2155
2156		/*
2157		 * Rather than adding a soft updates dependency to ensure
2158		 * that the new inode block is written before it is claimed
2159		 * by the cylinder group map, we just do a barrier write
2160		 * here. The barrier write will ensure that the inode block
2161		 * gets written before the updated cylinder group map can be
2162		 * written. The barrier write should only slow down bulk
2163		 * loading of newly created filesystems.
2164		 */
2165		if (doasyncinodeinit)
2166			babarrierwrite(ibp);
2167		else
2168			bwrite(ibp);
2169
2170		/*
2171		 * After the inode block is written, try to update the
2172		 * cg initediblk pointer.  If another thread beat us
2173		 * to it, then leave it unchanged as the other thread
2174		 * has already set it correctly.
2175		 */
2176		error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp);
2177		UFS_LOCK(ump);
2178		ACTIVECLEAR(fs, cg);
2179		UFS_UNLOCK(ump);
2180		if (error != 0)
2181			return (error);
2182		if (cgp->cg_initediblk == old_initediblk)
2183			cgp->cg_initediblk += INOPB(fs);
2184		goto restart;
2185	}
2186	cgp->cg_irotor = ipref;
2187	UFS_LOCK(ump);
2188	ACTIVECLEAR(fs, cg);
2189	setbit(inosused, ipref);
2190	cgp->cg_cs.cs_nifree--;
2191	fs->fs_cstotal.cs_nifree--;
2192	fs->fs_cs(fs, cg).cs_nifree--;
2193	fs->fs_fmod = 1;
2194	if ((mode & IFMT) == IFDIR) {
2195		cgp->cg_cs.cs_ndir++;
2196		fs->fs_cstotal.cs_ndir++;
2197		fs->fs_cs(fs, cg).cs_ndir++;
2198	}
2199	UFS_UNLOCK(ump);
2200	if (DOINGSOFTDEP(ITOV(ip)))
2201		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2202	bdwrite(bp);
2203	return ((ino_t)(cg * fs->fs_ipg + ipref));
2204}
2205
2206/*
2207 * Free a block or fragment.
2208 *
2209 * The specified block or fragment is placed back in the
2210 * free map. If a fragment is deallocated, a possible
2211 * block reassembly is checked.
2212 */
2213static void
2214ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd)
2215	struct ufsmount *ump;
2216	struct fs *fs;
2217	struct vnode *devvp;
2218	ufs2_daddr_t bno;
2219	long size;
2220	ino_t inum;
2221	struct workhead *dephd;
2222{
2223	struct mount *mp;
2224	struct cg *cgp;
2225	struct buf *bp;
2226	ufs1_daddr_t fragno, cgbno;
2227	int i, blk, frags, bbase, error;
2228	u_int cg;
2229	u_int8_t *blksfree;
2230	struct cdev *dev;
2231
2232	cg = dtog(fs, bno);
2233	if (devvp->v_type == VREG) {
2234		/* devvp is a snapshot */
2235		MPASS(devvp->v_mount->mnt_data == ump);
2236		dev = ump->um_devvp->v_rdev;
2237	} else if (devvp->v_type == VCHR) {
2238		/* devvp is a normal disk device */
2239		dev = devvp->v_rdev;
2240		ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg");
2241	} else
2242		return;
2243#ifdef INVARIANTS
2244	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2245	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2246		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2247		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2248		    size, fs->fs_fsmnt);
2249		panic("ffs_blkfree_cg: bad size");
2250	}
2251#endif
2252	if ((u_int)bno >= fs->fs_size) {
2253		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
2254		    (u_long)inum);
2255		ffs_fserr(fs, inum, "bad block");
2256		return;
2257	}
2258	if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0)
2259		return;
2260	cgbno = dtogd(fs, bno);
2261	blksfree = cg_blksfree(cgp);
2262	UFS_LOCK(ump);
2263	if (size == fs->fs_bsize) {
2264		fragno = fragstoblks(fs, cgbno);
2265		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2266			if (devvp->v_type == VREG) {
2267				UFS_UNLOCK(ump);
2268				/* devvp is a snapshot */
2269				brelse(bp);
2270				return;
2271			}
2272			printf("dev = %s, block = %jd, fs = %s\n",
2273			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2274			panic("ffs_blkfree_cg: freeing free block");
2275		}
2276		ffs_setblock(fs, blksfree, fragno);
2277		ffs_clusteracct(fs, cgp, fragno, 1);
2278		cgp->cg_cs.cs_nbfree++;
2279		fs->fs_cstotal.cs_nbfree++;
2280		fs->fs_cs(fs, cg).cs_nbfree++;
2281	} else {
2282		bbase = cgbno - fragnum(fs, cgbno);
2283		/*
2284		 * decrement the counts associated with the old frags
2285		 */
2286		blk = blkmap(fs, blksfree, bbase);
2287		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2288		/*
2289		 * deallocate the fragment
2290		 */
2291		frags = numfrags(fs, size);
2292		for (i = 0; i < frags; i++) {
2293			if (isset(blksfree, cgbno + i)) {
2294				printf("dev = %s, block = %jd, fs = %s\n",
2295				    devtoname(dev), (intmax_t)(bno + i),
2296				    fs->fs_fsmnt);
2297				panic("ffs_blkfree_cg: freeing free frag");
2298			}
2299			setbit(blksfree, cgbno + i);
2300		}
2301		cgp->cg_cs.cs_nffree += i;
2302		fs->fs_cstotal.cs_nffree += i;
2303		fs->fs_cs(fs, cg).cs_nffree += i;
2304		/*
2305		 * add back in counts associated with the new frags
2306		 */
2307		blk = blkmap(fs, blksfree, bbase);
2308		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2309		/*
2310		 * if a complete block has been reassembled, account for it
2311		 */
2312		fragno = fragstoblks(fs, bbase);
2313		if (ffs_isblock(fs, blksfree, fragno)) {
2314			cgp->cg_cs.cs_nffree -= fs->fs_frag;
2315			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2316			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2317			ffs_clusteracct(fs, cgp, fragno, 1);
2318			cgp->cg_cs.cs_nbfree++;
2319			fs->fs_cstotal.cs_nbfree++;
2320			fs->fs_cs(fs, cg).cs_nbfree++;
2321		}
2322	}
2323	fs->fs_fmod = 1;
2324	ACTIVECLEAR(fs, cg);
2325	UFS_UNLOCK(ump);
2326	mp = UFSTOVFS(ump);
2327	if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
2328		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2329		    numfrags(fs, size), dephd);
2330	bdwrite(bp);
2331}
2332
2333/*
2334 * Structures and routines associated with trim management.
