1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2008 Isilon Systems, Inc.
5 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6 * Copyright (c) 1998 Berkeley Software Design, Inc.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. Berkeley Software Design Inc's name may not be used to endorse or
18 *    promote products derived from this software without specific prior
19 *    written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35 */
36
37/*
38 * Implementation of the `witness' lock verifier.  Originally implemented for
39 * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40 * classes in FreeBSD.
41 */
42
43/*
44 *	Main Entry: witness
45 *	Pronunciation: 'wit-n&s
46 *	Function: noun
47 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
48 *	    testimony, witness, from 2wit
49 *	Date: before 12th century
50 *	1 : attestation of a fact or event : TESTIMONY
51 *	2 : one that gives evidence; specifically : one who testifies in
52 *	    a cause or before a judicial tribunal
53 *	3 : one asked to be present at a transaction so as to be able to
54 *	    testify to its having taken place
55 *	4 : one who has personal knowledge of something
56 *	5 a : something serving as evidence or proof : SIGN
57 *	  b : public affirmation by word or example of usually
58 *	      religious faith or conviction <the heroic witness to divine
59 *	      life -- Pilot>
60 *	6 capitalized : a member of the Jehovah's Witnesses
61 */
62
63/*
64 * Special rules concerning Giant and lock orders:
65 *
66 * 1) Giant must be acquired before any other mutexes.  Stated another way,
67 *    no other mutex may be held when Giant is acquired.
68 *
69 * 2) Giant must be released when blocking on a sleepable lock.
70 *
71 * This rule is less obvious, but is a result of Giant providing the same
72 * semantics as spl().  Basically, when a thread sleeps, it must release
73 * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74 * 2).
75 *
76 * 3) Giant may be acquired before or after sleepable locks.
77 *
78 * This rule is also not quite as obvious.  Giant may be acquired after
79 * a sleepable lock because it is a non-sleepable lock and non-sleepable
80 * locks may always be acquired while holding a sleepable lock.  The second
81 * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82 * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83 * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84 * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85 * execute.  Thus, acquiring Giant both before and after a sleepable lock
86 * will not result in a lock order reversal.
87 */
88
89#include <sys/cdefs.h>
90__FBSDID("$FreeBSD$");
91
92#include "opt_ddb.h"
93#include "opt_hwpmc_hooks.h"
94#include "opt_stack.h"
95#include "opt_witness.h"
96
97#include <sys/param.h>
98#include <sys/bus.h>
99#include <sys/kdb.h>
100#include <sys/kernel.h>
101#include <sys/ktr.h>
102#include <sys/lock.h>
103#include <sys/malloc.h>
104#include <sys/mutex.h>
105#include <sys/priv.h>
106#include <sys/proc.h>
107#include <sys/sbuf.h>
108#include <sys/sched.h>
109#include <sys/stack.h>
110#include <sys/sysctl.h>
111#include <sys/syslog.h>
112#include <sys/systm.h>
113
114#ifdef DDB
115#include <ddb/ddb.h>
116#endif
117
118#include <machine/stdarg.h>
119
120#if !defined(DDB) && !defined(STACK)
121#error "DDB or STACK options are required for WITNESS"
122#endif
123
124/* Note that these traces do not work with KTR_ALQ. */
125#if 0
126#define	KTR_WITNESS	KTR_SUBSYS
127#else
128#define	KTR_WITNESS	0
129#endif
130
131#define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
132#define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
133#define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
134
135#ifndef WITNESS_COUNT
136#define	WITNESS_COUNT 		1536
137#endif
138#define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
139#define	WITNESS_PENDLIST	(512 + (MAXCPU * 4))
140
141/* Allocate 256 KB of stack data space */
142#define	WITNESS_LO_DATA_COUNT	2048
143
144/* Prime, gives load factor of ~2 at full load */
145#define	WITNESS_LO_HASH_SIZE	1021
146
147/*
148 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
149 * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
150 * probably be safe for the most part, but it's still a SWAG.
151 */
152#define	LOCK_NCHILDREN	5
153#define	LOCK_CHILDCOUNT	2048
154
155#define	MAX_W_NAME	64
156
157#define	FULLGRAPH_SBUF_SIZE	512
158
159/*
160 * These flags go in the witness relationship matrix and describe the
161 * relationship between any two struct witness objects.
162 */
163#define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
164#define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165#define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166#define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167#define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168#define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169#define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170#define	WITNESS_RELATED_MASK						\
171	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172#define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173					  * observed. */
174#define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175#define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176#define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177
178/* Descendant to ancestor flags */
179#define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
180
181/* Ancestor to descendant flags */
182#define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
183
184#define	WITNESS_INDEX_ASSERT(i)						\
185	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
186
187static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188
189/*
190 * Lock instances.  A lock instance is the data associated with a lock while
191 * it is held by witness.  For example, a lock instance will hold the
192 * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193 * are held in a per-cpu list while sleep locks are held in per-thread list.
194 */
195struct lock_instance {
196	struct lock_object	*li_lock;
197	const char		*li_file;
198	int			li_line;
199	u_int			li_flags;
200};
201
202/*
203 * A simple list type used to build the list of locks held by a thread
204 * or CPU.  We can't simply embed the list in struct lock_object since a
205 * lock may be held by more than one thread if it is a shared lock.  Locks
206 * are added to the head of the list, so we fill up each list entry from
207 * "the back" logically.  To ease some of the arithmetic, we actually fill
208 * in each list entry the normal way (children[0] then children[1], etc.) but
209 * when we traverse the list we read children[count-1] as the first entry
210 * down to children[0] as the final entry.
211 */
212struct lock_list_entry {
213	struct lock_list_entry	*ll_next;
214	struct lock_instance	ll_children[LOCK_NCHILDREN];
215	u_int			ll_count;
216};
217
218/*
219 * The main witness structure. One of these per named lock type in the system
220 * (for example, "vnode interlock").
221 */
222struct witness {
223	char  			w_name[MAX_W_NAME];
224	uint32_t 		w_index;  /* Index in the relationship matrix */
225	struct lock_class	*w_class;
226	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
227	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
228	struct witness		*w_hash_next; /* Linked list in hash buckets. */
229	const char		*w_file; /* File where last acquired */
230	uint32_t 		w_line; /* Line where last acquired */
231	uint32_t 		w_refcount;
232	uint16_t 		w_num_ancestors; /* direct/indirect
233						  * ancestor count */
234	uint16_t 		w_num_descendants; /* direct/indirect
235						    * descendant count */
236	int16_t 		w_ddb_level;
237	unsigned		w_displayed:1;
238	unsigned		w_reversed:1;
239};
240
241STAILQ_HEAD(witness_list, witness);
242
243/*
244 * The witness hash table. Keys are witness names (const char *), elements are
245 * witness objects (struct witness *).
246 */
247struct witness_hash {
248	struct witness	*wh_array[WITNESS_HASH_SIZE];
249	uint32_t	wh_size;
250	uint32_t	wh_count;
251};
252
253/*
254 * Key type for the lock order data hash table.
255 */
256struct witness_lock_order_key {
257	uint16_t	from;
258	uint16_t	to;
259};
260
261struct witness_lock_order_data {
262	struct stack			wlod_stack;
263	struct witness_lock_order_key	wlod_key;
264	struct witness_lock_order_data	*wlod_next;
265};
266
267/*
268 * The witness lock order data hash table. Keys are witness index tuples
269 * (struct witness_lock_order_key), elements are lock order data objects
270 * (struct witness_lock_order_data).
271 */
272struct witness_lock_order_hash {
273	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
274	u_int	wloh_size;
275	u_int	wloh_count;
276};
277
278struct witness_blessed {
279	const char	*b_lock1;
280	const char	*b_lock2;
281};
282
283struct witness_pendhelp {
284	const char		*wh_type;
285	struct lock_object	*wh_lock;
286};
287
288struct witness_order_list_entry {
289	const char		*w_name;
290	struct lock_class	*w_class;
291};
292
293/*
294 * Returns 0 if one of the locks is a spin lock and the other is not.
295 * Returns 1 otherwise.
296 */
297static __inline int
298witness_lock_type_equal(struct witness *w1, struct witness *w2)
299{
300
301	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
302		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
303}
304
305static __inline int
306witness_lock_order_key_equal(const struct witness_lock_order_key *a,
307    const struct witness_lock_order_key *b)
308{
309
310	return (a->from == b->from && a->to == b->to);
311}
312
313static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
314		    const char *fname);
315static void	adopt(struct witness *parent, struct witness *child);
316static int	blessed(struct witness *, struct witness *);
317static void	depart(struct witness *w);
318static struct witness	*enroll(const char *description,
319			    struct lock_class *lock_class);
320static struct lock_instance	*find_instance(struct lock_list_entry *list,
321				    const struct lock_object *lock);
322static int	isitmychild(struct witness *parent, struct witness *child);
323static int	isitmydescendant(struct witness *parent, struct witness *child);
324static void	itismychild(struct witness *parent, struct witness *child);
325static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
326static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
327static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
328static int	sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
329static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
330#ifdef DDB
331static void	witness_ddb_compute_levels(void);
332static void	witness_ddb_display(int(*)(const char *fmt, ...));
333static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
334		    struct witness *, int indent);
335static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
336		    struct witness_list *list);
337static void	witness_ddb_level_descendants(struct witness *parent, int l);
338static void	witness_ddb_list(struct thread *td);
339#endif
340static void	witness_debugger(int cond, const char *msg);
341static void	witness_free(struct witness *m);
342static struct witness	*witness_get(void);
343static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
344static struct witness	*witness_hash_get(const char *key);
345static void	witness_hash_put(struct witness *w);
346static void	witness_init_hash_tables(void);
347static void	witness_increment_graph_generation(void);
348static void	witness_lock_list_free(struct lock_list_entry *lle);
349static struct lock_list_entry	*witness_lock_list_get(void);
350static int	witness_lock_order_add(struct witness *parent,
351		    struct witness *child);
352static int	witness_lock_order_check(struct witness *parent,
353		    struct witness *child);
354static struct witness_lock_order_data	*witness_lock_order_get(
355					    struct witness *parent,
356					    struct witness *child);
357static void	witness_list_lock(struct lock_instance *instance,
358		    int (*prnt)(const char *fmt, ...));
359static int	witness_output(const char *fmt, ...) __printflike(1, 2);
360static int	witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
361static void	witness_setflag(struct lock_object *lock, int flag, int set);
362
363static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
364    "Witness Locking");
365
366/*
367 * If set to 0, lock order checking is disabled.  If set to -1,
368 * witness is completely disabled.  Otherwise witness performs full
369 * lock order checking for all locks.  At runtime, lock order checking
370 * may be toggled.  However, witness cannot be reenabled once it is
371 * completely disabled.
