1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2001 McAfee, Inc.
5 * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Jonathan Lemon
9 * and McAfee Research, the Security Research Division of McAfee, Inc. under
10 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11 * DARPA CHATS research program. [2001 McAfee, Inc.]
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38#include "opt_inet.h"
39#include "opt_inet6.h"
40#include "opt_ipsec.h"
41#include "opt_pcbgroup.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/hash.h>
46#include <sys/refcount.h>
47#include <sys/kernel.h>
48#include <sys/sysctl.h>
49#include <sys/limits.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/malloc.h>
53#include <sys/mbuf.h>
54#include <sys/proc.h>		/* for proc0 declaration */
55#include <sys/random.h>
56#include <sys/socket.h>
57#include <sys/socketvar.h>
58#include <sys/syslog.h>
59#include <sys/ucred.h>
60
61#include <sys/md5.h>
62#include <crypto/siphash/siphash.h>
63
64#include <vm/uma.h>
65
66#include <net/if.h>
67#include <net/if_var.h>
68#include <net/route.h>
69#include <net/vnet.h>
70
71#include <netinet/in.h>
72#include <netinet/in_kdtrace.h>
73#include <netinet/in_systm.h>
74#include <netinet/ip.h>
75#include <netinet/in_var.h>
76#include <netinet/in_pcb.h>
77#include <netinet/ip_var.h>
78#include <netinet/ip_options.h>
79#ifdef INET6
80#include <netinet/ip6.h>
81#include <netinet/icmp6.h>
82#include <netinet6/nd6.h>
83#include <netinet6/ip6_var.h>
84#include <netinet6/in6_pcb.h>
85#endif
86#include <netinet/tcp.h>
87#include <netinet/tcp_fastopen.h>
88#include <netinet/tcp_fsm.h>
89#include <netinet/tcp_seq.h>
90#include <netinet/tcp_timer.h>
91#include <netinet/tcp_var.h>
92#include <netinet/tcp_syncache.h>
93#ifdef INET6
94#include <netinet6/tcp6_var.h>
95#endif
96#ifdef TCP_OFFLOAD
97#include <netinet/toecore.h>
98#endif
99
100#include <netipsec/ipsec_support.h>
101
102#include <machine/in_cksum.h>
103
104#include <security/mac/mac_framework.h>
105
106VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
107#define	V_tcp_syncookies		VNET(tcp_syncookies)
108SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
109    &VNET_NAME(tcp_syncookies), 0,
110    "Use TCP SYN cookies if the syncache overflows");
111
112VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
113#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
114SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
115    &VNET_NAME(tcp_syncookiesonly), 0,
116    "Use only TCP SYN cookies");
117
118VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
119#define V_functions_inherit_listen_socket_stack \
120    VNET(functions_inherit_listen_socket_stack)
121SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
122    CTLFLAG_VNET | CTLFLAG_RW,
123    &VNET_NAME(functions_inherit_listen_socket_stack), 0,
124    "Inherit listen socket's stack");
125
126#ifdef TCP_OFFLOAD
127#define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
128#endif
129
130static void	 syncache_drop(struct syncache *, struct syncache_head *);
131static void	 syncache_free(struct syncache *);
132static void	 syncache_insert(struct syncache *, struct syncache_head *);
133static int	 syncache_respond(struct syncache *, struct syncache_head *,
134		    const struct mbuf *, int);
135static struct	 socket *syncache_socket(struct syncache *, struct socket *,
136		    struct mbuf *m);
137static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
138		    int docallout);
139static void	 syncache_timer(void *);
140
141static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
142		    uint8_t *, uintptr_t);
143static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
144static struct syncache
145		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
146		    struct syncache *, struct tcphdr *, struct tcpopt *,
147		    struct socket *);
148static void	 syncookie_reseed(void *);
149#ifdef INVARIANTS
150static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
151		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
152		    struct socket *lso);
153#endif
154
155/*
156 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
157 * 3 retransmits corresponds to a timeout with default values of
158 * tcp_rexmit_initial * (             1 +
159 *                       tcp_backoff[1] +
160 *                       tcp_backoff[2] +
161 *                       tcp_backoff[3]) + 3 * tcp_rexmit_slop,
162 * 1000 ms * (1 + 2 + 4 + 8) +  3 * 200 ms = 15600 ms,
163 * the odds are that the user has given up attempting to connect by then.
164 */
165#define SYNCACHE_MAXREXMTS		3
166
167/* Arbitrary values */
168#define TCP_SYNCACHE_HASHSIZE		512
169#define TCP_SYNCACHE_BUCKETLIMIT	30
170
171VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
172#define	V_tcp_syncache			VNET(tcp_syncache)
173
174static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
175    "TCP SYN cache");
176
177SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
178    &VNET_NAME(tcp_syncache.bucket_limit), 0,
179    "Per-bucket hash limit for syncache");
180
181SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
182    &VNET_NAME(tcp_syncache.cache_limit), 0,
183    "Overall entry limit for syncache");
184
185SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
186    &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
187
188SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
189    &VNET_NAME(tcp_syncache.hashsize), 0,
190    "Size of TCP syncache hashtable");
191
192static int
193sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
194{
195	int error;
196	u_int new;
197
198	new = V_tcp_syncache.rexmt_limit;
199	error = sysctl_handle_int(oidp, &new, 0, req);
200	if ((error == 0) && (req->newptr != NULL)) {
201		if (new > TCP_MAXRXTSHIFT)
202			error = EINVAL;
203		else
204			V_tcp_syncache.rexmt_limit = new;
205	}
206	return (error);
207}
208
209SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
210    CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
211    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
212    sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
213    "Limit on SYN/ACK retransmissions");
214
215VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
216SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
217    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
218    "Send reset on socket allocation failure");
219
220static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
221
222#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
223#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
224#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
225
226/*
227 * Requires the syncache entry to be already removed from the bucket list.
228 */
229static void
230syncache_free(struct syncache *sc)
231{
232
233	if (sc->sc_ipopts)
234		(void) m_free(sc->sc_ipopts);
235	if (sc->sc_cred)
236		crfree(sc->sc_cred);
237#ifdef MAC
238	mac_syncache_destroy(&sc->sc_label);
239#endif
240
241	uma_zfree(V_tcp_syncache.zone, sc);
242}
243
244void
245syncache_init(void)
246{
247	int i;
248
249	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
250	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
251	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
252	V_tcp_syncache.hash_secret = arc4random();
253
254	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
255	    &V_tcp_syncache.hashsize);
256	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
257	    &V_tcp_syncache.bucket_limit);
258	if (!powerof2(V_tcp_syncache.hashsize) ||
259	    V_tcp_syncache.hashsize == 0) {
260		printf("WARNING: syncache hash size is not a power of 2.\n");
261		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
262	}
263	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
264
265	/* Set limits. */
266	V_tcp_syncache.cache_limit =
267	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
268	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
269	    &V_tcp_syncache.cache_limit);
270
271	/* Allocate the hash table. */
272	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
273	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
274
275#ifdef VIMAGE
276	V_tcp_syncache.vnet = curvnet;
277#endif
278
279	/* Initialize the hash buckets. */
280	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
281		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
282		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
283			 NULL, MTX_DEF);
284		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
285			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
286		V_tcp_syncache.hashbase[i].sch_length = 0;
287		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
288		V_tcp_syncache.hashbase[i].sch_last_overflow =
289		    -(SYNCOOKIE_LIFETIME + 1);
290	}
291
292	/* Create the syncache entry zone. */
293	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
294	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
295	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
296	    V_tcp_syncache.cache_limit);
297
298	/* Start the SYN cookie reseeder callout. */
299	callout_init(&V_tcp_syncache.secret.reseed, 1);
300	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
301	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
302	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
303	    syncookie_reseed, &V_tcp_syncache);
304}
305
306#ifdef VIMAGE
307void
308syncache_destroy(void)
309{
310	struct syncache_head *sch;
311	struct syncache *sc, *nsc;
312	int i;
313
314	/*
315	 * Stop the re-seed timer before freeing resources.  No need to
316	 * possibly schedule it another time.
317	 */
318	callout_drain(&V_tcp_syncache.secret.reseed);
319
320	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
321	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
322
323		sch = &V_tcp_syncache.hashbase[i];
324		callout_drain(&sch->sch_timer);
325
326		SCH_LOCK(sch);
327		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
328			syncache_drop(sc, sch);
329		SCH_UNLOCK(sch);
330		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
331		    ("%s: sch->sch_bucket not empty", __func__));
332		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
333		    __func__, sch->sch_length));
334		mtx_destroy(&sch->sch_mtx);
335	}
336
337	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
338	    ("%s: cache_count not 0", __func__));
339
340	/* Free the allocated global resources. */
341	uma_zdestroy(V_tcp_syncache.zone);
342	free(V_tcp_syncache.hashbase, M_SYNCACHE);
343}
344#endif
345
346/*
347 * Inserts a syncache entry into the specified bucket row.
348 * Locks and unlocks the syncache_head autonomously.
349 */
350static void
351syncache_insert(struct syncache *sc, struct syncache_head *sch)
352{
353	struct syncache *sc2;
354
355	SCH_LOCK(sch);
356
357	/*
358	 * Make sure that we don't overflow the per-bucket limit.
359	 * If the bucket is full, toss the oldest element.