2335 *
2336 * The following requests are passed to trim_lookup to indicate
2337 * the actions that should be taken.
2338 */
2339#define	NEW	1	/* if found, error else allocate and hash it */
2340#define	OLD	2	/* if not found, error, else return it */
2341#define	REPLACE	3	/* if not found, error else unhash and reallocate it */
2342#define	DONE	4	/* if not found, error else unhash and return it */
2343#define	SINGLE	5	/* don't look up, just allocate it and don't hash it */
2344
2345MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures");
2346
2347#define	TRIMLIST_HASH(ump, key) \
2348	(&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize])
2349
2350/*
2351 * These structures describe each of the block free requests aggregated
2352 * together to make up a trim request.
2353 */
2354struct trim_blkreq {
2355	TAILQ_ENTRY(trim_blkreq) blkreqlist;
2356	ufs2_daddr_t bno;
2357	long size;
2358	struct workhead *pdephd;
2359	struct workhead dephd;
2360};
2361
2362/*
2363 * Description of a trim request.
2364 */
2365struct ffs_blkfree_trim_params {
2366	TAILQ_HEAD(, trim_blkreq) blklist;
2367	LIST_ENTRY(ffs_blkfree_trim_params) hashlist;
2368	struct task task;
2369	struct ufsmount *ump;
2370	struct vnode *devvp;
2371	ino_t inum;
2372	ufs2_daddr_t bno;
2373	long size;
2374	long key;
2375};
2376
2377static void	ffs_blkfree_trim_completed(struct buf *);
2378static void	ffs_blkfree_trim_task(void *ctx, int pending __unused);
2379static struct	ffs_blkfree_trim_params *trim_lookup(struct ufsmount *,
2380		    struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int);
2381static void	ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *);
2382
2383/*
2384 * Called on trim completion to start a task to free the associated block(s).
2385 */
2386static void
2387ffs_blkfree_trim_completed(bp)
2388	struct buf *bp;
2389{
2390	struct ffs_blkfree_trim_params *tp;
2391
2392	tp = bp->b_fsprivate1;
2393	free(bp, M_TRIM);
2394	TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2395	taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2396}
2397
2398/*
2399 * Trim completion task that free associated block(s).
2400 */
2401static void
2402ffs_blkfree_trim_task(ctx, pending)
2403	void *ctx;
2404	int pending;
2405{
2406	struct ffs_blkfree_trim_params *tp;
2407	struct trim_blkreq *blkelm;
2408	struct ufsmount *ump;
2409
2410	tp = ctx;
2411	ump = tp->ump;
2412	while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) {
2413		ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno,
2414		    blkelm->size, tp->inum, blkelm->pdephd);
2415		TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist);
2416		free(blkelm, M_TRIM);
2417	}
2418	vn_finished_secondary_write(UFSTOVFS(ump));
2419	UFS_LOCK(ump);
2420	ump->um_trim_inflight -= 1;
2421	ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size);
2422	UFS_UNLOCK(ump);
2423	free(tp, M_TRIM);
2424}
2425
2426/*
2427 * Lookup a trim request by inode number.
2428 * Allocate if requested (NEW, REPLACE, SINGLE).
2429 */
2430static struct ffs_blkfree_trim_params *
2431trim_lookup(ump, devvp, bno, size, inum, key, alloctype)
2432	struct ufsmount *ump;
2433	struct vnode *devvp;
2434	ufs2_daddr_t bno;
2435	long size;
2436	ino_t inum;
2437	u_long key;
2438	int alloctype;
2439{
2440	struct trimlist_hashhead *tphashhead;
2441	struct ffs_blkfree_trim_params *tp, *ntp;
2442
2443	ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK);
2444	if (alloctype != SINGLE) {
2445		KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key"));
2446		UFS_LOCK(ump);
2447		tphashhead = TRIMLIST_HASH(ump, key);
2448		LIST_FOREACH(tp, tphashhead, hashlist)
2449			if (key == tp->key)
2450				break;
2451	}
2452	switch (alloctype) {
2453	case NEW:
2454		KASSERT(tp == NULL, ("trim_lookup: found trim"));
2455		break;
2456	case OLD:
2457		KASSERT(tp != NULL,
2458		    ("trim_lookup: missing call to ffs_blkrelease_start()"));
2459		UFS_UNLOCK(ump);
2460		free(ntp, M_TRIM);
2461		return (tp);
2462	case REPLACE:
2463		KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim"));
2464		LIST_REMOVE(tp, hashlist);
2465		/* tp will be freed by caller */
2466		break;
2467	case DONE:
2468		KASSERT(tp != NULL, ("trim_lookup: missing DONE trim"));
2469		LIST_REMOVE(tp, hashlist);
2470		UFS_UNLOCK(ump);
2471		free(ntp, M_TRIM);
2472		return (tp);
2473	}
2474	TAILQ_INIT(&ntp->blklist);
2475	ntp->ump = ump;
2476	ntp->devvp = devvp;
2477	ntp->bno = bno;
2478	ntp->size = size;
2479	ntp->inum = inum;
2480	ntp->key = key;
2481	if (alloctype != SINGLE) {
2482		LIST_INSERT_HEAD(tphashhead, ntp, hashlist);
2483		UFS_UNLOCK(ump);
2484	}
2485	return (ntp);
2486}
2487
2488/*
2489 * Dispatch a trim request.
2490 */
2491static void
2492ffs_blkfree_sendtrim(tp)
2493	struct ffs_blkfree_trim_params *tp;
2494{
2495	struct ufsmount *ump;
2496	struct mount *mp;
2497	struct buf *bp;
2498
2499	/*
2500	 * Postpone the set of the free bit in the cg bitmap until the
2501	 * BIO_DELETE is completed.  Otherwise, due to disk queue
2502	 * reordering, TRIM might be issued after we reuse the block
2503	 * and write some new data into it.