372 */
373static int witness_watch = 1;
374SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
375    sysctl_debug_witness_watch, "I", "witness is watching lock operations");
376
377#ifdef KDB
378/*
379 * When KDB is enabled and witness_kdb is 1, it will cause the system
380 * to drop into kdebug() when:
381 *	- a lock hierarchy violation occurs
382 *	- locks are held when going to sleep.
383 */
384#ifdef WITNESS_KDB
385int	witness_kdb = 1;
386#else
387int	witness_kdb = 0;
388#endif
389SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
390#endif /* KDB */
391
392#if defined(DDB) || defined(KDB)
393/*
394 * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
395 * to print a stack trace:
396 *	- a lock hierarchy violation occurs
397 *	- locks are held when going to sleep.
398 */
399int	witness_trace = 1;
400SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
401#endif /* DDB || KDB */
402
403#ifdef WITNESS_SKIPSPIN
404int	witness_skipspin = 1;
405#else
406int	witness_skipspin = 0;
407#endif
408SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
409
410int badstack_sbuf_size;
411
412int witness_count = WITNESS_COUNT;
413SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
414    &witness_count, 0, "");
415
416/*
417 * Output channel for witness messages.  By default we print to the console.
418 */
419enum witness_channel {
420	WITNESS_CONSOLE,
421	WITNESS_LOG,
422	WITNESS_NONE,
423};
424
425static enum witness_channel witness_channel = WITNESS_CONSOLE;
426SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
427    CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
428    "Output channel for warnings");
429
430/*
431 * Call this to print out the relations between locks.
432 */
433SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
434    NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
435
436/*
437 * Call this to print out the witness faulty stacks.
438 */
439SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
440    NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
441
442static struct mtx w_mtx;
443
444/* w_list */
445static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
446static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
447
448/* w_typelist */
449static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
450static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
451
452/* lock list */
453static struct lock_list_entry *w_lock_list_free = NULL;
454static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
455static u_int pending_cnt;
456
457static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
458SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
459SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
460SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
461    "");
462
463static struct witness *w_data;
464static uint8_t **w_rmatrix;
465static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
466static struct witness_hash w_hash;	/* The witness hash table. */
467
468/* The lock order data hash */
469static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
470static struct witness_lock_order_data *w_lofree = NULL;
471static struct witness_lock_order_hash w_lohash;
472static int w_max_used_index = 0;
473static unsigned int w_generation = 0;
474static const char w_notrunning[] = "Witness not running\n";
475static const char w_stillcold[] = "Witness is still cold\n";
476#ifdef __i386__
477static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
478#endif
479
480static struct witness_order_list_entry order_lists[] = {
481	/*
482	 * sx locks
483	 */
484	{ "proctree", &lock_class_sx },
485	{ "allproc", &lock_class_sx },
486	{ "allprison", &lock_class_sx },
487	{ NULL, NULL },
488	/*
489	 * Various mutexes
490	 */
491	{ "Giant", &lock_class_mtx_sleep },
492	{ "pipe mutex", &lock_class_mtx_sleep },
493	{ "sigio lock", &lock_class_mtx_sleep },
494	{ "process group", &lock_class_mtx_sleep },
495#ifdef	HWPMC_HOOKS
496	{ "pmc-sleep", &lock_class_mtx_sleep },
497#endif
498	{ "process lock", &lock_class_mtx_sleep },
499	{ "session", &lock_class_mtx_sleep },
500	{ "uidinfo hash", &lock_class_rw },
501	{ "time lock", &lock_class_mtx_sleep },
502	{ NULL, NULL },
503	/*
504	 * umtx
505	 */
506	{ "umtx lock", &lock_class_mtx_sleep },
507	{ NULL, NULL },
508	/*
509	 * Sockets
510	 */
511	{ "accept", &lock_class_mtx_sleep },
512	{ "so_snd", &lock_class_mtx_sleep },
513	{ "so_rcv", &lock_class_mtx_sleep },
514	{ "sellck", &lock_class_mtx_sleep },
515	{ NULL, NULL },
516	/*
517	 * Routing
518	 */
519	{ "so_rcv", &lock_class_mtx_sleep },
520	{ "radix node head", &lock_class_rm },
521	{ "rtentry", &lock_class_mtx_sleep },
522	{ "ifaddr", &lock_class_mtx_sleep },
523	{ NULL, NULL },
524	/*
525	 * IPv4 multicast:
526	 * protocol locks before interface locks, after UDP locks.
527	 */
528	{ "in_multi_sx", &lock_class_sx },
529	{ "udpinp", &lock_class_rw },
530	{ "in_multi_list_mtx", &lock_class_mtx_sleep },
531	{ "igmp_mtx", &lock_class_mtx_sleep },
532	{ "ifnet_rw", &lock_class_rw },
533	{ "if_addr_lock", &lock_class_mtx_sleep },
534	{ NULL, NULL },
535	/*
536	 * IPv6 multicast:
537	 * protocol locks before interface locks, after UDP locks.
538	 */
539	{ "in6_multi_sx", &lock_class_sx },
540	{ "udpinp", &lock_class_rw },
541	{ "in6_multi_list_mtx", &lock_class_mtx_sleep },
542	{ "mld_mtx", &lock_class_mtx_sleep },
543	{ "ifnet_rw", &lock_class_rw },
544	{ "if_addr_lock", &lock_class_mtx_sleep },
545	{ NULL, NULL },
546	/*
547	 * UNIX Domain Sockets
548	 */
549	{ "unp_link_rwlock", &lock_class_rw },
550	{ "unp_list_lock", &lock_class_mtx_sleep },
551	{ "unp", &lock_class_mtx_sleep },
552	{ "so_snd", &lock_class_mtx_sleep },
553	{ NULL, NULL },
554	/*
555	 * UDP/IP
556	 */
557	{ "udp", &lock_class_mtx_sleep },
558	{ "udpinp", &lock_class_rw },
559	{ "so_snd", &lock_class_mtx_sleep },
560	{ NULL, NULL },
561	/*
562	 * TCP/IP
563	 */
564	{ "tcp", &lock_class_mtx_sleep },
565	{ "tcpinp", &lock_class_rw },
566	{ "so_snd", &lock_class_mtx_sleep },
567	{ NULL, NULL },
568	/*
569	 * BPF
570	 */
571	{ "bpf global lock", &lock_class_sx },
572	{ "bpf interface lock", &lock_class_rw },
573	{ "bpf cdev lock", &lock_class_mtx_sleep },
574	{ NULL, NULL },
575	/*
576	 * NFS server
577	 */
578	{ "nfsd_mtx", &lock_class_mtx_sleep },
579	{ "so_snd", &lock_class_mtx_sleep },
580	{ NULL, NULL },
581
582	/*
583	 * IEEE 802.11
584	 */
585	{ "802.11 com lock", &lock_class_mtx_sleep},
586	{ NULL, NULL },
587	/*
588	 * Network drivers
589	 */
590	{ "network driver", &lock_class_mtx_sleep},
591	{ NULL, NULL },
592
593	/*
594	 * Netgraph
595	 */
596	{ "ng_node", &lock_class_mtx_sleep },
597	{ "ng_worklist", &lock_class_mtx_sleep },
598	{ NULL, NULL },
599	/*
600	 * CDEV
601	 */
602	{ "vm map (system)", &lock_class_mtx_sleep },
603	{ "vnode interlock", &lock_class_mtx_sleep },
604	{ "cdev", &lock_class_mtx_sleep },
605	{ "devthrd", &lock_class_mtx_sleep },
606	{ NULL, NULL },
607	/*
608	 * VM
609	 */
610	{ "vm map (user)", &lock_class_sx },
611	{ "vm object", &lock_class_rw },
612	{ "vm page", &lock_class_mtx_sleep },
613	{ "pmap pv global", &lock_class_rw },
614	{ "pmap", &lock_class_mtx_sleep },
615	{ "pmap pv list", &lock_class_rw },
616	{ "vm page free queue", &lock_class_mtx_sleep },
617	{ "vm pagequeue", &lock_class_mtx_sleep },
618	{ NULL, NULL },
619	/*
620	 * kqueue/VFS interaction
621	 */
622	{ "kqueue", &lock_class_mtx_sleep },
623	{ "struct mount mtx", &lock_class_mtx_sleep },
624	{ "vnode interlock", &lock_class_mtx_sleep },
625	{ NULL, NULL },
626	/*
627	 * VFS namecache
628	 */
629	{ "ncvn", &lock_class_mtx_sleep },
630	{ "ncbuc", &lock_class_rw },
631	{ "vnode interlock", &lock_class_mtx_sleep },
632	{ "ncneg", &lock_class_mtx_sleep },
633	{ NULL, NULL },
634	/*
635	 * ZFS locking
636	 */
637	{ "dn->dn_mtx", &lock_class_sx },
638	{ "dr->dt.di.dr_mtx", &lock_class_sx },
639	{ "db->db_mtx", &lock_class_sx },
640	{ NULL, NULL },
