1/*-
2 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation is hereby granted (including for commercial or
6 * for-profit use), provided that both the copyright notice and this
7 * permission notice appear in all copies of the software, derivative
8 * works, or modified versions, and any portions thereof.
9 *
10 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
11 * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
12 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
13 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
14 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
15 * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
16 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
17 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
18 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
19 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
20 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
22 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
23 * DAMAGE.
24 *
25 * Carnegie Mellon encourages (but does not require) users of this
26 * software to return any improvements or extensions that they make,
27 * and to grant Carnegie Mellon the rights to redistribute these
28 * changes without encumbrance.
29 *
30 * $KAME: altq_hfsc.c,v 1.24 2003/12/05 05:40:46 kjc Exp $
31 * $FreeBSD$
32 */
33/*
34 * H-FSC is described in Proceedings of SIGCOMM'97,
35 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
36 * Real-Time and Priority Service"
37 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
38 *
39 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
40 * when a class has an upperlimit, the fit-time is computed from the
41 * upperlimit service curve.  the link-sharing scheduler does not schedule
42 * a class whose fit-time exceeds the current time.
43 */
44
45#include "opt_altq.h"
46#include "opt_inet.h"
47#include "opt_inet6.h"
48
49#ifdef ALTQ_HFSC  /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
50
51#include <sys/param.h>
52#include <sys/malloc.h>
53#include <sys/mbuf.h>
54#include <sys/socket.h>
55#include <sys/systm.h>
56#include <sys/errno.h>
57#include <sys/queue.h>
58#if 1 /* ALTQ3_COMPAT */
59#include <sys/sockio.h>
60#include <sys/proc.h>
61#include <sys/kernel.h>
62#endif /* ALTQ3_COMPAT */
63
64#include <net/if.h>
65#include <net/if_var.h>
66#include <netinet/in.h>
67
68#include <netpfil/pf/pf.h>
69#include <netpfil/pf/pf_altq.h>
70#include <netpfil/pf/pf_mtag.h>
71#include <net/altq/altq.h>
72#include <net/altq/altq_hfsc.h>
73#ifdef ALTQ3_COMPAT
74#include <net/altq/altq_conf.h>
75#endif
76
77/*
78 * function prototypes
79 */
80static int			 hfsc_clear_interface(struct hfsc_if *);
81static int			 hfsc_request(struct ifaltq *, int, void *);
82static void			 hfsc_purge(struct hfsc_if *);
83static struct hfsc_class	*hfsc_class_create(struct hfsc_if *,
84    struct service_curve *, struct service_curve *, struct service_curve *,
85    struct hfsc_class *, int, int, int);
86static int			 hfsc_class_destroy(struct hfsc_class *);
87static struct hfsc_class	*hfsc_nextclass(struct hfsc_class *);
88static int			 hfsc_enqueue(struct ifaltq *, struct mbuf *,
89				    struct altq_pktattr *);
90static struct mbuf		*hfsc_dequeue(struct ifaltq *, int);
91
92static int		 hfsc_addq(struct hfsc_class *, struct mbuf *);
93static struct mbuf	*hfsc_getq(struct hfsc_class *);
94static struct mbuf	*hfsc_pollq(struct hfsc_class *);
95static void		 hfsc_purgeq(struct hfsc_class *);
96
97static void		 update_cfmin(struct hfsc_class *);
98static void		 set_active(struct hfsc_class *, int);
99static void		 set_passive(struct hfsc_class *);
100
101static void		 init_ed(struct hfsc_class *, int);
102static void		 update_ed(struct hfsc_class *, int);
103static void		 update_d(struct hfsc_class *, int);
104static void		 init_vf(struct hfsc_class *, int);
105static void		 update_vf(struct hfsc_class *, int, u_int64_t);
106static void		 ellist_insert(struct hfsc_class *);
107static void		 ellist_remove(struct hfsc_class *);
108static void		 ellist_update(struct hfsc_class *);
109struct hfsc_class	*hfsc_get_mindl(struct hfsc_if *, u_int64_t);
110static void		 actlist_insert(struct hfsc_class *);
111static void		 actlist_remove(struct hfsc_class *);
112static void		 actlist_update(struct hfsc_class *);
113
114static struct hfsc_class	*actlist_firstfit(struct hfsc_class *,
115				    u_int64_t);
116
117static __inline u_int64_t	seg_x2y(u_int64_t, u_int64_t);
118static __inline u_int64_t	seg_y2x(u_int64_t, u_int64_t);
119static __inline u_int64_t	m2sm(u_int64_t);
120static __inline u_int64_t	m2ism(u_int64_t);
121static __inline u_int64_t	d2dx(u_int);
122static u_int64_t		sm2m(u_int64_t);
123static u_int			dx2d(u_int64_t);
124
125static void		sc2isc(struct service_curve *, struct internal_sc *);
126static void		rtsc_init(struct runtime_sc *, struct internal_sc *,
127			    u_int64_t, u_int64_t);
128static u_int64_t	rtsc_y2x(struct runtime_sc *, u_int64_t);
129static u_int64_t	rtsc_x2y(struct runtime_sc *, u_int64_t);
130static void		rtsc_min(struct runtime_sc *, struct internal_sc *,
131			    u_int64_t, u_int64_t);
132
133static void			 get_class_stats_v0(struct hfsc_classstats_v0 *,
134				    struct hfsc_class *);
135static void			 get_class_stats_v1(struct hfsc_classstats_v1 *,
136				    struct hfsc_class *);
137static struct hfsc_class	*clh_to_clp(struct hfsc_if *, u_int32_t);
138
139
140#ifdef ALTQ3_COMPAT
141static struct hfsc_if *hfsc_attach(struct ifaltq *, u_int);
142static int hfsc_detach(struct hfsc_if *);
143static int hfsc_class_modify(struct hfsc_class *, struct service_curve *,
144    struct service_curve *, struct service_curve *);
145
146static int hfsccmd_if_attach(struct hfsc_attach *);
147static int hfsccmd_if_detach(struct hfsc_interface *);
148static int hfsccmd_add_class(struct hfsc_add_class *);
149static int hfsccmd_delete_class(struct hfsc_delete_class *);
150static int hfsccmd_modify_class(struct hfsc_modify_class *);
151static int hfsccmd_add_filter(struct hfsc_add_filter *);
152static int hfsccmd_delete_filter(struct hfsc_delete_filter *);
153static int hfsccmd_class_stats(struct hfsc_class_stats *);
154
155altqdev_decl(hfsc);
156#endif /* ALTQ3_COMPAT */
157
158/*
159 * macros
160 */
161#define	is_a_parent_class(cl)	((cl)->cl_children != NULL)
162
163#define	HT_INFINITY	0xffffffffffffffffULL	/* infinite time value */
164
165#ifdef ALTQ3_COMPAT
166/* hif_list keeps all hfsc_if's allocated. */
167static struct hfsc_if *hif_list = NULL;
168#endif /* ALTQ3_COMPAT */
169
170int
171hfsc_pfattach(struct pf_altq *a)
172{
173	struct ifnet *ifp;
174	int s, error;
175
176	if ((ifp = ifunit(a->ifname)) == NULL || a->altq_disc == NULL)
177		return (EINVAL);
178	s = splnet();
179	error = altq_attach(&ifp->if_snd, ALTQT_HFSC, a->altq_disc,
180	    hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
181	splx(s);
182	return (error);
183}
184
185int
186hfsc_add_altq(struct ifnet *ifp, struct pf_altq *a)
187{
188	struct hfsc_if *hif;
189
190	if (ifp == NULL)
191		return (EINVAL);
192	if (!ALTQ_IS_READY(&ifp->if_snd))
193		return (ENODEV);
194
195	hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_NOWAIT | M_ZERO);
196	if (hif == NULL)
197		return (ENOMEM);
198
199	TAILQ_INIT(&hif->hif_eligible);
200	hif->hif_ifq = &ifp->if_snd;
201
202	/* keep the state in pf_altq */
203	a->altq_disc = hif;
204
205	return (0);
206}
207
208int
209hfsc_remove_altq(struct pf_altq *a)
210{
211	struct hfsc_if *hif;
212
213	if ((hif = a->altq_disc) == NULL)
214		return (EINVAL);
215	a->altq_disc = NULL;
216
217	(void)hfsc_clear_interface(hif);
218	(void)hfsc_class_destroy(hif->hif_rootclass);
219
220	free(hif, M_DEVBUF);
221
222	return (0);
223}
224
225int
226hfsc_add_queue(struct pf_altq *a)
227{
228	struct hfsc_if *hif;
229	struct hfsc_class *cl, *parent;
230	struct hfsc_opts_v1 *opts;
231	struct service_curve rtsc, lssc, ulsc;
232
233	if ((hif = a->altq_disc) == NULL)
234		return (EINVAL);
235
236	opts = &a->pq_u.hfsc_opts;
237
238	if (a->parent_qid == HFSC_NULLCLASS_HANDLE &&
239	    hif->hif_rootclass == NULL)
240		parent = NULL;
241	else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
242		return (EINVAL);
243
244	if (a->qid == 0)
245		return (EINVAL);
246
247	if (clh_to_clp(hif, a->qid) != NULL)
248		return (EBUSY);
249
250	rtsc.m1 = opts->rtsc_m1;
251	rtsc.d  = opts->rtsc_d;
252	rtsc.m2 = opts->rtsc_m2;
253	lssc.m1 = opts->lssc_m1;
254	lssc.d  = opts->lssc_d;
255	lssc.m2 = opts->lssc_m2;
256	ulsc.m1 = opts->ulsc_m1;
257	ulsc.d  = opts->ulsc_d;
258	ulsc.m2 = opts->ulsc_m2;
259
260	cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc,
261	    parent, a->qlimit, opts->flags, a->qid);
262	if (cl == NULL)
263		return (ENOMEM);
264
265	return (0);
266}
267
268int
269hfsc_remove_queue(struct pf_altq *a)
270{
271	struct hfsc_if *hif;
272	struct hfsc_class *cl;
273
274	if ((hif = a->altq_disc) == NULL)
275		return (EINVAL);
276
277	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
278		return (EINVAL);
279
280	return (hfsc_class_destroy(cl));
281}
282
283int
284hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes, int version)
285{
286	struct hfsc_if *hif;
287	struct hfsc_class *cl;
288	union {
289		struct hfsc_classstats_v0 v0;
290		struct hfsc_classstats_v1 v1;
291	} stats;
292	size_t stats_size;
293	int error = 0;
294
295	if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
296		return (EBADF);
297
298	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
299		return (EINVAL);
300
301	if (version > HFSC_STATS_VERSION)
302		return (EINVAL);
303
304	memset(&stats, 0, sizeof(stats));
305	switch (version) {
306	case 0:
307		get_class_stats_v0(&stats.v0, cl);
308		stats_size = sizeof(struct hfsc_classstats_v0);
309		break;
310	case 1:
311		get_class_stats_v1(&stats.v1, cl);
312		stats_size = sizeof(struct hfsc_classstats_v1);
313		break;
314	}
315
316	if (*nbytes < stats_size)
317		return (EINVAL);
318
319	if ((error = copyout((caddr_t)&stats, ubuf, stats_size)) != 0)
320		return (error);
321	*nbytes = stats_size;
322	return (0);
323}
324
325/*
326 * bring the interface back to the initial state by discarding
327 * all the filters and classes except the root class.
