1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 1997 John S. Dyson.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. John S. Dyson's name may not be used to endorse or promote products
12 *    derived from this software without specific prior written permission.
13 *
14 * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
15 * bad that happens because of using this software isn't the responsibility
16 * of the author.  This software is distributed AS-IS.
17 */
18
19/*
20 * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21 */
22
23#include <sys/cdefs.h>
24__FBSDID("$FreeBSD$");
25
26#include <sys/param.h>
27#include <sys/systm.h>
28#include <sys/malloc.h>
29#include <sys/bio.h>
30#include <sys/buf.h>
31#include <sys/capsicum.h>
32#include <sys/eventhandler.h>
33#include <sys/sysproto.h>
34#include <sys/filedesc.h>
35#include <sys/kernel.h>
36#include <sys/module.h>
37#include <sys/kthread.h>
38#include <sys/fcntl.h>
39#include <sys/file.h>
40#include <sys/limits.h>
41#include <sys/lock.h>
42#include <sys/mutex.h>
43#include <sys/unistd.h>
44#include <sys/posix4.h>
45#include <sys/proc.h>
46#include <sys/resourcevar.h>
47#include <sys/signalvar.h>
48#include <sys/syscallsubr.h>
49#include <sys/protosw.h>
50#include <sys/rwlock.h>
51#include <sys/sema.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/syscall.h>
55#include <sys/sysent.h>
56#include <sys/sysctl.h>
57#include <sys/syslog.h>
58#include <sys/sx.h>
59#include <sys/taskqueue.h>
60#include <sys/vnode.h>
61#include <sys/conf.h>
62#include <sys/event.h>
63#include <sys/mount.h>
64#include <geom/geom.h>
65
66#include <machine/atomic.h>
67
68#include <vm/vm.h>
69#include <vm/vm_page.h>
70#include <vm/vm_extern.h>
71#include <vm/pmap.h>
72#include <vm/vm_map.h>
73#include <vm/vm_object.h>
74#include <vm/uma.h>
75#include <sys/aio.h>
76
77/*
78 * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
79 * overflow. (XXX will be removed soon.)
80 */
81static u_long jobrefid;
82
83/*
84 * Counter for aio_fsync.
85 */
86static uint64_t jobseqno;
87
88#ifndef MAX_AIO_PER_PROC
89#define MAX_AIO_PER_PROC	32
90#endif
91
92#ifndef MAX_AIO_QUEUE_PER_PROC
93#define MAX_AIO_QUEUE_PER_PROC	256
94#endif
95
96#ifndef MAX_AIO_QUEUE
97#define MAX_AIO_QUEUE		1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
98#endif
99
100#ifndef MAX_BUF_AIO
101#define MAX_BUF_AIO		16
102#endif
103
104FEATURE(aio, "Asynchronous I/O");
105SYSCTL_DECL(_p1003_1b);
106
107static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
108static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list");
109
110static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0,
111    "Async IO management");
112
113static int enable_aio_unsafe = 0;
114SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
115    "Permit asynchronous IO on all file types, not just known-safe types");
116
117static unsigned int unsafe_warningcnt = 1;
118SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
119    &unsafe_warningcnt, 0,
120    "Warnings that will be triggered upon failed IO requests on unsafe files");
121
122static int max_aio_procs = MAX_AIO_PROCS;
123SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
124    "Maximum number of kernel processes to use for handling async IO ");
125
126static int num_aio_procs = 0;
127SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
128    "Number of presently active kernel processes for async IO");
129
130/*
131 * The code will adjust the actual number of AIO processes towards this
132 * number when it gets a chance.
133 */
134static int target_aio_procs = TARGET_AIO_PROCS;
135SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
136    0,
137    "Preferred number of ready kernel processes for async IO");
138
139static int max_queue_count = MAX_AIO_QUEUE;
140SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
141    "Maximum number of aio requests to queue, globally");
142
143static int num_queue_count = 0;
144SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
145    "Number of queued aio requests");
146
147static int num_buf_aio = 0;
148SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
149    "Number of aio requests presently handled by the buf subsystem");
150
151static int num_unmapped_aio = 0;
152SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
153    0,
154    "Number of aio requests presently handled by unmapped I/O buffers");
155
156/* Number of async I/O processes in the process of being started */
157/* XXX This should be local to aio_aqueue() */
158static int num_aio_resv_start = 0;
159
160static int aiod_lifetime;
161SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
162    "Maximum lifetime for idle aiod");
163
164static int max_aio_per_proc = MAX_AIO_PER_PROC;
165SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
166    0,
167    "Maximum active aio requests per process");
168
169static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
170SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
171    &max_aio_queue_per_proc, 0,
172    "Maximum queued aio requests per process");
173
174static int max_buf_aio = MAX_BUF_AIO;
175SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
176    "Maximum buf aio requests per process");
177
178/*
179 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
180 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
181 * vfs.aio.aio_listio_max.
182 */
183SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
184    CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
185    0, "Maximum aio requests for a single lio_listio call");
186
187#ifdef COMPAT_FREEBSD6
188typedef struct oaiocb {
189	int	aio_fildes;		/* File descriptor */
190	off_t	aio_offset;		/* File offset for I/O */
191	volatile void *aio_buf;         /* I/O buffer in process space */
192	size_t	aio_nbytes;		/* Number of bytes for I/O */
193	struct	osigevent aio_sigevent;	/* Signal to deliver */
194	int	aio_lio_opcode;		/* LIO opcode */
195	int	aio_reqprio;		/* Request priority -- ignored */
196	struct	__aiocb_private	_aiocb_private;
197} oaiocb_t;
198#endif
199
200/*
201 * Below is a key of locks used to protect each member of struct kaiocb
202 * aioliojob and kaioinfo and any backends.
203 *
204 * * - need not protected
205 * a - locked by kaioinfo lock
206 * b - locked by backend lock, the backend lock can be null in some cases,
207 *     for example, BIO belongs to this type, in this case, proc lock is
208 *     reused.
209 * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
210 */
211
212/*
213 * If the routine that services an AIO request blocks while running in an
214 * AIO kernel process it can starve other I/O requests.  BIO requests
215 * queued via aio_qbio() complete asynchronously and do not use AIO kernel
216 * processes at all.  Socket I/O requests use a separate pool of
217 * kprocs and also force non-blocking I/O.  Other file I/O requests
218 * use the generic fo_read/fo_write operations which can block.  The
219 * fsync and mlock operations can also block while executing.  Ideally
220 * none of these requests would block while executing.
221 *
222 * Note that the service routines cannot toggle O_NONBLOCK in the file
223 * structure directly while handling a request due to races with
224 * userland threads.
225 */
226
227/* jobflags */
228#define	KAIOCB_QUEUEING		0x01
229#define	KAIOCB_CANCELLED	0x02
230#define	KAIOCB_CANCELLING	0x04
231#define	KAIOCB_CHECKSYNC	0x08
232#define	KAIOCB_CLEARED		0x10
233#define	KAIOCB_FINISHED		0x20
234
235/*
236 * AIO process info
237 */
238#define AIOP_FREE	0x1			/* proc on free queue */
239
240struct aioproc {
241	int	aioprocflags;			/* (c) AIO proc flags */
242	TAILQ_ENTRY(aioproc) list;		/* (c) list of processes */
243	struct	proc *aioproc;			/* (*) the AIO proc */
244};
245
246/*
247 * data-structure for lio signal management
248 */
249struct aioliojob {
250	int	lioj_flags;			/* (a) listio flags */
251	int	lioj_count;			/* (a) count of jobs */
252	int	lioj_finished_count;		/* (a) count of finished jobs */
253	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
254	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
255	struct	knlist klist;			/* (a) list of knotes */
256	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
257};
258
259#define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
260#define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
261#define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
262
263/*
264 * per process aio data structure
265 */
266struct kaioinfo {
267	struct	mtx kaio_mtx;		/* the lock to protect this struct */
268	int	kaio_flags;		/* (a) per process kaio flags */
269	int	kaio_active_count;	/* (c) number of currently used AIOs */
270	int	kaio_count;		/* (a) size of AIO queue */
271	int	kaio_buffer_count;	/* (a) number of bio buffers */
272	TAILQ_HEAD(,kaiocb) kaio_all;	/* (a) all AIOs in a process */
273	TAILQ_HEAD(,kaiocb) kaio_done;	/* (a) done queue for process */
274	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
275	TAILQ_HEAD(,kaiocb) kaio_jobqueue;	/* (a) job queue for process */
276	TAILQ_HEAD(,kaiocb) kaio_syncqueue;	/* (a) queue for aio_fsync */
277	TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
278	struct	task kaio_task;		/* (*) task to kick aio processes */
279	struct	task kaio_sync_task;	/* (*) task to schedule fsync jobs */
280};
281
282#define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
283#define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
284#define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
285#define AIO_MTX(ki)		(&(ki)->kaio_mtx)
286
287#define KAIO_RUNDOWN	0x1	/* process is being run down */
288#define KAIO_WAKEUP	0x2	/* wakeup process when AIO completes */
289
290/*
291 * Operations used to interact with userland aio control blocks.
292 * Different ABIs provide their own operations.
293 */
294struct aiocb_ops {
295	int	(*copyin)(struct aiocb *ujob, struct aiocb *kjob);
296	long	(*fetch_status)(struct aiocb *ujob);
297	long	(*fetch_error)(struct aiocb *ujob);
298	int	(*store_status)(struct aiocb *ujob, long status);
299	int	(*store_error)(struct aiocb *ujob, long error);
300	int	(*store_kernelinfo)(struct aiocb *ujob, long jobref);
301	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
302};
303
304static TAILQ_HEAD(,aioproc) aio_freeproc;		/* (c) Idle daemons */
305static struct sema aio_newproc_sem;
306static struct mtx aio_job_mtx;
307static TAILQ_HEAD(,kaiocb) aio_jobs;			/* (c) Async job list */
308static struct unrhdr *aiod_unr;
309
310void		aio_init_aioinfo(struct proc *p);
311static int	aio_onceonly(void);
312static int	aio_free_entry(struct kaiocb *job);
313static void	aio_process_rw(struct kaiocb *job);
314static void	aio_process_sync(struct kaiocb *job);
315static void	aio_process_mlock(struct kaiocb *job);
316static void	aio_schedule_fsync(void *context, int pending);
317static int	aio_newproc(int *);
318int		aio_aqueue(struct thread *td, struct aiocb *ujob,
319		    struct aioliojob *lio, int type, struct aiocb_ops *ops);
320static int	aio_queue_file(struct file *fp, struct kaiocb *job);
321static void	aio_biowakeup(struct bio *bp);
322static void	aio_proc_rundown(void *arg, struct proc *p);
323static void	aio_proc_rundown_exec(void *arg, struct proc *p,
324		    struct image_params *imgp);
325static int	aio_qbio(struct proc *p, struct kaiocb *job);
326static void	aio_daemon(void *param);
327static void	aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
328static bool	aio_clear_cancel_function_locked(struct kaiocb *job);
329static int	aio_kick(struct proc *userp);
330static void	aio_kick_nowait(struct proc *userp);
331static void	aio_kick_helper(void *context, int pending);
332static int	filt_aioattach(struct knote *kn);
333static void	filt_aiodetach(struct knote *kn);
334static int	filt_aio(struct knote *kn, long hint);
335static int	filt_lioattach(struct knote *kn);
336static void	filt_liodetach(struct knote *kn);
337static int	filt_lio(struct knote *kn, long hint);
338
339/*
340 * Zones for:
341 * 	kaio	Per process async io info
342 *	aiop	async io process data
343 *	aiocb	async io jobs
344 *	aiolio	list io jobs
345 */
346static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone;
347
348/* kqueue filters for aio */
349static struct filterops aio_filtops = {
350	.f_isfd = 0,
351	.f_attach = filt_aioattach,
352	.f_detach = filt_aiodetach,
353	.f_event = filt_aio,
354};
355static struct filterops lio_filtops = {
356	.f_isfd = 0,
357	.f_attach = filt_lioattach,
358	.f_detach = filt_liodetach,
359	.f_event = filt_lio
360};
361
362static eventhandler_tag exit_tag, exec_tag;
363
364TASKQUEUE_DEFINE_THREAD(aiod_kick);
365
366/*
367 * Main operations function for use as a kernel module.