641	/*
642	 * TCP log locks
643	 */
644	{ "TCP ID tree", &lock_class_rw },
645	{ "tcp log id bucket", &lock_class_mtx_sleep },
646	{ "tcpinp", &lock_class_rw },
647	{ "TCP log expireq", &lock_class_mtx_sleep },
648	{ NULL, NULL },
649	/*
650	 * spin locks
651	 */
652#ifdef SMP
653	{ "ap boot", &lock_class_mtx_spin },
654#endif
655	{ "rm.mutex_mtx", &lock_class_mtx_spin },
656	{ "sio", &lock_class_mtx_spin },
657#ifdef __i386__
658	{ "cy", &lock_class_mtx_spin },
659#endif
660#ifdef __sparc64__
661	{ "pcib_mtx", &lock_class_mtx_spin },
662	{ "rtc_mtx", &lock_class_mtx_spin },
663#endif
664	{ "scc_hwmtx", &lock_class_mtx_spin },
665	{ "uart_hwmtx", &lock_class_mtx_spin },
666	{ "fast_taskqueue", &lock_class_mtx_spin },
667	{ "intr table", &lock_class_mtx_spin },
668	{ "process slock", &lock_class_mtx_spin },
669	{ "syscons video lock", &lock_class_mtx_spin },
670	{ "sleepq chain", &lock_class_mtx_spin },
671	{ "rm_spinlock", &lock_class_mtx_spin },
672	{ "turnstile chain", &lock_class_mtx_spin },
673	{ "turnstile lock", &lock_class_mtx_spin },
674	{ "sched lock", &lock_class_mtx_spin },
675	{ "td_contested", &lock_class_mtx_spin },
676	{ "callout", &lock_class_mtx_spin },
677	{ "entropy harvest mutex", &lock_class_mtx_spin },
678#ifdef SMP
679	{ "smp rendezvous", &lock_class_mtx_spin },
680#endif
681#ifdef __powerpc__
682	{ "tlb0", &lock_class_mtx_spin },
683#endif
684	{ NULL, NULL },
685	{ "sched lock", &lock_class_mtx_spin },
686#ifdef	HWPMC_HOOKS
687	{ "pmc-per-proc", &lock_class_mtx_spin },
688#endif
689	{ NULL, NULL },
690	/*
691	 * leaf locks
692	 */
693	{ "intrcnt", &lock_class_mtx_spin },
694	{ "icu", &lock_class_mtx_spin },
695#if defined(SMP) && defined(__sparc64__)
696	{ "ipi", &lock_class_mtx_spin },
697#endif
698#ifdef __i386__
699	{ "allpmaps", &lock_class_mtx_spin },
700	{ "descriptor tables", &lock_class_mtx_spin },
701#endif
702	{ "clk", &lock_class_mtx_spin },
703	{ "cpuset", &lock_class_mtx_spin },
704	{ "mprof lock", &lock_class_mtx_spin },
705	{ "zombie lock", &lock_class_mtx_spin },
706	{ "ALD Queue", &lock_class_mtx_spin },
707#if defined(__i386__) || defined(__amd64__)
708	{ "pcicfg", &lock_class_mtx_spin },
709	{ "NDIS thread lock", &lock_class_mtx_spin },
710#endif
711	{ "tw_osl_io_lock", &lock_class_mtx_spin },
712	{ "tw_osl_q_lock", &lock_class_mtx_spin },
713	{ "tw_cl_io_lock", &lock_class_mtx_spin },
714	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
715	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
716#ifdef	HWPMC_HOOKS
717	{ "pmc-leaf", &lock_class_mtx_spin },
718#endif
719	{ "blocked lock", &lock_class_mtx_spin },
720	{ NULL, NULL },
721	{ NULL, NULL }
722};
723
724/*
725 * Pairs of locks which have been blessed.  Witness does not complain about
726 * order problems with blessed lock pairs.  Please do not add an entry to the
727 * table without an explanatory comment.
728 */
729static struct witness_blessed blessed_list[] = {
730	/*
731	 * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
732	 * both lock orders, so a deadlock cannot happen as a result of this
733	 * LOR.
734	 */
735	{ "dirhash",	"bufwait" },
736
737	/*
738	 * A UFS vnode may be locked in vget() while a buffer belonging to the
739	 * parent directory vnode is locked.
740	 */
741	{ "ufs",	"bufwait" },
742};
743
744/*
745 * This global is set to 0 once it becomes safe to use the witness code.
746 */
747static int witness_cold = 1;
748
749/*
750 * This global is set to 1 once the static lock orders have been enrolled
751 * so that a warning can be issued for any spin locks enrolled later.
752 */
753static int witness_spin_warn = 0;
754
755/* Trim useless garbage from filenames. */
756static const char *
757fixup_filename(const char *file)
758{
759
760	if (file == NULL)
761		return (NULL);
762	while (strncmp(file, "../", 3) == 0)
763		file += 3;
764	return (file);
765}
766
767/*
768 * Calculate the size of early witness structures.
769 */
770int
771witness_startup_count(void)
772{
773	int sz;
774
775	sz = sizeof(struct witness) * witness_count;
776	sz += sizeof(*w_rmatrix) * (witness_count + 1);
777	sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
778	    (witness_count + 1);
779
780	return (sz);
781}
782
783/*
784 * The WITNESS-enabled diagnostic code.  Note that the witness code does
785 * assume that the early boot is single-threaded at least until after this
786 * routine is completed.
787 */
788void
789witness_startup(void *mem)
790{
791	struct lock_object *lock;
792	struct witness_order_list_entry *order;
793	struct witness *w, *w1;
794	uintptr_t p;
795	int i;
796
797	p = (uintptr_t)mem;
798	w_data = (void *)p;
799	p += sizeof(struct witness) * witness_count;
800
801	w_rmatrix = (void *)p;
802	p += sizeof(*w_rmatrix) * (witness_count + 1);
803
804	for (i = 0; i < witness_count + 1; i++) {
805		w_rmatrix[i] = (void *)p;
806		p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
807	}
808	badstack_sbuf_size = witness_count * 256;
809
810	/*
811	 * We have to release Giant before initializing its witness
812	 * structure so that WITNESS doesn't get confused.
813	 */
814	mtx_unlock(&Giant);
815	mtx_assert(&Giant, MA_NOTOWNED);
816
817	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
818	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
819	    MTX_NOWITNESS | MTX_NOPROFILE);
820	for (i = witness_count - 1; i >= 0; i--) {
821		w = &w_data[i];
822		memset(w, 0, sizeof(*w));
823		w_data[i].w_index = i;	/* Witness index never changes. */
824		witness_free(w);
825	}
826	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
827	    ("%s: Invalid list of free witness objects", __func__));
828
829	/* Witness with index 0 is not used to aid in debugging. */
830	STAILQ_REMOVE_HEAD(&w_free, w_list);
831	w_free_cnt--;
832
833	for (i = 0; i < witness_count; i++) {
834		memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
835		    (witness_count + 1));
836	}
837
838	for (i = 0; i < LOCK_CHILDCOUNT; i++)
839		witness_lock_list_free(&w_locklistdata[i]);
840	witness_init_hash_tables();
841
842	/* First add in all the specified order lists. */
843	for (order = order_lists; order->w_name != NULL; order++) {
844		w = enroll(order->w_name, order->w_class);
845		if (w == NULL)
846			continue;
847		w->w_file = "order list";
848		for (order++; order->w_name != NULL; order++) {
849			w1 = enroll(order->w_name, order->w_class);
850			if (w1 == NULL)
851				continue;
852			w1->w_file = "order list";
853			itismychild(w, w1);
854			w = w1;
855		}
856	}
857	witness_spin_warn = 1;
858
859	/* Iterate through all locks and add them to witness. */
860	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
861		lock = pending_locks[i].wh_lock;
862		KASSERT(lock->lo_flags & LO_WITNESS,
863		    ("%s: lock %s is on pending list but not LO_WITNESS",
864		    __func__, lock->lo_name));
865		lock->lo_witness = enroll(pending_locks[i].wh_type,
866		    LOCK_CLASS(lock));
867	}
868
869	/* Mark the witness code as being ready for use. */
870	witness_cold = 0;
871
872	mtx_lock(&Giant);
873}
874
875void
876witness_init(struct lock_object *lock, const char *type)
877{
878	struct lock_class *class;
879
880	/* Various sanity checks. */
881	class = LOCK_CLASS(lock);
882	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
883	    (class->lc_flags & LC_RECURSABLE) == 0)
884		kassert_panic("%s: lock (%s) %s can not be recursable",
885		    __func__, class->lc_name, lock->lo_name);
886	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
887	    (class->lc_flags & LC_SLEEPABLE) == 0)
888		kassert_panic("%s: lock (%s) %s can not be sleepable",
889		    __func__, class->lc_name, lock->lo_name);
890	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
891	    (class->lc_flags & LC_UPGRADABLE) == 0)
892		kassert_panic("%s: lock (%s) %s can not be upgradable",
893		    __func__, class->lc_name, lock->lo_name);
894
895	/*
896	 * If we shouldn't watch this lock, then just clear lo_witness.