2504	 */
2505	ump = tp->ump;
2506	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
2507	bp->b_iocmd = BIO_DELETE;
2508	bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno));
2509	bp->b_iodone = ffs_blkfree_trim_completed;
2510	bp->b_bcount = tp->size;
2511	bp->b_fsprivate1 = tp;
2512	UFS_LOCK(ump);
2513	ump->um_trim_total += 1;
2514	ump->um_trim_inflight += 1;
2515	ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size);
2516	ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size);
2517	UFS_UNLOCK(ump);
2518
2519	mp = UFSTOVFS(ump);
2520	vn_start_secondary_write(NULL, &mp, 0);
2521	g_vfs_strategy(ump->um_bo, bp);
2522}
2523
2524/*
2525 * Allocate a new key to use to identify a range of blocks.
2526 */
2527u_long
2528ffs_blkrelease_start(ump, devvp, inum)
2529	struct ufsmount *ump;
2530	struct vnode *devvp;
2531	ino_t inum;
2532{
2533	static u_long masterkey;
2534	u_long key;
2535
2536	if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2537		return (SINGLETON_KEY);
2538	do {
2539		key = atomic_fetchadd_long(&masterkey, 1);
2540	} while (key < FIRST_VALID_KEY);
2541	(void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW);
2542	return (key);
2543}
2544
2545/*
2546 * Deallocate a key that has been used to identify a range of blocks.
2547 */
2548void
2549ffs_blkrelease_finish(ump, key)
2550	struct ufsmount *ump;
2551	u_long key;
2552{
2553	struct ffs_blkfree_trim_params *tp;
2554
2555	if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2556		return;
2557	/*
2558	 * We are done with sending blocks using this key. Look up the key
2559	 * using the DONE alloctype (in tp) to request that it be unhashed
2560	 * as we will not be adding to it. If the key has never been used,
2561	 * tp->size will be zero, so we can just free tp. Otherwise the call
2562	 * to ffs_blkfree_sendtrim(tp) causes the block range described by
2563	 * tp to be issued (and then tp to be freed).
2564	 */
2565	tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE);
2566	if (tp->size == 0)
2567		free(tp, M_TRIM);
2568	else
2569		ffs_blkfree_sendtrim(tp);
2570}
2571
2572/*
2573 * Setup to free a block or fragment.
2574 *
2575 * Check for snapshots that might want to claim the block.
2576 * If trims are requested, prepare a trim request. Attempt to
2577 * aggregate consecutive blocks into a single trim request.
2578 */
2579void
2580ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd, key)
2581	struct ufsmount *ump;
2582	struct fs *fs;
2583	struct vnode *devvp;
2584	ufs2_daddr_t bno;
2585	long size;
2586	ino_t inum;
2587	enum vtype vtype;
2588	struct workhead *dephd;
2589	u_long key;
2590{
2591	struct ffs_blkfree_trim_params *tp, *ntp;
2592	struct trim_blkreq *blkelm;
2593
2594	/*
2595	 * Check to see if a snapshot wants to claim the block.
2596	 * Check that devvp is a normal disk device, not a snapshot,
2597	 * it has a snapshot(s) associated with it, and one of the
2598	 * snapshots wants to claim the block.
2599	 */
2600	if (devvp->v_type == VCHR &&
2601	    (devvp->v_vflag & VV_COPYONWRITE) &&
2602	    ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2603		return;
2604	}
2605	/*
2606	 * Nothing to delay if TRIM is not required for this block or TRIM
2607	 * is disabled or the operation is performed on a snapshot.
2608	 */
2609	if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) ||
2610	    devvp->v_type == VREG) {
2611		ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2612		return;
2613	}
2614	blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK);
2615	blkelm->bno = bno;
2616	blkelm->size = size;
2617	if (dephd == NULL) {
2618		blkelm->pdephd = NULL;
2619	} else {
2620		LIST_INIT(&blkelm->dephd);
2621		LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list);
2622		blkelm->pdephd = &blkelm->dephd;
2623	}
2624	if (key == SINGLETON_KEY) {
2625		/*
2626		 * Just a single non-contiguous piece. Use the SINGLE
2627		 * alloctype to return a trim request that will not be
2628		 * hashed for future lookup.
2629		 */
2630		tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE);
2631		TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2632		ffs_blkfree_sendtrim(tp);
2633		return;
2634	}
2635	/*
2636	 * The callers of this function are not tracking whether or not
2637	 * the blocks are contiguous. They are just saying that they
2638	 * are freeing a set of blocks. It is this code that determines
2639	 * the pieces of that range that are actually contiguous.
2640	 *
2641	 * Calling ffs_blkrelease_start() will have created an entry
2642	 * that we will use.
2643	 */
2644	tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD);
2645	if (tp->size == 0) {
2646		/*
2647		 * First block of a potential range, set block and size
2648		 * for the trim block.
2649		 */
2650		tp->bno = bno;
2651		tp->size = size;
2652		TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2653		return;
2654	}
2655	/*
2656	 * If this block is a continuation of the range (either
2657	 * follows at the end or preceeds in the front) then we
2658	 * add it to the front or back of the list and return.
2659	 *
2660	 * If it is not a continuation of the trim that we were
2661	 * building, using the REPLACE alloctype, we request that
2662	 * the old trim request (still in tp) be unhashed and a
2663	 * new range started (in ntp). The ffs_blkfree_sendtrim(tp)
2664	 * call causes the block range described by tp to be issued
2665	 * (and then tp to be freed).
2666	 */
2667	if (bno + numfrags(fs, size) == tp->bno) {
2668		TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2669		tp->bno = bno;
2670		tp->size += size;
2671		return;
2672	} else if (bno == tp->bno + numfrags(fs, tp->size)) {
2673		TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist);
2674		tp->size += size;
2675		return;
2676	}
2677	ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE);
2678	TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist);
2679	ffs_blkfree_sendtrim(tp);
2680}
2681
2682#ifdef INVARIANTS
2683/*
2684 * Verify allocation of a block or fragment. Returns true if block or
2685 * fragment is allocated, false if it is free.