328 */
329static int
330hfsc_clear_interface(struct hfsc_if *hif)
331{
332	struct hfsc_class	*cl;
333
334#ifdef ALTQ3_COMPAT
335	/* free the filters for this interface */
336	acc_discard_filters(&hif->hif_classifier, NULL, 1);
337#endif
338
339	/* clear out the classes */
340	while (hif->hif_rootclass != NULL &&
341	    (cl = hif->hif_rootclass->cl_children) != NULL) {
342		/*
343		 * remove the first leaf class found in the hierarchy
344		 * then start over
345		 */
346		for (; cl != NULL; cl = hfsc_nextclass(cl)) {
347			if (!is_a_parent_class(cl)) {
348				(void)hfsc_class_destroy(cl);
349				break;
350			}
351		}
352	}
353
354	return (0);
355}
356
357static int
358hfsc_request(struct ifaltq *ifq, int req, void *arg)
359{
360	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
361
362	IFQ_LOCK_ASSERT(ifq);
363
364	switch (req) {
365	case ALTRQ_PURGE:
366		hfsc_purge(hif);
367		break;
368	}
369	return (0);
370}
371
372/* discard all the queued packets on the interface */
373static void
374hfsc_purge(struct hfsc_if *hif)
375{
376	struct hfsc_class *cl;
377
378	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
379		if (!qempty(cl->cl_q))
380			hfsc_purgeq(cl);
381	if (ALTQ_IS_ENABLED(hif->hif_ifq))
382		hif->hif_ifq->ifq_len = 0;
383}
384
385struct hfsc_class *
386hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
387    struct service_curve *fsc, struct service_curve *usc,
388    struct hfsc_class *parent, int qlimit, int flags, int qid)
389{
390	struct hfsc_class *cl, *p;
391	int i, s;
392
393	if (hif->hif_classes >= HFSC_MAX_CLASSES)
394		return (NULL);
395
396#ifndef ALTQ_RED
397	if (flags & HFCF_RED) {
398#ifdef ALTQ_DEBUG
399		printf("hfsc_class_create: RED not configured for HFSC!\n");
400#endif
401		return (NULL);
402	}
403#endif
404#ifndef ALTQ_CODEL
405	if (flags & HFCF_CODEL) {
406#ifdef ALTQ_DEBUG
407		printf("hfsc_class_create: CODEL not configured for HFSC!\n");
408#endif
409		return (NULL);
410	}
411#endif
412
413	cl = malloc(sizeof(struct hfsc_class), M_DEVBUF, M_NOWAIT | M_ZERO);
414	if (cl == NULL)
415		return (NULL);
416
417	cl->cl_q = malloc(sizeof(class_queue_t), M_DEVBUF, M_NOWAIT | M_ZERO);
418	if (cl->cl_q == NULL)
419		goto err_ret;
420
421	TAILQ_INIT(&cl->cl_actc);
422
423	if (qlimit == 0)
424		qlimit = 50;  /* use default */
425	qlimit(cl->cl_q) = qlimit;
426	qtype(cl->cl_q) = Q_DROPTAIL;
427	qlen(cl->cl_q) = 0;
428	qsize(cl->cl_q) = 0;
429	cl->cl_flags = flags;
430#ifdef ALTQ_RED
431	if (flags & (HFCF_RED|HFCF_RIO)) {
432		int red_flags, red_pkttime;
433		u_int m2;
434
435		m2 = 0;
436		if (rsc != NULL && rsc->m2 > m2)
437			m2 = rsc->m2;
438		if (fsc != NULL && fsc->m2 > m2)
439			m2 = fsc->m2;
440		if (usc != NULL && usc->m2 > m2)
441			m2 = usc->m2;
442
443		red_flags = 0;
444		if (flags & HFCF_ECN)
445			red_flags |= REDF_ECN;
446#ifdef ALTQ_RIO
447		if (flags & HFCF_CLEARDSCP)
448			red_flags |= RIOF_CLEARDSCP;
449#endif
450		if (m2 < 8)
451			red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
452		else
453			red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
454				* 1000 * 1000 * 1000 / (m2 / 8);
455		if (flags & HFCF_RED) {
456			cl->cl_red = red_alloc(0, 0,
457			    qlimit(cl->cl_q) * 10/100,
458			    qlimit(cl->cl_q) * 30/100,
459			    red_flags, red_pkttime);
460			if (cl->cl_red != NULL)
461				qtype(cl->cl_q) = Q_RED;
462		}
463#ifdef ALTQ_RIO
464		else {
465			cl->cl_red = (red_t *)rio_alloc(0, NULL,
466			    red_flags, red_pkttime);
467			if (cl->cl_red != NULL)
468				qtype(cl->cl_q) = Q_RIO;
469		}
470#endif
471	}
472#endif /* ALTQ_RED */
473#ifdef ALTQ_CODEL
474	if (flags & HFCF_CODEL) {
475		cl->cl_codel = codel_alloc(5, 100, 0);
476		if (cl->cl_codel != NULL)
477			qtype(cl->cl_q) = Q_CODEL;
478	}
479#endif
480
481	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
482		cl->cl_rsc = malloc(sizeof(struct internal_sc),
483		    M_DEVBUF, M_NOWAIT);
484		if (cl->cl_rsc == NULL)
485			goto err_ret;
486		sc2isc(rsc, cl->cl_rsc);
487		rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
488		rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
489	}
490	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
491		cl->cl_fsc = malloc(sizeof(struct internal_sc),
492		    M_DEVBUF, M_NOWAIT);
493		if (cl->cl_fsc == NULL)
494			goto err_ret;
495		sc2isc(fsc, cl->cl_fsc);
496		rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
497	}
498	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
499		cl->cl_usc = malloc(sizeof(struct internal_sc),
500		    M_DEVBUF, M_NOWAIT);
501		if (cl->cl_usc == NULL)
502			goto err_ret;
503		sc2isc(usc, cl->cl_usc);
504		rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
505	}
506
507	cl->cl_id = hif->hif_classid++;
508	cl->cl_handle = qid;
509	cl->cl_hif = hif;
510	cl->cl_parent = parent;
511
512	s = splnet();
513	IFQ_LOCK(hif->hif_ifq);
514	hif->hif_classes++;
515
516	/*
517	 * find a free slot in the class table.  if the slot matching
518	 * the lower bits of qid is free, use this slot.  otherwise,
519	 * use the first free slot.