897	 * Otherwise, if witness_cold is set, then it is too early to
898	 * enroll this lock, so defer it to witness_initialize() by adding
899	 * it to the pending_locks list.  If it is not too early, then enroll
900	 * the lock now.
901	 */
902	if (witness_watch < 1 || panicstr != NULL ||
903	    (lock->lo_flags & LO_WITNESS) == 0)
904		lock->lo_witness = NULL;
905	else if (witness_cold) {
906		pending_locks[pending_cnt].wh_lock = lock;
907		pending_locks[pending_cnt++].wh_type = type;
908		if (pending_cnt > WITNESS_PENDLIST)
909			panic("%s: pending locks list is too small, "
910			    "increase WITNESS_PENDLIST\n",
911			    __func__);
912	} else
913		lock->lo_witness = enroll(type, class);
914}
915
916void
917witness_destroy(struct lock_object *lock)
918{
919	struct lock_class *class;
920	struct witness *w;
921
922	class = LOCK_CLASS(lock);
923
924	if (witness_cold)
925		panic("lock (%s) %s destroyed while witness_cold",
926		    class->lc_name, lock->lo_name);
927
928	/* XXX: need to verify that no one holds the lock */
929	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
930		return;
931	w = lock->lo_witness;
932
933	mtx_lock_spin(&w_mtx);
934	MPASS(w->w_refcount > 0);
935	w->w_refcount--;
936
937	if (w->w_refcount == 0)
938		depart(w);
939	mtx_unlock_spin(&w_mtx);
940}
941
942#ifdef DDB
943static void
944witness_ddb_compute_levels(void)
945{
946	struct witness *w;
947
948	/*
949	 * First clear all levels.
950	 */
951	STAILQ_FOREACH(w, &w_all, w_list)
952		w->w_ddb_level = -1;
953
954	/*
955	 * Look for locks with no parents and level all their descendants.
956	 */
957	STAILQ_FOREACH(w, &w_all, w_list) {
958
959		/* If the witness has ancestors (is not a root), skip it. */
960		if (w->w_num_ancestors > 0)
961			continue;
962		witness_ddb_level_descendants(w, 0);
963	}
964}
965
966static void
967witness_ddb_level_descendants(struct witness *w, int l)
968{
969	int i;
970
971	if (w->w_ddb_level >= l)
972		return;
973
974	w->w_ddb_level = l;
975	l++;
976
977	for (i = 1; i <= w_max_used_index; i++) {
978		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
979			witness_ddb_level_descendants(&w_data[i], l);
980	}
981}
982
983static void
984witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
985    struct witness *w, int indent)
986{
987	int i;
988
989 	for (i = 0; i < indent; i++)
990 		prnt(" ");
991	prnt("%s (type: %s, depth: %d, active refs: %d)",
992	     w->w_name, w->w_class->lc_name,
993	     w->w_ddb_level, w->w_refcount);
994 	if (w->w_displayed) {
995 		prnt(" -- (already displayed)\n");
996 		return;
997 	}
998 	w->w_displayed = 1;
999	if (w->w_file != NULL && w->w_line != 0)
1000		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
1001		    w->w_line);
1002	else
1003		prnt(" -- never acquired\n");
1004	indent++;
1005	WITNESS_INDEX_ASSERT(w->w_index);
1006	for (i = 1; i <= w_max_used_index; i++) {
1007		if (db_pager_quit)
1008			return;
1009		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1010			witness_ddb_display_descendants(prnt, &w_data[i],
1011			    indent);
1012	}
1013}
1014
1015static void
1016witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1017    struct witness_list *list)
1018{
1019	struct witness *w;
1020
1021	STAILQ_FOREACH(w, list, w_typelist) {
1022		if (w->w_file == NULL || w->w_ddb_level > 0)
1023			continue;
1024
1025		/* This lock has no anscestors - display its descendants. */
1026		witness_ddb_display_descendants(prnt, w, 0);
1027		if (db_pager_quit)
1028			return;
1029	}
1030}
1031
1032static void
1033witness_ddb_display(int(*prnt)(const char *fmt, ...))
1034{
1035	struct witness *w;
1036
1037	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1038	witness_ddb_compute_levels();
1039
1040	/* Clear all the displayed flags. */
1041	STAILQ_FOREACH(w, &w_all, w_list)
1042		w->w_displayed = 0;
1043
1044	/*
1045	 * First, handle sleep locks which have been acquired at least
1046	 * once.
1047	 */
1048	prnt("Sleep locks:\n");
1049	witness_ddb_display_list(prnt, &w_sleep);
1050	if (db_pager_quit)
1051		return;
1052
1053	/*
1054	 * Now do spin locks which have been acquired at least once.
1055	 */
1056	prnt("\nSpin locks:\n");
1057	witness_ddb_display_list(prnt, &w_spin);
1058	if (db_pager_quit)
1059		return;
1060
1061	/*
1062	 * Finally, any locks which have not been acquired yet.
1063	 */
1064	prnt("\nLocks which were never acquired:\n");
1065	STAILQ_FOREACH(w, &w_all, w_list) {
1066		if (w->w_file != NULL || w->w_refcount == 0)
1067			continue;
1068		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1069		    w->w_class->lc_name, w->w_ddb_level);
1070		if (db_pager_quit)
1071			return;
1072	}
1073}
1074#endif /* DDB */
1075
1076int
1077witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1078{
1079
1080	if (witness_watch == -1 || panicstr != NULL)
1081		return (0);
1082
1083	/* Require locks that witness knows about. */
1084	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1085	    lock2->lo_witness == NULL)
1086		return (EINVAL);
1087
1088	mtx_assert(&w_mtx, MA_NOTOWNED);
1089	mtx_lock_spin(&w_mtx);
1090
1091	/*
1092	 * If we already have either an explicit or implied lock order that
1093	 * is the other way around, then return an error.
1094	 */
1095	if (witness_watch &&
1096	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1097		mtx_unlock_spin(&w_mtx);
1098		return (EDOOFUS);
1099	}
1100
1101	/* Try to add the new order. */
1102	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1103	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1104	itismychild(lock1->lo_witness, lock2->lo_witness);
1105	mtx_unlock_spin(&w_mtx);
1106	return (0);
1107}
1108
1109void
1110witness_checkorder(struct lock_object *lock, int flags, const char *file,
1111    int line, struct lock_object *interlock)
1112{
1113	struct lock_list_entry *lock_list, *lle;
1114	struct lock_instance *lock1, *lock2, *plock;
1115	struct lock_class *class, *iclass;
1116	struct witness *w, *w1;
1117	struct thread *td;
1118	int i, j;
1119
1120	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1121	    panicstr != NULL)
1122		return;
1123
1124	w = lock->lo_witness;
1125	class = LOCK_CLASS(lock);
1126	td = curthread;
1127
1128	if (class->lc_flags & LC_SLEEPLOCK) {
1129
1130		/*
1131		 * Since spin locks include a critical section, this check
1132		 * implicitly enforces a lock order of all sleep locks before
1133		 * all spin locks.
1134		 */
1135		if (td->td_critnest != 0 && !kdb_active)
1136			kassert_panic("acquiring blockable sleep lock with "
1137			    "spinlock or critical section held (%s) %s @ %s:%d",
1138			    class->lc_name, lock->lo_name,
1139			    fixup_filename(file), line);
1140
1141		/*
1142		 * If this is the first lock acquired then just return as
1143		 * no order checking is needed.
1144		 */
1145		lock_list = td->td_sleeplocks;
1146		if (lock_list == NULL || lock_list->ll_count == 0)
1147			return;
1148	} else {
1149
1150		/*
1151		 * If this is the first lock, just return as no order
1152		 * checking is needed.  Avoid problems with thread
1153		 * migration pinning the thread while checking if
1154		 * spinlocks are held.  If at least one spinlock is held
1155		 * the thread is in a safe path and it is allowed to
1156		 * unpin it.
1157		 */
1158		sched_pin();
1159		lock_list = PCPU_GET(spinlocks);
1160		if (lock_list == NULL || lock_list->ll_count == 0) {
1161			sched_unpin();
1162			return;
1163		}
1164		sched_unpin();
1165	}
1166
1167	/*
1168	 * Check to see if we are recursing on a lock we already own.  If
1169	 * so, make sure that we don't mismatch exclusive and shared lock
1170	 * acquires.
1171	 */
1172	lock1 = find_instance(lock_list, lock);
1173	if (lock1 != NULL) {
1174		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1175		    (flags & LOP_EXCLUSIVE) == 0) {
1176			witness_output("shared lock of (%s) %s @ %s:%d\n",
1177			    class->lc_name, lock->lo_name,
1178			    fixup_filename(file), line);
1179			witness_output("while exclusively locked from %s:%d\n",
1180			    fixup_filename(lock1->li_file), lock1->li_line);
1181			kassert_panic("excl->share");
1182		}
1183		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1184		    (flags & LOP_EXCLUSIVE) != 0) {
1185			witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1186			    class->lc_name, lock->lo_name,
1187			    fixup_filename(file), line);
1188			witness_output("while share locked from %s:%d\n",
1189			    fixup_filename(lock1->li_file), lock1->li_line);
1190			kassert_panic("share->excl");
1191		}
1192		return;
1193	}
1194
1195	/* Warn if the interlock is not locked exactly once. */
1196	if (interlock != NULL) {
1197		iclass = LOCK_CLASS(interlock);
1198		lock1 = find_instance(lock_list, interlock);
1199		if (lock1 == NULL)
1200			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1201			    iclass->lc_name, interlock->lo_name,
1202			    fixup_filename(file), line);
1203		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1204			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1205			    iclass->lc_name, interlock->lo_name,
1206			    fixup_filename(file), line);
1207	}
1208
1209	/*
1210	 * Find the previously acquired lock, but ignore interlocks.