2686 */
2687static int
2688ffs_checkblk(ip, bno, size)
2689	struct inode *ip;
2690	ufs2_daddr_t bno;
2691	long size;
2692{
2693	struct fs *fs;
2694	struct cg *cgp;
2695	struct buf *bp;
2696	ufs1_daddr_t cgbno;
2697	int i, error, frags, free;
2698	u_int8_t *blksfree;
2699
2700	fs = ITOFS(ip);
2701	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2702		printf("bsize = %ld, size = %ld, fs = %s\n",
2703		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
2704		panic("ffs_checkblk: bad size");
2705	}
2706	if ((u_int)bno >= fs->fs_size)
2707		panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
2708	error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), &bp, &cgp);
2709	if (error)
2710		panic("ffs_checkblk: cylinder group read failed");
2711	blksfree = cg_blksfree(cgp);
2712	cgbno = dtogd(fs, bno);
2713	if (size == fs->fs_bsize) {
2714		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2715	} else {
2716		frags = numfrags(fs, size);
2717		for (free = 0, i = 0; i < frags; i++)
2718			if (isset(blksfree, cgbno + i))
2719				free++;
2720		if (free != 0 && free != frags)
2721			panic("ffs_checkblk: partially free fragment");
2722	}
2723	brelse(bp);
2724	return (!free);
2725}
2726#endif /* INVARIANTS */
2727
2728/*
2729 * Free an inode.
2730 */
2731int
2732ffs_vfree(pvp, ino, mode)
2733	struct vnode *pvp;
2734	ino_t ino;
2735	int mode;
2736{
2737	struct ufsmount *ump;
2738
2739	if (DOINGSOFTDEP(pvp)) {
2740		softdep_freefile(pvp, ino, mode);
2741		return (0);
2742	}
2743	ump = VFSTOUFS(pvp->v_mount);
2744	return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL));
2745}
2746
2747/*
2748 * Do the actual free operation.
2749 * The specified inode is placed back in the free map.
2750 */
2751int
2752ffs_freefile(ump, fs, devvp, ino, mode, wkhd)
2753	struct ufsmount *ump;
2754	struct fs *fs;
2755	struct vnode *devvp;
2756	ino_t ino;
2757	int mode;
2758	struct workhead *wkhd;
2759{
2760	struct cg *cgp;
2761	struct buf *bp;
2762	int error;
2763	u_int cg;
2764	u_int8_t *inosused;
2765	struct cdev *dev;
2766
2767	cg = ino_to_cg(fs, ino);
2768	if (devvp->v_type == VREG) {
2769		/* devvp is a snapshot */
2770		MPASS(devvp->v_mount->mnt_data == ump);
2771		dev = ump->um_devvp->v_rdev;
2772	} else if (devvp->v_type == VCHR) {
2773		/* devvp is a normal disk device */
2774		dev = devvp->v_rdev;
2775	} else {
2776		bp = NULL;
2777		return (0);
2778	}
2779	if (ino >= fs->fs_ipg * fs->fs_ncg)
2780		panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2781		    devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2782	if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0)
2783		return (error);
2784	inosused = cg_inosused(cgp);
2785	ino %= fs->fs_ipg;
2786	if (isclr(inosused, ino)) {
2787		printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2788		    (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt);
2789		if (fs->fs_ronly == 0)
2790			panic("ffs_freefile: freeing free inode");
2791	}
2792	clrbit(inosused, ino);
2793	if (ino < cgp->cg_irotor)
2794		cgp->cg_irotor = ino;
2795	cgp->cg_cs.cs_nifree++;
2796	UFS_LOCK(ump);
2797	fs->fs_cstotal.cs_nifree++;
2798	fs->fs_cs(fs, cg).cs_nifree++;
2799	if ((mode & IFMT) == IFDIR) {
2800		cgp->cg_cs.cs_ndir--;
2801		fs->fs_cstotal.cs_ndir--;
2802		fs->fs_cs(fs, cg).cs_ndir--;
2803	}
2804	fs->fs_fmod = 1;
2805	ACTIVECLEAR(fs, cg);
2806	UFS_UNLOCK(ump);
2807	if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
2808		softdep_setup_inofree(UFSTOVFS(ump), bp,
2809		    ino + cg * fs->fs_ipg, wkhd);
2810	bdwrite(bp);
2811	return (0);
2812}
2813
2814/*
2815 * Check to see if a file is free.
2816 * Used to check for allocated files in snapshots.
2817 */
2818int
2819ffs_checkfreefile(fs, devvp, ino)
2820	struct fs *fs;
2821	struct vnode *devvp;
2822	ino_t ino;
2823{
2824	struct cg *cgp;
2825	struct buf *bp;
2826	int ret, error;
2827	u_int cg;
2828	u_int8_t *inosused;
2829
2830	cg = ino_to_cg(fs, ino);
2831	if ((devvp->v_type != VREG) && (devvp->v_type != VCHR))
2832		return (1);
2833	if (ino >= fs->fs_ipg * fs->fs_ncg)
2834		return (1);
2835	if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0)
2836		return (1);
2837	inosused = cg_inosused(cgp);
2838	ino %= fs->fs_ipg;
2839	ret = isclr(inosused, ino);
2840	brelse(bp);
2841	return (ret);
2842}
2843
2844/*
2845 * Find a block of the specified size in the specified cylinder group.
2846 *
2847 * It is a panic if a request is made to find a block if none are
2848 * available.
2849 */
2850static ufs1_daddr_t
2851ffs_mapsearch(fs, cgp, bpref, allocsiz)
2852	struct fs *fs;
2853	struct cg *cgp;
2854	ufs2_daddr_t bpref;
2855	int allocsiz;
2856{
2857	ufs1_daddr_t bno;
2858	int start, len, loc, i;
2859	int blk, field, subfield, pos;
2860	u_int8_t *blksfree;
2861
2862	/*
2863	 * find the fragment by searching through the free block
2864	 * map for an appropriate bit pattern
2865	 */
2866	if (bpref)
2867		start = dtogd(fs, bpref) / NBBY;
2868	else
2869		start = cgp->cg_frotor / NBBY;
2870	blksfree = cg_blksfree(cgp);
2871	len = howmany(fs->fs_fpg, NBBY) - start;
2872	loc = scanc((u_int)len, (u_char *)&blksfree[start],
2873		fragtbl[fs->fs_frag],
2874		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2875	if (loc == 0) {
2876		len = start + 1;
2877		start = 0;
2878		loc = scanc((u_int)len, (u_char *)&blksfree[0],
2879			fragtbl[fs->fs_frag],
2880			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2881		if (loc == 0) {
2882			printf("start = %d, len = %d, fs = %s\n",
2883			    start, len, fs->fs_fsmnt);
2884			panic("ffs_alloccg: map corrupted");
2885			/* NOTREACHED */
2886		}
2887	}
2888	bno = (start + len - loc) * NBBY;
2889	cgp->cg_frotor = bno;
2890	/*
2891	 * found the byte in the map
2892	 * sift through the bits to find the selected frag
2893	 */
2894	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2895		blk = blkmap(fs, blksfree, bno);
2896		blk <<= 1;
2897		field = around[allocsiz];
2898		subfield = inside[allocsiz];
2899		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2900			if ((blk & field) == subfield)
2901				return (bno + pos);
2902			field <<= 1;
2903			subfield <<= 1;
2904		}
2905	}
2906	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2907	panic("ffs_alloccg: block not in map");
2908	return (-1);
2909}
2910
2911static const struct statfs *
2912ffs_getmntstat(struct vnode *devvp)
2913{
2914
2915	if (devvp->v_type == VCHR)
2916		return (&devvp->v_rdev->si_mountpt->mnt_stat);
2917	return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp));
2918}
2919
2920/*
2921 * Fetch and verify a cylinder group.