360	 */
361	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
362		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
363			("sch->sch_length incorrect"));
364		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
365		sch->sch_last_overflow = time_uptime;
366		syncache_drop(sc2, sch);
367		TCPSTAT_INC(tcps_sc_bucketoverflow);
368	}
369
370	/* Put it into the bucket. */
371	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
372	sch->sch_length++;
373
374#ifdef TCP_OFFLOAD
375	if (ADDED_BY_TOE(sc)) {
376		struct toedev *tod = sc->sc_tod;
377
378		tod->tod_syncache_added(tod, sc->sc_todctx);
379	}
380#endif
381
382	/* Reinitialize the bucket row's timer. */
383	if (sch->sch_length == 1)
384		sch->sch_nextc = ticks + INT_MAX;
385	syncache_timeout(sc, sch, 1);
386
387	SCH_UNLOCK(sch);
388
389	TCPSTATES_INC(TCPS_SYN_RECEIVED);
390	TCPSTAT_INC(tcps_sc_added);
391}
392
393/*
394 * Remove and free entry from syncache bucket row.
395 * Expects locked syncache head.
396 */
397static void
398syncache_drop(struct syncache *sc, struct syncache_head *sch)
399{
400
401	SCH_LOCK_ASSERT(sch);
402
403	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
404	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
405	sch->sch_length--;
406
407#ifdef TCP_OFFLOAD
408	if (ADDED_BY_TOE(sc)) {
409		struct toedev *tod = sc->sc_tod;
410
411		tod->tod_syncache_removed(tod, sc->sc_todctx);
412	}
413#endif
414
415	syncache_free(sc);
416}
417
418/*
419 * Engage/reengage time on bucket row.
420 */
421static void
422syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
423{
424	int rexmt;
425
426	if (sc->sc_rxmits == 0)
427		rexmt = tcp_rexmit_initial;
428	else
429		TCPT_RANGESET(rexmt,
430		    tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits],
431		    tcp_rexmit_min, TCPTV_REXMTMAX);
432	sc->sc_rxttime = ticks + rexmt;
433	sc->sc_rxmits++;
434	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
435		sch->sch_nextc = sc->sc_rxttime;
436		if (docallout)
437			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
438			    syncache_timer, (void *)sch);
439	}
440}
441
442/*
443 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
444 * If we have retransmitted an entry the maximum number of times, expire it.
445 * One separate timer for each bucket row.
446 */
447static void
448syncache_timer(void *xsch)
449{
450	struct syncache_head *sch = (struct syncache_head *)xsch;
451	struct syncache *sc, *nsc;
452	int tick = ticks;
453	char *s;
454
455	CURVNET_SET(sch->sch_sc->vnet);
456
457	/* NB: syncache_head has already been locked by the callout. */
458	SCH_LOCK_ASSERT(sch);
459
460	/*
461	 * In the following cycle we may remove some entries and/or
462	 * advance some timeouts, so re-initialize the bucket timer.
463	 */
464	sch->sch_nextc = tick + INT_MAX;
465
466	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
467		/*
468		 * We do not check if the listen socket still exists
469		 * and accept the case where the listen socket may be
470		 * gone by the time we resend the SYN/ACK.  We do
471		 * not expect this to happens often. If it does,
472		 * then the RST will be sent by the time the remote
473		 * host does the SYN/ACK->ACK.
474		 */
475		if (TSTMP_GT(sc->sc_rxttime, tick)) {
476			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
477				sch->sch_nextc = sc->sc_rxttime;
478			continue;
479		}
480		if (sc->sc_rxmits > V_tcp_ecn_maxretries) {
481			sc->sc_flags &= ~SCF_ECN;
482		}
483		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
484			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
485				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
486				    "giving up and removing syncache entry\n",
487				    s, __func__);
488				free(s, M_TCPLOG);
489			}
490			syncache_drop(sc, sch);
491			TCPSTAT_INC(tcps_sc_stale);
492			continue;
493		}
494		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
495			log(LOG_DEBUG, "%s; %s: Response timeout, "
496			    "retransmitting (%u) SYN|ACK\n",
497			    s, __func__, sc->sc_rxmits);
498			free(s, M_TCPLOG);
499		}
500
501		syncache_respond(sc, sch, NULL, TH_SYN|TH_ACK);
502		TCPSTAT_INC(tcps_sc_retransmitted);
503		syncache_timeout(sc, sch, 0);
504	}
505	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
506		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
507			syncache_timer, (void *)(sch));
508	CURVNET_RESTORE();
509}
510
511/*
512 * Find an entry in the syncache.
513 * Returns always with locked syncache_head plus a matching entry or NULL.
514 */
515static struct syncache *
516syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
517{
518	struct syncache *sc;
519	struct syncache_head *sch;
520	uint32_t hash;
521
522	/*
523	 * The hash is built on foreign port + local port + foreign address.
524	 * We rely on the fact that struct in_conninfo starts with 16 bits
525	 * of foreign port, then 16 bits of local port then followed by 128
526	 * bits of foreign address.  In case of IPv4 address, the first 3
527	 * 32-bit words of the address always are zeroes.
528	 */
529	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
530	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
531
532	sch = &V_tcp_syncache.hashbase[hash];
533	*schp = sch;
534	SCH_LOCK(sch);
535
536	/* Circle through bucket row to find matching entry. */
537	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
538		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
539		    sizeof(struct in_endpoints)) == 0)
540			break;
541
542	return (sc);	/* Always returns with locked sch. */
543}
544
545/*
546 * This function is called when we get a RST for a
547 * non-existent connection, so that we can see if the
548 * connection is in the syn cache.  If it is, zap it.
549 * If required send a challenge ACK.
550 */
551void
552syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m)
553{
554	struct syncache *sc;
555	struct syncache_head *sch;
556	char *s = NULL;
557
558	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
559	SCH_LOCK_ASSERT(sch);
560
561	/*
562	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
563	 * See RFC 793 page 65, section SEGMENT ARRIVES.
564	 */
565	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
566		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
567			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
568			    "FIN flag set, segment ignored\n", s, __func__);
569		TCPSTAT_INC(tcps_badrst);
570		goto done;
571	}
572
573	/*
574	 * No corresponding connection was found in syncache.
575	 * If syncookies are enabled and possibly exclusively
576	 * used, or we are under memory pressure, a valid RST
577	 * may not find a syncache entry.  In that case we're
578	 * done and no SYN|ACK retransmissions will happen.
579	 * Otherwise the RST was misdirected or spoofed.
580	 */
581	if (sc == NULL) {
582		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
583			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
584			    "syncache entry (possibly syncookie only), "
585			    "segment ignored\n", s, __func__);
586		TCPSTAT_INC(tcps_badrst);
587		goto done;
588	}
589
590	/*
591	 * If the RST bit is set, check the sequence number to see
592	 * if this is a valid reset segment.
593	 *
594	 * RFC 793 page 37:
595	 *   In all states except SYN-SENT, all reset (RST) segments
596	 *   are validated by checking their SEQ-fields.  A reset is
597	 *   valid if its sequence number is in the window.
598	 *
599	 * RFC 793 page 69:
600	 *   There are four cases for the acceptability test for an incoming
601	 *   segment:
602	 *
603	 * Segment Receive  Test
604	 * Length  Window
605	 * ------- -------  -------------------------------------------
606	 *    0       0     SEG.SEQ = RCV.NXT
607	 *    0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
608	 *   >0       0     not acceptable
609	 *   >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
610	 *               or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
611	 *
612	 * Note that when receiving a SYN segment in the LISTEN state,
613	 * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as
614	 * described in RFC 793, page 66.
615	 */
616	if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
617	    SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
618	    (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
619		if (V_tcp_insecure_rst ||
620		    th->th_seq == sc->sc_irs + 1) {
621			syncache_drop(sc, sch);
622			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
623				log(LOG_DEBUG,
624				    "%s; %s: Our SYN|ACK was rejected, "
625				    "connection attempt aborted by remote "
626				    "endpoint\n",
627				    s, __func__);
628			TCPSTAT_INC(tcps_sc_reset);
629		} else {
630			TCPSTAT_INC(tcps_badrst);
631			/* Send challenge ACK. */
632			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
633				log(LOG_DEBUG, "%s; %s: RST with invalid "
634				    " SEQ %u != NXT %u (+WND %u), "
635				    "sending challenge ACK\n",
636				    s, __func__,
637				    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
638			syncache_respond(sc, sch, m, TH_ACK);
639		}
640	} else {
641		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
642			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
643			    "NXT %u (+WND %u), segment ignored\n",
644			    s, __func__,
645			    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
646		TCPSTAT_INC(tcps_badrst);
647	}
648
649done:
650	if (s != NULL)
651		free(s, M_TCPLOG);
652	SCH_UNLOCK(sch);
653}
654
655void
656syncache_badack(struct in_conninfo *inc)
657{
658	struct syncache *sc;
659	struct syncache_head *sch;
660
661	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
662	SCH_LOCK_ASSERT(sch);
663	if (sc != NULL) {
664		syncache_drop(sc, sch);
665		TCPSTAT_INC(tcps_sc_badack);
666	}
667	SCH_UNLOCK(sch);
668}
669
670void
671syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
672{
673	struct syncache *sc;
674	struct syncache_head *sch;
675
676	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
677	SCH_LOCK_ASSERT(sch);
678	if (sc == NULL)
679		goto done;
680
681	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
682	if (ntohl(th_seq) != sc->sc_iss)
683		goto done;
684
685	/*
686	 * If we've rertransmitted 3 times and this is our second error,
687	 * we remove the entry.  Otherwise, we allow it to continue on.