368 */
369static int
370aio_modload(struct module *module, int cmd, void *arg)
371{
372	int error = 0;
373
374	switch (cmd) {
375	case MOD_LOAD:
376		aio_onceonly();
377		break;
378	case MOD_SHUTDOWN:
379		break;
380	default:
381		error = EOPNOTSUPP;
382		break;
383	}
384	return (error);
385}
386
387static moduledata_t aio_mod = {
388	"aio",
389	&aio_modload,
390	NULL
391};
392
393DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
394MODULE_VERSION(aio, 1);
395
396/*
397 * Startup initialization
398 */
399static int
400aio_onceonly(void)
401{
402
403	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
404	    EVENTHANDLER_PRI_ANY);
405	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
406	    NULL, EVENTHANDLER_PRI_ANY);
407	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
408	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
409	TAILQ_INIT(&aio_freeproc);
410	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
411	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
412	TAILQ_INIT(&aio_jobs);
413	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
414	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
415	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
416	aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL,
417	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
418	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
419	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
420	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
421	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
422	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
423	jobrefid = 1;
424	p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
425	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
426	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
427
428	return (0);
429}
430
431/*
432 * Init the per-process aioinfo structure.  The aioinfo limits are set
433 * per-process for user limit (resource) management.
434 */
435void
436aio_init_aioinfo(struct proc *p)
437{
438	struct kaioinfo *ki;
439
440	ki = uma_zalloc(kaio_zone, M_WAITOK);
441	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
442	ki->kaio_flags = 0;
443	ki->kaio_active_count = 0;
444	ki->kaio_count = 0;
445	ki->kaio_buffer_count = 0;
446	TAILQ_INIT(&ki->kaio_all);
447	TAILQ_INIT(&ki->kaio_done);
448	TAILQ_INIT(&ki->kaio_jobqueue);
449	TAILQ_INIT(&ki->kaio_liojoblist);
450	TAILQ_INIT(&ki->kaio_syncqueue);
451	TAILQ_INIT(&ki->kaio_syncready);
452	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
453	TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
454	PROC_LOCK(p);
455	if (p->p_aioinfo == NULL) {
456		p->p_aioinfo = ki;
457		PROC_UNLOCK(p);
458	} else {
459		PROC_UNLOCK(p);
460		mtx_destroy(&ki->kaio_mtx);
461		uma_zfree(kaio_zone, ki);
462	}
463
464	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
465		aio_newproc(NULL);
466}
467
468static int
469aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
470{
471	struct thread *td;
472	int error;
473
474	error = sigev_findtd(p, sigev, &td);
475	if (error)
476		return (error);
477	if (!KSI_ONQ(ksi)) {
478		ksiginfo_set_sigev(ksi, sigev);
479		ksi->ksi_code = SI_ASYNCIO;
480		ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
481		tdsendsignal(p, td, ksi->ksi_signo, ksi);
482	}
483	PROC_UNLOCK(p);
484	return (error);
485}
486
487/*
488 * Free a job entry.  Wait for completion if it is currently active, but don't
489 * delay forever.  If we delay, we return a flag that says that we have to
490 * restart the queue scan.
491 */
492static int
493aio_free_entry(struct kaiocb *job)
494{
495	struct kaioinfo *ki;
496	struct aioliojob *lj;
497	struct proc *p;
498
499	p = job->userproc;
500	MPASS(curproc == p);
501	ki = p->p_aioinfo;
502	MPASS(ki != NULL);
503
504	AIO_LOCK_ASSERT(ki, MA_OWNED);
505	MPASS(job->jobflags & KAIOCB_FINISHED);
506
507	atomic_subtract_int(&num_queue_count, 1);
508
509	ki->kaio_count--;
510	MPASS(ki->kaio_count >= 0);
511
512	TAILQ_REMOVE(&ki->kaio_done, job, plist);
513	TAILQ_REMOVE(&ki->kaio_all, job, allist);
514
515	lj = job->lio;
516	if (lj) {
517		lj->lioj_count--;
518		lj->lioj_finished_count--;
519
520		if (lj->lioj_count == 0) {
521			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
522			/* lio is going away, we need to destroy any knotes */
523			knlist_delete(&lj->klist, curthread, 1);
524			PROC_LOCK(p);
525			sigqueue_take(&lj->lioj_ksi);
526			PROC_UNLOCK(p);
527			uma_zfree(aiolio_zone, lj);
528		}
529	}
530
531	/* job is going away, we need to destroy any knotes */
532	knlist_delete(&job->klist, curthread, 1);
533	PROC_LOCK(p);
534	sigqueue_take(&job->ksi);
535	PROC_UNLOCK(p);
536
537	AIO_UNLOCK(ki);
538
539	/*
540	 * The thread argument here is used to find the owning process
541	 * and is also passed to fo_close() which may pass it to various
542	 * places such as devsw close() routines.  Because of that, we
543	 * need a thread pointer from the process owning the job that is
544	 * persistent and won't disappear out from under us or move to
545	 * another process.
546	 *
547	 * Currently, all the callers of this function call it to remove
548	 * a kaiocb from the current process' job list either via a
549	 * syscall or due to the current process calling exit() or
550	 * execve().  Thus, we know that p == curproc.  We also know that
551	 * curthread can't exit since we are curthread.
552	 *
553	 * Therefore, we use curthread as the thread to pass to
554	 * knlist_delete().  This does mean that it is possible for the
555	 * thread pointer at close time to differ from the thread pointer
556	 * at open time, but this is already true of file descriptors in
557	 * a multithreaded process.
558	 */
559	if (job->fd_file)
560		fdrop(job->fd_file, curthread);
561	crfree(job->cred);
562	uma_zfree(aiocb_zone, job);
563	AIO_LOCK(ki);
564
565	return (0);
566}
567
568static void
569aio_proc_rundown_exec(void *arg, struct proc *p,
570    struct image_params *imgp __unused)
571{
572   	aio_proc_rundown(arg, p);
573}
574
575static int
576aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
577{
578	aio_cancel_fn_t *func;
579	int cancelled;
580
581	AIO_LOCK_ASSERT(ki, MA_OWNED);
582	if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
583		return (0);
584	MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
585	job->jobflags |= KAIOCB_CANCELLED;
586
587	func = job->cancel_fn;
588
589	/*
590	 * If there is no cancel routine, just leave the job marked as
591	 * cancelled.  The job should be in active use by a caller who
592	 * should complete it normally or when it fails to install a
593	 * cancel routine.
594	 */
595	if (func == NULL)
596		return (0);
597
598	/*
599	 * Set the CANCELLING flag so that aio_complete() will defer
600	 * completions of this job.  This prevents the job from being
601	 * freed out from under the cancel callback.  After the
602	 * callback any deferred completion (whether from the callback
603	 * or any other source) will be completed.
604	 */
605	job->jobflags |= KAIOCB_CANCELLING;
606	AIO_UNLOCK(ki);
607	func(job);
608	AIO_LOCK(ki);
609	job->jobflags &= ~KAIOCB_CANCELLING;
610	if (job->jobflags & KAIOCB_FINISHED) {
611		cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
612		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
613		aio_bio_done_notify(p, job);
614	} else {
615		/*
616		 * The cancel callback might have scheduled an
617		 * operation to cancel this request, but it is
618		 * only counted as cancelled if the request is
619		 * cancelled when the callback returns.
620		 */
621		cancelled = 0;
622	}
623	return (cancelled);
624}
625
626/*
627 * Rundown the jobs for a given process.
628 */
629static void
630aio_proc_rundown(void *arg, struct proc *p)
631{
632	struct kaioinfo *ki;
633	struct aioliojob *lj;
634	struct kaiocb *job, *jobn;
635
636	KASSERT(curthread->td_proc == p,
637	    ("%s: called on non-curproc", __func__));
638	ki = p->p_aioinfo;
639	if (ki == NULL)
640		return;
641
642	AIO_LOCK(ki);
643	ki->kaio_flags |= KAIO_RUNDOWN;
644
645restart:
646
647	/*
648	 * Try to cancel all pending requests. This code simulates
649	 * aio_cancel on all pending I/O requests.
650	 */
651	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
652		aio_cancel_job(p, ki, job);
653	}
654
655	/* Wait for all running I/O to be finished */
656	if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
657		ki->kaio_flags |= KAIO_WAKEUP;
658		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
659		goto restart;
660	}
661
662	/* Free all completed I/O requests. */
663	while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
664		aio_free_entry(job);
665
666	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
667		if (lj->lioj_count == 0) {
668			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
669			knlist_delete(&lj->klist, curthread, 1);
670			PROC_LOCK(p);
671			sigqueue_take(&lj->lioj_ksi);
672			PROC_UNLOCK(p);
673			uma_zfree(aiolio_zone, lj);
674		} else {
675			panic("LIO job not cleaned up: C:%d, FC:%d\n",
676			    lj->lioj_count, lj->lioj_finished_count);
677		}
678	}
679	AIO_UNLOCK(ki);
680	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
681	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
682	mtx_destroy(&ki->kaio_mtx);
683	uma_zfree(kaio_zone, ki);
684	p->p_aioinfo = NULL;
685}
686
687/*
688 * Select a job to run (called by an AIO daemon).
689 */
690static struct kaiocb *
691aio_selectjob(struct aioproc *aiop)
692{
693	struct kaiocb *job;
694	struct kaioinfo *ki;
695	struct proc *userp;
696
697	mtx_assert(&aio_job_mtx, MA_OWNED);
698restart:
699	TAILQ_FOREACH(job, &aio_jobs, list) {
700		userp = job->userproc;
701		ki = userp->p_aioinfo;
702
703		if (ki->kaio_active_count < max_aio_per_proc) {
704			TAILQ_REMOVE(&aio_jobs, job, list);
705			if (!aio_clear_cancel_function(job))
706				goto restart;
707
708			/* Account for currently active jobs. */
709			ki->kaio_active_count++;
710			break;
711		}
712	}
713	return (job);
714}
715
716/*
717 * Move all data to a permanent storage device.  This code
718 * simulates the fsync syscall.