2922 */
2923int
2924ffs_getcg(fs, devvp, cg, bpp, cgpp)
2925	struct fs *fs;
2926	struct vnode *devvp;
2927	u_int cg;
2928	struct buf **bpp;
2929	struct cg **cgpp;
2930{
2931	struct buf *bp;
2932	struct cg *cgp;
2933	const struct statfs *sfs;
2934	int flags, error;
2935
2936	*bpp = NULL;
2937	*cgpp = NULL;
2938	flags = 0;
2939	if ((fs->fs_metackhash & CK_CYLGRP) != 0)
2940		flags |= GB_CKHASH;
2941	error = breadn_flags(devvp, devvp->v_type == VREG ?
2942	    fragstoblks(fs, cgtod(fs, cg)) : fsbtodb(fs, cgtod(fs, cg)),
2943	    (int)fs->fs_cgsize, NULL, NULL, 0, NOCRED, flags,
2944	    ffs_ckhash_cg, &bp);
2945	if (error != 0)
2946		return (error);
2947	cgp = (struct cg *)bp->b_data;
2948	if ((fs->fs_metackhash & CK_CYLGRP) != 0 &&
2949	    (bp->b_flags & B_CKHASH) != 0 &&
2950	    cgp->cg_ckhash != bp->b_ckhash) {
2951		sfs = ffs_getmntstat(devvp);
2952		printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: "
2953		    "0x%x != bp: 0x%jx\n",
2954		    devvp->v_type == VCHR ? "" : "snapshot of ",
2955		    sfs->f_mntfromname, sfs->f_mntonname,
2956		    cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash);
2957		bp->b_flags &= ~B_CKHASH;
2958		bp->b_flags |= B_INVAL | B_NOCACHE;
2959		brelse(bp);
2960		return (EIO);
2961	}
2962	if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) {
2963		sfs = ffs_getmntstat(devvp);
2964		printf("UFS %s%s (%s)",
2965		    devvp->v_type == VCHR ? "" : "snapshot of ",
2966		    sfs->f_mntfromname, sfs->f_mntonname);
2967		if (!cg_chkmagic(cgp))
2968			printf(" cg %u: bad magic number 0x%x should be 0x%x\n",
2969			    cg, cgp->cg_magic, CG_MAGIC);
2970		else
2971			printf(": wrong cylinder group cg %u != cgx %u\n", cg,
2972			    cgp->cg_cgx);
2973		bp->b_flags &= ~B_CKHASH;
2974		bp->b_flags |= B_INVAL | B_NOCACHE;
2975		brelse(bp);
2976		return (EIO);
2977	}
2978	bp->b_flags &= ~B_CKHASH;
2979	bp->b_xflags |= BX_BKGRDWRITE;
2980	/*
2981	 * If we are using check hashes on the cylinder group then we want
2982	 * to limit changing the cylinder group time to when we are actually
2983	 * going to write it to disk so that its check hash remains correct
2984	 * in memory. If the CK_CYLGRP flag is set the time is updated in
2985	 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we
2986	 * update the time here as we have done historically.
2987	 */
2988	if ((fs->fs_metackhash & CK_CYLGRP) != 0)
2989		bp->b_xflags |= BX_CYLGRP;
2990	else
2991		cgp->cg_old_time = cgp->cg_time = time_second;
2992	*bpp = bp;
2993	*cgpp = cgp;
2994	return (0);
2995}
2996
2997static void
2998ffs_ckhash_cg(bp)
2999	struct buf *bp;
3000{
3001	uint32_t ckhash;
3002	struct cg *cgp;
3003
3004	cgp = (struct cg *)bp->b_data;
3005	ckhash = cgp->cg_ckhash;
3006	cgp->cg_ckhash = 0;
3007	bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
3008	cgp->cg_ckhash = ckhash;
3009}
3010
3011/*
3012 * Fserr prints the name of a filesystem with an error diagnostic.
3013 *
3014 * The form of the error message is:
3015 *	fs: error message
3016 */
3017void
3018ffs_fserr(fs, inum, cp)
3019	struct fs *fs;
3020	ino_t inum;
3021	char *cp;
3022{
3023	struct thread *td = curthread;	/* XXX */
3024	struct proc *p = td->td_proc;
3025
3026	log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
3027	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
3028	    fs->fs_fsmnt, cp);
3029}
3030
3031/*
3032 * This function provides the capability for the fsck program to
3033 * update an active filesystem. Fourteen operations are provided:
3034 *
3035 * adjrefcnt(inode, amt) - adjusts the reference count on the
3036 *	specified inode by the specified amount. Under normal
3037 *	operation the count should always go down. Decrementing
3038 *	the count to zero will cause the inode to be freed.
3039 * adjblkcnt(inode, amt) - adjust the number of blocks used by the
3040 *	inode by the specified amount.
3041 * adjsize(inode, size) - set the size of the inode to the
3042 *	specified size.
3043 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
3044 *	adjust the superblock summary.
3045 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
3046 *	are marked as free. Inodes should never have to be marked
3047 *	as in use.
3048 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
3049 *	are marked as free. Inodes should never have to be marked
3050 *	as in use.
3051 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
3052 *	are marked as free. Blocks should never have to be marked
3053 *	as in use.
3054 * setflags(flags, set/clear) - the fs_flags field has the specified
3055 *	flags set (second parameter +1) or cleared (second parameter -1).