688	 * This prevents us from incorrectly nuking an entry during a
689	 * spurious network outage.
690	 *
691	 * See tcp_notify().
692	 */
693	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
694		sc->sc_flags |= SCF_UNREACH;
695		goto done;
696	}
697	syncache_drop(sc, sch);
698	TCPSTAT_INC(tcps_sc_unreach);
699done:
700	SCH_UNLOCK(sch);
701}
702
703/*
704 * Build a new TCP socket structure from a syncache entry.
705 *
706 * On success return the newly created socket with its underlying inp locked.
707 */
708static struct socket *
709syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
710{
711	struct tcp_function_block *blk;
712	struct inpcb *inp = NULL;
713	struct socket *so;
714	struct tcpcb *tp;
715	int error;
716	char *s;
717
718	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
719
720	/*
721	 * Ok, create the full blown connection, and set things up
722	 * as they would have been set up if we had created the
723	 * connection when the SYN arrived.  If we can't create
724	 * the connection, abort it.
725	 */
726	so = sonewconn(lso, 0);
727	if (so == NULL) {
728		/*
729		 * Drop the connection; we will either send a RST or
730		 * have the peer retransmit its SYN again after its
731		 * RTO and try again.
732		 */
733		TCPSTAT_INC(tcps_listendrop);
734		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
735			log(LOG_DEBUG, "%s; %s: Socket create failed "
736			    "due to limits or memory shortage\n",
737			    s, __func__);
738			free(s, M_TCPLOG);
739		}
740		goto abort2;
741	}
742#ifdef MAC
743	mac_socketpeer_set_from_mbuf(m, so);
744#endif
745
746	inp = sotoinpcb(so);
747	inp->inp_inc.inc_fibnum = so->so_fibnum;
748	INP_WLOCK(inp);
749	/*
750	 * Exclusive pcbinfo lock is not required in syncache socket case even
751	 * if two inpcb locks can be acquired simultaneously:
752	 *  - the inpcb in LISTEN state,
753	 *  - the newly created inp.
754	 *
755	 * In this case, an inp cannot be at same time in LISTEN state and
756	 * just created by an accept() call.
757	 */
758	INP_HASH_WLOCK(&V_tcbinfo);
759
760	/* Insert new socket into PCB hash list. */
761	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
762#ifdef INET6
763	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
764		inp->inp_vflag &= ~INP_IPV4;
765		inp->inp_vflag |= INP_IPV6;
766		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
767	} else {
768		inp->inp_vflag &= ~INP_IPV6;
769		inp->inp_vflag |= INP_IPV4;
770#endif
771		inp->inp_ip_ttl = sc->sc_ip_ttl;
772		inp->inp_ip_tos = sc->sc_ip_tos;
773		inp->inp_laddr = sc->sc_inc.inc_laddr;
774#ifdef INET6
775	}
776#endif
777
778	/*
779	 * If there's an mbuf and it has a flowid, then let's initialise the
780	 * inp with that particular flowid.
781	 */
782	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
783		inp->inp_flowid = m->m_pkthdr.flowid;
784		inp->inp_flowtype = M_HASHTYPE_GET(m);
785	}
786
787	inp->inp_lport = sc->sc_inc.inc_lport;
788#ifdef INET6
789	if (inp->inp_vflag & INP_IPV6PROTO) {
790		struct inpcb *oinp = sotoinpcb(lso);
791
792		/*
793		 * Inherit socket options from the listening socket.
794		 * Note that in6p_inputopts are not (and should not be)
795		 * copied, since it stores previously received options and is
796		 * used to detect if each new option is different than the
797		 * previous one and hence should be passed to a user.
798		 * If we copied in6p_inputopts, a user would not be able to
799		 * receive options just after calling the accept system call.
800		 */
801		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
802		if (oinp->in6p_outputopts)
803			inp->in6p_outputopts =
804			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
805		inp->in6p_hops = oinp->in6p_hops;
806	}
807
808	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
809		struct in6_addr laddr6;
810		struct sockaddr_in6 sin6;
811
812		sin6.sin6_family = AF_INET6;
813		sin6.sin6_len = sizeof(sin6);
814		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
815		sin6.sin6_port = sc->sc_inc.inc_fport;
816		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
817		laddr6 = inp->in6p_laddr;
818		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
819			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
820		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
821		    thread0.td_ucred, m, false)) != 0) {
822			inp->in6p_laddr = laddr6;
823			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
824				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
825				    "with error %i\n",
826				    s, __func__, error);
827				free(s, M_TCPLOG);
828			}
829			INP_HASH_WUNLOCK(&V_tcbinfo);
830			goto abort;
831		}
832		/* Override flowlabel from in6_pcbconnect. */
833		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
834		inp->inp_flow |= sc->sc_flowlabel;
835	}
836#endif /* INET6 */
837#if defined(INET) && defined(INET6)
838	else
839#endif
840#ifdef INET
841	{
842		struct in_addr laddr;
843		struct sockaddr_in sin;
844
845		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
846
847		if (inp->inp_options == NULL) {
848			inp->inp_options = sc->sc_ipopts;
849			sc->sc_ipopts = NULL;
850		}
851
852		sin.sin_family = AF_INET;
853		sin.sin_len = sizeof(sin);
854		sin.sin_addr = sc->sc_inc.inc_faddr;
855		sin.sin_port = sc->sc_inc.inc_fport;
856		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
857		laddr = inp->inp_laddr;
858		if (inp->inp_laddr.s_addr == INADDR_ANY)
859			inp->inp_laddr = sc->sc_inc.inc_laddr;
860		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
861		    thread0.td_ucred, m, false)) != 0) {
862			inp->inp_laddr = laddr;
863			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
864				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
865				    "with error %i\n",
866				    s, __func__, error);
867				free(s, M_TCPLOG);
868			}
869			INP_HASH_WUNLOCK(&V_tcbinfo);
870			goto abort;
871		}
872	}
873#endif /* INET */
874#if defined(IPSEC) || defined(IPSEC_SUPPORT)
875	/* Copy old policy into new socket's. */
876	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
877		printf("syncache_socket: could not copy policy\n");
878#endif
879	INP_HASH_WUNLOCK(&V_tcbinfo);
880	tp = intotcpcb(inp);
881	tcp_state_change(tp, TCPS_SYN_RECEIVED);
882	tp->iss = sc->sc_iss;
883	tp->irs = sc->sc_irs;
884	tcp_rcvseqinit(tp);
885	tcp_sendseqinit(tp);
886	blk = sototcpcb(lso)->t_fb;
887	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
888		/*
889		 * Our parents t_fb was not the default,
890		 * we need to release our ref on tp->t_fb and
891		 * pickup one on the new entry.
892		 */
893		struct tcp_function_block *rblk;
894
895		rblk = find_and_ref_tcp_fb(blk);
896		KASSERT(rblk != NULL,
897		    ("cannot find blk %p out of syncache?", blk));
898		if (tp->t_fb->tfb_tcp_fb_fini)
899			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
900		refcount_release(&tp->t_fb->tfb_refcnt);
901		tp->t_fb = rblk;
902		/*
903		 * XXXrrs this is quite dangerous, it is possible
904		 * for the new function to fail to init. We also
905		 * are not asking if the handoff_is_ok though at
906		 * the very start thats probalbly ok.
907		 */
908		if (tp->t_fb->tfb_tcp_fb_init) {
909			(*tp->t_fb->tfb_tcp_fb_init)(tp);
910		}
911	}
912	tp->snd_wl1 = sc->sc_irs;
913	tp->snd_max = tp->iss + 1;
914	tp->snd_nxt = tp->iss + 1;
915	tp->rcv_up = sc->sc_irs + 1;
916	tp->rcv_wnd = sc->sc_wnd;
917	tp->rcv_adv += tp->rcv_wnd;
918	tp->last_ack_sent = tp->rcv_nxt;
919
920	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
921	if (sc->sc_flags & SCF_NOOPT)
922		tp->t_flags |= TF_NOOPT;
923	else {
924		if (sc->sc_flags & SCF_WINSCALE) {
925			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
926			tp->snd_scale = sc->sc_requested_s_scale;
927			tp->request_r_scale = sc->sc_requested_r_scale;
928		}
929		if (sc->sc_flags & SCF_TIMESTAMP) {
930			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
931			tp->ts_recent = sc->sc_tsreflect;
932			tp->ts_recent_age = tcp_ts_getticks();
933			tp->ts_offset = sc->sc_tsoff;
934		}
935#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
936		if (sc->sc_flags & SCF_SIGNATURE)
937			tp->t_flags |= TF_SIGNATURE;
938#endif
939		if (sc->sc_flags & SCF_SACK)
940			tp->t_flags |= TF_SACK_PERMIT;
941	}
942
943	if (sc->sc_flags & SCF_ECN)
944		tp->t_flags |= TF_ECN_PERMIT;
945
946	/*
947	 * Set up MSS and get cached values from tcp_hostcache.
948	 * This might overwrite some of the defaults we just set.