520	 */
521	i = qid % HFSC_MAX_CLASSES;
522	if (hif->hif_class_tbl[i] == NULL)
523		hif->hif_class_tbl[i] = cl;
524	else {
525		for (i = 0; i < HFSC_MAX_CLASSES; i++)
526			if (hif->hif_class_tbl[i] == NULL) {
527				hif->hif_class_tbl[i] = cl;
528				break;
529			}
530		if (i == HFSC_MAX_CLASSES) {
531			IFQ_UNLOCK(hif->hif_ifq);
532			splx(s);
533			goto err_ret;
534		}
535	}
536	cl->cl_slot = i;
537
538	if (flags & HFCF_DEFAULTCLASS)
539		hif->hif_defaultclass = cl;
540
541	if (parent == NULL) {
542		/* this is root class */
543		hif->hif_rootclass = cl;
544	} else {
545		/* add this class to the children list of the parent */
546		if ((p = parent->cl_children) == NULL)
547			parent->cl_children = cl;
548		else {
549			while (p->cl_siblings != NULL)
550				p = p->cl_siblings;
551			p->cl_siblings = cl;
552		}
553	}
554	IFQ_UNLOCK(hif->hif_ifq);
555	splx(s);
556
557	return (cl);
558
559 err_ret:
560	if (cl->cl_red != NULL) {
561#ifdef ALTQ_RIO
562		if (q_is_rio(cl->cl_q))
563			rio_destroy((rio_t *)cl->cl_red);
564#endif
565#ifdef ALTQ_RED
566		if (q_is_red(cl->cl_q))
567			red_destroy(cl->cl_red);
568#endif
569#ifdef ALTQ_CODEL
570		if (q_is_codel(cl->cl_q))
571			codel_destroy(cl->cl_codel);
572#endif
573	}
574	if (cl->cl_fsc != NULL)
575		free(cl->cl_fsc, M_DEVBUF);
576	if (cl->cl_rsc != NULL)
577		free(cl->cl_rsc, M_DEVBUF);
578	if (cl->cl_usc != NULL)
579		free(cl->cl_usc, M_DEVBUF);
580	if (cl->cl_q != NULL)
581		free(cl->cl_q, M_DEVBUF);
582	free(cl, M_DEVBUF);
583	return (NULL);
584}
585
586static int
587hfsc_class_destroy(struct hfsc_class *cl)
588{
589	int s;
590
591	if (cl == NULL)
592		return (0);
593
594	if (is_a_parent_class(cl))
595		return (EBUSY);
596
597	s = splnet();
598	IFQ_LOCK(cl->cl_hif->hif_ifq);
599
600#ifdef ALTQ3_COMPAT
601	/* delete filters referencing to this class */
602	acc_discard_filters(&cl->cl_hif->hif_classifier, cl, 0);
603#endif /* ALTQ3_COMPAT */
604
605	if (!qempty(cl->cl_q))
606		hfsc_purgeq(cl);
607
608	if (cl->cl_parent == NULL) {
609		/* this is root class */
610	} else {
611		struct hfsc_class *p = cl->cl_parent->cl_children;
612
613		if (p == cl)
614			cl->cl_parent->cl_children = cl->cl_siblings;
615		else do {
616			if (p->cl_siblings == cl) {
617				p->cl_siblings = cl->cl_siblings;
618				break;
619			}
620		} while ((p = p->cl_siblings) != NULL);
621		ASSERT(p != NULL);
622	}
623
624	cl->cl_hif->hif_class_tbl[cl->cl_slot] = NULL;
625	cl->cl_hif->hif_classes--;
626	IFQ_UNLOCK(cl->cl_hif->hif_ifq);
627	splx(s);
628
629	if (cl->cl_red != NULL) {
630#ifdef ALTQ_RIO
631		if (q_is_rio(cl->cl_q))
632			rio_destroy((rio_t *)cl->cl_red);
633#endif
634#ifdef ALTQ_RED
635		if (q_is_red(cl->cl_q))
636			red_destroy(cl->cl_red);
637#endif
638#ifdef ALTQ_CODEL
639		if (q_is_codel(cl->cl_q))
640			codel_destroy(cl->cl_codel);
641#endif
642	}
643
644	IFQ_LOCK(cl->cl_hif->hif_ifq);
645	if (cl == cl->cl_hif->hif_rootclass)
646		cl->cl_hif->hif_rootclass = NULL;
647	if (cl == cl->cl_hif->hif_defaultclass)
648		cl->cl_hif->hif_defaultclass = NULL;
649	IFQ_UNLOCK(cl->cl_hif->hif_ifq);
650
651	if (cl->cl_usc != NULL)
652		free(cl->cl_usc, M_DEVBUF);
653	if (cl->cl_fsc != NULL)
654		free(cl->cl_fsc, M_DEVBUF);
655	if (cl->cl_rsc != NULL)
656		free(cl->cl_rsc, M_DEVBUF);
657	free(cl->cl_q, M_DEVBUF);
658	free(cl, M_DEVBUF);
659
660	return (0);
661}
662
663/*
664 * hfsc_nextclass returns the next class in the tree.
665 *   usage:
666 *	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
667 *		do_something;
668 */
669static struct hfsc_class *
670hfsc_nextclass(struct hfsc_class *cl)
671{
672	if (cl->cl_children != NULL)
673		cl = cl->cl_children;
674	else if (cl->cl_siblings != NULL)
675		cl = cl->cl_siblings;
676	else {
677		while ((cl = cl->cl_parent) != NULL)
678			if (cl->cl_siblings) {
679				cl = cl->cl_siblings;
680				break;
681			}
682	}
683
684	return (cl);
685}
686
687/*
688 * hfsc_enqueue is an enqueue function to be registered to
689 * (*altq_enqueue) in struct ifaltq.
690 */
691static int
692hfsc_enqueue(struct ifaltq *ifq, struct mbuf *m, struct altq_pktattr *pktattr)
693{
694	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
695	struct hfsc_class *cl;
696	struct pf_mtag *t;
697	int len;
698
699	IFQ_LOCK_ASSERT(ifq);
700
701	/* grab class set by classifier */
702	if ((m->m_flags & M_PKTHDR) == 0) {
703		/* should not happen */
704		printf("altq: packet for %s does not have pkthdr\n",
705		    ifq->altq_ifp->if_xname);
706		m_freem(m);
707		return (ENOBUFS);
708	}
709	cl = NULL;
710	if ((t = pf_find_mtag(m)) != NULL)
711		cl = clh_to_clp(hif, t->qid);
712#ifdef ALTQ3_COMPAT
713	else if ((ifq->altq_flags & ALTQF_CLASSIFY) && pktattr != NULL)
714		cl = pktattr->pattr_class;
715#endif
716	if (cl == NULL || is_a_parent_class(cl)) {
717		cl = hif->hif_defaultclass;
718		if (cl == NULL) {
719			m_freem(m);
720			return (ENOBUFS);
721		}
722	}
723#ifdef ALTQ3_COMPAT
724	if (pktattr != NULL)
725		cl->cl_pktattr = pktattr;  /* save proto hdr used by ECN */
726	else
727#endif
728		cl->cl_pktattr = NULL;
729	len = m_pktlen(m);
730	if (hfsc_addq(cl, m) != 0) {
731		/* drop occurred.  mbuf was freed in hfsc_addq. */
732		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
733		return (ENOBUFS);
734	}
735	IFQ_INC_LEN(ifq);
736	cl->cl_hif->hif_packets++;
737
738	/* successfully queued. */
739	if (qlen(cl->cl_q) == 1)
740		set_active(cl, m_pktlen(m));
741
742	return (0);
743}
744
745/*
746 * hfsc_dequeue is a dequeue function to be registered to
747 * (*altq_dequeue) in struct ifaltq.
748 *
749 * note: ALTDQ_POLL returns the next packet without removing the packet
750 *	from the queue.  ALTDQ_REMOVE is a normal dequeue operation.
751 *	ALTDQ_REMOVE must return the same packet if called immediately
752 *	after ALTDQ_POLL.
753 */
754static struct mbuf *
755hfsc_dequeue(struct ifaltq *ifq, int op)
756{
757	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
758	struct hfsc_class *cl;
759	struct mbuf *m;
760	int len, next_len;
761	int realtime = 0;
762	u_int64_t cur_time;
763
764	IFQ_LOCK_ASSERT(ifq);
765
766	if (hif->hif_packets == 0)
767		/* no packet in the tree */
768		return (NULL);
769
770	cur_time = read_machclk();
771
772	if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
773
774		cl = hif->hif_pollcache;
775		hif->hif_pollcache = NULL;
776		/* check if the class was scheduled by real-time criteria */
777		if (cl->cl_rsc != NULL)
778			realtime = (cl->cl_e <= cur_time);
779	} else {
780		/*
781		 * if there are eligible classes, use real-time criteria.
782		 * find the class with the minimum deadline among
783		 * the eligible classes.
784		 */
785		if ((cl = hfsc_get_mindl(hif, cur_time))
786		    != NULL) {
787			realtime = 1;
788		} else {
789#ifdef ALTQ_DEBUG
790			int fits = 0;
791#endif
792			/*
793			 * use link-sharing criteria
794			 * get the class with the minimum vt in the hierarchy
795			 */
796			cl = hif->hif_rootclass;
797			while (is_a_parent_class(cl)) {
798
799				cl = actlist_firstfit(cl, cur_time);
800				if (cl == NULL) {
801#ifdef ALTQ_DEBUG
802					if (fits > 0)
803						printf("%d fit but none found\n",fits);
804#endif
805					return (NULL);
806				}
807				/*
808				 * update parent's cl_cvtmin.
809				 * don't update if the new vt is smaller.