1211	 */
1212	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1213	if (interlock != NULL && plock->li_lock == interlock) {
1214		if (lock_list->ll_count > 1)
1215			plock =
1216			    &lock_list->ll_children[lock_list->ll_count - 2];
1217		else {
1218			lle = lock_list->ll_next;
1219
1220			/*
1221			 * The interlock is the only lock we hold, so
1222			 * simply return.
1223			 */
1224			if (lle == NULL)
1225				return;
1226			plock = &lle->ll_children[lle->ll_count - 1];
1227		}
1228	}
1229
1230	/*
1231	 * Try to perform most checks without a lock.  If this succeeds we
1232	 * can skip acquiring the lock and return success.  Otherwise we redo
1233	 * the check with the lock held to handle races with concurrent updates.
1234	 */
1235	w1 = plock->li_lock->lo_witness;
1236	if (witness_lock_order_check(w1, w))
1237		return;
1238
1239	mtx_lock_spin(&w_mtx);
1240	if (witness_lock_order_check(w1, w)) {
1241		mtx_unlock_spin(&w_mtx);
1242		return;
1243	}
1244	witness_lock_order_add(w1, w);
1245
1246	/*
1247	 * Check for duplicate locks of the same type.  Note that we only
1248	 * have to check for this on the last lock we just acquired.  Any
1249	 * other cases will be caught as lock order violations.
1250	 */
1251	if (w1 == w) {
1252		i = w->w_index;
1253		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1254		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1255		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1256			w->w_reversed = 1;
1257			mtx_unlock_spin(&w_mtx);
1258			witness_output(
1259			    "acquiring duplicate lock of same type: \"%s\"\n",
1260			    w->w_name);
1261			witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1262			    fixup_filename(plock->li_file), plock->li_line);
1263			witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1264			    fixup_filename(file), line);
1265			witness_debugger(1, __func__);
1266		} else
1267			mtx_unlock_spin(&w_mtx);
1268		return;
1269	}
1270	mtx_assert(&w_mtx, MA_OWNED);
1271
1272	/*
1273	 * If we know that the lock we are acquiring comes after
1274	 * the lock we most recently acquired in the lock order tree,
1275	 * then there is no need for any further checks.
1276	 */
1277	if (isitmychild(w1, w))
1278		goto out;
1279
1280	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1281		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1282
1283			MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1284			lock1 = &lle->ll_children[i];
1285
1286			/*
1287			 * Ignore the interlock.
1288			 */
1289			if (interlock == lock1->li_lock)
1290				continue;
1291
1292			/*
1293			 * If this lock doesn't undergo witness checking,
1294			 * then skip it.
1295			 */
1296			w1 = lock1->li_lock->lo_witness;
1297			if (w1 == NULL) {
1298				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1299				    ("lock missing witness structure"));
1300				continue;
1301			}
1302
1303			/*
1304			 * If we are locking Giant and this is a sleepable
1305			 * lock, then skip it.
1306			 */
1307			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1308			    lock == &Giant.lock_object)
1309				continue;
1310
1311			/*
1312			 * If we are locking a sleepable lock and this lock
1313			 * is Giant, then skip it.
1314			 */
1315			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1316			    lock1->li_lock == &Giant.lock_object)
1317				continue;
1318
1319			/*
1320			 * If we are locking a sleepable lock and this lock
1321			 * isn't sleepable, we want to treat it as a lock
1322			 * order violation to enfore a general lock order of
1323			 * sleepable locks before non-sleepable locks.
1324			 */
1325			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1326			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1327				goto reversal;
1328
1329			/*
1330			 * If we are locking Giant and this is a non-sleepable
1331			 * lock, then treat it as a reversal.
1332			 */
1333			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1334			    lock == &Giant.lock_object)
1335				goto reversal;
1336
1337			/*
1338			 * Check the lock order hierarchy for a reveresal.
1339			 */
1340			if (!isitmydescendant(w, w1))
1341				continue;
1342		reversal:
1343
1344			/*
1345			 * We have a lock order violation, check to see if it
1346			 * is allowed or has already been yelled about.
1347			 */
1348
1349			/* Bail if this violation is known */
1350			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1351				goto out;
1352
1353			/* Record this as a violation */
1354			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1355			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1356			w->w_reversed = w1->w_reversed = 1;
1357			witness_increment_graph_generation();
1358
1359			/*
1360			 * If the lock order is blessed, bail before logging
1361			 * anything.  We don't look for other lock order
1362			 * violations though, which may be a bug.
1363			 */
1364			if (blessed(w, w1))
1365				goto out;
1366			mtx_unlock_spin(&w_mtx);
1367
1368#ifdef WITNESS_NO_VNODE
1369			/*
1370			 * There are known LORs between VNODE locks. They are
1371			 * not an indication of a bug. VNODE locks are flagged
1372			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1373			 * is between 2 VNODE locks.
1374			 */
1375			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1376			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1377				return;
1378#endif
1379
1380			/*
1381			 * Ok, yell about it.
1382			 */
1383			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1384			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1385				witness_output(
1386		"lock order reversal: (sleepable after non-sleepable)\n");
1387			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1388			    && lock == &Giant.lock_object)
1389				witness_output(
1390		"lock order reversal: (Giant after non-sleepable)\n");
1391			else
1392				witness_output("lock order reversal:\n");
1393
1394			/*
1395			 * Try to locate an earlier lock with
1396			 * witness w in our list.
1397			 */
1398			do {
1399				lock2 = &lle->ll_children[i];
1400				MPASS(lock2->li_lock != NULL);
1401				if (lock2->li_lock->lo_witness == w)
1402					break;
1403				if (i == 0 && lle->ll_next != NULL) {
1404					lle = lle->ll_next;
1405					i = lle->ll_count - 1;
1406					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1407				} else
1408					i--;
1409			} while (i >= 0);
1410			if (i < 0) {
1411				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1412				    lock1->li_lock, lock1->li_lock->lo_name,
1413				    w1->w_name, fixup_filename(lock1->li_file),
1414				    lock1->li_line);
1415				witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1416				    lock->lo_name, w->w_name,
1417				    fixup_filename(file), line);
1418			} else {
1419				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1420				    lock2->li_lock, lock2->li_lock->lo_name,
1421				    lock2->li_lock->lo_witness->w_name,
1422				    fixup_filename(lock2->li_file),
1423				    lock2->li_line);
1424				witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1425				    lock1->li_lock, lock1->li_lock->lo_name,
1426				    w1->w_name, fixup_filename(lock1->li_file),
1427				    lock1->li_line);
1428				witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1429				    lock->lo_name, w->w_name,
1430				    fixup_filename(file), line);
1431			}
1432			witness_debugger(1, __func__);
1433			return;
1434		}
1435	}
1436
1437	/*
1438	 * If requested, build a new lock order.  However, don't build a new
1439	 * relationship between a sleepable lock and Giant if it is in the
1440	 * wrong direction.  The correct lock order is that sleepable locks
1441	 * always come before Giant.