949	 */
950	tcp_mss(tp, sc->sc_peer_mss);
951
952	/*
953	 * If the SYN,ACK was retransmitted, indicate that CWND to be
954	 * limited to one segment in cc_conn_init().
955	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
956	 */
957	if (sc->sc_rxmits > 1)
958		tp->snd_cwnd = 1;
959
960#ifdef TCP_OFFLOAD
961	/*
962	 * Allow a TOE driver to install its hooks.  Note that we hold the
963	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
964	 * new connection before the TOE driver has done its thing.
965	 */
966	if (ADDED_BY_TOE(sc)) {
967		struct toedev *tod = sc->sc_tod;
968
969		tod->tod_offload_socket(tod, sc->sc_todctx, so);
970	}
971#endif
972	/*
973	 * Copy and activate timers.
974	 */
975	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
976	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
977	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
978	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
979	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
980
981	TCPSTAT_INC(tcps_accepts);
982	return (so);
983
984abort:
985	INP_WUNLOCK(inp);
986abort2:
987	if (so != NULL)
988		soabort(so);
989	return (NULL);
990}
991
992/*
993 * This function gets called when we receive an ACK for a
994 * socket in the LISTEN state.  We look up the connection
995 * in the syncache, and if its there, we pull it out of
996 * the cache and turn it into a full-blown connection in
997 * the SYN-RECEIVED state.
998 *
999 * On syncache_socket() success the newly created socket
1000 * has its underlying inp locked.
1001 */
1002int
1003syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1004    struct socket **lsop, struct mbuf *m)
1005{
1006	struct syncache *sc;
1007	struct syncache_head *sch;
1008	struct syncache scs;
1009	char *s;
1010
1011	/*
1012	 * Global TCP locks are held because we manipulate the PCB lists
1013	 * and create a new socket.
1014	 */
1015	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1016	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1017	    ("%s: can handle only ACK", __func__));
1018
1019	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1020	SCH_LOCK_ASSERT(sch);
1021
1022#ifdef INVARIANTS
1023	/*
1024	 * Test code for syncookies comparing the syncache stored
1025	 * values with the reconstructed values from the cookie.
1026	 */
1027	if (sc != NULL)
1028		syncookie_cmp(inc, sch, sc, th, to, *lsop);
1029#endif
1030
1031	if (sc == NULL) {
1032		/*
1033		 * There is no syncache entry, so see if this ACK is
1034		 * a returning syncookie.  To do this, first:
1035		 *  A. Check if syncookies are used in case of syncache
1036		 *     overflows
1037		 *  B. See if this socket has had a syncache entry dropped in
1038		 *     the recent past. We don't want to accept a bogus
1039		 *     syncookie if we've never received a SYN or accept it
1040		 *     twice.
1041		 *  C. check that the syncookie is valid.  If it is, then
1042		 *     cobble up a fake syncache entry, and return.
1043		 */
1044		if (!V_tcp_syncookies) {
1045			SCH_UNLOCK(sch);
1046			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1047				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1048				    "segment rejected (syncookies disabled)\n",
1049				    s, __func__);
1050			goto failed;
1051		}
1052		if (!V_tcp_syncookiesonly &&
1053		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1054			SCH_UNLOCK(sch);
1055			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1056				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1057				    "segment rejected (no syncache entry)\n",
1058				    s, __func__);
1059			goto failed;
1060		}
1061		bzero(&scs, sizeof(scs));
1062		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1063		SCH_UNLOCK(sch);
1064		if (sc == NULL) {
1065			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1066				log(LOG_DEBUG, "%s; %s: Segment failed "
1067				    "SYNCOOKIE authentication, segment rejected "
1068				    "(probably spoofed)\n", s, __func__);
1069			goto failed;
1070		}
1071#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1072		/* If received ACK has MD5 signature, check it. */
1073		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1074		    (!TCPMD5_ENABLED() ||
1075		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1076			/* Drop the ACK. */
1077			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1078				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1079				    "MD5 signature doesn't match.\n",
1080				    s, __func__);
1081				free(s, M_TCPLOG);
1082			}
1083			TCPSTAT_INC(tcps_sig_err_sigopt);
1084			return (-1); /* Do not send RST */
1085		}
1086#endif /* TCP_SIGNATURE */
1087	} else {
1088#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1089		/*
1090		 * If listening socket requested TCP digests, check that
1091		 * received ACK has signature and it is correct.
1092		 * If not, drop the ACK and leave sc entry in th cache,
1093		 * because SYN was received with correct signature.
1094		 */
1095		if (sc->sc_flags & SCF_SIGNATURE) {
1096			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1097				/* No signature */
1098				TCPSTAT_INC(tcps_sig_err_nosigopt);
1099				SCH_UNLOCK(sch);
1100				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1101					log(LOG_DEBUG, "%s; %s: Segment "
1102					    "rejected, MD5 signature wasn't "
1103					    "provided.\n", s, __func__);
1104					free(s, M_TCPLOG);
1105				}
1106				return (-1); /* Do not send RST */
1107			}
1108			if (!TCPMD5_ENABLED() ||
1109			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1110				/* Doesn't match or no SA */
1111				SCH_UNLOCK(sch);
1112				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1113					log(LOG_DEBUG, "%s; %s: Segment "
1114					    "rejected, MD5 signature doesn't "
1115					    "match.\n", s, __func__);
1116					free(s, M_TCPLOG);
1117				}
1118				return (-1); /* Do not send RST */
1119			}
1120		}
1121#endif /* TCP_SIGNATURE */
1122
1123		/*
1124		 * RFC 7323 PAWS: If we have a timestamp on this segment and
1125		 * it's less than ts_recent, drop it.
1126		 * XXXMT: RFC 7323 also requires to send an ACK.
1127		 *        In tcp_input.c this is only done for TCP segments
1128		 *        with user data, so be consistent here and just drop
1129		 *        the segment.
1130		 */
1131		if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
1132		    TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
1133			SCH_UNLOCK(sch);
1134			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1135				log(LOG_DEBUG,
1136				    "%s; %s: SEG.TSval %u < TS.Recent %u, "
1137				    "segment dropped\n", s, __func__,
1138				    to->to_tsval, sc->sc_tsreflect);
1139				free(s, M_TCPLOG);
1140			}
1141			return (-1);  /* Do not send RST */
1142		}
1143
1144		/*
1145		 * If timestamps were not negotiated during SYN/ACK and a
1146		 * segment with a timestamp is received, ignore the
1147		 * timestamp and process the packet normally.
1148		 * See section 3.2 of RFC 7323.
1149		 */
1150		if (!(sc->sc_flags & SCF_TIMESTAMP) &&
1151		    (to->to_flags & TOF_TS)) {
1152			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1153				log(LOG_DEBUG, "%s; %s: Timestamp not "
1154				    "expected, segment processed normally\n",
1155				    s, __func__);
1156				free(s, M_TCPLOG);
1157				s = NULL;
1158			}
1159		}
1160
1161		/*
1162		 * If timestamps were negotiated during SYN/ACK and a
1163		 * segment without a timestamp is received, silently drop
1164		 * the segment, unless the missing timestamps are tolerated.
1165		 * See section 3.2 of RFC 7323.
1166		 */
1167		if ((sc->sc_flags & SCF_TIMESTAMP) &&
1168		    !(to->to_flags & TOF_TS)) {
1169			if (V_tcp_tolerate_missing_ts) {
1170				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1171					log(LOG_DEBUG,
1172					    "%s; %s: Timestamp missing, "
1173					    "segment processed normally\n",
1174					    s, __func__);
1175					free(s, M_TCPLOG);
1176				}
1177			} else {
1178				SCH_UNLOCK(sch);
1179				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1180					log(LOG_DEBUG,
1181					    "%s; %s: Timestamp missing, "
1182					    "segment silently dropped\n",
1183					    s, __func__);
1184					free(s, M_TCPLOG);
1185				}
1186				return (-1);  /* Do not send RST */
1187			}
1188		}
1189
1190		/*
1191		 * Pull out the entry to unlock the bucket row.
1192		 *
1193		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1194		 * tcp_state_change().  The tcpcb is not existent at this
1195		 * moment.  A new one will be allocated via syncache_socket->
1196		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1197		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1198		 */
1199		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1200		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1201		sch->sch_length--;
1202#ifdef TCP_OFFLOAD
1203		if (ADDED_BY_TOE(sc)) {
1204			struct toedev *tod = sc->sc_tod;
1205
1206			tod->tod_syncache_removed(tod, sc->sc_todctx);
1207		}
1208#endif
1209		SCH_UNLOCK(sch);
1210	}
1211
1212	/*
1213	 * Segment validation:
1214	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1215	 */
1216	if (th->th_ack != sc->sc_iss + 1) {
1217		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1218			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1219			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1220		goto failed;
1221	}
1222
1223	/*
1224	 * The SEQ must fall in the window starting at the received
1225	 * initial receive sequence number + 1 (the SYN).