810				 */
811				if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
812					cl->cl_parent->cl_cvtmin = cl->cl_vt;
813#ifdef ALTQ_DEBUG
814				fits++;
815#endif
816			}
817		}
818
819		if (op == ALTDQ_POLL) {
820			hif->hif_pollcache = cl;
821			m = hfsc_pollq(cl);
822			return (m);
823		}
824	}
825
826	m = hfsc_getq(cl);
827	if (m == NULL)
828		panic("hfsc_dequeue:");
829	len = m_pktlen(m);
830	cl->cl_hif->hif_packets--;
831	IFQ_DEC_LEN(ifq);
832	PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
833
834	update_vf(cl, len, cur_time);
835	if (realtime)
836		cl->cl_cumul += len;
837
838	if (!qempty(cl->cl_q)) {
839		if (cl->cl_rsc != NULL) {
840			/* update ed */
841			next_len = m_pktlen(qhead(cl->cl_q));
842
843			if (realtime)
844				update_ed(cl, next_len);
845			else
846				update_d(cl, next_len);
847		}
848	} else {
849		/* the class becomes passive */
850		set_passive(cl);
851	}
852
853	return (m);
854}
855
856static int
857hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
858{
859
860#ifdef ALTQ_RIO
861	if (q_is_rio(cl->cl_q))
862		return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
863				m, cl->cl_pktattr);
864#endif
865#ifdef ALTQ_RED
866	if (q_is_red(cl->cl_q))
867		return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
868#endif
869#ifdef ALTQ_CODEL
870	if (q_is_codel(cl->cl_q))
871		return codel_addq(cl->cl_codel, cl->cl_q, m);
872#endif
873	if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
874		m_freem(m);
875		return (-1);
876	}
877
878	if (cl->cl_flags & HFCF_CLEARDSCP)
879		write_dsfield(m, cl->cl_pktattr, 0);
880
881	_addq(cl->cl_q, m);
882
883	return (0);
884}
885
886static struct mbuf *
887hfsc_getq(struct hfsc_class *cl)
888{
889#ifdef ALTQ_RIO
890	if (q_is_rio(cl->cl_q))
891		return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
892#endif
893#ifdef ALTQ_RED
894	if (q_is_red(cl->cl_q))
895		return red_getq(cl->cl_red, cl->cl_q);
896#endif
897#ifdef ALTQ_CODEL
898	if (q_is_codel(cl->cl_q))
899		return codel_getq(cl->cl_codel, cl->cl_q);
900#endif
901	return _getq(cl->cl_q);
902}
903
904static struct mbuf *
905hfsc_pollq(struct hfsc_class *cl)
906{
907	return qhead(cl->cl_q);
908}
909
910static void
911hfsc_purgeq(struct hfsc_class *cl)
912{
913	struct mbuf *m;
914
915	if (qempty(cl->cl_q))
916		return;
917
918	while ((m = _getq(cl->cl_q)) != NULL) {
919		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
920		m_freem(m);
921		cl->cl_hif->hif_packets--;
922		IFQ_DEC_LEN(cl->cl_hif->hif_ifq);
923	}
924	ASSERT(qlen(cl->cl_q) == 0);
925
926	update_vf(cl, 0, 0);	/* remove cl from the actlist */
927	set_passive(cl);
928}
929
930static void
931set_active(struct hfsc_class *cl, int len)
932{
933	if (cl->cl_rsc != NULL)
934		init_ed(cl, len);
935	if (cl->cl_fsc != NULL)
936		init_vf(cl, len);
937
938	cl->cl_stats.period++;
939}
940
941static void
942set_passive(struct hfsc_class *cl)
943{
944	if (cl->cl_rsc != NULL)
945		ellist_remove(cl);
946
947	/*
948	 * actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
949	 * needs to be called explicitly to remove a class from actlist
950	 */
951}
952
953static void
954init_ed(struct hfsc_class *cl, int next_len)
955{
956	u_int64_t cur_time;
957
958	cur_time = read_machclk();
959
960	/* update the deadline curve */
961	rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
962
963	/*
964	 * update the eligible curve.
965	 * for concave, it is equal to the deadline curve.
966	 * for convex, it is a linear curve with slope m2.
967	 */
968	cl->cl_eligible = cl->cl_deadline;
969	if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
970		cl->cl_eligible.dx = 0;
971		cl->cl_eligible.dy = 0;
972	}
973
974	/* compute e and d */
975	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
976	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
977
978	ellist_insert(cl);
979}
980
981static void
982update_ed(struct hfsc_class *cl, int next_len)
983{
984	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
985	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
986
987	ellist_update(cl);
988}
989
990static void
991update_d(struct hfsc_class *cl, int next_len)
992{
993	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
994}
995
996static void
997init_vf(struct hfsc_class *cl, int len)
998{
999	struct hfsc_class *max_cl, *p;
1000	u_int64_t vt, f, cur_time;
1001	int go_active;
1002
1003	cur_time = 0;
1004	go_active = 1;
1005	for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
1006
1007		if (go_active && cl->cl_nactive++ == 0)
1008			go_active = 1;
1009		else
1010			go_active = 0;
1011
1012		if (go_active) {
1013			max_cl = TAILQ_LAST(&cl->cl_parent->cl_actc, acthead);
1014			if (max_cl != NULL) {
1015				/*
1016				 * set vt to the average of the min and max
1017				 * classes.  if the parent's period didn't
1018				 * change, don't decrease vt of the class.
1019				 */
1020				vt = max_cl->cl_vt;
1021				if (cl->cl_parent->cl_cvtmin != 0)
1022					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
1023
1024				if (cl->cl_parent->cl_vtperiod !=
1025				    cl->cl_parentperiod || vt > cl->cl_vt)
1026					cl->cl_vt = vt;
1027			} else {
1028				/*
1029				 * first child for a new parent backlog period.
1030				 * add parent's cvtmax to vtoff of children
1031				 * to make a new vt (vtoff + vt) larger than
1032				 * the vt in the last period for all children.
1033				 */
1034				vt = cl->cl_parent->cl_cvtmax;
1035				for (p = cl->cl_parent->cl_children; p != NULL;
1036				     p = p->cl_siblings)
1037					p->cl_vtoff += vt;
1038				cl->cl_vt = 0;
1039				cl->cl_parent->cl_cvtmax = 0;
1040				cl->cl_parent->cl_cvtmin = 0;
1041			}
1042			cl->cl_initvt = cl->cl_vt;
1043
1044			/* update the virtual curve */
1045			vt = cl->cl_vt + cl->cl_vtoff;
1046			rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
1047			if (cl->cl_virtual.x == vt) {
1048				cl->cl_virtual.x -= cl->cl_vtoff;
1049				cl->cl_vtoff = 0;
1050			}
1051			cl->cl_vtadj = 0;
1052
1053			cl->cl_vtperiod++;  /* increment vt period */
1054			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
1055			if (cl->cl_parent->cl_nactive == 0)
1056				cl->cl_parentperiod++;
1057			cl->cl_f = 0;
1058
1059			actlist_insert(cl);
1060
1061			if (cl->cl_usc != NULL) {
1062				/* class has upper limit curve */
1063				if (cur_time == 0)
1064					cur_time = read_machclk();
1065
1066				/* update the ulimit curve */
1067				rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
1068				    cl->cl_total);
1069				/* compute myf */
1070				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
1071				    cl->cl_total);
1072				cl->cl_myfadj = 0;
1073			}
1074		}
1075
1076		if (cl->cl_myf > cl->cl_cfmin)
1077			f = cl->cl_myf;
1078		else
1079			f = cl->cl_cfmin;
1080		if (f != cl->cl_f) {
1081			cl->cl_f = f;
1082			update_cfmin(cl->cl_parent);
1083		}
1084	}
1085}
1086
1087static void
1088update_vf(struct hfsc_class *cl, int len, u_int64_t cur_time)
1089{
1090	u_int64_t f, myf_bound, delta;
1091	int go_passive;
1092
1093	go_passive = qempty(cl->cl_q);
1094
1095	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
1096
1097		cl->cl_total += len;
1098
1099		if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
1100			continue;
1101
1102		if (go_passive && --cl->cl_nactive == 0)
1103			go_passive = 1;
1104		else
1105			go_passive = 0;
1106
1107		if (go_passive) {
1108			/* no more active child, going passive */
1109
1110			/* update cvtmax of the parent class */
1111			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
1112				cl->cl_parent->cl_cvtmax = cl->cl_vt;
1113
1114			/* remove this class from the vt list */
1115			actlist_remove(cl);
1116
1117			update_cfmin(cl->cl_parent);
1118
1119			continue;
1120		}
1121
1122		/*
1123		 * update vt and f
1124		 */
1125		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
1126		    - cl->cl_vtoff + cl->cl_vtadj;
1127
1128		/*
1129		 * if vt of the class is smaller than cvtmin,
1130		 * the class was skipped in the past due to non-fit.
1131		 * if so, we need to adjust vtadj.
1132		 */
1133		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
1134			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
1135			cl->cl_vt = cl->cl_parent->cl_cvtmin;
1136		}
1137
1138		/* update the vt list */
1139		actlist_update(cl);
1140
1141		if (cl->cl_usc != NULL) {
1142			cl->cl_myf = cl->cl_myfadj
1143			    + rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
1144
1145			/*
1146			 * if myf lags behind by more than one clock tick
1147			 * from the current time, adjust myfadj to prevent
1148			 * a rate-limited class from going greedy.
1149			 * in a steady state under rate-limiting, myf
1150			 * fluctuates within one clock tick.
1151			 */
1152			myf_bound = cur_time - machclk_per_tick;
1153			if (cl->cl_myf < myf_bound) {
1154				delta = cur_time - cl->cl_myf;
1155				cl->cl_myfadj += delta;
1156				cl->cl_myf += delta;
1157			}
1158		}
1159
1160		/* cl_f is max(cl_myf, cl_cfmin) */
1161		if (cl->cl_myf > cl->cl_cfmin)
1162			f = cl->cl_myf;
1163		else
1164			f = cl->cl_cfmin;
1165		if (f != cl->cl_f) {
1166			cl->cl_f = f;
1167			update_cfmin(cl->cl_parent);
1168		}
1169	}
1170}
1171
1172static void
1173update_cfmin(struct hfsc_class *cl)
1174{
1175	struct hfsc_class *p;
1176	u_int64_t cfmin;
1177
1178	if (TAILQ_EMPTY(&cl->cl_actc)) {
1179		cl->cl_cfmin = 0;
1180		return;
1181	}
1182	cfmin = HT_INFINITY;
1183	TAILQ_FOREACH(p, &cl->cl_actc, cl_actlist) {
1184		if (p->cl_f == 0) {
1185			cl->cl_cfmin = 0;
1186			return;
1187		}
1188		if (p->cl_f < cfmin)
1189			cfmin = p->cl_f;
1190	}
1191	cl->cl_cfmin = cfmin;
1192}
1193
1194/*
1195 * TAILQ based ellist and actlist implementation
1196 * (ion wanted to make a calendar queue based implementation)
1197 */
1198/*
1199 * eligible list holds backlogged classes being sorted by their eligible times.