1442	 */
1443	if (flags & LOP_NEWORDER &&
1444	    !(plock->li_lock == &Giant.lock_object &&
1445	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1446		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1447		    w->w_name, plock->li_lock->lo_witness->w_name);
1448		itismychild(plock->li_lock->lo_witness, w);
1449	}
1450out:
1451	mtx_unlock_spin(&w_mtx);
1452}
1453
1454void
1455witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1456{
1457	struct lock_list_entry **lock_list, *lle;
1458	struct lock_instance *instance;
1459	struct witness *w;
1460	struct thread *td;
1461
1462	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1463	    panicstr != NULL)
1464		return;
1465	w = lock->lo_witness;
1466	td = curthread;
1467
1468	/* Determine lock list for this lock. */
1469	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1470		lock_list = &td->td_sleeplocks;
1471	else
1472		lock_list = PCPU_PTR(spinlocks);
1473
1474	/* Check to see if we are recursing on a lock we already own. */
1475	instance = find_instance(*lock_list, lock);
1476	if (instance != NULL) {
1477		instance->li_flags++;
1478		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1479		    td->td_proc->p_pid, lock->lo_name,
1480		    instance->li_flags & LI_RECURSEMASK);
1481		instance->li_file = file;
1482		instance->li_line = line;
1483		return;
1484	}
1485
1486	/* Update per-witness last file and line acquire. */
1487	w->w_file = file;
1488	w->w_line = line;
1489
1490	/* Find the next open lock instance in the list and fill it. */
1491	lle = *lock_list;
1492	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1493		lle = witness_lock_list_get();
1494		if (lle == NULL)
1495			return;
1496		lle->ll_next = *lock_list;
1497		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1498		    td->td_proc->p_pid, lle);
1499		*lock_list = lle;
1500	}
1501	instance = &lle->ll_children[lle->ll_count++];
1502	instance->li_lock = lock;
1503	instance->li_line = line;
1504	instance->li_file = file;
1505	if ((flags & LOP_EXCLUSIVE) != 0)
1506		instance->li_flags = LI_EXCLUSIVE;
1507	else
1508		instance->li_flags = 0;
1509	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1510	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1511}
1512
1513void
1514witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1515{
1516	struct lock_instance *instance;
1517	struct lock_class *class;
1518
1519	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1520	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1521		return;
1522	class = LOCK_CLASS(lock);
1523	if (witness_watch) {
1524		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1525			kassert_panic(
1526			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1527			    class->lc_name, lock->lo_name,
1528			    fixup_filename(file), line);
1529		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1530			kassert_panic(
1531			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1532			    class->lc_name, lock->lo_name,
1533			    fixup_filename(file), line);
1534	}
1535	instance = find_instance(curthread->td_sleeplocks, lock);
1536	if (instance == NULL) {
1537		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1538		    class->lc_name, lock->lo_name,
1539		    fixup_filename(file), line);
1540		return;
1541	}
1542	if (witness_watch) {
1543		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1544			kassert_panic(
1545			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1546			    class->lc_name, lock->lo_name,
1547			    fixup_filename(file), line);
1548		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1549			kassert_panic(
1550			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1551			    class->lc_name, lock->lo_name,
1552			    instance->li_flags & LI_RECURSEMASK,
1553			    fixup_filename(file), line);
1554	}
1555	instance->li_flags |= LI_EXCLUSIVE;
1556}
1557
1558void
1559witness_downgrade(struct lock_object *lock, int flags, const char *file,
1560    int line)
1561{
1562	struct lock_instance *instance;
1563	struct lock_class *class;
1564
1565	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1566	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1567		return;
1568	class = LOCK_CLASS(lock);
1569	if (witness_watch) {
1570		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1571			kassert_panic(
1572			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1573			    class->lc_name, lock->lo_name,
1574			    fixup_filename(file), line);
1575		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1576			kassert_panic(
1577			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1578			    class->lc_name, lock->lo_name,
1579			    fixup_filename(file), line);
1580	}
1581	instance = find_instance(curthread->td_sleeplocks, lock);
1582	if (instance == NULL) {
1583		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1584		    class->lc_name, lock->lo_name,
1585		    fixup_filename(file), line);
1586		return;
1587	}
1588	if (witness_watch) {
1589		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1590			kassert_panic(
1591			    "downgrade of shared lock (%s) %s @ %s:%d",
1592			    class->lc_name, lock->lo_name,
1593			    fixup_filename(file), line);
1594		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1595			kassert_panic(
1596			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1597			    class->lc_name, lock->lo_name,
1598			    instance->li_flags & LI_RECURSEMASK,
1599			    fixup_filename(file), line);
1600	}
1601	instance->li_flags &= ~LI_EXCLUSIVE;
1602}
1603
1604void
1605witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1606{
1607	struct lock_list_entry **lock_list, *lle;
1608	struct lock_instance *instance;
1609	struct lock_class *class;
1610	struct thread *td;
1611	register_t s;
1612	int i, j;
1613
1614	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1615		return;
1616	td = curthread;
1617	class = LOCK_CLASS(lock);
1618
1619	/* Find lock instance associated with this lock. */
1620	if (class->lc_flags & LC_SLEEPLOCK)
1621		lock_list = &td->td_sleeplocks;
1622	else
1623		lock_list = PCPU_PTR(spinlocks);
1624	lle = *lock_list;
1625	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1626		for (i = 0; i < (*lock_list)->ll_count; i++) {
1627			instance = &(*lock_list)->ll_children[i];
1628			if (instance->li_lock == lock)
1629				goto found;
1630		}
1631
1632	/*
1633	 * When disabling WITNESS through witness_watch we could end up in
1634	 * having registered locks in the td_sleeplocks queue.
1635	 * We have to make sure we flush these queues, so just search for
1636	 * eventual register locks and remove them.
1637	 */
1638	if (witness_watch > 0) {
1639		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1640		    lock->lo_name, fixup_filename(file), line);
1641		return;
1642	} else {
1643		return;
1644	}
1645found:
1646
1647	/* First, check for shared/exclusive mismatches. */
1648	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1649	    (flags & LOP_EXCLUSIVE) == 0) {
1650		witness_output("shared unlock of (%s) %s @ %s:%d\n",
1651		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1652		witness_output("while exclusively locked from %s:%d\n",
1653		    fixup_filename(instance->li_file), instance->li_line);
1654		kassert_panic("excl->ushare");
1655	}
1656	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1657	    (flags & LOP_EXCLUSIVE) != 0) {
1658		witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1659		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1660		witness_output("while share locked from %s:%d\n",
1661		    fixup_filename(instance->li_file),
1662		    instance->li_line);
1663		kassert_panic("share->uexcl");
1664	}
1665	/* If we are recursed, unrecurse. */
1666	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1667		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1668		    td->td_proc->p_pid, instance->li_lock->lo_name,
1669		    instance->li_flags);
1670		instance->li_flags--;
1671		return;
1672	}
1673	/* The lock is now being dropped, check for NORELEASE flag */
1674	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1675		witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1676		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1677		kassert_panic("lock marked norelease");
1678	}
1679
1680	/* Otherwise, remove this item from the list. */
1681	s = intr_disable();
1682	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1683	    td->td_proc->p_pid, instance->li_lock->lo_name,
1684	    (*lock_list)->ll_count - 1);
1685	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1686		(*lock_list)->ll_children[j] =
1687		    (*lock_list)->ll_children[j + 1];
1688	(*lock_list)->ll_count--;
1689	intr_restore(s);
1690
1691	/*
1692	 * In order to reduce contention on w_mtx, we want to keep always an
1693	 * head object into lists so that frequent allocation from the
1694	 * free witness pool (and subsequent locking) is avoided.
1695	 * In order to maintain the current code simple, when the head
1696	 * object is totally unloaded it means also that we do not have
1697	 * further objects in the list, so the list ownership needs to be
1698	 * hand over to another object if the current head needs to be freed.
1699	 */
1700	if ((*lock_list)->ll_count == 0) {
1701		if (*lock_list == lle) {
1702			if (lle->ll_next == NULL)
1703				return;
1704		} else
1705			lle = *lock_list;
1706		*lock_list = lle->ll_next;
1707		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1708		    td->td_proc->p_pid, lle);
1709		witness_lock_list_free(lle);
1710	}
1711}
1712
1713void
1714witness_thread_exit(struct thread *td)
1715{
1716	struct lock_list_entry *lle;
1717	int i, n;
1718
1719	lle = td->td_sleeplocks;
1720	if (lle == NULL || panicstr != NULL)
1721		return;
1722	if (lle->ll_count != 0) {
1723		for (n = 0; lle != NULL; lle = lle->ll_next)
1724			for (i = lle->ll_count - 1; i >= 0; i--) {
1725				if (n == 0)
1726					witness_output(
1727		    "Thread %p exiting with the following locks held:\n", td);
1728				n++;
1729				witness_list_lock(&lle->ll_children[i],
1730				    witness_output);
1731
1732			}
1733		kassert_panic(
1734		    "Thread %p cannot exit while holding sleeplocks\n", td);
1735	}
1736	witness_lock_list_free(lle);
1737}
1738
1739/*
1740 * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1741 * exempt Giant and sleepable locks from the checks as well.  If any
1742 * non-exempt locks are held, then a supplied message is printed to the
1743 * output channel along with a list of the offending locks.  If indicated in the
1744 * flags then a failure results in a panic as well.
1745 */
1746int
1747witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1748{
1749	struct lock_list_entry *lock_list, *lle;
1750	struct lock_instance *lock1;
1751	struct thread *td;
1752	va_list ap;
1753	int i, n;
1754
1755	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1756		return (0);
1757	n = 0;
1758	td = curthread;
1759	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1760		for (i = lle->ll_count - 1; i >= 0; i--) {
1761			lock1 = &lle->ll_children[i];
1762			if (lock1->li_lock == lock)
1763				continue;
1764			if (flags & WARN_GIANTOK &&
1765			    lock1->li_lock == &Giant.lock_object)
1766				continue;
1767			if (flags & WARN_SLEEPOK &&
1768			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1769				continue;
1770			if (n == 0) {
1771				va_start(ap, fmt);
1772				vprintf(fmt, ap);
1773				va_end(ap);
1774				printf(" with the following %slocks held:\n",
1775				    (flags & WARN_SLEEPOK) != 0 ?
1776				    "non-sleepable " : "");
1777			}
1778			n++;
1779			witness_list_lock(lock1, printf);
1780		}
1781
1782	/*
1783	 * Pin the thread in order to avoid problems with thread migration.
1784	 * Once that all verifies are passed about spinlocks ownership,
1785	 * the thread is in a safe path and it can be unpinned.
1786	 */
1787	sched_pin();
1788	lock_list = PCPU_GET(spinlocks);
1789	if (lock_list != NULL && lock_list->ll_count != 0) {
1790		sched_unpin();
1791
1792		/*
1793		 * We should only have one spinlock and as long as
1794		 * the flags cannot match for this locks class,
1795		 * check if the first spinlock is the one curthread
1796		 * should hold.