1226	 */
1227	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1228	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1229		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1230			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1231			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1232		goto failed;
1233	}
1234
1235	*lsop = syncache_socket(sc, *lsop, m);
1236
1237	if (*lsop == NULL)
1238		TCPSTAT_INC(tcps_sc_aborted);
1239	else
1240		TCPSTAT_INC(tcps_sc_completed);
1241
1242/* how do we find the inp for the new socket? */
1243	if (sc != &scs)
1244		syncache_free(sc);
1245	return (1);
1246failed:
1247	if (sc != NULL && sc != &scs)
1248		syncache_free(sc);
1249	if (s != NULL)
1250		free(s, M_TCPLOG);
1251	*lsop = NULL;
1252	return (0);
1253}
1254
1255static void
1256syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1257    uint64_t response_cookie)
1258{
1259	struct inpcb *inp;
1260	struct tcpcb *tp;
1261	unsigned int *pending_counter;
1262
1263	/*
1264	 * Global TCP locks are held because we manipulate the PCB lists
1265	 * and create a new socket.
1266	 */
1267	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1268
1269	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1270	*lsop = syncache_socket(sc, *lsop, m);
1271	if (*lsop == NULL) {
1272		TCPSTAT_INC(tcps_sc_aborted);
1273		atomic_subtract_int(pending_counter, 1);
1274	} else {
1275		soisconnected(*lsop);
1276		inp = sotoinpcb(*lsop);
1277		tp = intotcpcb(inp);
1278		tp->t_flags |= TF_FASTOPEN;
1279		tp->t_tfo_cookie.server = response_cookie;
1280		tp->snd_max = tp->iss;
1281		tp->snd_nxt = tp->iss;
1282		tp->t_tfo_pending = pending_counter;
1283		TCPSTAT_INC(tcps_sc_completed);
1284	}
1285}
1286
1287/*
1288 * Given a LISTEN socket and an inbound SYN request, add
1289 * this to the syn cache, and send back a segment:
1290 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1291 * to the source.
1292 *
1293 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1294 * Doing so would require that we hold onto the data and deliver it
1295 * to the application.  However, if we are the target of a SYN-flood
1296 * DoS attack, an attacker could send data which would eventually
1297 * consume all available buffer space if it were ACKed.  By not ACKing
1298 * the data, we avoid this DoS scenario.
1299 *
1300 * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1301 * cookie is processed and a new socket is created.  In this case, any data
1302 * accompanying the SYN will be queued to the socket by tcp_input() and will
1303 * be ACKed either when the application sends response data or the delayed
1304 * ACK timer expires, whichever comes first.
1305 */
1306int
1307syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1308    struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1309    void *todctx, uint8_t iptos)
1310{
1311	struct tcpcb *tp;
1312	struct socket *so;
1313	struct syncache *sc = NULL;
1314	struct syncache_head *sch;
1315	struct mbuf *ipopts = NULL;
1316	u_int ltflags;
1317	int win, ip_ttl, ip_tos;
1318	char *s;
1319	int rv = 0;
1320#ifdef INET6
1321	int autoflowlabel = 0;
1322#endif
1323#ifdef MAC
1324	struct label *maclabel;
1325#endif
1326	struct syncache scs;
1327	struct ucred *cred;
1328	uint64_t tfo_response_cookie;
1329	unsigned int *tfo_pending = NULL;
1330	int tfo_cookie_valid = 0;
1331	int tfo_response_cookie_valid = 0;
1332
1333	INP_WLOCK_ASSERT(inp);			/* listen socket */
1334	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1335	    ("%s: unexpected tcp flags", __func__));
1336
1337	/*
1338	 * Combine all so/tp operations very early to drop the INP lock as
1339	 * soon as possible.
1340	 */
1341	so = *lsop;
1342	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1343	tp = sototcpcb(so);
1344	cred = crhold(so->so_cred);
1345
1346#ifdef INET6
1347	if (inc->inc_flags & INC_ISIPV6) {
1348		if (inp->inp_flags & IN6P_AUTOFLOWLABEL) {
1349			autoflowlabel = 1;
1350		}
1351		ip_ttl = in6_selecthlim(inp, NULL);
1352		if ((inp->in6p_outputopts == NULL) ||
1353		    (inp->in6p_outputopts->ip6po_tclass == -1)) {
1354			ip_tos = 0;
1355		} else {
1356			ip_tos = inp->in6p_outputopts->ip6po_tclass;
1357		}
1358	}
1359#endif
1360#if defined(INET6) && defined(INET)
1361	else
1362#endif
1363#ifdef INET
1364	{
1365		ip_ttl = inp->inp_ip_ttl;
1366		ip_tos = inp->inp_ip_tos;
1367	}
1368#endif
1369	win = so->sol_sbrcv_hiwat;
1370	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1371
1372	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1373	    (tp->t_tfo_pending != NULL) &&
1374	    (to->to_flags & TOF_FASTOPEN)) {
1375		/*
1376		 * Limit the number of pending TFO connections to
1377		 * approximately half of the queue limit.  This prevents TFO
1378		 * SYN floods from starving the service by filling the
1379		 * listen queue with bogus TFO connections.
1380		 */
1381		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1382		    (so->sol_qlimit / 2)) {
1383			int result;
1384
1385			result = tcp_fastopen_check_cookie(inc,
1386			    to->to_tfo_cookie, to->to_tfo_len,
1387			    &tfo_response_cookie);
1388			tfo_cookie_valid = (result > 0);
1389			tfo_response_cookie_valid = (result >= 0);
1390		}
1391
1392		/*
1393		 * Remember the TFO pending counter as it will have to be
1394		 * decremented below if we don't make it to syncache_tfo_expand().
1395		 */
1396		tfo_pending = tp->t_tfo_pending;
1397	}
1398
1399	/* By the time we drop the lock these should no longer be used. */
1400	so = NULL;
1401	tp = NULL;
1402
1403#ifdef MAC
1404	if (mac_syncache_init(&maclabel) != 0) {
1405		INP_WUNLOCK(inp);
1406		goto done;
1407	} else
1408		mac_syncache_create(maclabel, inp);
1409#endif
1410	if (!tfo_cookie_valid)
1411		INP_WUNLOCK(inp);
1412
1413	/*
1414	 * Remember the IP options, if any.
1415	 */
1416#ifdef INET6
1417	if (!(inc->inc_flags & INC_ISIPV6))
1418#endif
1419#ifdef INET
1420		ipopts = (m) ? ip_srcroute(m) : NULL;
1421#else
1422		ipopts = NULL;
1423#endif
1424
1425#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1426	/*
1427	 * If listening socket requested TCP digests, check that received
1428	 * SYN has signature and it is correct. If signature doesn't match
1429	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1430	 */
1431	if (ltflags & TF_SIGNATURE) {
1432		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1433			TCPSTAT_INC(tcps_sig_err_nosigopt);
1434			goto done;
1435		}
1436		if (!TCPMD5_ENABLED() ||
1437		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1438			goto done;
1439	}
1440#endif	/* TCP_SIGNATURE */
1441	/*
1442	 * See if we already have an entry for this connection.
1443	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1444	 *
1445	 * XXX: should the syncache be re-initialized with the contents
1446	 * of the new SYN here (which may have different options?)
1447	 *
1448	 * XXX: We do not check the sequence number to see if this is a
1449	 * real retransmit or a new connection attempt.  The question is
1450	 * how to handle such a case; either ignore it as spoofed, or
1451	 * drop the current entry and create a new one?
1452	 */
1453	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1454	SCH_LOCK_ASSERT(sch);
1455	if (sc != NULL) {
1456		if (tfo_cookie_valid)
1457			INP_WUNLOCK(inp);
1458		TCPSTAT_INC(tcps_sc_dupsyn);
1459		if (ipopts) {
1460			/*
1461			 * If we were remembering a previous source route,
1462			 * forget it and use the new one we've been given.
1463			 */
1464			if (sc->sc_ipopts)
1465				(void) m_free(sc->sc_ipopts);
1466			sc->sc_ipopts = ipopts;
1467		}
1468		/*
1469		 * Update timestamp if present.
1470		 */
1471		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1472			sc->sc_tsreflect = to->to_tsval;
1473		else
1474			sc->sc_flags &= ~SCF_TIMESTAMP;
1475		/*
1476		 * Disable ECN if needed.
1477		 */
1478		if ((sc->sc_flags & SCF_ECN) &&
1479		    ((th->th_flags & (TH_ECE|TH_CWR)) != (TH_ECE|TH_CWR))) {
1480			sc->sc_flags &= ~SCF_ECN;
1481		}
1482#ifdef MAC
1483		/*
1484		 * Since we have already unconditionally allocated label
1485		 * storage, free it up.  The syncache entry will already
1486		 * have an initialized label we can use.
1487		 */
1488		mac_syncache_destroy(&maclabel);
1489#endif
1490		TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1491		/* Retransmit SYN|ACK and reset retransmit count. */
1492		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1493			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1494			    "resetting timer and retransmitting SYN|ACK\n",
1495			    s, __func__);
1496			free(s, M_TCPLOG);
1497		}
1498		if (syncache_respond(sc, sch, m, TH_SYN|TH_ACK) == 0) {
1499			sc->sc_rxmits = 0;
1500			syncache_timeout(sc, sch, 1);
1501			TCPSTAT_INC(tcps_sndacks);
1502			TCPSTAT_INC(tcps_sndtotal);
1503		}
1504		SCH_UNLOCK(sch);
1505		goto donenoprobe;
1506	}
1507
1508	if (tfo_cookie_valid) {
1509		bzero(&scs, sizeof(scs));
1510		sc = &scs;
1511		goto skip_alloc;
1512	}
1513
1514	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1515	if (sc == NULL) {
1516		/*
1517		 * The zone allocator couldn't provide more entries.