1200 * there is one eligible list per interface.
1201 */
1202
1203static void
1204ellist_insert(struct hfsc_class *cl)
1205{
1206	struct hfsc_if	*hif = cl->cl_hif;
1207	struct hfsc_class *p;
1208
1209	/* check the last entry first */
1210	if ((p = TAILQ_LAST(&hif->hif_eligible, elighead)) == NULL ||
1211	    p->cl_e <= cl->cl_e) {
1212		TAILQ_INSERT_TAIL(&hif->hif_eligible, cl, cl_ellist);
1213		return;
1214	}
1215
1216	TAILQ_FOREACH(p, &hif->hif_eligible, cl_ellist) {
1217		if (cl->cl_e < p->cl_e) {
1218			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1219			return;
1220		}
1221	}
1222	ASSERT(0); /* should not reach here */
1223}
1224
1225static void
1226ellist_remove(struct hfsc_class *cl)
1227{
1228	struct hfsc_if	*hif = cl->cl_hif;
1229
1230	TAILQ_REMOVE(&hif->hif_eligible, cl, cl_ellist);
1231}
1232
1233static void
1234ellist_update(struct hfsc_class *cl)
1235{
1236	struct hfsc_if	*hif = cl->cl_hif;
1237	struct hfsc_class *p, *last;
1238
1239	/*
1240	 * the eligible time of a class increases monotonically.
1241	 * if the next entry has a larger eligible time, nothing to do.
1242	 */
1243	p = TAILQ_NEXT(cl, cl_ellist);
1244	if (p == NULL || cl->cl_e <= p->cl_e)
1245		return;
1246
1247	/* check the last entry */
1248	last = TAILQ_LAST(&hif->hif_eligible, elighead);
1249	ASSERT(last != NULL);
1250	if (last->cl_e <= cl->cl_e) {
1251		TAILQ_REMOVE(&hif->hif_eligible, cl, cl_ellist);
1252		TAILQ_INSERT_TAIL(&hif->hif_eligible, cl, cl_ellist);
1253		return;
1254	}
1255
1256	/*
1257	 * the new position must be between the next entry
1258	 * and the last entry
1259	 */
1260	while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
1261		if (cl->cl_e < p->cl_e) {
1262			TAILQ_REMOVE(&hif->hif_eligible, cl, cl_ellist);
1263			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1264			return;
1265		}
1266	}
1267	ASSERT(0); /* should not reach here */
1268}
1269
1270/* find the class with the minimum deadline among the eligible classes */
1271struct hfsc_class *
1272hfsc_get_mindl(struct hfsc_if *hif, u_int64_t cur_time)
1273{
1274	struct hfsc_class *p, *cl = NULL;
1275
1276	TAILQ_FOREACH(p, &hif->hif_eligible, cl_ellist) {
1277		if (p->cl_e > cur_time)
1278			break;
1279		if (cl == NULL || p->cl_d < cl->cl_d)
1280			cl = p;
1281	}
1282	return (cl);
1283}
1284
1285/*
1286 * active children list holds backlogged child classes being sorted
1287 * by their virtual time.
1288 * each intermediate class has one active children list.
1289 */
1290
1291static void
1292actlist_insert(struct hfsc_class *cl)
1293{
1294	struct hfsc_class *p;
1295
1296	/* check the last entry first */
1297	if ((p = TAILQ_LAST(&cl->cl_parent->cl_actc, acthead)) == NULL
1298	    || p->cl_vt <= cl->cl_vt) {
1299		TAILQ_INSERT_TAIL(&cl->cl_parent->cl_actc, cl, cl_actlist);
1300		return;
1301	}
1302
1303	TAILQ_FOREACH(p, &cl->cl_parent->cl_actc, cl_actlist) {
1304		if (cl->cl_vt < p->cl_vt) {
1305			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1306			return;
1307		}
1308	}
1309	ASSERT(0); /* should not reach here */
1310}
1311
1312static void
1313actlist_remove(struct hfsc_class *cl)
1314{
1315	TAILQ_REMOVE(&cl->cl_parent->cl_actc, cl, cl_actlist);
1316}
1317
1318static void
1319actlist_update(struct hfsc_class *cl)
1320{
1321	struct hfsc_class *p, *last;
1322
1323	/*
1324	 * the virtual time of a class increases monotonically during its
1325	 * backlogged period.
1326	 * if the next entry has a larger virtual time, nothing to do.
1327	 */
1328	p = TAILQ_NEXT(cl, cl_actlist);
1329	if (p == NULL || cl->cl_vt < p->cl_vt)
1330		return;
1331
1332	/* check the last entry */
1333	last = TAILQ_LAST(&cl->cl_parent->cl_actc, acthead);
1334	ASSERT(last != NULL);
1335	if (last->cl_vt <= cl->cl_vt) {
1336		TAILQ_REMOVE(&cl->cl_parent->cl_actc, cl, cl_actlist);
1337		TAILQ_INSERT_TAIL(&cl->cl_parent->cl_actc, cl, cl_actlist);
1338		return;
1339	}
1340
1341	/*
1342	 * the new position must be between the next entry
1343	 * and the last entry
1344	 */
1345	while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
1346		if (cl->cl_vt < p->cl_vt) {
1347			TAILQ_REMOVE(&cl->cl_parent->cl_actc, cl, cl_actlist);
1348			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1349			return;
1350		}
1351	}
1352	ASSERT(0); /* should not reach here */
1353}
1354
1355static struct hfsc_class *
1356actlist_firstfit(struct hfsc_class *cl, u_int64_t cur_time)
1357{
1358	struct hfsc_class *p;
1359
1360	TAILQ_FOREACH(p, &cl->cl_actc, cl_actlist) {
1361		if (p->cl_f <= cur_time)
1362			return (p);
1363	}
1364	return (NULL);
1365}
1366
1367/*
1368 * service curve support functions
1369 *
1370 *  external service curve parameters
1371 *	m: bits/sec
1372 *	d: msec
1373 *  internal service curve parameters
1374 *	sm: (bytes/machclk tick) << SM_SHIFT
1375 *	ism: (machclk ticks/byte) << ISM_SHIFT
1376 *	dx: machclk ticks
1377 *
1378 * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.  we
1379 * should be able to handle 100K-100Gbps linkspeed with 256 MHz machclk
1380 * frequency and at least 3 effective digits in decimal.
1381 *
1382 */
1383#define	SM_SHIFT	24
1384#define	ISM_SHIFT	14
1385
1386#define	SM_MASK		((1LL << SM_SHIFT) - 1)
1387#define	ISM_MASK	((1LL << ISM_SHIFT) - 1)
1388
1389static __inline u_int64_t
1390seg_x2y(u_int64_t x, u_int64_t sm)
1391{
1392	u_int64_t y;
1393
1394	/*
1395	 * compute
1396	 *	y = x * sm >> SM_SHIFT
1397	 * but divide it for the upper and lower bits to avoid overflow
1398	 */
1399	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
1400	return (y);
1401}
1402
1403static __inline u_int64_t
1404seg_y2x(u_int64_t y, u_int64_t ism)
1405{
1406	u_int64_t x;
1407
1408	if (y == 0)
1409		x = 0;
1410	else if (ism == HT_INFINITY)
1411		x = HT_INFINITY;
1412	else {
1413		x = (y >> ISM_SHIFT) * ism
1414		    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
1415	}
1416	return (x);
1417}
1418
1419static __inline u_int64_t
1420m2sm(u_int64_t m)
1421{
1422	u_int64_t sm;
1423
1424	sm = (m << SM_SHIFT) / 8 / machclk_freq;
1425	return (sm);
1426}
1427
1428static __inline u_int64_t
1429m2ism(u_int64_t m)
1430{
1431	u_int64_t ism;
1432
1433	if (m == 0)
1434		ism = HT_INFINITY;
1435	else
1436		ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m;
1437	return (ism);
1438}
1439
1440static __inline u_int64_t
1441d2dx(u_int d)
1442{
1443	u_int64_t dx;
1444
1445	dx = ((u_int64_t)d * machclk_freq) / 1000;
1446	return (dx);
1447}
1448
1449static u_int64_t
1450sm2m(u_int64_t sm)
1451{
1452	u_int64_t m;
1453
1454	m = (sm * 8 * machclk_freq) >> SM_SHIFT;
1455	return (m);
1456}
1457
1458static u_int
1459dx2d(u_int64_t dx)
1460{
1461	u_int64_t d;
1462
1463	d = dx * 1000 / machclk_freq;
1464	return ((u_int)d);
1465}
1466
1467static void
1468sc2isc(struct service_curve *sc, struct internal_sc *isc)
1469{
1470	isc->sm1 = m2sm(sc->m1);
1471	isc->ism1 = m2ism(sc->m1);
1472	isc->dx = d2dx(sc->d);
1473	isc->dy = seg_x2y(isc->dx, isc->sm1);
1474	isc->sm2 = m2sm(sc->m2);
1475	isc->ism2 = m2ism(sc->m2);
1476}
1477
1478/*
1479 * initialize the runtime service curve with the given internal
1480 * service curve starting at (x, y).