719 */
720static int
721aio_fsync_vnode(struct thread *td, struct vnode *vp)
722{
723	struct mount *mp;
724	int error;
725
726	if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
727		goto drop;
728	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
729	if (vp->v_object != NULL) {
730		VM_OBJECT_WLOCK(vp->v_object);
731		vm_object_page_clean(vp->v_object, 0, 0, 0);
732		VM_OBJECT_WUNLOCK(vp->v_object);
733	}
734	error = VOP_FSYNC(vp, MNT_WAIT, td);
735
736	VOP_UNLOCK(vp, 0);
737	vn_finished_write(mp);
738drop:
739	return (error);
740}
741
742/*
743 * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
744 * does the I/O request for the non-bio version of the operations.  The normal
745 * vn operations are used, and this code should work in all instances for every
746 * type of file, including pipes, sockets, fifos, and regular files.
747 *
748 * XXX I don't think it works well for socket, pipe, and fifo.
749 */
750static void
751aio_process_rw(struct kaiocb *job)
752{
753	struct ucred *td_savedcred;
754	struct thread *td;
755	struct aiocb *cb;
756	struct file *fp;
757	struct uio auio;
758	struct iovec aiov;
759	ssize_t cnt;
760	long msgsnd_st, msgsnd_end;
761	long msgrcv_st, msgrcv_end;
762	long oublock_st, oublock_end;
763	long inblock_st, inblock_end;
764	int error;
765
766	KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
767	    job->uaiocb.aio_lio_opcode == LIO_WRITE,
768	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
769
770	aio_switch_vmspace(job);
771	td = curthread;
772	td_savedcred = td->td_ucred;
773	td->td_ucred = job->cred;
774	cb = &job->uaiocb;
775	fp = job->fd_file;
776
777	aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
778	aiov.iov_len = cb->aio_nbytes;
779
780	auio.uio_iov = &aiov;
781	auio.uio_iovcnt = 1;
782	auio.uio_offset = cb->aio_offset;
783	auio.uio_resid = cb->aio_nbytes;
784	cnt = cb->aio_nbytes;
785	auio.uio_segflg = UIO_USERSPACE;
786	auio.uio_td = td;
787
788	msgrcv_st = td->td_ru.ru_msgrcv;
789	msgsnd_st = td->td_ru.ru_msgsnd;
790	inblock_st = td->td_ru.ru_inblock;
791	oublock_st = td->td_ru.ru_oublock;
792
793	/*
794	 * aio_aqueue() acquires a reference to the file that is
795	 * released in aio_free_entry().
796	 */
797	if (cb->aio_lio_opcode == LIO_READ) {
798		auio.uio_rw = UIO_READ;
799		if (auio.uio_resid == 0)
800			error = 0;
801		else
802			error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
803	} else {
804		if (fp->f_type == DTYPE_VNODE)
805			bwillwrite();
806		auio.uio_rw = UIO_WRITE;
807		error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
808	}
809	msgrcv_end = td->td_ru.ru_msgrcv;
810	msgsnd_end = td->td_ru.ru_msgsnd;
811	inblock_end = td->td_ru.ru_inblock;
812	oublock_end = td->td_ru.ru_oublock;
813
814	job->msgrcv = msgrcv_end - msgrcv_st;
815	job->msgsnd = msgsnd_end - msgsnd_st;
816	job->inblock = inblock_end - inblock_st;
817	job->outblock = oublock_end - oublock_st;
818
819	if ((error) && (auio.uio_resid != cnt)) {
820		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
821			error = 0;
822		if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
823			PROC_LOCK(job->userproc);
824			kern_psignal(job->userproc, SIGPIPE);
825			PROC_UNLOCK(job->userproc);
826		}
827	}
828
829	cnt -= auio.uio_resid;
830	td->td_ucred = td_savedcred;
831	if (error)
832		aio_complete(job, -1, error);
833	else
834		aio_complete(job, cnt, 0);
835}
836
837static void
838aio_process_sync(struct kaiocb *job)
839{
840	struct thread *td = curthread;
841	struct ucred *td_savedcred = td->td_ucred;
842	struct file *fp = job->fd_file;
843	int error = 0;
844
845	KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC,
846	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
847
848	td->td_ucred = job->cred;
849	if (fp->f_vnode != NULL)
850		error = aio_fsync_vnode(td, fp->f_vnode);
851	td->td_ucred = td_savedcred;
852	if (error)
853		aio_complete(job, -1, error);
854	else
855		aio_complete(job, 0, 0);
856}
857
858static void
859aio_process_mlock(struct kaiocb *job)
860{
861	struct aiocb *cb = &job->uaiocb;
862	int error;
863
864	KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
865	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
866
867	aio_switch_vmspace(job);
868	error = kern_mlock(job->userproc, job->cred,
869	    __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
870	aio_complete(job, error != 0 ? -1 : 0, error);
871}
872
873static void
874aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
875{
876	struct aioliojob *lj;
877	struct kaioinfo *ki;
878	struct kaiocb *sjob, *sjobn;
879	int lj_done;
880	bool schedule_fsync;
881
882	ki = userp->p_aioinfo;
883	AIO_LOCK_ASSERT(ki, MA_OWNED);
884	lj = job->lio;
885	lj_done = 0;
886	if (lj) {
887		lj->lioj_finished_count++;
888		if (lj->lioj_count == lj->lioj_finished_count)
889			lj_done = 1;
890	}
891	TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
892	MPASS(job->jobflags & KAIOCB_FINISHED);
893
894	if (ki->kaio_flags & KAIO_RUNDOWN)
895		goto notification_done;
896
897	if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
898	    job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
899		aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
900
901	KNOTE_LOCKED(&job->klist, 1);
902
903	if (lj_done) {
904		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
905			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
906			KNOTE_LOCKED(&lj->klist, 1);
907		}
908		if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
909		    == LIOJ_SIGNAL &&
910		    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
911		    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
912			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
913			    true);
914			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
915		}
916	}
917
918notification_done:
919	if (job->jobflags & KAIOCB_CHECKSYNC) {
920		schedule_fsync = false;
921		TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
922			if (job->fd_file != sjob->fd_file ||
923			    job->seqno >= sjob->seqno)
924				continue;
925			if (--sjob->pending > 0)
926				continue;
927			TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
928			if (!aio_clear_cancel_function_locked(sjob))
929				continue;
930			TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
931			schedule_fsync = true;
932		}
933		if (schedule_fsync)
934			taskqueue_enqueue(taskqueue_aiod_kick,
935			    &ki->kaio_sync_task);
936	}
937	if (ki->kaio_flags & KAIO_WAKEUP) {
938		ki->kaio_flags &= ~KAIO_WAKEUP;
939		wakeup(&userp->p_aioinfo);
940	}
941}
942
943static void
944aio_schedule_fsync(void *context, int pending)
945{
946	struct kaioinfo *ki;
947	struct kaiocb *job;
948
949	ki = context;
950	AIO_LOCK(ki);
951	while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
952		job = TAILQ_FIRST(&ki->kaio_syncready);
953		TAILQ_REMOVE(&ki->kaio_syncready, job, list);
954		AIO_UNLOCK(ki);
955		aio_schedule(job, aio_process_sync);
956		AIO_LOCK(ki);
957	}
958	AIO_UNLOCK(ki);
959}
960
961bool
962aio_cancel_cleared(struct kaiocb *job)
963{
964
965	/*
966	 * The caller should hold the same queue lock held when
967	 * aio_clear_cancel_function() was called and set this flag
968	 * ensuring this check sees an up-to-date value.  However,
969	 * there is no way to assert that.
970	 */
971	return ((job->jobflags & KAIOCB_CLEARED) != 0);
972}
973
974static bool
975aio_clear_cancel_function_locked(struct kaiocb *job)
976{
977
978	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
979	MPASS(job->cancel_fn != NULL);
980	if (job->jobflags & KAIOCB_CANCELLING) {
981		job->jobflags |= KAIOCB_CLEARED;
982		return (false);
983	}
984	job->cancel_fn = NULL;
985	return (true);
986}
987
988bool
989aio_clear_cancel_function(struct kaiocb *job)
990{
991	struct kaioinfo *ki;
992	bool ret;
993
994	ki = job->userproc->p_aioinfo;
995	AIO_LOCK(ki);
996	ret = aio_clear_cancel_function_locked(job);
997	AIO_UNLOCK(ki);
998	return (ret);
999}
1000
1001static bool
1002aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
1003{
1004
1005	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
1006	if (job->jobflags & KAIOCB_CANCELLED)
1007		return (false);
1008	job->cancel_fn = func;
1009	return (true);
1010}
1011
1012bool
1013aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1014{
1015	struct kaioinfo *ki;
1016	bool ret;
1017
1018	ki = job->userproc->p_aioinfo;
1019	AIO_LOCK(ki);
1020	ret = aio_set_cancel_function_locked(job, func);
1021	AIO_UNLOCK(ki);
1022	return (ret);
1023}
1024
1025void
1026aio_complete(struct kaiocb *job, long status, int error)
1027{
1028	struct kaioinfo *ki;
1029	struct proc *userp;
1030
1031	job->uaiocb._aiocb_private.error = error;
1032	job->uaiocb._aiocb_private.status = status;
1033
1034	userp = job->userproc;
1035	ki = userp->p_aioinfo;
1036
1037	AIO_LOCK(ki);
1038	KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1039	    ("duplicate aio_complete"));
1040	job->jobflags |= KAIOCB_FINISHED;
1041	if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1042		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1043		aio_bio_done_notify(userp, job);
1044	}
1045	AIO_UNLOCK(ki);
1046}
1047
1048void
1049aio_cancel(struct kaiocb *job)
1050{
1051
1052	aio_complete(job, -1, ECANCELED);
1053}
1054
1055void
1056aio_switch_vmspace(struct kaiocb *job)
1057{
1058
1059	vmspace_switch_aio(job->userproc->p_vmspace);
1060}
1061
1062/*
1063 * The AIO daemon, most of the actual work is done in aio_process_*,
1064 * but the setup (and address space mgmt) is done in this routine.
1065 */
1066static void
1067aio_daemon(void *_id)
1068{
1069	struct kaiocb *job;
1070	struct aioproc *aiop;
1071	struct kaioinfo *ki;
1072	struct proc *p;
1073	struct vmspace *myvm;
1074	struct thread *td = curthread;
1075	int id = (intptr_t)_id;
1076
1077	/*
1078	 * Grab an extra reference on the daemon's vmspace so that it
1079	 * doesn't get freed by jobs that switch to a different
1080	 * vmspace.
1081	 */
1082	p = td->td_proc;
1083	myvm = vmspace_acquire_ref(p);
1084
1085	KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1086
1087	/*
1088	 * Allocate and ready the aio control info.  There is one aiop structure
1089	 * per daemon.