1518		 * Treat this as if the cache was full; drop the oldest
1519		 * entry and insert the new one.
1520		 */
1521		TCPSTAT_INC(tcps_sc_zonefail);
1522		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1523			sch->sch_last_overflow = time_uptime;
1524			syncache_drop(sc, sch);
1525		}
1526		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1527		if (sc == NULL) {
1528			if (V_tcp_syncookies) {
1529				bzero(&scs, sizeof(scs));
1530				sc = &scs;
1531			} else {
1532				SCH_UNLOCK(sch);
1533				if (ipopts)
1534					(void) m_free(ipopts);
1535				goto done;
1536			}
1537		}
1538	}
1539
1540skip_alloc:
1541	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1542		sc->sc_tfo_cookie = &tfo_response_cookie;
1543
1544	/*
1545	 * Fill in the syncache values.
1546	 */
1547#ifdef MAC
1548	sc->sc_label = maclabel;
1549#endif
1550	sc->sc_cred = cred;
1551	cred = NULL;
1552	sc->sc_ipopts = ipopts;
1553	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1554	sc->sc_ip_tos = ip_tos;
1555	sc->sc_ip_ttl = ip_ttl;
1556#ifdef TCP_OFFLOAD
1557	sc->sc_tod = tod;
1558	sc->sc_todctx = todctx;
1559#endif
1560	sc->sc_irs = th->th_seq;
1561	sc->sc_iss = arc4random();
1562	sc->sc_flags = 0;
1563	sc->sc_flowlabel = 0;
1564
1565	/*
1566	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1567	 * win was derived from socket earlier in the function.
1568	 */
1569	win = imax(win, 0);
1570	win = imin(win, TCP_MAXWIN);
1571	sc->sc_wnd = win;
1572
1573	if (V_tcp_do_rfc1323) {
1574		/*
1575		 * A timestamp received in a SYN makes
1576		 * it ok to send timestamp requests and replies.
1577		 */
1578		if (to->to_flags & TOF_TS) {
1579			sc->sc_tsreflect = to->to_tsval;
1580			sc->sc_flags |= SCF_TIMESTAMP;
1581			sc->sc_tsoff = tcp_new_ts_offset(inc);
1582		}
1583		if (to->to_flags & TOF_SCALE) {
1584			int wscale = 0;
1585
1586			/*
1587			 * Pick the smallest possible scaling factor that
1588			 * will still allow us to scale up to sb_max, aka
1589			 * kern.ipc.maxsockbuf.
1590			 *
1591			 * We do this because there are broken firewalls that
1592			 * will corrupt the window scale option, leading to
1593			 * the other endpoint believing that our advertised
1594			 * window is unscaled.  At scale factors larger than
1595			 * 5 the unscaled window will drop below 1500 bytes,
1596			 * leading to serious problems when traversing these
1597			 * broken firewalls.
1598			 *
1599			 * With the default maxsockbuf of 256K, a scale factor
1600			 * of 3 will be chosen by this algorithm.  Those who
1601			 * choose a larger maxsockbuf should watch out
1602			 * for the compatibility problems mentioned above.
1603			 *
1604			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1605			 * or <SYN,ACK>) segment itself is never scaled.
1606			 */
1607			while (wscale < TCP_MAX_WINSHIFT &&
1608			    (TCP_MAXWIN << wscale) < sb_max)
1609				wscale++;
1610			sc->sc_requested_r_scale = wscale;
1611			sc->sc_requested_s_scale = to->to_wscale;
1612			sc->sc_flags |= SCF_WINSCALE;
1613		}
1614	}
1615#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1616	/*
1617	 * If listening socket requested TCP digests, flag this in the
1618	 * syncache so that syncache_respond() will do the right thing
1619	 * with the SYN+ACK.
1620	 */
1621	if (ltflags & TF_SIGNATURE)
1622		sc->sc_flags |= SCF_SIGNATURE;
1623#endif	/* TCP_SIGNATURE */
1624	if (to->to_flags & TOF_SACKPERM)
1625		sc->sc_flags |= SCF_SACK;
1626	if (to->to_flags & TOF_MSS)
1627		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1628	if (ltflags & TF_NOOPT)
1629		sc->sc_flags |= SCF_NOOPT;
1630	if (((th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) &&
1631	    V_tcp_do_ecn)
1632		sc->sc_flags |= SCF_ECN;
1633
1634	if (V_tcp_syncookies)
1635		sc->sc_iss = syncookie_generate(sch, sc);
1636#ifdef INET6
1637	if (autoflowlabel) {
1638		if (V_tcp_syncookies)
1639			sc->sc_flowlabel = sc->sc_iss;
1640		else
1641			sc->sc_flowlabel = ip6_randomflowlabel();
1642		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1643	}
1644#endif
1645	SCH_UNLOCK(sch);
1646
1647	if (tfo_cookie_valid) {
1648		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1649		/* INP_WUNLOCK(inp) will be performed by the caller */
1650		rv = 1;
1651		goto tfo_expanded;
1652	}
1653
1654	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1655	/*
1656	 * Do a standard 3-way handshake.
1657	 */
1658	if (syncache_respond(sc, sch, m, TH_SYN|TH_ACK) == 0) {
1659		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1660			syncache_free(sc);
1661		else if (sc != &scs)
1662			syncache_insert(sc, sch);   /* locks and unlocks sch */
1663		TCPSTAT_INC(tcps_sndacks);
1664		TCPSTAT_INC(tcps_sndtotal);
1665	} else {
1666		if (sc != &scs)
1667			syncache_free(sc);
1668		TCPSTAT_INC(tcps_sc_dropped);
1669	}
1670	goto donenoprobe;
1671
1672done:
1673	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1674donenoprobe:
1675	if (m) {
1676		*lsop = NULL;
1677		m_freem(m);
1678	}
1679	/*
1680	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1681	 * result in a new socket was processed and the associated pending
1682	 * counter has not yet been decremented.  All such TFO processing paths
1683	 * transit this point.
1684	 */
1685	if (tfo_pending != NULL)
1686		tcp_fastopen_decrement_counter(tfo_pending);
1687
1688tfo_expanded:
1689	if (cred != NULL)
1690		crfree(cred);
1691#ifdef MAC
1692	if (sc == &scs)
1693		mac_syncache_destroy(&maclabel);
1694#endif
1695	return (rv);
1696}
1697
1698/*
1699 * Send SYN|ACK or ACK to the peer.  Either in response to a peer's segment,
1700 * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1701 */
1702static int
1703syncache_respond(struct syncache *sc, struct syncache_head *sch,
1704    const struct mbuf *m0, int flags)
1705{
1706	struct ip *ip = NULL;
1707	struct mbuf *m;
1708	struct tcphdr *th = NULL;
1709	int optlen, error = 0;	/* Make compiler happy */
1710	u_int16_t hlen, tlen, mssopt;
1711	struct tcpopt to;
1712#ifdef INET6
1713	struct ip6_hdr *ip6 = NULL;
1714#endif
1715	hlen =
1716#ifdef INET6
1717	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1718#endif
1719		sizeof(struct ip);
1720	tlen = hlen + sizeof(struct tcphdr);
1721
1722	/* Determine MSS we advertize to other end of connection. */
1723	mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1724
1725	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1726	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1727	    ("syncache: mbuf too small"));
1728
1729	/* Create the IP+TCP header from scratch. */
1730	m = m_gethdr(M_NOWAIT, MT_DATA);
1731	if (m == NULL)
1732		return (ENOBUFS);
1733#ifdef MAC
1734	mac_syncache_create_mbuf(sc->sc_label, m);
1735#endif
1736	m->m_data += max_linkhdr;
1737	m->m_len = tlen;
1738	m->m_pkthdr.len = tlen;
1739	m->m_pkthdr.rcvif = NULL;
1740
1741#ifdef INET6
1742	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1743		ip6 = mtod(m, struct ip6_hdr *);
1744		ip6->ip6_vfc = IPV6_VERSION;
1745		ip6->ip6_nxt = IPPROTO_TCP;
1746		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1747		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1748		ip6->ip6_plen = htons(tlen - hlen);
1749		/* ip6_hlim is set after checksum */
1750		/* Zero out traffic class and flow label. */
1751		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
1752		ip6->ip6_flow |= sc->sc_flowlabel;
1753		ip6->ip6_flow |= htonl(sc->sc_ip_tos << 20);
1754
1755		th = (struct tcphdr *)(ip6 + 1);
1756	}
1757#endif
1758#if defined(INET6) && defined(INET)
1759	else
1760#endif
1761#ifdef INET
1762	{
1763		ip = mtod(m, struct ip *);
1764		ip->ip_v = IPVERSION;
1765		ip->ip_hl = sizeof(struct ip) >> 2;
1766		ip->ip_len = htons(tlen);
1767		ip->ip_id = 0;
1768		ip->ip_off = 0;
1769		ip->ip_sum = 0;
1770		ip->ip_p = IPPROTO_TCP;
1771		ip->ip_src = sc->sc_inc.inc_laddr;
1772		ip->ip_dst = sc->sc_inc.inc_faddr;
1773		ip->ip_ttl = sc->sc_ip_ttl;
1774		ip->ip_tos = sc->sc_ip_tos;
1775
1776		/*
1777		 * See if we should do MTU discovery.  Route lookups are
1778		 * expensive, so we will only unset the DF bit if:
1779		 *
1780		 *	1) path_mtu_discovery is disabled
1781		 *	2) the SCF_UNREACH flag has been set
1782		 */
1783		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1784		       ip->ip_off |= htons(IP_DF);
1785
1786		th = (struct tcphdr *)(ip + 1);
1787	}
1788#endif /* INET */
1789	th->th_sport = sc->sc_inc.inc_lport;
1790	th->th_dport = sc->sc_inc.inc_fport;
1791
1792	if (flags & TH_SYN)
1793		th->th_seq = htonl(sc->sc_iss);
1794	else
1795		th->th_seq = htonl(sc->sc_iss + 1);
1796	th->th_ack = htonl(sc->sc_irs + 1);
1797	th->th_off = sizeof(struct tcphdr) >> 2;
1798	th->th_x2 = 0;
1799	th->th_flags = flags;
1800	th->th_win = htons(sc->sc_wnd);
1801	th->th_urp = 0;
1802
1803	if ((flags & TH_SYN) && (sc->sc_flags & SCF_ECN)) {
1804		th->th_flags |= TH_ECE;
1805		TCPSTAT_INC(tcps_ecn_shs);
1806	}
1807
1808	/* Tack on the TCP options. */
1809	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1810		to.to_flags = 0;
1811
1812		if (flags & TH_SYN) {
1813			to.to_mss = mssopt;
1814			to.to_flags = TOF_MSS;
1815			if (sc->sc_flags & SCF_WINSCALE) {
1816				to.to_wscale = sc->sc_requested_r_scale;
1817				to.to_flags |= TOF_SCALE;
1818			}
1819			if (sc->sc_flags & SCF_SACK)
1820				to.to_flags |= TOF_SACKPERM;
1821#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1822			if (sc->sc_flags & SCF_SIGNATURE)