1481 */
1482static void
1483rtsc_init(struct runtime_sc *rtsc, struct internal_sc * isc, u_int64_t x,
1484    u_int64_t y)
1485{
1486	rtsc->x =	x;
1487	rtsc->y =	y;
1488	rtsc->sm1 =	isc->sm1;
1489	rtsc->ism1 =	isc->ism1;
1490	rtsc->dx =	isc->dx;
1491	rtsc->dy =	isc->dy;
1492	rtsc->sm2 =	isc->sm2;
1493	rtsc->ism2 =	isc->ism2;
1494}
1495
1496/*
1497 * calculate the y-projection of the runtime service curve by the
1498 * given x-projection value
1499 */
1500static u_int64_t
1501rtsc_y2x(struct runtime_sc *rtsc, u_int64_t y)
1502{
1503	u_int64_t	x;
1504
1505	if (y < rtsc->y)
1506		x = rtsc->x;
1507	else if (y <= rtsc->y + rtsc->dy) {
1508		/* x belongs to the 1st segment */
1509		if (rtsc->dy == 0)
1510			x = rtsc->x + rtsc->dx;
1511		else
1512			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
1513	} else {
1514		/* x belongs to the 2nd segment */
1515		x = rtsc->x + rtsc->dx
1516		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
1517	}
1518	return (x);
1519}
1520
1521static u_int64_t
1522rtsc_x2y(struct runtime_sc *rtsc, u_int64_t x)
1523{
1524	u_int64_t	y;
1525
1526	if (x <= rtsc->x)
1527		y = rtsc->y;
1528	else if (x <= rtsc->x + rtsc->dx)
1529		/* y belongs to the 1st segment */
1530		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
1531	else
1532		/* y belongs to the 2nd segment */
1533		y = rtsc->y + rtsc->dy
1534		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
1535	return (y);
1536}
1537
1538/*
1539 * update the runtime service curve by taking the minimum of the current
1540 * runtime service curve and the service curve starting at (x, y).
1541 */
1542static void
1543rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u_int64_t x,
1544    u_int64_t y)
1545{
1546	u_int64_t	y1, y2, dx, dy;
1547
1548	if (isc->sm1 <= isc->sm2) {
1549		/* service curve is convex */
1550		y1 = rtsc_x2y(rtsc, x);
1551		if (y1 < y)
1552			/* the current rtsc is smaller */
1553			return;
1554		rtsc->x = x;
1555		rtsc->y = y;
1556		return;
1557	}
1558
1559	/*
1560	 * service curve is concave
1561	 * compute the two y values of the current rtsc
1562	 *	y1: at x
1563	 *	y2: at (x + dx)
1564	 */
1565	y1 = rtsc_x2y(rtsc, x);
1566	if (y1 <= y) {
1567		/* rtsc is below isc, no change to rtsc */
1568		return;
1569	}
1570
1571	y2 = rtsc_x2y(rtsc, x + isc->dx);
1572	if (y2 >= y + isc->dy) {
1573		/* rtsc is above isc, replace rtsc by isc */
1574		rtsc->x = x;
1575		rtsc->y = y;
1576		rtsc->dx = isc->dx;
1577		rtsc->dy = isc->dy;
1578		return;
1579	}
1580
1581	/*
1582	 * the two curves intersect
1583	 * compute the offsets (dx, dy) using the reverse
1584	 * function of seg_x2y()
1585	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
1586	 */
1587	dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
1588	/*
1589	 * check if (x, y1) belongs to the 1st segment of rtsc.
1590	 * if so, add the offset.
1591	 */
1592	if (rtsc->x + rtsc->dx > x)
1593		dx += rtsc->x + rtsc->dx - x;
1594	dy = seg_x2y(dx, isc->sm1);
1595
1596	rtsc->x = x;
1597	rtsc->y = y;
1598	rtsc->dx = dx;
1599	rtsc->dy = dy;
1600	return;
1601}
1602
1603static void
1604get_class_stats_v0(struct hfsc_classstats_v0 *sp, struct hfsc_class *cl)
1605{
1606	sp->class_id = cl->cl_id;
1607	sp->class_handle = cl->cl_handle;
1608
1609#define SATU32(x)	(u_int32_t)uqmin((x), UINT_MAX)
1610
1611	if (cl->cl_rsc != NULL) {
1612		sp->rsc.m1 = SATU32(sm2m(cl->cl_rsc->sm1));
1613		sp->rsc.d = dx2d(cl->cl_rsc->dx);
1614		sp->rsc.m2 = SATU32(sm2m(cl->cl_rsc->sm2));
1615	} else {
1616		sp->rsc.m1 = 0;
1617		sp->rsc.d = 0;
1618		sp->rsc.m2 = 0;
1619	}
1620	if (cl->cl_fsc != NULL) {
1621		sp->fsc.m1 = SATU32(sm2m(cl->cl_fsc->sm1));
1622		sp->fsc.d = dx2d(cl->cl_fsc->dx);
1623		sp->fsc.m2 = SATU32(sm2m(cl->cl_fsc->sm2));
1624	} else {
1625		sp->fsc.m1 = 0;
1626		sp->fsc.d = 0;
1627		sp->fsc.m2 = 0;
1628	}
1629	if (cl->cl_usc != NULL) {
1630		sp->usc.m1 = SATU32(sm2m(cl->cl_usc->sm1));
1631		sp->usc.d = dx2d(cl->cl_usc->dx);
1632		sp->usc.m2 = SATU32(sm2m(cl->cl_usc->sm2));
1633	} else {
1634		sp->usc.m1 = 0;
1635		sp->usc.d = 0;
1636		sp->usc.m2 = 0;
1637	}
1638
1639#undef SATU32
1640
1641	sp->total = cl->cl_total;
1642	sp->cumul = cl->cl_cumul;
1643
1644	sp->d = cl->cl_d;
1645	sp->e = cl->cl_e;
1646	sp->vt = cl->cl_vt;
1647	sp->f = cl->cl_f;
1648
1649	sp->initvt = cl->cl_initvt;
1650	sp->vtperiod = cl->cl_vtperiod;
1651	sp->parentperiod = cl->cl_parentperiod;
1652	sp->nactive = cl->cl_nactive;
1653	sp->vtoff = cl->cl_vtoff;
1654	sp->cvtmax = cl->cl_cvtmax;
1655	sp->myf = cl->cl_myf;
1656	sp->cfmin = cl->cl_cfmin;
1657	sp->cvtmin = cl->cl_cvtmin;
1658	sp->myfadj = cl->cl_myfadj;
1659	sp->vtadj = cl->cl_vtadj;
1660
1661	sp->cur_time = read_machclk();
1662	sp->machclk_freq = machclk_freq;
1663
1664	sp->qlength = qlen(cl->cl_q);
1665	sp->qlimit = qlimit(cl->cl_q);
1666	sp->xmit_cnt = cl->cl_stats.xmit_cnt;
1667	sp->drop_cnt = cl->cl_stats.drop_cnt;
1668	sp->period = cl->cl_stats.period;
1669
1670	sp->qtype = qtype(cl->cl_q);
1671#ifdef ALTQ_RED
1672	if (q_is_red(cl->cl_q))
1673		red_getstats(cl->cl_red, &sp->red[0]);
1674#endif
1675#ifdef ALTQ_RIO
1676	if (q_is_rio(cl->cl_q))
1677		rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
1678#endif
1679#ifdef ALTQ_CODEL
1680	if (q_is_codel(cl->cl_q))
1681		codel_getstats(cl->cl_codel, &sp->codel);
1682#endif
1683}
1684
1685static void
1686get_class_stats_v1(struct hfsc_classstats_v1 *sp, struct hfsc_class *cl)
1687{
1688	sp->class_id = cl->cl_id;
1689	sp->class_handle = cl->cl_handle;
1690
1691	if (cl->cl_rsc != NULL) {
1692		sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
1693		sp->rsc.d = dx2d(cl->cl_rsc->dx);
1694		sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
1695	} else {
1696		sp->rsc.m1 = 0;
1697		sp->rsc.d = 0;
1698		sp->rsc.m2 = 0;
1699	}
1700	if (cl->cl_fsc != NULL) {
1701		sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
1702		sp->fsc.d = dx2d(cl->cl_fsc->dx);
1703		sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
1704	} else {
1705		sp->fsc.m1 = 0;
1706		sp->fsc.d = 0;
1707		sp->fsc.m2 = 0;
1708	}
1709	if (cl->cl_usc != NULL) {
1710		sp->usc.m1 = sm2m(cl->cl_usc->sm1);
1711		sp->usc.d = dx2d(cl->cl_usc->dx);
1712		sp->usc.m2 = sm2m(cl->cl_usc->sm2);
1713	} else {
1714		sp->usc.m1 = 0;
1715		sp->usc.d = 0;
1716		sp->usc.m2 = 0;
1717	}
1718
1719	sp->total = cl->cl_total;
1720	sp->cumul = cl->cl_cumul;
1721
1722	sp->d = cl->cl_d;
1723	sp->e = cl->cl_e;
1724	sp->vt = cl->cl_vt;
1725	sp->f = cl->cl_f;
1726
1727	sp->initvt = cl->cl_initvt;
1728	sp->vtperiod = cl->cl_vtperiod;
1729	sp->parentperiod = cl->cl_parentperiod;
1730	sp->nactive = cl->cl_nactive;
1731	sp->vtoff = cl->cl_vtoff;
1732	sp->cvtmax = cl->cl_cvtmax;
1733	sp->myf = cl->cl_myf;
1734	sp->cfmin = cl->cl_cfmin;
1735	sp->cvtmin = cl->cl_cvtmin;
1736	sp->myfadj = cl->cl_myfadj;
1737	sp->vtadj = cl->cl_vtadj;
1738
1739	sp->cur_time = read_machclk();
1740	sp->machclk_freq = machclk_freq;
1741
1742	sp->qlength = qlen(cl->cl_q);
1743	sp->qlimit = qlimit(cl->cl_q);
1744	sp->xmit_cnt = cl->cl_stats.xmit_cnt;
1745	sp->drop_cnt = cl->cl_stats.drop_cnt;
1746	sp->period = cl->cl_stats.period;
1747
1748	sp->qtype = qtype(cl->cl_q);
1749#ifdef ALTQ_RED
1750	if (q_is_red(cl->cl_q))
1751		red_getstats(cl->cl_red, &sp->red[0]);
1752#endif
1753#ifdef ALTQ_RIO
1754	if (q_is_rio(cl->cl_q))
1755		rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
1756#endif
1757#ifdef ALTQ_CODEL
1758	if (q_is_codel(cl->cl_q))
1759		codel_getstats(cl->cl_codel, &sp->codel);
1760#endif
1761}
1762
1763/* convert a class handle to the corresponding class pointer */
1764static struct hfsc_class *
1765clh_to_clp(struct hfsc_if *hif, u_int32_t chandle)
1766{
1767	int i;
1768	struct hfsc_class *cl;
1769
1770	if (chandle == 0)
1771		return (NULL);
1772	/*
1773	 * first, try optimistically the slot matching the lower bits of
1774	 * the handle.  if it fails, do the linear table search.