1090	 */
1091	aiop = uma_zalloc(aiop_zone, M_WAITOK);
1092	aiop->aioproc = p;
1093	aiop->aioprocflags = 0;
1094
1095	/*
1096	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1097	 * and creating too many daemons.)
1098	 */
1099	sema_post(&aio_newproc_sem);
1100
1101	mtx_lock(&aio_job_mtx);
1102	for (;;) {
1103		/*
1104		 * Take daemon off of free queue
1105		 */
1106		if (aiop->aioprocflags & AIOP_FREE) {
1107			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1108			aiop->aioprocflags &= ~AIOP_FREE;
1109		}
1110
1111		/*
1112		 * Check for jobs.
1113		 */
1114		while ((job = aio_selectjob(aiop)) != NULL) {
1115			mtx_unlock(&aio_job_mtx);
1116
1117			ki = job->userproc->p_aioinfo;
1118			job->handle_fn(job);
1119
1120			mtx_lock(&aio_job_mtx);
1121			/* Decrement the active job count. */
1122			ki->kaio_active_count--;
1123		}
1124
1125		/*
1126		 * Disconnect from user address space.
1127		 */
1128		if (p->p_vmspace != myvm) {
1129			mtx_unlock(&aio_job_mtx);
1130			vmspace_switch_aio(myvm);
1131			mtx_lock(&aio_job_mtx);
1132			/*
1133			 * We have to restart to avoid race, we only sleep if
1134			 * no job can be selected.
1135			 */
1136			continue;
1137		}
1138
1139		mtx_assert(&aio_job_mtx, MA_OWNED);
1140
1141		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1142		aiop->aioprocflags |= AIOP_FREE;
1143
1144		/*
1145		 * If daemon is inactive for a long time, allow it to exit,
1146		 * thereby freeing resources.
1147		 */
1148		if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1149		    aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1150		    (aiop->aioprocflags & AIOP_FREE) &&
1151		    num_aio_procs > target_aio_procs)
1152			break;
1153	}
1154	TAILQ_REMOVE(&aio_freeproc, aiop, list);
1155	num_aio_procs--;
1156	mtx_unlock(&aio_job_mtx);
1157	uma_zfree(aiop_zone, aiop);
1158	free_unr(aiod_unr, id);
1159	vmspace_free(myvm);
1160
1161	KASSERT(p->p_vmspace == myvm,
1162	    ("AIOD: bad vmspace for exiting daemon"));
1163	KASSERT(myvm->vm_refcnt > 1,
1164	    ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt));
1165	kproc_exit(0);
1166}
1167
1168/*
1169 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1170 * AIO daemon modifies its environment itself.
1171 */
1172static int
1173aio_newproc(int *start)
1174{
1175	int error;
1176	struct proc *p;
1177	int id;
1178
1179	id = alloc_unr(aiod_unr);
1180	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1181		RFNOWAIT, 0, "aiod%d", id);
1182	if (error == 0) {
1183		/*
1184		 * Wait until daemon is started.
1185		 */
1186		sema_wait(&aio_newproc_sem);
1187		mtx_lock(&aio_job_mtx);
1188		num_aio_procs++;
1189		if (start != NULL)
1190			(*start)--;
1191		mtx_unlock(&aio_job_mtx);
1192	} else {
1193		free_unr(aiod_unr, id);
1194	}
1195	return (error);
1196}
1197
1198/*
1199 * Try the high-performance, low-overhead bio method for eligible
1200 * VCHR devices.  This method doesn't use an aio helper thread, and
1201 * thus has very low overhead.
1202 *
1203 * Assumes that the caller, aio_aqueue(), has incremented the file
1204 * structure's reference count, preventing its deallocation for the
1205 * duration of this call.
1206 */
1207static int
1208aio_qbio(struct proc *p, struct kaiocb *job)
1209{
1210	struct aiocb *cb;
1211	struct file *fp;
1212	struct bio *bp;
1213	struct buf *pbuf;
1214	struct vnode *vp;
1215	struct cdevsw *csw;
1216	struct cdev *dev;
1217	struct kaioinfo *ki;
1218	int error, ref, poff;
1219	vm_prot_t prot;
1220
1221	cb = &job->uaiocb;
1222	fp = job->fd_file;
1223
1224	if (!(cb->aio_lio_opcode == LIO_WRITE ||
1225	    cb->aio_lio_opcode == LIO_READ))
1226		return (-1);
1227	if (fp == NULL || fp->f_type != DTYPE_VNODE)
1228		return (-1);
1229
1230	vp = fp->f_vnode;
1231	if (vp->v_type != VCHR)
1232		return (-1);
1233	if (vp->v_bufobj.bo_bsize == 0)
1234		return (-1);
1235	if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
1236		return (-1);
1237
1238	ref = 0;
1239	csw = devvn_refthread(vp, &dev, &ref);
1240	if (csw == NULL)
1241		return (ENXIO);
1242
1243	if ((csw->d_flags & D_DISK) == 0) {
1244		error = -1;
1245		goto unref;
1246	}
1247	if (cb->aio_nbytes > dev->si_iosize_max) {
1248		error = -1;
1249		goto unref;
1250	}
1251
1252	ki = p->p_aioinfo;
1253	poff = (vm_offset_t)cb->aio_buf & PAGE_MASK;
1254	if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) {
1255		if (cb->aio_nbytes > MAXPHYS) {
1256			error = -1;
1257			goto unref;
1258		}
1259
1260		pbuf = NULL;
1261	} else {
1262		if (cb->aio_nbytes > MAXPHYS - poff) {
1263			error = -1;
1264			goto unref;
1265		}
1266		if (ki->kaio_buffer_count >= max_buf_aio) {
1267			error = EAGAIN;
1268			goto unref;
1269		}
1270
1271		job->pbuf = pbuf = (struct buf *)getpbuf(NULL);
1272		BUF_KERNPROC(pbuf);
1273		AIO_LOCK(ki);
1274		ki->kaio_buffer_count++;
1275		AIO_UNLOCK(ki);
1276	}
1277	job->bp = bp = g_alloc_bio();
1278
1279	bp->bio_length = cb->aio_nbytes;
1280	bp->bio_bcount = cb->aio_nbytes;
1281	bp->bio_done = aio_biowakeup;
1282	bp->bio_offset = cb->aio_offset;
1283	bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
1284	bp->bio_dev = dev;
1285	bp->bio_caller1 = (void *)job;
1286
1287	prot = VM_PROT_READ;
1288	if (cb->aio_lio_opcode == LIO_READ)
1289		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
1290	job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1291	    (vm_offset_t)cb->aio_buf, bp->bio_length, prot, job->pages,
1292	    nitems(job->pages));
1293	if (job->npages < 0) {
1294		error = EFAULT;
1295		goto doerror;
1296	}
1297	if (pbuf != NULL) {
1298		pmap_qenter((vm_offset_t)pbuf->b_data,
1299		    job->pages, job->npages);
1300		bp->bio_data = pbuf->b_data + poff;
1301		atomic_add_int(&num_buf_aio, 1);
1302	} else {
1303		bp->bio_ma = job->pages;
1304		bp->bio_ma_n = job->npages;
1305		bp->bio_ma_offset = poff;
1306		bp->bio_data = unmapped_buf;
1307		bp->bio_flags |= BIO_UNMAPPED;
1308		atomic_add_int(&num_unmapped_aio, 1);
1309	}
1310
1311	/* Perform transfer. */
1312	csw->d_strategy(bp);
1313	dev_relthread(dev, ref);
1314	return (0);
1315
1316doerror:
1317	if (pbuf != NULL) {
1318		AIO_LOCK(ki);
1319		ki->kaio_buffer_count--;
1320		AIO_UNLOCK(ki);
1321		relpbuf(pbuf, NULL);
1322		job->pbuf = NULL;
1323	}
1324	g_destroy_bio(bp);
1325	job->bp = NULL;
1326unref:
1327	dev_relthread(dev, ref);
1328	return (error);
1329}
1330
1331#ifdef COMPAT_FREEBSD6
1332static int
1333convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1334{
1335
1336	/*
1337	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1338	 * supported by AIO with the old sigevent structure.
1339	 */
1340	nsig->sigev_notify = osig->sigev_notify;
1341	switch (nsig->sigev_notify) {
1342	case SIGEV_NONE:
1343		break;
1344	case SIGEV_SIGNAL:
1345		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1346		break;
1347	case SIGEV_KEVENT:
1348		nsig->sigev_notify_kqueue =
1349		    osig->__sigev_u.__sigev_notify_kqueue;
1350		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1351		break;
1352	default:
1353		return (EINVAL);
1354	}
1355	return (0);
1356}
1357
1358static int
1359aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
1360{
1361	struct oaiocb *ojob;
1362	int error;
1363
1364	bzero(kjob, sizeof(struct aiocb));
1365	error = copyin(ujob, kjob, sizeof(struct oaiocb));
1366	if (error)
1367		return (error);
1368	ojob = (struct oaiocb *)kjob;
1369	return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
1370}
1371#endif
1372
1373static int
1374aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
1375{
1376
1377	return (copyin(ujob, kjob, sizeof(struct aiocb)));
1378}
1379
1380static long
1381aiocb_fetch_status(struct aiocb *ujob)
1382{
1383
1384	return (fuword(&ujob->_aiocb_private.status));
1385}
1386
1387static long
1388aiocb_fetch_error(struct aiocb *ujob)
1389{
1390
1391	return (fuword(&ujob->_aiocb_private.error));
1392}
1393
1394static int
1395aiocb_store_status(struct aiocb *ujob, long status)
1396{
1397
1398	return (suword(&ujob->_aiocb_private.status, status));
1399}
1400
1401static int
1402aiocb_store_error(struct aiocb *ujob, long error)
1403{
1404
1405	return (suword(&ujob->_aiocb_private.error, error));
1406}
1407
1408static int
1409aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
1410{
1411
1412	return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
1413}
1414
1415static int
1416aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1417{
1418
1419	return (suword(ujobp, (long)ujob));
1420}
1421
1422static struct aiocb_ops aiocb_ops = {
1423	.copyin = aiocb_copyin,
1424	.fetch_status = aiocb_fetch_status,
1425	.fetch_error = aiocb_fetch_error,
1426	.store_status = aiocb_store_status,
1427	.store_error = aiocb_store_error,
1428	.store_kernelinfo = aiocb_store_kernelinfo,
1429	.store_aiocb = aiocb_store_aiocb,
1430};
1431
1432#ifdef COMPAT_FREEBSD6
1433static struct aiocb_ops aiocb_ops_osigevent = {
1434	.copyin = aiocb_copyin_old_sigevent,
1435	.fetch_status = aiocb_fetch_status,
1436	.fetch_error = aiocb_fetch_error,
1437	.store_status = aiocb_store_status,
1438	.store_error = aiocb_store_error,
1439	.store_kernelinfo = aiocb_store_kernelinfo,
1440	.store_aiocb = aiocb_store_aiocb,
1441};
1442#endif
1443
1444/*
1445 * Queue a new AIO request.  Choosing either the threaded or direct bio VCHR
1446 * technique is done in this code.