1823				to.to_flags |= TOF_SIGNATURE;
1824#endif
1825			if (sc->sc_tfo_cookie) {
1826				to.to_flags |= TOF_FASTOPEN;
1827				to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1828				to.to_tfo_cookie = sc->sc_tfo_cookie;
1829				/* don't send cookie again when retransmitting response */
1830				sc->sc_tfo_cookie = NULL;
1831			}
1832		}
1833		if (sc->sc_flags & SCF_TIMESTAMP) {
1834			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1835			to.to_tsecr = sc->sc_tsreflect;
1836			to.to_flags |= TOF_TS;
1837		}
1838		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1839
1840		/* Adjust headers by option size. */
1841		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1842		m->m_len += optlen;
1843		m->m_pkthdr.len += optlen;
1844#ifdef INET6
1845		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1846			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1847		else
1848#endif
1849			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1850#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1851		if (sc->sc_flags & SCF_SIGNATURE) {
1852			KASSERT(to.to_flags & TOF_SIGNATURE,
1853			    ("tcp_addoptions() didn't set tcp_signature"));
1854
1855			/* NOTE: to.to_signature is inside of mbuf */
1856			if (!TCPMD5_ENABLED() ||
1857			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1858				m_freem(m);
1859				return (EACCES);
1860			}
1861		}
1862#endif
1863	} else
1864		optlen = 0;
1865
1866	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1867	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1868	/*
1869	 * If we have peer's SYN and it has a flowid, then let's assign it to
1870	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1871	 * to SYN|ACK due to lack of inp here.
1872	 */
1873	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1874		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1875		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1876	}
1877#ifdef INET6
1878	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1879		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1880		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1881		    IPPROTO_TCP, 0);
1882		ip6->ip6_hlim = sc->sc_ip_ttl;
1883#ifdef TCP_OFFLOAD
1884		if (ADDED_BY_TOE(sc)) {
1885			struct toedev *tod = sc->sc_tod;
1886
1887			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1888
1889			return (error);
1890		}
1891#endif
1892		TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
1893		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1894	}
1895#endif
1896#if defined(INET6) && defined(INET)
1897	else
1898#endif
1899#ifdef INET
1900	{
1901		m->m_pkthdr.csum_flags = CSUM_TCP;
1902		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1903		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1904#ifdef TCP_OFFLOAD
1905		if (ADDED_BY_TOE(sc)) {
1906			struct toedev *tod = sc->sc_tod;
1907
1908			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1909
1910			return (error);
1911		}
1912#endif
1913		TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
1914		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1915	}
1916#endif
1917	return (error);
1918}
1919
1920/*
1921 * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1922 * that exceed the capacity of the syncache by avoiding the storage of any
1923 * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1924 * attacks where the attacker does not have access to our responses.
1925 *
1926 * Syncookies encode and include all necessary information about the
1927 * connection setup within the SYN|ACK that we send back.  That way we
1928 * can avoid keeping any local state until the ACK to our SYN|ACK returns
1929 * (if ever).  Normally the syncache and syncookies are running in parallel
1930 * with the latter taking over when the former is exhausted.  When matching
1931 * syncache entry is found the syncookie is ignored.
1932 *
1933 * The only reliable information persisting the 3WHS is our initial sequence
1934 * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1935 * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1936 * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1937 * returns and signifies a legitimate connection if it matches the ACK.
1938 *
1939 * The available space of 32 bits to store the hash and to encode the SYN
1940 * option information is very tight and we should have at least 24 bits for
1941 * the MAC to keep the number of guesses by blind spoofing reasonably high.
1942 *
1943 * SYN option information we have to encode to fully restore a connection:
1944 * MSS: is imporant to chose an optimal segment size to avoid IP level
1945 *   fragmentation along the path.  The common MSS values can be encoded
1946 *   in a 3-bit table.  Uncommon values are captured by the next lower value
1947 *   in the table leading to a slight increase in packetization overhead.
1948 * WSCALE: is necessary to allow large windows to be used for high delay-
1949 *   bandwidth product links.  Not scaling the window when it was initially
1950 *   negotiated is bad for performance as lack of scaling further decreases
1951 *   the apparent available send window.  We only need to encode the WSCALE
1952 *   we received from the remote end.  Our end can be recalculated at any
1953 *   time.  The common WSCALE values can be encoded in a 3-bit table.
1954 *   Uncommon values are captured by the next lower value in the table
1955 *   making us under-estimate the available window size halving our
1956 *   theoretically possible maximum throughput for that connection.
1957 * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1958 * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1959 *   that are included in all segments on a connection.  We enable them when
1960 *   the ACK has them.
1961 *
1962 * Security of syncookies and attack vectors:
1963 *
1964 * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1965 * together with the gloabl secret to make it unique per connection attempt.
1966 * Thus any change of any of those parameters results in a different MAC output
1967 * in an unpredictable way unless a collision is encountered.  24 bits of the
1968 * MAC are embedded into the ISS.
1969 *
1970 * To prevent replay attacks two rotating global secrets are updated with a
1971 * new random value every 15 seconds.  The life-time of a syncookie is thus
1972 * 15-30 seconds.
1973 *
1974 * Vector 1: Attacking the secret.  This requires finding a weakness in the
1975 * MAC itself or the way it is used here.  The attacker can do a chosen plain
1976 * text attack by varying and testing the all parameters under his control.
1977 * The strength depends on the size and randomness of the secret, and the
1978 * cryptographic security of the MAC function.  Due to the constant updating
1979 * of the secret the attacker has at most 29.999 seconds to find the secret
1980 * and launch spoofed connections.  After that he has to start all over again.
1981 *
1982 * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1983 * size an average of 4,823 attempts are required for a 50% chance of success
1984 * to spoof a single syncookie (birthday collision paradox).  However the
1985 * attacker is blind and doesn't know if one of his attempts succeeded unless
1986 * he has a side channel to interfere success from.  A single connection setup
1987 * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1988 * This many attempts are required for each one blind spoofed connection.  For
1989 * every additional spoofed connection he has to launch another N attempts.
1990 * Thus for a sustained rate 100 spoofed connections per second approximately
1991 * 1,800,000 packets per second would have to be sent.
1992 *
1993 * NB: The MAC function should be fast so that it doesn't become a CPU
1994 * exhaustion attack vector itself.
1995 *
1996 * References:
1997 *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1998 *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1999 *   http://cr.yp.to/syncookies.html    (overview)
2000 *   http://cr.yp.to/syncookies/archive (details)
2001 *
2002 *
2003 * Schematic construction of a syncookie enabled Initial Sequence Number:
2004 *  0        1         2         3
2005 *  12345678901234567890123456789012
2006 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
2007 *
2008 *  x 24 MAC (truncated)
2009 *  W  3 Send Window Scale index
2010 *  M  3 MSS index
2011 *  S  1 SACK permitted
2012 *  P  1 Odd/even secret
2013 */
2014
2015/*
2016 * Distribution and probability of certain MSS values.  Those in between are
2017 * rounded down to the next lower one.
2018 * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
2019 *                            .2%  .3%   5%    7%    7%    20%   15%   45%
2020 */
2021static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
2022
2023/*
2024 * Distribution and probability of certain WSCALE values.  We have to map the
2025 * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
2026 * bits based on prevalence of certain values.  Where we don't have an exact
2027 * match for are rounded down to the next lower one letting us under-estimate
2028 * the true available window.  At the moment this would happen only for the
2029 * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
2030 * and window size).  The absence of the WSCALE option (no scaling in either
2031 * direction) is encoded with index zero.