1797		 */
1798		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1799		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1800		    lock1->li_lock == lock && n == 0)
1801			return (0);
1802
1803		va_start(ap, fmt);
1804		vprintf(fmt, ap);
1805		va_end(ap);
1806		printf(" with the following %slocks held:\n",
1807		    (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1808		n += witness_list_locks(&lock_list, printf);
1809	} else
1810		sched_unpin();
1811	if (flags & WARN_PANIC && n)
1812		kassert_panic("%s", __func__);
1813	else
1814		witness_debugger(n, __func__);
1815	return (n);
1816}
1817
1818const char *
1819witness_file(struct lock_object *lock)
1820{
1821	struct witness *w;
1822
1823	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1824		return ("?");
1825	w = lock->lo_witness;
1826	return (w->w_file);
1827}
1828
1829int
1830witness_line(struct lock_object *lock)
1831{
1832	struct witness *w;
1833
1834	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1835		return (0);
1836	w = lock->lo_witness;
1837	return (w->w_line);
1838}
1839
1840static struct witness *
1841enroll(const char *description, struct lock_class *lock_class)
1842{
1843	struct witness *w;
1844
1845	MPASS(description != NULL);
1846
1847	if (witness_watch == -1 || panicstr != NULL)
1848		return (NULL);
1849	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1850		if (witness_skipspin)
1851			return (NULL);
1852	} else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1853		kassert_panic("lock class %s is not sleep or spin",
1854		    lock_class->lc_name);
1855		return (NULL);
1856	}
1857
1858	mtx_lock_spin(&w_mtx);
1859	w = witness_hash_get(description);
1860	if (w)
1861		goto found;
1862	if ((w = witness_get()) == NULL)
1863		return (NULL);
1864	MPASS(strlen(description) < MAX_W_NAME);
1865	strcpy(w->w_name, description);
1866	w->w_class = lock_class;
1867	w->w_refcount = 1;
1868	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1869	if (lock_class->lc_flags & LC_SPINLOCK) {
1870		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1871		w_spin_cnt++;
1872	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1873		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1874		w_sleep_cnt++;
1875	}
1876
1877	/* Insert new witness into the hash */
1878	witness_hash_put(w);
1879	witness_increment_graph_generation();
1880	mtx_unlock_spin(&w_mtx);
1881	return (w);
1882found:
1883	w->w_refcount++;
1884	if (w->w_refcount == 1)
1885		w->w_class = lock_class;
1886	mtx_unlock_spin(&w_mtx);
1887	if (lock_class != w->w_class)
1888		kassert_panic(
1889		    "lock (%s) %s does not match earlier (%s) lock",
1890		    description, lock_class->lc_name,
1891		    w->w_class->lc_name);
1892	return (w);
1893}
1894
1895static void
1896depart(struct witness *w)
1897{
1898
1899	MPASS(w->w_refcount == 0);
1900	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1901		w_sleep_cnt--;
1902	} else {
1903		w_spin_cnt--;
1904	}
1905	/*
1906	 * Set file to NULL as it may point into a loadable module.
1907	 */
1908	w->w_file = NULL;
1909	w->w_line = 0;
1910	witness_increment_graph_generation();
1911}
1912
1913
1914static void
1915adopt(struct witness *parent, struct witness *child)
1916{
1917	int pi, ci, i, j;
1918
1919	if (witness_cold == 0)
1920		mtx_assert(&w_mtx, MA_OWNED);
1921
1922	/* If the relationship is already known, there's no work to be done. */
1923	if (isitmychild(parent, child))
1924		return;
1925
1926	/* When the structure of the graph changes, bump up the generation. */
1927	witness_increment_graph_generation();
1928
1929	/*
1930	 * The hard part ... create the direct relationship, then propagate all
1931	 * indirect relationships.
1932	 */
1933	pi = parent->w_index;
1934	ci = child->w_index;
1935	WITNESS_INDEX_ASSERT(pi);
1936	WITNESS_INDEX_ASSERT(ci);
1937	MPASS(pi != ci);
1938	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1939	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1940
1941	/*
1942	 * If parent was not already an ancestor of child,
1943	 * then we increment the descendant and ancestor counters.
1944	 */
1945	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1946		parent->w_num_descendants++;
1947		child->w_num_ancestors++;
1948	}
1949
1950	/*
1951	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1952	 * an ancestor of 'pi' during this loop.
1953	 */
1954	for (i = 1; i <= w_max_used_index; i++) {
1955		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1956		    (i != pi))
1957			continue;
1958
1959		/* Find each descendant of 'i' and mark it as a descendant. */
1960		for (j = 1; j <= w_max_used_index; j++) {
1961
1962			/*
1963			 * Skip children that are already marked as
1964			 * descendants of 'i'.
1965			 */
1966			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1967				continue;
1968
1969			/*
1970			 * We are only interested in descendants of 'ci'. Note
1971			 * that 'ci' itself is counted as a descendant of 'ci'.
1972			 */
1973			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1974			    (j != ci))
1975				continue;
1976			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1977			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1978			w_data[i].w_num_descendants++;
1979			w_data[j].w_num_ancestors++;
1980
1981			/*
1982			 * Make sure we aren't marking a node as both an
1983			 * ancestor and descendant. We should have caught
1984			 * this as a lock order reversal earlier.
1985			 */
1986			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1987			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1988				printf("witness rmatrix paradox! [%d][%d]=%d "
1989				    "both ancestor and descendant\n",
1990				    i, j, w_rmatrix[i][j]);
1991				kdb_backtrace();
1992				printf("Witness disabled.\n");
1993				witness_watch = -1;
1994			}
1995			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1996			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1997				printf("witness rmatrix paradox! [%d][%d]=%d "
1998				    "both ancestor and descendant\n",
1999				    j, i, w_rmatrix[j][i]);
2000				kdb_backtrace();
2001				printf("Witness disabled.\n");
2002				witness_watch = -1;
2003			}
2004		}
2005	}
2006}
2007
2008static void
2009itismychild(struct witness *parent, struct witness *child)
2010{
2011	int unlocked;
2012
2013	MPASS(child != NULL && parent != NULL);
2014	if (witness_cold == 0)
2015		mtx_assert(&w_mtx, MA_OWNED);
2016
2017	if (!witness_lock_type_equal(parent, child)) {
2018		if (witness_cold == 0) {
2019			unlocked = 1;
2020			mtx_unlock_spin(&w_mtx);
2021		} else {
2022			unlocked = 0;
2023		}
2024		kassert_panic(
2025		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2026		    "the same lock type", __func__, parent->w_name,
2027		    parent->w_class->lc_name, child->w_name,
2028		    child->w_class->lc_name);
2029		if (unlocked)
2030			mtx_lock_spin(&w_mtx);
2031	}
2032	adopt(parent, child);
2033}
2034
2035/*
2036 * Generic code for the isitmy*() functions. The rmask parameter is the
2037 * expected relationship of w1 to w2.
2038 */
2039static int
2040_isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2041{
2042	unsigned char r1, r2;
2043	int i1, i2;
2044
2045	i1 = w1->w_index;
2046	i2 = w2->w_index;
2047	WITNESS_INDEX_ASSERT(i1);
2048	WITNESS_INDEX_ASSERT(i2);
2049	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2050	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2051
2052	/* The flags on one better be the inverse of the flags on the other */
2053	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2054	    (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2055		/* Don't squawk if we're potentially racing with an update. */
2056		if (!mtx_owned(&w_mtx))
2057			return (0);
2058		printf("%s: rmatrix mismatch between %s (index %d) and %s "
2059		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
2060		    "w_rmatrix[%d][%d] == %hhx\n",
2061		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2062		    i2, i1, r2);
2063		kdb_backtrace();
2064		printf("Witness disabled.\n");
2065		witness_watch = -1;
2066	}
2067	return (r1 & rmask);
2068}
2069
2070/*
2071 * Checks if @child is a direct child of @parent.
2072 */
2073static int
2074isitmychild(struct witness *parent, struct witness *child)
2075{
2076
2077	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2078}
2079
2080/*
2081 * Checks if @descendant is a direct or inderect descendant of @ancestor.
2082 */
2083static int
2084isitmydescendant(struct witness *ancestor, struct witness *descendant)
2085{
2086
2087	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2088	    __func__));
2089}
2090
2091static int
2092blessed(struct witness *w1, struct witness *w2)
2093{
2094	int i;
2095	struct witness_blessed *b;
2096
2097	for (i = 0; i < nitems(blessed_list); i++) {
2098		b = &blessed_list[i];
2099		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2100			if (strcmp(w2->w_name, b->b_lock2) == 0)
2101				return (1);
2102			continue;
2103		}
2104		if (strcmp(w1->w_name, b->b_lock2) == 0)
2105			if (strcmp(w2->w_name, b->b_lock1) == 0)
2106				return (1);
2107	}
2108	return (0);
2109}
2110
2111static struct witness *
2112witness_get(void)
2113{
2114	struct witness *w;
2115	int index;
2116
2117	if (witness_cold == 0)
2118		mtx_assert(&w_mtx, MA_OWNED);
2119
2120	if (witness_watch == -1) {
2121		mtx_unlock_spin(&w_mtx);
2122		return (NULL);
2123	}
2124	if (STAILQ_EMPTY(&w_free)) {
2125		witness_watch = -1;
2126		mtx_unlock_spin(&w_mtx);
2127		printf("WITNESS: unable to allocate a new witness object\n");
2128		return (NULL);
2129	}
2130	w = STAILQ_FIRST(&w_free);
2131	STAILQ_REMOVE_HEAD(&w_free, w_list);
2132	w_free_cnt--;
2133	index = w->w_index;
2134	MPASS(index > 0 && index == w_max_used_index+1 &&
2135	    index < witness_count);
2136	bzero(w, sizeof(*w));
2137	w->w_index = index;
2138	if (index > w_max_used_index)
2139		w_max_used_index = index;
2140	return (w);
2141}
2142
2143static void
2144witness_free(struct witness *w)
2145{
2146
2147	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2148	w_free_cnt++;
2149}
2150
2151static struct lock_list_entry *
2152witness_lock_list_get(void)
2153{
2154	struct lock_list_entry *lle;
2155
2156	if (witness_watch == -1)
2157		return (NULL);
2158	mtx_lock_spin(&w_mtx);
2159	lle = w_lock_list_free;
2160	if (lle == NULL) {
2161		witness_watch = -1;
2162		mtx_unlock_spin(&w_mtx);
2163		printf("%s: witness exhausted\n", __func__);
2164		return (NULL);
2165	}
2166	w_lock_list_free = lle->ll_next;
2167	mtx_unlock_spin(&w_mtx);
2168	bzero(lle, sizeof(*lle));
2169	return (lle);
2170}
2171
2172static void
2173witness_lock_list_free(struct lock_list_entry *lle)
2174{
2175
2176	mtx_lock_spin(&w_mtx);
2177	lle->ll_next = w_lock_list_free;
2178	w_lock_list_free = lle;
2179	mtx_unlock_spin(&w_mtx);
2180}
2181
2182static struct lock_instance *
2183find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2184{
2185	struct lock_list_entry *lle;
2186	struct lock_instance *instance;
2187	int i;
2188
2189	for (lle = list; lle != NULL; lle = lle->ll_next)
2190		for (i = lle->ll_count - 1; i >= 0; i--) {
2191			instance = &lle->ll_children[i];
2192			if (instance->li_lock == lock)
2193				return (instance);
2194		}
2195	return (NULL);
2196}
2197
2198static void
2199witness_list_lock(struct lock_instance *instance,
2200    int (*prnt)(const char *fmt, ...))