1447 */
1448int
1449aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1450    int type, struct aiocb_ops *ops)
1451{
1452	struct proc *p = td->td_proc;
1453	struct file *fp;
1454	struct kaiocb *job;
1455	struct kaioinfo *ki;
1456	struct kevent kev;
1457	int opcode;
1458	int error;
1459	int fd, kqfd;
1460	int jid;
1461	u_short evflags;
1462
1463	if (p->p_aioinfo == NULL)
1464		aio_init_aioinfo(p);
1465
1466	ki = p->p_aioinfo;
1467
1468	ops->store_status(ujob, -1);
1469	ops->store_error(ujob, 0);
1470	ops->store_kernelinfo(ujob, -1);
1471
1472	if (num_queue_count >= max_queue_count ||
1473	    ki->kaio_count >= max_aio_queue_per_proc) {
1474		ops->store_error(ujob, EAGAIN);
1475		return (EAGAIN);
1476	}
1477
1478	job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1479	knlist_init_mtx(&job->klist, AIO_MTX(ki));
1480
1481	error = ops->copyin(ujob, &job->uaiocb);
1482	if (error) {
1483		ops->store_error(ujob, error);
1484		uma_zfree(aiocb_zone, job);
1485		return (error);
1486	}
1487
1488	if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1489		uma_zfree(aiocb_zone, job);
1490		return (EINVAL);
1491	}
1492
1493	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1494	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1495	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1496	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1497		ops->store_error(ujob, EINVAL);
1498		uma_zfree(aiocb_zone, job);
1499		return (EINVAL);
1500	}
1501
1502	if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1503	     job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1504		!_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1505		uma_zfree(aiocb_zone, job);
1506		return (EINVAL);
1507	}
1508
1509	ksiginfo_init(&job->ksi);
1510
1511	/* Save userspace address of the job info. */
1512	job->ujob = ujob;
1513
1514	/* Get the opcode. */
1515	if (type != LIO_NOP)
1516		job->uaiocb.aio_lio_opcode = type;
1517	opcode = job->uaiocb.aio_lio_opcode;
1518
1519	/*
1520	 * Validate the opcode and fetch the file object for the specified
1521	 * file descriptor.
1522	 *
1523	 * XXXRW: Moved the opcode validation up here so that we don't
1524	 * retrieve a file descriptor without knowing what the capabiltity
1525	 * should be.
1526	 */
1527	fd = job->uaiocb.aio_fildes;
1528	switch (opcode) {
1529	case LIO_WRITE:
1530		error = fget_write(td, fd, &cap_pwrite_rights, &fp);
1531		break;
1532	case LIO_READ:
1533		error = fget_read(td, fd, &cap_pread_rights, &fp);
1534		break;
1535	case LIO_SYNC:
1536		error = fget(td, fd, &cap_fsync_rights, &fp);
1537		break;
1538	case LIO_MLOCK:
1539		fp = NULL;
1540		break;
1541	case LIO_NOP:
1542		error = fget(td, fd, &cap_no_rights, &fp);
1543		break;
1544	default:
1545		error = EINVAL;
1546	}
1547	if (error) {
1548		uma_zfree(aiocb_zone, job);
1549		ops->store_error(ujob, error);
1550		return (error);
1551	}
1552
1553	if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
1554		error = EINVAL;
1555		goto aqueue_fail;
1556	}
1557
1558	if ((opcode == LIO_READ || opcode == LIO_WRITE) &&
1559	    job->uaiocb.aio_offset < 0 &&
1560	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1561		error = EINVAL;
1562		goto aqueue_fail;
1563	}
1564
1565	job->fd_file = fp;
1566
1567	mtx_lock(&aio_job_mtx);
1568	jid = jobrefid++;
1569	job->seqno = jobseqno++;
1570	mtx_unlock(&aio_job_mtx);
1571	error = ops->store_kernelinfo(ujob, jid);
1572	if (error) {
1573		error = EINVAL;
1574		goto aqueue_fail;
1575	}
1576	job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
1577
1578	if (opcode == LIO_NOP) {
1579		fdrop(fp, td);
1580		uma_zfree(aiocb_zone, job);
1581		return (0);
1582	}
1583
1584	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1585		goto no_kqueue;
1586	evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1587	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1588		error = EINVAL;
1589		goto aqueue_fail;
1590	}
1591	kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1592	memset(&kev, 0, sizeof(kev));
1593	kev.ident = (uintptr_t)job->ujob;
1594	kev.filter = EVFILT_AIO;
1595	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1596	kev.data = (intptr_t)job;
1597	kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1598	error = kqfd_register(kqfd, &kev, td, M_WAITOK);
1599	if (error)
1600		goto aqueue_fail;
1601
1602no_kqueue:
1603
1604	ops->store_error(ujob, EINPROGRESS);
1605	job->uaiocb._aiocb_private.error = EINPROGRESS;
1606	job->userproc = p;
1607	job->cred = crhold(td->td_ucred);
1608	job->jobflags = KAIOCB_QUEUEING;
1609	job->lio = lj;
1610
1611	if (opcode == LIO_MLOCK) {
1612		aio_schedule(job, aio_process_mlock);
1613		error = 0;
1614	} else if (fp->f_ops->fo_aio_queue == NULL)
1615		error = aio_queue_file(fp, job);
1616	else
1617		error = fo_aio_queue(fp, job);
1618	if (error)
1619		goto aqueue_fail;
1620
1621	AIO_LOCK(ki);
1622	job->jobflags &= ~KAIOCB_QUEUEING;
1623	TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1624	ki->kaio_count++;
1625	if (lj)
1626		lj->lioj_count++;
1627	atomic_add_int(&num_queue_count, 1);
1628	if (job->jobflags & KAIOCB_FINISHED) {
1629		/*
1630		 * The queue callback completed the request synchronously.
1631		 * The bulk of the completion is deferred in that case
1632		 * until this point.
1633		 */
1634		aio_bio_done_notify(p, job);
1635	} else
1636		TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1637	AIO_UNLOCK(ki);
1638	return (0);
1639
1640aqueue_fail:
1641	knlist_delete(&job->klist, curthread, 0);
1642	if (fp)
1643		fdrop(fp, td);
1644	uma_zfree(aiocb_zone, job);
1645	ops->store_error(ujob, error);
1646	return (error);
1647}
1648
1649static void
1650aio_cancel_daemon_job(struct kaiocb *job)
1651{
1652
1653	mtx_lock(&aio_job_mtx);
1654	if (!aio_cancel_cleared(job))
1655		TAILQ_REMOVE(&aio_jobs, job, list);
1656	mtx_unlock(&aio_job_mtx);
1657	aio_cancel(job);
1658}
1659
1660void
1661aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1662{
1663
1664	mtx_lock(&aio_job_mtx);
1665	if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1666		mtx_unlock(&aio_job_mtx);
1667		aio_cancel(job);
1668		return;
1669	}
1670	job->handle_fn = func;
1671	TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1672	aio_kick_nowait(job->userproc);
1673	mtx_unlock(&aio_job_mtx);
1674}
1675
1676static void
1677aio_cancel_sync(struct kaiocb *job)
1678{
1679	struct kaioinfo *ki;
1680
1681	ki = job->userproc->p_aioinfo;
1682	AIO_LOCK(ki);
1683	if (!aio_cancel_cleared(job))
1684		TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1685	AIO_UNLOCK(ki);
1686	aio_cancel(job);
1687}
1688
1689int
1690aio_queue_file(struct file *fp, struct kaiocb *job)
1691{
1692	struct kaioinfo *ki;
1693	struct kaiocb *job2;
1694	struct vnode *vp;
1695	struct mount *mp;
1696	int error;
1697	bool safe;
1698
1699	ki = job->userproc->p_aioinfo;
1700	error = aio_qbio(job->userproc, job);
1701	if (error >= 0)
1702		return (error);
1703	safe = false;
1704	if (fp->f_type == DTYPE_VNODE) {
1705		vp = fp->f_vnode;
1706		if (vp->v_type == VREG || vp->v_type == VDIR) {
1707			mp = fp->f_vnode->v_mount;
1708			if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1709				safe = true;
1710		}
1711	}
1712	if (!(safe || enable_aio_unsafe)) {
1713		counted_warning(&unsafe_warningcnt,
1714		    "is attempting to use unsafe AIO requests");
1715		return (EOPNOTSUPP);
1716	}
1717
1718	switch (job->uaiocb.aio_lio_opcode) {
1719	case LIO_READ:
1720	case LIO_WRITE:
1721		aio_schedule(job, aio_process_rw);
1722		error = 0;
1723		break;
1724	case LIO_SYNC:
1725		AIO_LOCK(ki);
1726		TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1727			if (job2->fd_file == job->fd_file &&
1728			    job2->uaiocb.aio_lio_opcode != LIO_SYNC &&
1729			    job2->seqno < job->seqno) {
1730				job2->jobflags |= KAIOCB_CHECKSYNC;
1731				job->pending++;
1732			}
1733		}
1734		if (job->pending != 0) {
1735			if (!aio_set_cancel_function_locked(job,
1736				aio_cancel_sync)) {
1737				AIO_UNLOCK(ki);
1738				aio_cancel(job);
1739				return (0);
1740			}
1741			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1742			AIO_UNLOCK(ki);
1743			return (0);
1744		}
1745		AIO_UNLOCK(ki);
1746		aio_schedule(job, aio_process_sync);
1747		error = 0;
1748		break;
1749	default:
1750		error = EINVAL;
1751	}
1752	return (error);
1753}
1754
1755static void
1756aio_kick_nowait(struct proc *userp)
1757{
1758	struct kaioinfo *ki = userp->p_aioinfo;
1759	struct aioproc *aiop;
1760
1761	mtx_assert(&aio_job_mtx, MA_OWNED);
1762	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1763		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1764		aiop->aioprocflags &= ~AIOP_FREE;
1765		wakeup(aiop->aioproc);
1766	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1767	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1768		taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1769	}
1770}
1771
1772static int
1773aio_kick(struct proc *userp)
1774{
1775	struct kaioinfo *ki = userp->p_aioinfo;
1776	struct aioproc *aiop;
1777	int error, ret = 0;
1778
1779	mtx_assert(&aio_job_mtx, MA_OWNED);
1780retryproc:
1781	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1782		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1783		aiop->aioprocflags &= ~AIOP_FREE;
1784		wakeup(aiop->aioproc);
1785	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1786	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1787		num_aio_resv_start++;
1788		mtx_unlock(&aio_job_mtx);
1789		error = aio_newproc(&num_aio_resv_start);
1790		mtx_lock(&aio_job_mtx);
1791		if (error) {
1792			num_aio_resv_start--;
1793			goto retryproc;
1794		}
1795	} else {
1796		ret = -1;
1797	}
1798	return (ret);
1799}
1800
1801static void
1802aio_kick_helper(void *context, int pending)
1803{
1804	struct proc *userp = context;
1805
1806	mtx_lock(&aio_job_mtx);
1807	while (--pending >= 0) {
1808		if (aio_kick(userp))
1809			break;
1810	}
1811	mtx_unlock(&aio_job_mtx);
1812}
1813
1814/*
1815 * Support the aio_return system call, as a side-effect, kernel resources are
1816 * released.