2032 * [WSCALE values histograms, Allman, 2012]
2033 *                            X 10 10 35  5  6 14 10%   by host
2034 *                            X 11  4  5  5 18 49  3%   by connections
2035 */
2036static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
2037
2038/*
2039 * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
2040 * and good cryptographic properties.
2041 */
2042static uint32_t
2043syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
2044    uint8_t *secbits, uintptr_t secmod)
2045{
2046	SIPHASH_CTX ctx;
2047	uint32_t siphash[2];
2048
2049	SipHash24_Init(&ctx);
2050	SipHash_SetKey(&ctx, secbits);
2051	switch (inc->inc_flags & INC_ISIPV6) {
2052#ifdef INET
2053	case 0:
2054		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
2055		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
2056		break;
2057#endif
2058#ifdef INET6
2059	case INC_ISIPV6:
2060		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
2061		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
2062		break;
2063#endif
2064	}
2065	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
2066	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
2067	SipHash_Update(&ctx, &irs, sizeof(irs));
2068	SipHash_Update(&ctx, &flags, sizeof(flags));
2069	SipHash_Update(&ctx, &secmod, sizeof(secmod));
2070	SipHash_Final((u_int8_t *)&siphash, &ctx);
2071
2072	return (siphash[0] ^ siphash[1]);
2073}
2074
2075static tcp_seq
2076syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2077{
2078	u_int i, secbit, wscale;
2079	uint32_t iss, hash;
2080	uint8_t *secbits;
2081	union syncookie cookie;
2082
2083	SCH_LOCK_ASSERT(sch);
2084
2085	cookie.cookie = 0;
2086
2087	/* Map our computed MSS into the 3-bit index. */
2088	for (i = nitems(tcp_sc_msstab) - 1;
2089	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2090	     i--)
2091		;
2092	cookie.flags.mss_idx = i;
2093
2094	/*
2095	 * Map the send window scale into the 3-bit index but only if
2096	 * the wscale option was received.
2097	 */
2098	if (sc->sc_flags & SCF_WINSCALE) {
2099		wscale = sc->sc_requested_s_scale;
2100		for (i = nitems(tcp_sc_wstab) - 1;
2101		    tcp_sc_wstab[i] > wscale && i > 0;
2102		     i--)
2103			;
2104		cookie.flags.wscale_idx = i;
2105	}
2106
2107	/* Can we do SACK? */
2108	if (sc->sc_flags & SCF_SACK)
2109		cookie.flags.sack_ok = 1;
2110
2111	/* Which of the two secrets to use. */
2112	secbit = sch->sch_sc->secret.oddeven & 0x1;
2113	cookie.flags.odd_even = secbit;
2114
2115	secbits = sch->sch_sc->secret.key[secbit];
2116	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2117	    (uintptr_t)sch);
2118
2119	/*
2120	 * Put the flags into the hash and XOR them to get better ISS number
2121	 * variance.  This doesn't enhance the cryptographic strength and is
2122	 * done to prevent the 8 cookie bits from showing up directly on the
2123	 * wire.
2124	 */
2125	iss = hash & ~0xff;
2126	iss |= cookie.cookie ^ (hash >> 24);
2127
2128	TCPSTAT_INC(tcps_sc_sendcookie);
2129	return (iss);
2130}
2131
2132static struct syncache *
2133syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2134    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2135    struct socket *lso)
2136{
2137	uint32_t hash;
2138	uint8_t *secbits;
2139	tcp_seq ack, seq;
2140	int wnd, wscale = 0;
2141	union syncookie cookie;
2142
2143	SCH_LOCK_ASSERT(sch);
2144
2145	/*
2146	 * Pull information out of SYN-ACK/ACK and revert sequence number
2147	 * advances.
2148	 */
2149	ack = th->th_ack - 1;
2150	seq = th->th_seq - 1;
2151
2152	/*
2153	 * Unpack the flags containing enough information to restore the
2154	 * connection.
2155	 */
2156	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2157
2158	/* Which of the two secrets to use. */
2159	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
2160
2161	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2162
2163	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2164	if ((ack & ~0xff) != (hash & ~0xff))
2165		return (NULL);
2166
2167	/* Fill in the syncache values. */
2168	sc->sc_flags = 0;
2169	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2170	sc->sc_ipopts = NULL;
2171
2172	sc->sc_irs = seq;
2173	sc->sc_iss = ack;
2174
2175	switch (inc->inc_flags & INC_ISIPV6) {
2176#ifdef INET
2177	case 0:
2178		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2179		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2180		break;
2181#endif
2182#ifdef INET6
2183	case INC_ISIPV6:
2184		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2185			sc->sc_flowlabel =
2186			    htonl(sc->sc_iss) & IPV6_FLOWLABEL_MASK;
2187		break;
2188#endif
2189	}
2190
2191	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2192
2193	/* We can simply recompute receive window scale we sent earlier. */
2194	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2195		wscale++;
2196
2197	/* Only use wscale if it was enabled in the orignal SYN. */
2198	if (cookie.flags.wscale_idx > 0) {
2199		sc->sc_requested_r_scale = wscale;
2200		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2201		sc->sc_flags |= SCF_WINSCALE;
2202	}
2203
2204	wnd = lso->sol_sbrcv_hiwat;
2205	wnd = imax(wnd, 0);
2206	wnd = imin(wnd, TCP_MAXWIN);
2207	sc->sc_wnd = wnd;
2208
2209	if (cookie.flags.sack_ok)
2210		sc->sc_flags |= SCF_SACK;
2211
2212	if (to->to_flags & TOF_TS) {
2213		sc->sc_flags |= SCF_TIMESTAMP;
2214		sc->sc_tsreflect = to->to_tsval;
2215		sc->sc_tsoff = tcp_new_ts_offset(inc);
2216	}
2217
2218	if (to->to_flags & TOF_SIGNATURE)
2219		sc->sc_flags |= SCF_SIGNATURE;
2220
2221	sc->sc_rxmits = 0;
2222
2223	TCPSTAT_INC(tcps_sc_recvcookie);
2224	return (sc);
2225}
2226
2227#ifdef INVARIANTS
2228static int
2229syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2230    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2231    struct socket *lso)
2232{
2233	struct syncache scs, *scx;
2234	char *s;
2235
2236	bzero(&scs, sizeof(scs));
2237	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2238
2239	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2240		return (0);
2241
2242	if (scx != NULL) {
2243		if (sc->sc_peer_mss != scx->sc_peer_mss)
2244			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2245			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2246
2247		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2248			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2249			    s, __func__, sc->sc_requested_r_scale,
2250			    scx->sc_requested_r_scale);
2251
2252		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2253			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2254			    s, __func__, sc->sc_requested_s_scale,
2255			    scx->sc_requested_s_scale);
2256
2257		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2258			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2259	}
2260
2261	if (s != NULL)
2262		free(s, M_TCPLOG);
2263	return (0);
2264}
2265#endif /* INVARIANTS */
2266
2267static void
2268syncookie_reseed(void *arg)
2269{
2270	struct tcp_syncache *sc = arg;
2271	uint8_t *secbits;
2272	int secbit;
2273
2274	/*
2275	 * Reseeding the secret doesn't have to be protected by a lock.
2276	 * It only must be ensured that the new random values are visible
2277	 * to all CPUs in a SMP environment.  The atomic with release
2278	 * semantics ensures that.
2279	 */
2280	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2281	secbits = sc->secret.key[secbit];
2282	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2283	atomic_add_rel_int(&sc->secret.oddeven, 1);
2284
2285	/* Reschedule ourself. */
2286	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2287}
2288
2289/*
2290 * Exports the syncache entries to userland so that netstat can display
2291 * them alongside the other sockets.  This function is intended to be
2292 * called only from tcp_pcblist.
2293 *
2294 * Due to concurrency on an active system, the number of pcbs exported
2295 * may have no relation to max_pcbs.  max_pcbs merely indicates the
2296 * amount of space the caller allocated for this function to use.
2297 */
2298int
2299syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2300{
2301	struct xtcpcb xt;
2302	struct syncache *sc;
2303	struct syncache_head *sch;
2304	int count, error, i;
2305
2306	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2307		sch = &V_tcp_syncache.hashbase[i];
2308		SCH_LOCK(sch);
2309		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2310			if (count >= max_pcbs) {
2311				SCH_UNLOCK(sch);
2312				goto exit;
2313			}
2314			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2315				continue;
2316			bzero(&xt, sizeof(xt));
2317			xt.xt_len = sizeof(xt);
2318			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2319				xt.xt_inp.inp_vflag = INP_IPV6;
2320			else
2321				xt.xt_inp.inp_vflag = INP_IPV4;
2322			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2323			    sizeof (struct in_conninfo));
2324			xt.t_state = TCPS_SYN_RECEIVED;
2325			xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2326			xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2327			xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2328			xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2329			error = SYSCTL_OUT(req, &xt, sizeof xt);
2330			if (error) {
2331				SCH_UNLOCK(sch);
2332				goto exit;
2333			}
2334			count++;
2335		}
2336		SCH_UNLOCK(sch);
2337	}
2338exit:
2339	*pcbs_exported = count;
2340	return error;
2341}
2342