3056 * setcwd(dirinode) - set the current directory to dirinode in the
3057 *	filesystem associated with the snapshot.
3058 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
3059 *	in the current directory is oldvalue then change it to newvalue.
3060 * unlink(nameptr, oldvalue) - Verify that the inode number associated
3061 *	with nameptr in the current directory is oldvalue then unlink it.
3062 *
3063 * The following functions may only be used on a quiescent filesystem
3064 * by the soft updates journal. They are not safe to be run on an active
3065 * filesystem.
3066 *
3067 * setinode(inode, dip) - the specified disk inode is replaced with the
3068 *	contents pointed to by dip.
3069 * setbufoutput(fd, flags) - output associated with the specified file
3070 *	descriptor (which must reference the character device supporting
3071 *	the filesystem) switches from using physio to running through the
3072 *	buffer cache when flags is set to 1. The descriptor reverts to
3073 *	physio for output when flags is set to zero.
3074 */
3075
3076static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
3077
3078SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
3079	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
3080
3081static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
3082	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
3083
3084static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize, CTLFLAG_WR,
3085	sysctl_ffs_fsck, "Set the inode size");
3086
3087static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
3088	sysctl_ffs_fsck, "Adjust number of directories");
3089
3090static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
3091	sysctl_ffs_fsck, "Adjust number of free blocks");
3092
3093static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
3094	sysctl_ffs_fsck, "Adjust number of free inodes");
3095
3096static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
3097	sysctl_ffs_fsck, "Adjust number of free frags");
3098
3099static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
3100	sysctl_ffs_fsck, "Adjust number of free clusters");
3101
3102static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
3103	sysctl_ffs_fsck, "Free Range of Directory Inodes");
3104
3105static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
3106	sysctl_ffs_fsck, "Free Range of File Inodes");
3107
3108static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
3109	sysctl_ffs_fsck, "Free Range of Blocks");
3110
3111static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
3112	sysctl_ffs_fsck, "Change Filesystem Flags");
3113
3114static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR,
3115	sysctl_ffs_fsck, "Set Current Working Directory");
3116
3117static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR,
3118	sysctl_ffs_fsck, "Change Value of .. Entry");
3119
3120static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR,
3121	sysctl_ffs_fsck, "Unlink a Duplicate Name");
3122
3123static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR,
3124	sysctl_ffs_fsck, "Update an On-Disk Inode");
3125
3126static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR,
3127	sysctl_ffs_fsck, "Set Buffered Writing for Descriptor");
3128
3129#define DEBUG 1
3130#ifdef DEBUG
3131static int fsckcmds = 0;
3132SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
3133#endif /* DEBUG */
3134
3135static int buffered_write(struct file *, struct uio *, struct ucred *,
3136	int, struct thread *);
3137
3138static int
3139sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
3140{
3141	struct thread *td = curthread;
3142	struct fsck_cmd cmd;
3143	struct ufsmount *ump;
3144	struct vnode *vp, *dvp, *fdvp;
3145	struct inode *ip, *dp;
3146	struct mount *mp;
3147	struct fs *fs;
3148	ufs2_daddr_t blkno;
3149	long blkcnt, blksize;
3150	u_long key;
3151	struct file *fp, *vfp;
3152	cap_rights_t rights;
3153	int filetype, error;
3154	static struct fileops *origops, bufferedops;
3155
3156	if (req->newptr == NULL || req->newlen > sizeof(cmd))
3157		return (EBADRPC);
3158	if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0)
3159		return (error);
3160	if (cmd.version != FFS_CMD_VERSION)
3161		return (ERPCMISMATCH);
3162	if ((error = getvnode(td, cmd.handle,
3163	    cap_rights_init(&rights, CAP_FSCK), &fp)) != 0)
3164		return (error);
3165	vp = fp->f_data;
3166	if (vp->v_type != VREG && vp->v_type != VDIR) {
3167		fdrop(fp, td);
3168		return (EINVAL);
3169	}
3170	vn_start_write(vp, &mp, V_WAIT);
3171	if (mp == NULL ||
3172	    strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
3173		vn_finished_write(mp);
3174		fdrop(fp, td);
3175		return (EINVAL);
3176	}
3177	ump = VFSTOUFS(mp);
3178	if ((mp->mnt_flag & MNT_RDONLY) &&
3179	    ump->um_fsckpid != td->td_proc->p_pid) {
3180		vn_finished_write(mp);
3181		fdrop(fp, td);
3182		return (EROFS);
3183	}
3184	fs = ump->um_fs;
3185	filetype = IFREG;
3186
3187	switch (oidp->oid_number) {
3188
3189	case FFS_SET_FLAGS:
3190#ifdef DEBUG
3191		if (fsckcmds)
3192			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
3193			    cmd.size > 0 ? "set" : "clear");
3194#endif /* DEBUG */
3195		if (cmd.size > 0)
3196			fs->fs_flags |= (long)cmd.value;
3197		else
3198			fs->fs_flags &= ~(long)cmd.value;
3199		break;
3200
3201	case FFS_ADJ_REFCNT:
3202#ifdef DEBUG
3203		if (fsckcmds) {
3204			printf("%s: adjust inode %jd link count by %jd\n",
3205			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3206			    (intmax_t)cmd.size);
3207		}
3208#endif /* DEBUG */
3209		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3210			break;
3211		ip = VTOI(vp);
3212		ip->i_nlink += cmd.size;
3213		DIP_SET(ip, i_nlink, ip->i_nlink);
3214		ip->i_effnlink += cmd.size;
3215		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3216		error = ffs_update(vp, 1);
3217		if (DOINGSOFTDEP(vp))
3218			softdep_change_linkcnt(ip);
3219		vput(vp);
3220		break;
3221
3222	case FFS_ADJ_BLKCNT:
3223#ifdef DEBUG
3224		if (fsckcmds) {
3225			printf("%s: adjust inode %jd block count by %jd\n",
3226			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3227			    (intmax_t)cmd.size);