1775	 */
1776	i = chandle % HFSC_MAX_CLASSES;
1777	if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
1778		return (cl);
1779	for (i = 0; i < HFSC_MAX_CLASSES; i++)
1780		if ((cl = hif->hif_class_tbl[i]) != NULL &&
1781		    cl->cl_handle == chandle)
1782			return (cl);
1783	return (NULL);
1784}
1785
1786#ifdef ALTQ3_COMPAT
1787static struct hfsc_if *
1788hfsc_attach(ifq, bandwidth)
1789	struct ifaltq *ifq;
1790	u_int bandwidth;
1791{
1792	struct hfsc_if *hif;
1793
1794	hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK);
1795	if (hif == NULL)
1796		return (NULL);
1797	bzero(hif, sizeof(struct hfsc_if));
1798
1799	hif->hif_eligible = ellist_alloc();
1800	if (hif->hif_eligible == NULL) {
1801		free(hif, M_DEVBUF);
1802		return NULL;
1803	}
1804
1805	hif->hif_ifq = ifq;
1806
1807	/* add this state to the hfsc list */
1808	hif->hif_next = hif_list;
1809	hif_list = hif;
1810
1811	return (hif);
1812}
1813
1814static int
1815hfsc_detach(hif)
1816	struct hfsc_if *hif;
1817{
1818	(void)hfsc_clear_interface(hif);
1819	(void)hfsc_class_destroy(hif->hif_rootclass);
1820
1821	/* remove this interface from the hif list */
1822	if (hif_list == hif)
1823		hif_list = hif->hif_next;
1824	else {
1825		struct hfsc_if *h;
1826
1827		for (h = hif_list; h != NULL; h = h->hif_next)
1828			if (h->hif_next == hif) {
1829				h->hif_next = hif->hif_next;
1830				break;
1831			}
1832		ASSERT(h != NULL);
1833	}
1834
1835	ellist_destroy(hif->hif_eligible);
1836
1837	free(hif, M_DEVBUF);
1838
1839	return (0);
1840}
1841
1842static int
1843hfsc_class_modify(cl, rsc, fsc, usc)
1844	struct hfsc_class *cl;
1845	struct service_curve *rsc, *fsc, *usc;
1846{
1847	struct internal_sc *rsc_tmp, *fsc_tmp, *usc_tmp;
1848	u_int64_t cur_time;
1849	int s;
1850
1851	rsc_tmp = fsc_tmp = usc_tmp = NULL;
1852	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0) &&
1853	    cl->cl_rsc == NULL) {
1854		rsc_tmp = malloc(sizeof(struct internal_sc),
1855		    M_DEVBUF, M_WAITOK);
1856		if (rsc_tmp == NULL)
1857			return (ENOMEM);
1858	}
1859	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0) &&
1860	    cl->cl_fsc == NULL) {
1861		fsc_tmp = malloc(sizeof(struct internal_sc),
1862		    M_DEVBUF, M_WAITOK);
1863		if (fsc_tmp == NULL) {
1864			free(rsc_tmp);
1865			return (ENOMEM);
1866		}
1867	}
1868	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0) &&
1869	    cl->cl_usc == NULL) {
1870		usc_tmp = malloc(sizeof(struct internal_sc),
1871		    M_DEVBUF, M_WAITOK);
1872		if (usc_tmp == NULL) {
1873			free(rsc_tmp);
1874			free(fsc_tmp);
1875			return (ENOMEM);
1876		}
1877	}
1878
1879	cur_time = read_machclk();
1880	s = splnet();
1881	IFQ_LOCK(cl->cl_hif->hif_ifq);
1882
1883	if (rsc != NULL) {
1884		if (rsc->m1 == 0 && rsc->m2 == 0) {
1885			if (cl->cl_rsc != NULL) {
1886				if (!qempty(cl->cl_q))
1887					hfsc_purgeq(cl);
1888				free(cl->cl_rsc, M_DEVBUF);
1889				cl->cl_rsc = NULL;
1890			}
1891		} else {
1892			if (cl->cl_rsc == NULL)
1893				cl->cl_rsc = rsc_tmp;
1894			sc2isc(rsc, cl->cl_rsc);
1895			rtsc_init(&cl->cl_deadline, cl->cl_rsc, cur_time,
1896			    cl->cl_cumul);
1897			cl->cl_eligible = cl->cl_deadline;
1898			if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
1899				cl->cl_eligible.dx = 0;
1900				cl->cl_eligible.dy = 0;
1901			}
1902		}
1903	}
1904
1905	if (fsc != NULL) {
1906		if (fsc->m1 == 0 && fsc->m2 == 0) {
1907			if (cl->cl_fsc != NULL) {
1908				if (!qempty(cl->cl_q))
1909					hfsc_purgeq(cl);
1910				free(cl->cl_fsc, M_DEVBUF);
1911				cl->cl_fsc = NULL;
1912			}
1913		} else {
1914			if (cl->cl_fsc == NULL)
1915				cl->cl_fsc = fsc_tmp;
1916			sc2isc(fsc, cl->cl_fsc);
1917			rtsc_init(&cl->cl_virtual, cl->cl_fsc, cl->cl_vt,
1918			    cl->cl_total);
1919		}
1920	}
1921
1922	if (usc != NULL) {
1923		if (usc->m1 == 0 && usc->m2 == 0) {
1924			if (cl->cl_usc != NULL) {
1925				free(cl->cl_usc, M_DEVBUF);
1926				cl->cl_usc = NULL;
1927				cl->cl_myf = 0;
1928			}
1929		} else {
1930			if (cl->cl_usc == NULL)
1931				cl->cl_usc = usc_tmp;
1932			sc2isc(usc, cl->cl_usc);
1933			rtsc_init(&cl->cl_ulimit, cl->cl_usc, cur_time,
1934			    cl->cl_total);
1935		}
1936	}
1937
1938	if (!qempty(cl->cl_q)) {
1939		if (cl->cl_rsc != NULL)
1940			update_ed(cl, m_pktlen(qhead(cl->cl_q)));
1941		if (cl->cl_fsc != NULL)
1942			update_vf(cl, 0, cur_time);
1943		/* is this enough? */
1944	}
1945
1946	IFQ_UNLOCK(cl->cl_hif->hif_ifq);
1947	splx(s);
1948
1949	return (0);
1950}
1951
1952/*
1953 * hfsc device interface
1954 */
1955int
1956hfscopen(dev, flag, fmt, p)
1957	dev_t dev;
1958	int flag, fmt;
1959#if (__FreeBSD_version > 500000)
1960	struct thread *p;
1961#else
1962	struct proc *p;
1963#endif
1964{
1965	if (machclk_freq == 0)
1966		init_machclk();
1967
1968	if (machclk_freq == 0) {
1969		printf("hfsc: no cpu clock available!\n");
1970		return (ENXIO);
1971	}
1972
1973	/* everything will be done when the queueing scheme is attached. */
1974	return 0;
1975}
1976
1977int
1978hfscclose(dev, flag, fmt, p)
1979	dev_t dev;
1980	int flag, fmt;
1981#if (__FreeBSD_version > 500000)
1982	struct thread *p;
1983#else
1984	struct proc *p;
1985#endif
1986{
1987	struct hfsc_if *hif;
1988	int err, error = 0;
1989
1990	while ((hif = hif_list) != NULL) {
1991		/* destroy all */
1992		if (ALTQ_IS_ENABLED(hif->hif_ifq))
1993			altq_disable(hif->hif_ifq);
1994
1995		err = altq_detach(hif->hif_ifq);
1996		if (err == 0)
1997			err = hfsc_detach(hif);
1998		if (err != 0 && error == 0)
1999			error = err;
2000	}
2001
2002	return error;
2003}
2004
2005int
2006hfscioctl(dev, cmd, addr, flag, p)
2007	dev_t dev;
2008	ioctlcmd_t cmd;
2009	caddr_t addr;
2010	int flag;
2011#if (__FreeBSD_version > 500000)
2012	struct thread *p;
2013#else
2014	struct proc *p;
2015#endif
2016{
2017	struct hfsc_if *hif;
2018	struct hfsc_interface *ifacep;
2019	int	error = 0;
2020
2021	/* check super-user privilege */
2022	switch (cmd) {
2023	case HFSC_GETSTATS:
2024		break;
2025	default:
2026#if (__FreeBSD_version > 700000)
2027		if ((error = priv_check(p, PRIV_ALTQ_MANAGE)) != 0)
2028			return (error);
2029#elsif (__FreeBSD_version > 400000)
2030		if ((error = suser(p)) != 0)
2031			return (error);
2032#else
2033		if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
2034			return (error);
2035#endif
2036		break;
2037	}
2038
2039	switch (cmd) {
2040
2041	case HFSC_IF_ATTACH:
2042		error = hfsccmd_if_attach((struct hfsc_attach *)addr);
2043		break;
2044
2045	case HFSC_IF_DETACH:
2046		error = hfsccmd_if_detach((struct hfsc_interface *)addr);
2047		break;
2048
2049	case HFSC_ENABLE:
2050	case HFSC_DISABLE:
2051	case HFSC_CLEAR_HIERARCHY:
2052		ifacep = (struct hfsc_interface *)addr;
2053		if ((hif = altq_lookup(ifacep->hfsc_ifname,