1817 */
1818static int
1819kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1820{
1821	struct proc *p = td->td_proc;
1822	struct kaiocb *job;
1823	struct kaioinfo *ki;
1824	long status, error;
1825
1826	ki = p->p_aioinfo;
1827	if (ki == NULL)
1828		return (EINVAL);
1829	AIO_LOCK(ki);
1830	TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1831		if (job->ujob == ujob)
1832			break;
1833	}
1834	if (job != NULL) {
1835		MPASS(job->jobflags & KAIOCB_FINISHED);
1836		status = job->uaiocb._aiocb_private.status;
1837		error = job->uaiocb._aiocb_private.error;
1838		td->td_retval[0] = status;
1839		td->td_ru.ru_oublock += job->outblock;
1840		td->td_ru.ru_inblock += job->inblock;
1841		td->td_ru.ru_msgsnd += job->msgsnd;
1842		td->td_ru.ru_msgrcv += job->msgrcv;
1843		aio_free_entry(job);
1844		AIO_UNLOCK(ki);
1845		ops->store_error(ujob, error);
1846		ops->store_status(ujob, status);
1847	} else {
1848		error = EINVAL;
1849		AIO_UNLOCK(ki);
1850	}
1851	return (error);
1852}
1853
1854int
1855sys_aio_return(struct thread *td, struct aio_return_args *uap)
1856{
1857
1858	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1859}
1860
1861/*
1862 * Allow a process to wakeup when any of the I/O requests are completed.
1863 */
1864static int
1865kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1866    struct timespec *ts)
1867{
1868	struct proc *p = td->td_proc;
1869	struct timeval atv;
1870	struct kaioinfo *ki;
1871	struct kaiocb *firstjob, *job;
1872	int error, i, timo;
1873
1874	timo = 0;
1875	if (ts) {
1876		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1877			return (EINVAL);
1878
1879		TIMESPEC_TO_TIMEVAL(&atv, ts);
1880		if (itimerfix(&atv))
1881			return (EINVAL);
1882		timo = tvtohz(&atv);
1883	}
1884
1885	ki = p->p_aioinfo;
1886	if (ki == NULL)
1887		return (EAGAIN);
1888
1889	if (njoblist == 0)
1890		return (0);
1891
1892	AIO_LOCK(ki);
1893	for (;;) {
1894		firstjob = NULL;
1895		error = 0;
1896		TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1897			for (i = 0; i < njoblist; i++) {
1898				if (job->ujob == ujoblist[i]) {
1899					if (firstjob == NULL)
1900						firstjob = job;
1901					if (job->jobflags & KAIOCB_FINISHED)
1902						goto RETURN;
1903				}
1904			}
1905		}
1906		/* All tasks were finished. */
1907		if (firstjob == NULL)
1908			break;
1909
1910		ki->kaio_flags |= KAIO_WAKEUP;
1911		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
1912		    "aiospn", timo);
1913		if (error == ERESTART)
1914			error = EINTR;
1915		if (error)
1916			break;
1917	}
1918RETURN:
1919	AIO_UNLOCK(ki);
1920	return (error);
1921}
1922
1923int
1924sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
1925{
1926	struct timespec ts, *tsp;
1927	struct aiocb **ujoblist;
1928	int error;
1929
1930	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
1931		return (EINVAL);
1932
1933	if (uap->timeout) {
1934		/* Get timespec struct. */
1935		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
1936			return (error);
1937		tsp = &ts;
1938	} else
1939		tsp = NULL;
1940
1941	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
1942	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
1943	if (error == 0)
1944		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
1945	free(ujoblist, M_AIOS);
1946	return (error);
1947}
1948
1949/*
1950 * aio_cancel cancels any non-bio aio operations not currently in progress.
1951 */
1952int
1953sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
1954{
1955	struct proc *p = td->td_proc;
1956	struct kaioinfo *ki;
1957	struct kaiocb *job, *jobn;
1958	struct file *fp;
1959	int error;
1960	int cancelled = 0;
1961	int notcancelled = 0;
1962	struct vnode *vp;
1963
1964	/* Lookup file object. */
1965	error = fget(td, uap->fd, &cap_no_rights, &fp);
1966	if (error)
1967		return (error);
1968
1969	ki = p->p_aioinfo;
1970	if (ki == NULL)
1971		goto done;
1972
1973	if (fp->f_type == DTYPE_VNODE) {
1974		vp = fp->f_vnode;
1975		if (vn_isdisk(vp, &error)) {
1976			fdrop(fp, td);
1977			td->td_retval[0] = AIO_NOTCANCELED;
1978			return (0);
1979		}
1980	}
1981
1982	AIO_LOCK(ki);
1983	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
1984		if ((uap->fd == job->uaiocb.aio_fildes) &&
1985		    ((uap->aiocbp == NULL) ||
1986		     (uap->aiocbp == job->ujob))) {
1987			if (aio_cancel_job(p, ki, job)) {
1988				cancelled++;
1989			} else {
1990				notcancelled++;
1991			}
1992			if (uap->aiocbp != NULL)
1993				break;
1994		}
1995	}
1996	AIO_UNLOCK(ki);
1997
1998done:
1999	fdrop(fp, td);
2000
2001	if (uap->aiocbp != NULL) {
2002		if (cancelled) {
2003			td->td_retval[0] = AIO_CANCELED;
2004			return (0);
2005		}
2006	}
2007
2008	if (notcancelled) {
2009		td->td_retval[0] = AIO_NOTCANCELED;
2010		return (0);
2011	}
2012
2013	if (cancelled) {
2014		td->td_retval[0] = AIO_CANCELED;
2015		return (0);
2016	}
2017
2018	td->td_retval[0] = AIO_ALLDONE;
2019
2020	return (0);
2021}
2022
2023/*
2024 * aio_error is implemented in the kernel level for compatibility purposes
2025 * only.  For a user mode async implementation, it would be best to do it in
2026 * a userland subroutine.
2027 */
2028static int
2029kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2030{
2031	struct proc *p = td->td_proc;
2032	struct kaiocb *job;
2033	struct kaioinfo *ki;
2034	int status;
2035
2036	ki = p->p_aioinfo;
2037	if (ki == NULL) {
2038		td->td_retval[0] = EINVAL;
2039		return (0);
2040	}
2041
2042	AIO_LOCK(ki);
2043	TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2044		if (job->ujob == ujob) {
2045			if (job->jobflags & KAIOCB_FINISHED)
2046				td->td_retval[0] =
2047					job->uaiocb._aiocb_private.error;
2048			else
2049				td->td_retval[0] = EINPROGRESS;
2050			AIO_UNLOCK(ki);
2051			return (0);
2052		}
2053	}
2054	AIO_UNLOCK(ki);
2055
2056	/*
2057	 * Hack for failure of aio_aqueue.
2058	 */
2059	status = ops->fetch_status(ujob);
2060	if (status == -1) {
2061		td->td_retval[0] = ops->fetch_error(ujob);
2062		return (0);
2063	}
2064
2065	td->td_retval[0] = EINVAL;
2066	return (0);
2067}
2068
2069int
2070sys_aio_error(struct thread *td, struct aio_error_args *uap)
2071{
2072
2073	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2074}
2075
2076/* syscall - asynchronous read from a file (REALTIME) */
2077#ifdef COMPAT_FREEBSD6
2078int
2079freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2080{
2081
2082	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2083	    &aiocb_ops_osigevent));
2084}
2085#endif
2086
2087int
2088sys_aio_read(struct thread *td, struct aio_read_args *uap)
2089{
2090
2091	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2092}
2093
2094/* syscall - asynchronous write to a file (REALTIME) */
2095#ifdef COMPAT_FREEBSD6
2096int
2097freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2098{
2099
2100	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2101	    &aiocb_ops_osigevent));
2102}
2103#endif
2104
2105int
2106sys_aio_write(struct thread *td, struct aio_write_args *uap)
2107{
2108
2109	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2110}
2111
2112int
2113sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2114{
2115
2116	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2117}
2118
2119static int
2120kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2121    struct aiocb **acb_list, int nent, struct sigevent *sig,
2122    struct aiocb_ops *ops)
2123{
2124	struct proc *p = td->td_proc;
2125	struct aiocb *job;
2126	struct kaioinfo *ki;
2127	struct aioliojob *lj;
2128	struct kevent kev;
2129	int error;
2130	int nagain, nerror;
2131	int i;
2132
2133	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2134		return (EINVAL);
2135
2136	if (nent < 0 || nent > max_aio_queue_per_proc)
2137		return (EINVAL);
2138
2139	if (p->p_aioinfo == NULL)
2140		aio_init_aioinfo(p);
2141
2142	ki = p->p_aioinfo;
2143
2144	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2145	lj->lioj_flags = 0;
2146	lj->lioj_count = 0;
2147	lj->lioj_finished_count = 0;
2148	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2149	ksiginfo_init(&lj->lioj_ksi);
2150
2151	/*
2152	 * Setup signal.
2153	 */
2154	if (sig && (mode == LIO_NOWAIT)) {
2155		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2156		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2157			/* Assume only new style KEVENT */
2158			memset(&kev, 0, sizeof(kev));
2159			kev.filter = EVFILT_LIO;
2160			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2161			kev.ident = (uintptr_t)uacb_list; /* something unique */
2162			kev.data = (intptr_t)lj;
2163			/* pass user defined sigval data */
2164			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2165			error = kqfd_register(
2166			    lj->lioj_signal.sigev_notify_kqueue, &kev, td,
2167			    M_WAITOK);
2168			if (error) {
2169				uma_zfree(aiolio_zone, lj);
2170				return (error);
2171			}
2172		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2173			;
2174		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2175			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2176				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2177					uma_zfree(aiolio_zone, lj);
2178					return EINVAL;
2179				}
2180				lj->lioj_flags |= LIOJ_SIGNAL;
2181		} else {
2182			uma_zfree(aiolio_zone, lj);
2183			return EINVAL;
2184		}
2185	}
2186
2187	AIO_LOCK(ki);
2188	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2189	/*
2190	 * Add extra aiocb count to avoid the lio to be freed
2191	 * by other threads doing aio_waitcomplete or aio_return,
2192	 * and prevent event from being sent until we have queued
2193	 * all tasks.
2194	 */
2195	lj->lioj_count = 1;
2196	AIO_UNLOCK(ki);
2197
2198	/*
2199	 * Get pointers to the list of I/O requests.