3228		}
3229#endif /* DEBUG */
3230		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3231			break;
3232		ip = VTOI(vp);
3233		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
3234		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3235		error = ffs_update(vp, 1);
3236		vput(vp);
3237		break;
3238
3239	case FFS_SET_SIZE:
3240#ifdef DEBUG
3241		if (fsckcmds) {
3242			printf("%s: set inode %jd size to %jd\n",
3243			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3244			    (intmax_t)cmd.size);
3245		}
3246#endif /* DEBUG */
3247		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3248			break;
3249		ip = VTOI(vp);
3250		DIP_SET(ip, i_size, cmd.size);
3251		ip->i_flag |= IN_SIZEMOD | IN_CHANGE | IN_MODIFIED;
3252		error = ffs_update(vp, 1);
3253		vput(vp);
3254		break;
3255
3256	case FFS_DIR_FREE:
3257		filetype = IFDIR;
3258		/* fall through */
3259
3260	case FFS_FILE_FREE:
3261#ifdef DEBUG
3262		if (fsckcmds) {
3263			if (cmd.size == 1)
3264				printf("%s: free %s inode %ju\n",
3265				    mp->mnt_stat.f_mntonname,
3266				    filetype == IFDIR ? "directory" : "file",
3267				    (uintmax_t)cmd.value);
3268			else
3269				printf("%s: free %s inodes %ju-%ju\n",
3270				    mp->mnt_stat.f_mntonname,
3271				    filetype == IFDIR ? "directory" : "file",
3272				    (uintmax_t)cmd.value,
3273				    (uintmax_t)(cmd.value + cmd.size - 1));
3274		}
3275#endif /* DEBUG */
3276		while (cmd.size > 0) {
3277			if ((error = ffs_freefile(ump, fs, ump->um_devvp,
3278			    cmd.value, filetype, NULL)))
3279				break;
3280			cmd.size -= 1;
3281			cmd.value += 1;
3282		}
3283		break;
3284
3285	case FFS_BLK_FREE:
3286#ifdef DEBUG
3287		if (fsckcmds) {
3288			if (cmd.size == 1)
3289				printf("%s: free block %jd\n",
3290				    mp->mnt_stat.f_mntonname,
3291				    (intmax_t)cmd.value);
3292			else
3293				printf("%s: free blocks %jd-%jd\n",
3294				    mp->mnt_stat.f_mntonname,
3295				    (intmax_t)cmd.value,
3296				    (intmax_t)cmd.value + cmd.size - 1);
3297		}
3298#endif /* DEBUG */
3299		blkno = cmd.value;
3300		blkcnt = cmd.size;
3301		blksize = fs->fs_frag - (blkno % fs->fs_frag);
3302		key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO);
3303		while (blkcnt > 0) {
3304			if (blkcnt < blksize)
3305				blksize = blkcnt;
3306			ffs_blkfree(ump, fs, ump->um_devvp, blkno,
3307			    blksize * fs->fs_fsize, UFS_ROOTINO,
3308			    VDIR, NULL, key);
3309			blkno += blksize;
3310			blkcnt -= blksize;
3311			blksize = fs->fs_frag;
3312		}
3313		ffs_blkrelease_finish(ump, key);
3314		break;
3315
3316	/*
3317	 * Adjust superblock summaries.  fsck(8) is expected to
3318	 * submit deltas when necessary.
3319	 */
3320	case FFS_ADJ_NDIR:
3321#ifdef DEBUG
3322		if (fsckcmds) {
3323			printf("%s: adjust number of directories by %jd\n",
3324			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3325		}
3326#endif /* DEBUG */
3327		fs->fs_cstotal.cs_ndir += cmd.value;
3328		break;
3329
3330	case FFS_ADJ_NBFREE:
3331#ifdef DEBUG
3332		if (fsckcmds) {
3333			printf("%s: adjust number of free blocks by %+jd\n",
3334			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3335		}
3336#endif /* DEBUG */
3337		fs->fs_cstotal.cs_nbfree += cmd.value;
3338		break;
3339
3340	case FFS_ADJ_NIFREE:
3341#ifdef DEBUG
3342		if (fsckcmds) {
3343			printf("%s: adjust number of free inodes by %+jd\n",
3344			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3345		}
3346#endif /* DEBUG */
3347		fs->fs_cstotal.cs_nifree += cmd.value;
3348		break;
3349
3350	case FFS_ADJ_NFFREE:
3351#ifdef DEBUG
3352		if (fsckcmds) {
3353			printf("%s: adjust number of free frags by %+jd\n",
3354			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3355		}
3356#endif /* DEBUG */
3357		fs->fs_cstotal.cs_nffree += cmd.value;
3358		break;
3359
3360	case FFS_ADJ_NUMCLUSTERS:
3361#ifdef DEBUG
3362		if (fsckcmds) {
3363			printf("%s: adjust number of free clusters by %+jd\n",
3364			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3365		}
3366#endif /* DEBUG */
3367		fs->fs_cstotal.cs_numclusters += cmd.value;
3368		break;
3369
3370	case FFS_SET_CWD:
3371#ifdef DEBUG
3372		if (fsckcmds) {
3373			printf("%s: set current directory to inode %jd\n",
3374			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3375		}
3376#endif /* DEBUG */
3377		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
3378			break;
3379		AUDIT_ARG_VNODE1(vp);
3380		if ((error = change_dir(vp, td)) != 0) {
3381			vput(vp);
3382			break;
3383		}
3384		VOP_UNLOCK(vp, 0);
3385		pwd_chdir(td, vp);
3386		break;
3387
3388	case FFS_SET_DOTDOT:
3389#ifdef DEBUG
3390		if (fsckcmds) {
3391			printf("%s: change .. in cwd from %jd to %jd\n",
3392			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3393			    (intmax_t)cmd.size);
3394		}
3395#endif /* DEBUG */
3396		/*
3397		 * First we have to get and lock the parent directory
3398		 * to which ".." points.
3399		 */
3400		error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
3401		if (error)
3402			break;
3403		/*
3404		 * Now we get and lock the child directory containing "..".
3405		 */
3406		FILEDESC_SLOCK(td->td_proc->p_fd);
3407		dvp = td->td_proc->p_fd->fd_cdir;
3408		FILEDESC_SUNLOCK(td->td_proc->p_fd);
3409		if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) {
3410			vput(fdvp);
3411			break;
3412		}
3413		dp = VTOI(dvp);
3414		dp->i_offset = 12;	/* XXX mastertemplate.dot_reclen */
3415		error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3416		    DT_DIR, 0);
3417		cache_purge(fdvp);
3418		cache_purge(dvp);
3419		vput(dvp);
3420		vput(fdvp);
3421		break;
3422
3423	case FFS_UNLINK:
3424#ifdef DEBUG
3425		if (fsckcmds) {
3426			char buf[32];
3427
3428			if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3429				strncpy(buf, "Name_too_long", 32);
3430			printf("%s: unlink %s (inode %jd)\n",
3431			    mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3432		}
3433#endif /* DEBUG */
3434		/*
3435		 * kern_unlinkat will do its own start/finish writes and
3436		 * they do not nest, so drop ours here. Setting mp == NULL
3437		 * indicates that vn_finished_write is not needed down below.