2054				       ALTQT_HFSC)) == NULL) {
2055			error = EBADF;
2056			break;
2057		}
2058
2059		switch (cmd) {
2060
2061		case HFSC_ENABLE:
2062			if (hif->hif_defaultclass == NULL) {
2063#ifdef ALTQ_DEBUG
2064				printf("hfsc: no default class\n");
2065#endif
2066				error = EINVAL;
2067				break;
2068			}
2069			error = altq_enable(hif->hif_ifq);
2070			break;
2071
2072		case HFSC_DISABLE:
2073			error = altq_disable(hif->hif_ifq);
2074			break;
2075
2076		case HFSC_CLEAR_HIERARCHY:
2077			hfsc_clear_interface(hif);
2078			break;
2079		}
2080		break;
2081
2082	case HFSC_ADD_CLASS:
2083		error = hfsccmd_add_class((struct hfsc_add_class *)addr);
2084		break;
2085
2086	case HFSC_DEL_CLASS:
2087		error = hfsccmd_delete_class((struct hfsc_delete_class *)addr);
2088		break;
2089
2090	case HFSC_MOD_CLASS:
2091		error = hfsccmd_modify_class((struct hfsc_modify_class *)addr);
2092		break;
2093
2094	case HFSC_ADD_FILTER:
2095		error = hfsccmd_add_filter((struct hfsc_add_filter *)addr);
2096		break;
2097
2098	case HFSC_DEL_FILTER:
2099		error = hfsccmd_delete_filter((struct hfsc_delete_filter *)addr);
2100		break;
2101
2102	case HFSC_GETSTATS:
2103		error = hfsccmd_class_stats((struct hfsc_class_stats *)addr);
2104		break;
2105
2106	default:
2107		error = EINVAL;
2108		break;
2109	}
2110	return error;
2111}
2112
2113static int
2114hfsccmd_if_attach(ap)
2115	struct hfsc_attach *ap;
2116{
2117	struct hfsc_if *hif;
2118	struct ifnet *ifp;
2119	int error;
2120
2121	if ((ifp = ifunit(ap->iface.hfsc_ifname)) == NULL)
2122		return (ENXIO);
2123
2124	if ((hif = hfsc_attach(&ifp->if_snd, ap->bandwidth)) == NULL)
2125		return (ENOMEM);
2126
2127	/*
2128	 * set HFSC to this ifnet structure.
2129	 */
2130	if ((error = altq_attach(&ifp->if_snd, ALTQT_HFSC, hif,
2131				 hfsc_enqueue, hfsc_dequeue, hfsc_request,
2132				 &hif->hif_classifier, acc_classify)) != 0)
2133		(void)hfsc_detach(hif);
2134
2135	return (error);
2136}
2137
2138static int
2139hfsccmd_if_detach(ap)
2140	struct hfsc_interface *ap;
2141{
2142	struct hfsc_if *hif;
2143	int error;
2144
2145	if ((hif = altq_lookup(ap->hfsc_ifname, ALTQT_HFSC)) == NULL)
2146		return (EBADF);
2147
2148	if (ALTQ_IS_ENABLED(hif->hif_ifq))
2149		altq_disable(hif->hif_ifq);
2150
2151	if ((error = altq_detach(hif->hif_ifq)))
2152		return (error);
2153
2154	return hfsc_detach(hif);
2155}
2156
2157static int
2158hfsccmd_add_class(ap)
2159	struct hfsc_add_class *ap;
2160{
2161	struct hfsc_if *hif;
2162	struct hfsc_class *cl, *parent;
2163	int	i;
2164
2165	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2166		return (EBADF);
2167
2168	if (ap->parent_handle == HFSC_NULLCLASS_HANDLE &&
2169	    hif->hif_rootclass == NULL)
2170		parent = NULL;
2171	else if ((parent = clh_to_clp(hif, ap->parent_handle)) == NULL)
2172		return (EINVAL);
2173
2174	/* assign a class handle (use a free slot number for now) */
2175	for (i = 1; i < HFSC_MAX_CLASSES; i++)
2176		if (hif->hif_class_tbl[i] == NULL)
2177			break;
2178	if (i == HFSC_MAX_CLASSES)
2179		return (EBUSY);
2180
2181	if ((cl = hfsc_class_create(hif, &ap->service_curve, NULL, NULL,
2182	    parent, ap->qlimit, ap->flags, i)) == NULL)
2183		return (ENOMEM);
2184
2185	/* return a class handle to the user */
2186	ap->class_handle = i;
2187
2188	return (0);
2189}
2190
2191static int
2192hfsccmd_delete_class(ap)
2193	struct hfsc_delete_class *ap;
2194{
2195	struct hfsc_if *hif;
2196	struct hfsc_class *cl;
2197
2198	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2199		return (EBADF);
2200
2201	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2202		return (EINVAL);
2203
2204	return hfsc_class_destroy(cl);
2205}
2206
2207static int
2208hfsccmd_modify_class(ap)
2209	struct hfsc_modify_class *ap;
2210{
2211	struct hfsc_if *hif;
2212	struct hfsc_class *cl;
2213	struct service_curve *rsc = NULL;
2214	struct service_curve *fsc = NULL;
2215	struct service_curve *usc = NULL;
2216
2217	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2218		return (EBADF);
2219
2220	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2221		return (EINVAL);
2222
2223	if (ap->sctype & HFSC_REALTIMESC)
2224		rsc = &ap->service_curve;
2225	if (ap->sctype & HFSC_LINKSHARINGSC)
2226		fsc = &ap->service_curve;
2227	if (ap->sctype & HFSC_UPPERLIMITSC)
2228		usc = &ap->service_curve;
2229
2230	return hfsc_class_modify(cl, rsc, fsc, usc);
2231}
2232
2233static int
2234hfsccmd_add_filter(ap)
2235	struct hfsc_add_filter *ap;
2236{
2237	struct hfsc_if *hif;
2238	struct hfsc_class *cl;
2239
2240	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2241		return (EBADF);
2242
2243	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2244		return (EINVAL);
2245
2246	if (is_a_parent_class(cl)) {
2247#ifdef ALTQ_DEBUG
2248		printf("hfsccmd_add_filter: not a leaf class!\n");
2249#endif
2250		return (EINVAL);
2251	}
2252
2253	return acc_add_filter(&hif->hif_classifier, &ap->filter,
2254			      cl, &ap->filter_handle);
2255}
2256
2257static int
2258hfsccmd_delete_filter(ap)
2259	struct hfsc_delete_filter *ap;
2260{
2261	struct hfsc_if *hif;
2262
2263	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2264		return (EBADF);
2265
2266	return acc_delete_filter(&hif->hif_classifier,
2267				 ap->filter_handle);
2268}
2269
2270static int
2271hfsccmd_class_stats(ap)
2272	struct hfsc_class_stats *ap;
2273{
2274	struct hfsc_if *hif;
2275	struct hfsc_class *cl;
2276	struct hfsc_classstats stats, *usp;
2277	int	n, nclasses, error;
2278
2279	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2280		return (EBADF);
2281
2282	ap->cur_time = read_machclk();
2283	ap->machclk_freq = machclk_freq;
2284	ap->hif_classes = hif->hif_classes;
2285	ap->hif_packets = hif->hif_packets;
2286
2287	/* skip the first N classes in the tree */
2288	nclasses = ap->nskip;
2289	for (cl = hif->hif_rootclass, n = 0; cl != NULL && n < nclasses;
2290	     cl = hfsc_nextclass(cl), n++)
2291		;
2292	if (n != nclasses)
2293		return (EINVAL);
2294
2295	/* then, read the next N classes in the tree */
2296	nclasses = ap->nclasses;
2297	usp = ap->stats;
2298	for (n = 0; cl != NULL && n < nclasses; cl = hfsc_nextclass(cl), n++) {
2299
2300		get_class_stats(&stats, cl);
2301
2302		if ((error = copyout((caddr_t)&stats, (caddr_t)usp++,
2303				     sizeof(stats))) != 0)
2304			return (error);
2305	}
2306
2307	ap->nclasses = n;
2308
2309	return (0);
2310}
2311
2312#ifdef KLD_MODULE
2313
2314static struct altqsw hfsc_sw =
2315	{"hfsc", hfscopen, hfscclose, hfscioctl};
2316
2317ALTQ_MODULE(altq_hfsc, ALTQT_HFSC, &hfsc_sw);
2318MODULE_DEPEND(altq_hfsc, altq_red, 1, 1, 1);
2319MODULE_DEPEND(altq_hfsc, altq_rio, 1, 1, 1);
2320
2321#endif /* KLD_MODULE */
2322#endif /* ALTQ3_COMPAT */
2323
2324#endif /* ALTQ_HFSC */
2325