2200	 */
2201	nagain = 0;
2202	nerror = 0;
2203	for (i = 0; i < nent; i++) {
2204		job = acb_list[i];
2205		if (job != NULL) {
2206			error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2207			if (error == EAGAIN)
2208				nagain++;
2209			else if (error != 0)
2210				nerror++;
2211		}
2212	}
2213
2214	error = 0;
2215	AIO_LOCK(ki);
2216	if (mode == LIO_WAIT) {
2217		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2218			ki->kaio_flags |= KAIO_WAKEUP;
2219			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2220			    PRIBIO | PCATCH, "aiospn", 0);
2221			if (error == ERESTART)
2222				error = EINTR;
2223			if (error)
2224				break;
2225		}
2226	} else {
2227		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2228			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2229				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2230				KNOTE_LOCKED(&lj->klist, 1);
2231			}
2232			if ((lj->lioj_flags & (LIOJ_SIGNAL |
2233			    LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
2234			    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2235			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2236				aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
2237				    lj->lioj_count != 1);
2238				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2239			}
2240		}
2241	}
2242	lj->lioj_count--;
2243	if (lj->lioj_count == 0) {
2244		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2245		knlist_delete(&lj->klist, curthread, 1);
2246		PROC_LOCK(p);
2247		sigqueue_take(&lj->lioj_ksi);
2248		PROC_UNLOCK(p);
2249		AIO_UNLOCK(ki);
2250		uma_zfree(aiolio_zone, lj);
2251	} else
2252		AIO_UNLOCK(ki);
2253
2254	if (nerror)
2255		return (EIO);
2256	else if (nagain)
2257		return (EAGAIN);
2258	else
2259		return (error);
2260}
2261
2262/* syscall - list directed I/O (REALTIME) */
2263#ifdef COMPAT_FREEBSD6
2264int
2265freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2266{
2267	struct aiocb **acb_list;
2268	struct sigevent *sigp, sig;
2269	struct osigevent osig;
2270	int error, nent;
2271
2272	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2273		return (EINVAL);
2274
2275	nent = uap->nent;
2276	if (nent < 0 || nent > max_aio_queue_per_proc)
2277		return (EINVAL);
2278
2279	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2280		error = copyin(uap->sig, &osig, sizeof(osig));
2281		if (error)
2282			return (error);
2283		error = convert_old_sigevent(&osig, &sig);
2284		if (error)
2285			return (error);
2286		sigp = &sig;
2287	} else
2288		sigp = NULL;
2289
2290	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2291	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2292	if (error == 0)
2293		error = kern_lio_listio(td, uap->mode,
2294		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2295		    &aiocb_ops_osigevent);
2296	free(acb_list, M_LIO);
2297	return (error);
2298}
2299#endif
2300
2301/* syscall - list directed I/O (REALTIME) */
2302int
2303sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2304{
2305	struct aiocb **acb_list;
2306	struct sigevent *sigp, sig;
2307	int error, nent;
2308
2309	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2310		return (EINVAL);
2311
2312	nent = uap->nent;
2313	if (nent < 0 || nent > max_aio_queue_per_proc)
2314		return (EINVAL);
2315
2316	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2317		error = copyin(uap->sig, &sig, sizeof(sig));
2318		if (error)
2319			return (error);
2320		sigp = &sig;
2321	} else
2322		sigp = NULL;
2323
2324	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2325	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2326	if (error == 0)
2327		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2328		    nent, sigp, &aiocb_ops);
2329	free(acb_list, M_LIO);
2330	return (error);
2331}
2332
2333static void
2334aio_biowakeup(struct bio *bp)
2335{
2336	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2337	struct proc *userp;
2338	struct kaioinfo *ki;
2339	size_t nbytes;
2340	int error, nblks;
2341
2342	/* Release mapping into kernel space. */
2343	userp = job->userproc;
2344	ki = userp->p_aioinfo;
2345	if (job->pbuf) {
2346		pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages);
2347		relpbuf(job->pbuf, NULL);
2348		job->pbuf = NULL;
2349		atomic_subtract_int(&num_buf_aio, 1);
2350		AIO_LOCK(ki);
2351		ki->kaio_buffer_count--;
2352		AIO_UNLOCK(ki);
2353	} else
2354		atomic_subtract_int(&num_unmapped_aio, 1);
2355	vm_page_unhold_pages(job->pages, job->npages);
2356
2357	bp = job->bp;
2358	job->bp = NULL;
2359	nbytes = job->uaiocb.aio_nbytes - bp->bio_resid;
2360	error = 0;
2361	if (bp->bio_flags & BIO_ERROR)
2362		error = bp->bio_error;
2363	nblks = btodb(nbytes);
2364	if (job->uaiocb.aio_lio_opcode == LIO_WRITE)
2365		job->outblock += nblks;
2366	else
2367		job->inblock += nblks;
2368
2369	if (error)
2370		aio_complete(job, -1, error);
2371	else
2372		aio_complete(job, nbytes, 0);
2373
2374	g_destroy_bio(bp);
2375}
2376
2377/* syscall - wait for the next completion of an aio request */
2378static int
2379kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2380    struct timespec *ts, struct aiocb_ops *ops)
2381{
2382	struct proc *p = td->td_proc;
2383	struct timeval atv;
2384	struct kaioinfo *ki;
2385	struct kaiocb *job;
2386	struct aiocb *ujob;
2387	long error, status;
2388	int timo;
2389
2390	ops->store_aiocb(ujobp, NULL);
2391
2392	if (ts == NULL) {
2393		timo = 0;
2394	} else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2395		timo = -1;
2396	} else {
2397		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2398			return (EINVAL);
2399
2400		TIMESPEC_TO_TIMEVAL(&atv, ts);
2401		if (itimerfix(&atv))
2402			return (EINVAL);
2403		timo = tvtohz(&atv);
2404	}
2405
2406	if (p->p_aioinfo == NULL)
2407		aio_init_aioinfo(p);
2408	ki = p->p_aioinfo;
2409
2410	error = 0;
2411	job = NULL;
2412	AIO_LOCK(ki);
2413	while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2414		if (timo == -1) {
2415			error = EWOULDBLOCK;
2416			break;
2417		}
2418		ki->kaio_flags |= KAIO_WAKEUP;
2419		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2420		    "aiowc", timo);
2421		if (timo && error == ERESTART)
2422			error = EINTR;
2423		if (error)
2424			break;
2425	}
2426
2427	if (job != NULL) {
2428		MPASS(job->jobflags & KAIOCB_FINISHED);
2429		ujob = job->ujob;
2430		status = job->uaiocb._aiocb_private.status;
2431		error = job->uaiocb._aiocb_private.error;
2432		td->td_retval[0] = status;
2433		td->td_ru.ru_oublock += job->outblock;
2434		td->td_ru.ru_inblock += job->inblock;
2435		td->td_ru.ru_msgsnd += job->msgsnd;
2436		td->td_ru.ru_msgrcv += job->msgrcv;
2437		aio_free_entry(job);
2438		AIO_UNLOCK(ki);
2439		ops->store_aiocb(ujobp, ujob);
2440		ops->store_error(ujob, error);
2441		ops->store_status(ujob, status);
2442	} else
2443		AIO_UNLOCK(ki);
2444
2445	return (error);
2446}
2447
2448int
2449sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2450{
2451	struct timespec ts, *tsp;
2452	int error;
2453
2454	if (uap->timeout) {
2455		/* Get timespec struct. */
2456		error = copyin(uap->timeout, &ts, sizeof(ts));
2457		if (error)
2458			return (error);
2459		tsp = &ts;
2460	} else
2461		tsp = NULL;
2462
2463	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2464}
2465
2466static int
2467kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2468    struct aiocb_ops *ops)
2469{
2470
2471	if (op != O_SYNC) /* XXX lack of O_DSYNC */
2472		return (EINVAL);
2473	return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops));
2474}
2475
2476int
2477sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2478{
2479
2480	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2481}
2482
2483/* kqueue attach function */
2484static int
2485filt_aioattach(struct knote *kn)
2486{
2487	struct kaiocb *job;
2488
2489	job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2490
2491	/*
2492	 * The job pointer must be validated before using it, so
2493	 * registration is restricted to the kernel; the user cannot
2494	 * set EV_FLAG1.
2495	 */
2496	if ((kn->kn_flags & EV_FLAG1) == 0)
2497		return (EPERM);
2498	kn->kn_ptr.p_aio = job;
2499	kn->kn_flags &= ~EV_FLAG1;
2500
2501	knlist_add(&job->klist, kn, 0);
2502
2503	return (0);
2504}
2505
2506/* kqueue detach function */
2507static void
2508filt_aiodetach(struct knote *kn)
2509{
2510	struct knlist *knl;
2511
2512	knl = &kn->kn_ptr.p_aio->klist;
2513	knl->kl_lock(knl->kl_lockarg);
2514	if (!knlist_empty(knl))
2515		knlist_remove(knl, kn, 1);
2516	knl->kl_unlock(knl->kl_lockarg);
2517}
2518
2519/* kqueue filter function */
2520/*ARGSUSED*/
2521static int
2522filt_aio(struct knote *kn, long hint)
2523{
2524	struct kaiocb *job = kn->kn_ptr.p_aio;
2525
2526	kn->kn_data = job->uaiocb._aiocb_private.error;
2527	if (!(job->jobflags & KAIOCB_FINISHED))
2528		return (0);
2529	kn->kn_flags |= EV_EOF;
2530	return (1);
2531}
2532
2533/* kqueue attach function */
2534static int
2535filt_lioattach(struct knote *kn)
2536{
2537	struct aioliojob *lj;
2538
2539	lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2540
2541	/*
2542	 * The aioliojob pointer must be validated before using it, so
2543	 * registration is restricted to the kernel; the user cannot
2544	 * set EV_FLAG1.
2545	 */
2546	if ((kn->kn_flags & EV_FLAG1) == 0)
2547		return (EPERM);
2548	kn->kn_ptr.p_lio = lj;
2549	kn->kn_flags &= ~EV_FLAG1;
2550
2551	knlist_add(&lj->klist, kn, 0);
2552
2553	return (0);
2554}
2555
2556/* kqueue detach function */
2557static void
2558filt_liodetach(struct knote *kn)
2559{
2560	struct knlist *knl;
2561
2562	knl = &kn->kn_ptr.p_lio->klist;
2563	knl->kl_lock(knl->kl_lockarg);
2564	if (!knlist_empty(knl))
2565		knlist_remove(knl, kn, 1);
2566	knl->kl_unlock(knl->kl_lockarg);
2567}
2568
2569/* kqueue filter function */
2570/*ARGSUSED*/
2571static int
2572filt_lio(struct knote *kn, long hint)
2573{
2574	struct aioliojob * lj = kn->kn_ptr.p_lio;
2575
2576	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2577}
2578
2579#ifdef COMPAT_FREEBSD32
2580#include <sys/mount.h>
2581#include <sys/socket.h>
2582#include <compat/freebsd32/freebsd32.h>
2583#include <compat/freebsd32/freebsd32_proto.h>
2584#include <compat/freebsd32/freebsd32_signal.h>
2585#include <compat/freebsd32/freebsd32_syscall.h>
2586#include <compat/freebsd32/freebsd32_util.h>
2587
2588struct __aiocb_private32 {
2589	int32_t	status;
2590	int32_t	error;
2591	uint32_t kernelinfo;
2592};
2593
2594#ifdef COMPAT_FREEBSD6
2595typedef struct oaiocb32 {
2596	int	aio_fildes;		/* File descriptor */
2597	uint64_t aio_offset __packed;	/* File offset for I/O */
2598	uint32_t aio_buf;		/* I/O buffer in process space */
2599	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2600	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2601	int	aio_lio_opcode;		/* LIO opcode */
2602	int	aio_reqprio;		/* Request priority -- ignored */
2603	struct	__aiocb_private32 _aiocb_private;
2604} oaiocb32_t;
2605#endif
2606
2607typedef struct aiocb32 {
2608	int32_t	aio_fildes;		/* File descriptor */
2609	uint64_t aio_offset __packed;	/* File offset for I/O */
2610	uint32_t aio_buf;		/* I/O buffer in process space */
2611	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2612	int	__spare__[2];
2613	uint32_t __spare2__;
2614	int	aio_lio_opcode;		/* LIO opcode */
2615	int	aio_reqprio;		/* Request priority -- ignored */
2616	struct	__aiocb_private32 _aiocb_private;
2617	struct	sigevent32 aio_sigevent;	/* Signal to deliver */
2618} aiocb32_t;
2619
2620#ifdef COMPAT_FREEBSD6
2621static int
2622convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2623{
2624
2625	/*
2626	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2627	 * supported by AIO with the old sigevent structure.