3438		 */
3439		vn_finished_write(mp);
3440		mp = NULL;
3441		error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value,
3442		    UIO_USERSPACE, 0, (ino_t)cmd.size);
3443		break;
3444
3445	case FFS_SET_INODE:
3446		if (ump->um_fsckpid != td->td_proc->p_pid) {
3447			error = EPERM;
3448			break;
3449		}
3450#ifdef DEBUG
3451		if (fsckcmds) {
3452			printf("%s: update inode %jd\n",
3453			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3454		}
3455#endif /* DEBUG */
3456		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3457			break;
3458		AUDIT_ARG_VNODE1(vp);
3459		ip = VTOI(vp);
3460		if (I_IS_UFS1(ip))
3461			error = copyin((void *)(intptr_t)cmd.size, ip->i_din1,
3462			    sizeof(struct ufs1_dinode));
3463		else
3464			error = copyin((void *)(intptr_t)cmd.size, ip->i_din2,
3465			    sizeof(struct ufs2_dinode));
3466		if (error) {
3467			vput(vp);
3468			break;
3469		}
3470		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3471		error = ffs_update(vp, 1);
3472		vput(vp);
3473		break;
3474
3475	case FFS_SET_BUFOUTPUT:
3476		if (ump->um_fsckpid != td->td_proc->p_pid) {
3477			error = EPERM;
3478			break;
3479		}
3480		if (ITOUMP(VTOI(vp)) != ump) {
3481			error = EINVAL;
3482			break;
3483		}
3484#ifdef DEBUG
3485		if (fsckcmds) {
3486			printf("%s: %s buffered output for descriptor %jd\n",
3487			    mp->mnt_stat.f_mntonname,
3488			    cmd.size == 1 ? "enable" : "disable",
3489			    (intmax_t)cmd.value);
3490		}
3491#endif /* DEBUG */
3492		if ((error = getvnode(td, cmd.value,
3493		    cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0)
3494			break;
3495		if (vfp->f_vnode->v_type != VCHR) {
3496			fdrop(vfp, td);
3497			error = EINVAL;
3498			break;
3499		}
3500		if (origops == NULL) {
3501			origops = vfp->f_ops;
3502			bcopy((void *)origops, (void *)&bufferedops,
3503			    sizeof(bufferedops));
3504			bufferedops.fo_write = buffered_write;
3505		}
3506		if (cmd.size == 1)
3507			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3508			    (uintptr_t)&bufferedops);
3509		else
3510			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3511			    (uintptr_t)origops);
3512		fdrop(vfp, td);
3513		break;
3514
3515	default:
3516#ifdef DEBUG
3517		if (fsckcmds) {
3518			printf("Invalid request %d from fsck\n",
3519			    oidp->oid_number);
3520		}
3521#endif /* DEBUG */
3522		error = EINVAL;
3523		break;
3524
3525	}
3526	fdrop(fp, td);
3527	vn_finished_write(mp);
3528	return (error);
3529}
3530
3531/*
3532 * Function to switch a descriptor to use the buffer cache to stage
3533 * its I/O. This is needed so that writes to the filesystem device
3534 * will give snapshots a chance to copy modified blocks for which it
3535 * needs to retain copies.
3536 */
3537static int
3538buffered_write(fp, uio, active_cred, flags, td)
3539	struct file *fp;
3540	struct uio *uio;
3541	struct ucred *active_cred;
3542	int flags;
3543	struct thread *td;
3544{
3545	struct vnode *devvp, *vp;
3546	struct inode *ip;
3547	struct buf *bp;
3548	struct fs *fs;
3549	struct filedesc *fdp;
3550	int error;
3551	daddr_t lbn;
3552
3553	/*
3554	 * The devvp is associated with the /dev filesystem. To discover
3555	 * the filesystem with which the device is associated, we depend
3556	 * on the application setting the current directory to a location
3557	 * within the filesystem being written. Yes, this is an ugly hack.
3558	 */
3559	devvp = fp->f_vnode;
3560	if (!vn_isdisk(devvp, NULL))
3561		return (EINVAL);
3562	fdp = td->td_proc->p_fd;
3563	FILEDESC_SLOCK(fdp);
3564	vp = fdp->fd_cdir;
3565	vref(vp);
3566	FILEDESC_SUNLOCK(fdp);
3567	vn_lock(vp, LK_SHARED | LK_RETRY);
3568	/*
3569	 * Check that the current directory vnode indeed belongs to
3570	 * UFS before trying to dereference UFS-specific v_data fields.
3571	 */
3572	if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) {
3573		vput(vp);
3574		return (EINVAL);
3575	}
3576	ip = VTOI(vp);
3577	if (ITODEVVP(ip) != devvp) {
3578		vput(vp);
3579		return (EINVAL);
3580	}
3581	fs = ITOFS(ip);
3582	vput(vp);
3583	foffset_lock_uio(fp, uio, flags);
3584	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
3585#ifdef DEBUG
3586	if (fsckcmds) {
3587		printf("%s: buffered write for block %jd\n",
3588		    fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset));
3589	}
3590#endif /* DEBUG */
3591	/*
3592	 * All I/O must be contained within a filesystem block, start on
3593	 * a fragment boundary, and be a multiple of fragments in length.
3594	 */
3595	if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) ||
3596	    fragoff(fs, uio->uio_offset) != 0 ||
3597	    fragoff(fs, uio->uio_resid) != 0) {
3598		error = EINVAL;
3599		goto out;
3600	}
3601	lbn = numfrags(fs, uio->uio_offset);
3602	bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0);
3603	bp->b_flags |= B_RELBUF;
3604	if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) {
3605		brelse(bp);
3606		goto out;
3607	}
3608	error = bwrite(bp);
3609out:
3610	VOP_UNLOCK(devvp, 0);
3611	foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF);
3612	return (error);
3613}
3614