2628	 */
2629	CP(*osig, *nsig, sigev_notify);
2630	switch (nsig->sigev_notify) {
2631	case SIGEV_NONE:
2632		break;
2633	case SIGEV_SIGNAL:
2634		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2635		break;
2636	case SIGEV_KEVENT:
2637		nsig->sigev_notify_kqueue =
2638		    osig->__sigev_u.__sigev_notify_kqueue;
2639		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2640		break;
2641	default:
2642		return (EINVAL);
2643	}
2644	return (0);
2645}
2646
2647static int
2648aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
2649{
2650	struct oaiocb32 job32;
2651	int error;
2652
2653	bzero(kjob, sizeof(struct aiocb));
2654	error = copyin(ujob, &job32, sizeof(job32));
2655	if (error)
2656		return (error);
2657
2658	CP(job32, *kjob, aio_fildes);
2659	CP(job32, *kjob, aio_offset);
2660	PTRIN_CP(job32, *kjob, aio_buf);
2661	CP(job32, *kjob, aio_nbytes);
2662	CP(job32, *kjob, aio_lio_opcode);
2663	CP(job32, *kjob, aio_reqprio);
2664	CP(job32, *kjob, _aiocb_private.status);
2665	CP(job32, *kjob, _aiocb_private.error);
2666	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
2667	return (convert_old_sigevent32(&job32.aio_sigevent,
2668	    &kjob->aio_sigevent));
2669}
2670#endif
2671
2672static int
2673aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
2674{
2675	struct aiocb32 job32;
2676	int error;
2677
2678	error = copyin(ujob, &job32, sizeof(job32));
2679	if (error)
2680		return (error);
2681	CP(job32, *kjob, aio_fildes);
2682	CP(job32, *kjob, aio_offset);
2683	PTRIN_CP(job32, *kjob, aio_buf);
2684	CP(job32, *kjob, aio_nbytes);
2685	CP(job32, *kjob, aio_lio_opcode);
2686	CP(job32, *kjob, aio_reqprio);
2687	CP(job32, *kjob, _aiocb_private.status);
2688	CP(job32, *kjob, _aiocb_private.error);
2689	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
2690	return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
2691}
2692
2693static long
2694aiocb32_fetch_status(struct aiocb *ujob)
2695{
2696	struct aiocb32 *ujob32;
2697
2698	ujob32 = (struct aiocb32 *)ujob;
2699	return (fuword32(&ujob32->_aiocb_private.status));
2700}
2701
2702static long
2703aiocb32_fetch_error(struct aiocb *ujob)
2704{
2705	struct aiocb32 *ujob32;
2706
2707	ujob32 = (struct aiocb32 *)ujob;
2708	return (fuword32(&ujob32->_aiocb_private.error));
2709}
2710
2711static int
2712aiocb32_store_status(struct aiocb *ujob, long status)
2713{
2714	struct aiocb32 *ujob32;
2715
2716	ujob32 = (struct aiocb32 *)ujob;
2717	return (suword32(&ujob32->_aiocb_private.status, status));
2718}
2719
2720static int
2721aiocb32_store_error(struct aiocb *ujob, long error)
2722{
2723	struct aiocb32 *ujob32;
2724
2725	ujob32 = (struct aiocb32 *)ujob;
2726	return (suword32(&ujob32->_aiocb_private.error, error));
2727}
2728
2729static int
2730aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
2731{
2732	struct aiocb32 *ujob32;
2733
2734	ujob32 = (struct aiocb32 *)ujob;
2735	return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
2736}
2737
2738static int
2739aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2740{
2741
2742	return (suword32(ujobp, (long)ujob));
2743}
2744
2745static struct aiocb_ops aiocb32_ops = {
2746	.copyin = aiocb32_copyin,
2747	.fetch_status = aiocb32_fetch_status,
2748	.fetch_error = aiocb32_fetch_error,
2749	.store_status = aiocb32_store_status,
2750	.store_error = aiocb32_store_error,
2751	.store_kernelinfo = aiocb32_store_kernelinfo,
2752	.store_aiocb = aiocb32_store_aiocb,
2753};
2754
2755#ifdef COMPAT_FREEBSD6
2756static struct aiocb_ops aiocb32_ops_osigevent = {
2757	.copyin = aiocb32_copyin_old_sigevent,
2758	.fetch_status = aiocb32_fetch_status,
2759	.fetch_error = aiocb32_fetch_error,
2760	.store_status = aiocb32_store_status,
2761	.store_error = aiocb32_store_error,
2762	.store_kernelinfo = aiocb32_store_kernelinfo,
2763	.store_aiocb = aiocb32_store_aiocb,
2764};
2765#endif
2766
2767int
2768freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2769{
2770
2771	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2772}
2773
2774int
2775freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2776{
2777	struct timespec32 ts32;
2778	struct timespec ts, *tsp;
2779	struct aiocb **ujoblist;
2780	uint32_t *ujoblist32;
2781	int error, i;
2782
2783	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2784		return (EINVAL);
2785
2786	if (uap->timeout) {
2787		/* Get timespec struct. */
2788		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2789			return (error);
2790		CP(ts32, ts, tv_sec);
2791		CP(ts32, ts, tv_nsec);
2792		tsp = &ts;
2793	} else
2794		tsp = NULL;
2795
2796	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
2797	ujoblist32 = (uint32_t *)ujoblist;
2798	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2799	    sizeof(ujoblist32[0]));
2800	if (error == 0) {
2801		for (i = uap->nent - 1; i >= 0; i--)
2802			ujoblist[i] = PTRIN(ujoblist32[i]);
2803
2804		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2805	}
2806	free(ujoblist, M_AIOS);
2807	return (error);
2808}
2809
2810int
2811freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2812{
2813
2814	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2815}
2816
2817#ifdef COMPAT_FREEBSD6
2818int
2819freebsd6_freebsd32_aio_read(struct thread *td,
2820    struct freebsd6_freebsd32_aio_read_args *uap)
2821{
2822
2823	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2824	    &aiocb32_ops_osigevent));
2825}
2826#endif
2827
2828int
2829freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2830{
2831
2832	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2833	    &aiocb32_ops));
2834}
2835
2836#ifdef COMPAT_FREEBSD6
2837int
2838freebsd6_freebsd32_aio_write(struct thread *td,
2839    struct freebsd6_freebsd32_aio_write_args *uap)
2840{
2841
2842	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2843	    &aiocb32_ops_osigevent));
2844}
2845#endif
2846
2847int
2848freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
2849{
2850
2851	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2852	    &aiocb32_ops));
2853}
2854
2855int
2856freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
2857{
2858
2859	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
2860	    &aiocb32_ops));
2861}
2862
2863int
2864freebsd32_aio_waitcomplete(struct thread *td,
2865    struct freebsd32_aio_waitcomplete_args *uap)
2866{
2867	struct timespec32 ts32;
2868	struct timespec ts, *tsp;
2869	int error;
2870
2871	if (uap->timeout) {
2872		/* Get timespec struct. */
2873		error = copyin(uap->timeout, &ts32, sizeof(ts32));
2874		if (error)
2875			return (error);
2876		CP(ts32, ts, tv_sec);
2877		CP(ts32, ts, tv_nsec);
2878		tsp = &ts;
2879	} else
2880		tsp = NULL;
2881
2882	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
2883	    &aiocb32_ops));
2884}
2885
2886int
2887freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
2888{
2889
2890	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
2891	    &aiocb32_ops));
2892}
2893
2894#ifdef COMPAT_FREEBSD6
2895int
2896freebsd6_freebsd32_lio_listio(struct thread *td,
2897    struct freebsd6_freebsd32_lio_listio_args *uap)
2898{
2899	struct aiocb **acb_list;
2900	struct sigevent *sigp, sig;
2901	struct osigevent32 osig;
2902	uint32_t *acb_list32;
2903	int error, i, nent;
2904
2905	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2906		return (EINVAL);
2907
2908	nent = uap->nent;
2909	if (nent < 0 || nent > max_aio_queue_per_proc)
2910		return (EINVAL);
2911
2912	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2913		error = copyin(uap->sig, &osig, sizeof(osig));
2914		if (error)
2915			return (error);
2916		error = convert_old_sigevent32(&osig, &sig);
2917		if (error)
2918			return (error);
2919		sigp = &sig;
2920	} else
2921		sigp = NULL;
2922
2923	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
2924	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
2925	if (error) {
2926		free(acb_list32, M_LIO);
2927		return (error);
2928	}
2929	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2930	for (i = 0; i < nent; i++)
2931		acb_list[i] = PTRIN(acb_list32[i]);
2932	free(acb_list32, M_LIO);
2933
2934	error = kern_lio_listio(td, uap->mode,
2935	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2936	    &aiocb32_ops_osigevent);
2937	free(acb_list, M_LIO);
2938	return (error);
2939}
2940#endif
2941
2942int
2943freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
2944{
2945	struct aiocb **acb_list;
2946	struct sigevent *sigp, sig;
2947	struct sigevent32 sig32;
2948	uint32_t *acb_list32;
2949	int error, i, nent;
2950
2951	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2952		return (EINVAL);
2953
2954	nent = uap->nent;
2955	if (nent < 0 || nent > max_aio_queue_per_proc)
2956		return (EINVAL);
2957
2958	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2959		error = copyin(uap->sig, &sig32, sizeof(sig32));
2960		if (error)
2961			return (error);
2962		error = convert_sigevent32(&sig32, &sig);
2963		if (error)
2964			return (error);
2965		sigp = &sig;
2966	} else
2967		sigp = NULL;
2968
2969	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
2970	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
2971	if (error) {
2972		free(acb_list32, M_LIO);
2973		return (error);
2974	}
2975	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2976	for (i = 0; i < nent; i++)
2977		acb_list[i] = PTRIN(acb_list32[i]);
2978	free(acb_list32, M_LIO);
2979
2980	error = kern_lio_listio(td, uap->mode,
2981	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2982	    &aiocb32_ops);
2983	free(acb_list, M_LIO);
2984	return (error);
2985}
2986
2987#endif
2988