2201{
2202	struct lock_object *lock;
2203
2204	lock = instance->li_lock;
2205	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2206	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2207	if (lock->lo_witness->w_name != lock->lo_name)
2208		prnt(" (%s)", lock->lo_witness->w_name);
2209	prnt(" r = %d (%p) locked @ %s:%d\n",
2210	    instance->li_flags & LI_RECURSEMASK, lock,
2211	    fixup_filename(instance->li_file), instance->li_line);
2212}
2213
2214static int
2215witness_output(const char *fmt, ...)
2216{
2217	va_list ap;
2218	int ret;
2219
2220	va_start(ap, fmt);
2221	ret = witness_voutput(fmt, ap);
2222	va_end(ap);
2223	return (ret);
2224}
2225
2226static int
2227witness_voutput(const char *fmt, va_list ap)
2228{
2229	int ret;
2230
2231	ret = 0;
2232	switch (witness_channel) {
2233	case WITNESS_CONSOLE:
2234		ret = vprintf(fmt, ap);
2235		break;
2236	case WITNESS_LOG:
2237		vlog(LOG_NOTICE, fmt, ap);
2238		break;
2239	case WITNESS_NONE:
2240		break;
2241	}
2242	return (ret);
2243}
2244
2245#ifdef DDB
2246static int
2247witness_thread_has_locks(struct thread *td)
2248{
2249
2250	if (td->td_sleeplocks == NULL)
2251		return (0);
2252	return (td->td_sleeplocks->ll_count != 0);
2253}
2254
2255static int
2256witness_proc_has_locks(struct proc *p)
2257{
2258	struct thread *td;
2259
2260	FOREACH_THREAD_IN_PROC(p, td) {
2261		if (witness_thread_has_locks(td))
2262			return (1);
2263	}
2264	return (0);
2265}
2266#endif
2267
2268int
2269witness_list_locks(struct lock_list_entry **lock_list,
2270    int (*prnt)(const char *fmt, ...))
2271{
2272	struct lock_list_entry *lle;
2273	int i, nheld;
2274
2275	nheld = 0;
2276	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2277		for (i = lle->ll_count - 1; i >= 0; i--) {
2278			witness_list_lock(&lle->ll_children[i], prnt);
2279			nheld++;
2280		}
2281	return (nheld);
2282}
2283
2284/*
2285 * This is a bit risky at best.  We call this function when we have timed
2286 * out acquiring a spin lock, and we assume that the other CPU is stuck
2287 * with this lock held.  So, we go groveling around in the other CPU's
2288 * per-cpu data to try to find the lock instance for this spin lock to
2289 * see when it was last acquired.
2290 */
2291void
2292witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2293    int (*prnt)(const char *fmt, ...))
2294{
2295	struct lock_instance *instance;
2296	struct pcpu *pc;
2297
2298	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2299		return;
2300	pc = pcpu_find(owner->td_oncpu);
2301	instance = find_instance(pc->pc_spinlocks, lock);
2302	if (instance != NULL)
2303		witness_list_lock(instance, prnt);
2304}
2305
2306void
2307witness_save(struct lock_object *lock, const char **filep, int *linep)
2308{
2309	struct lock_list_entry *lock_list;
2310	struct lock_instance *instance;
2311	struct lock_class *class;
2312
2313	/*
2314	 * This function is used independently in locking code to deal with
2315	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2316	 * is gone.
2317	 */
2318	if (SCHEDULER_STOPPED())
2319		return;
2320	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2321	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2322		return;
2323	class = LOCK_CLASS(lock);
2324	if (class->lc_flags & LC_SLEEPLOCK)
2325		lock_list = curthread->td_sleeplocks;
2326	else {
2327		if (witness_skipspin)
2328			return;
2329		lock_list = PCPU_GET(spinlocks);
2330	}
2331	instance = find_instance(lock_list, lock);
2332	if (instance == NULL) {
2333		kassert_panic("%s: lock (%s) %s not locked", __func__,
2334		    class->lc_name, lock->lo_name);
2335		return;
2336	}
2337	*filep = instance->li_file;
2338	*linep = instance->li_line;
2339}
2340
2341void
2342witness_restore(struct lock_object *lock, const char *file, int line)
2343{
2344	struct lock_list_entry *lock_list;
2345	struct lock_instance *instance;
2346	struct lock_class *class;
2347
2348	/*
2349	 * This function is used independently in locking code to deal with
2350	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2351	 * is gone.
2352	 */
2353	if (SCHEDULER_STOPPED())
2354		return;
2355	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2356	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2357		return;
2358	class = LOCK_CLASS(lock);
2359	if (class->lc_flags & LC_SLEEPLOCK)
2360		lock_list = curthread->td_sleeplocks;
2361	else {
2362		if (witness_skipspin)
2363			return;
2364		lock_list = PCPU_GET(spinlocks);
2365	}
2366	instance = find_instance(lock_list, lock);
2367	if (instance == NULL)
2368		kassert_panic("%s: lock (%s) %s not locked", __func__,
2369		    class->lc_name, lock->lo_name);
2370	lock->lo_witness->w_file = file;
2371	lock->lo_witness->w_line = line;
2372	if (instance == NULL)
2373		return;
2374	instance->li_file = file;
2375	instance->li_line = line;
2376}
2377
2378void
2379witness_assert(const struct lock_object *lock, int flags, const char *file,
2380    int line)
2381{
2382#ifdef INVARIANT_SUPPORT
2383	struct lock_instance *instance;
2384	struct lock_class *class;
2385
2386	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2387		return;
2388	class = LOCK_CLASS(lock);
2389	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2390		instance = find_instance(curthread->td_sleeplocks, lock);
2391	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2392		instance = find_instance(PCPU_GET(spinlocks), lock);
2393	else {
2394		kassert_panic("Lock (%s) %s is not sleep or spin!",
2395		    class->lc_name, lock->lo_name);
2396		return;
2397	}
2398	switch (flags) {
2399	case LA_UNLOCKED:
2400		if (instance != NULL)
2401			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2402			    class->lc_name, lock->lo_name,
2403			    fixup_filename(file), line);
2404		break;
2405	case LA_LOCKED:
2406	case LA_LOCKED | LA_RECURSED:
2407	case LA_LOCKED | LA_NOTRECURSED:
2408	case LA_SLOCKED:
2409	case LA_SLOCKED | LA_RECURSED:
2410	case LA_SLOCKED | LA_NOTRECURSED:
2411	case LA_XLOCKED:
2412	case LA_XLOCKED | LA_RECURSED:
2413	case LA_XLOCKED | LA_NOTRECURSED:
2414		if (instance == NULL) {
2415			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2416			    class->lc_name, lock->lo_name,
2417			    fixup_filename(file), line);
2418			break;
2419		}
2420		if ((flags & LA_XLOCKED) != 0 &&
2421		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2422			kassert_panic(
2423			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2424			    class->lc_name, lock->lo_name,
2425			    fixup_filename(file), line);
2426		if ((flags & LA_SLOCKED) != 0 &&
2427		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2428			kassert_panic(
2429			    "Lock (%s) %s exclusively locked @ %s:%d.",
2430			    class->lc_name, lock->lo_name,
2431			    fixup_filename(file), line);
2432		if ((flags & LA_RECURSED) != 0 &&
2433		    (instance->li_flags & LI_RECURSEMASK) == 0)
2434			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2435			    class->lc_name, lock->lo_name,
2436			    fixup_filename(file), line);
2437		if ((flags & LA_NOTRECURSED) != 0 &&
2438		    (instance->li_flags & LI_RECURSEMASK) != 0)
2439			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2440			    class->lc_name, lock->lo_name,
2441			    fixup_filename(file), line);
2442		break;
2443	default:
2444		kassert_panic("Invalid lock assertion at %s:%d.",
2445		    fixup_filename(file), line);
2446
2447	}
2448#endif	/* INVARIANT_SUPPORT */
2449}
2450
2451static void
2452witness_setflag(struct lock_object *lock, int flag, int set)
2453{
2454	struct lock_list_entry *lock_list;
2455	struct lock_instance *instance;
2456	struct lock_class *class;
2457
2458	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2459		return;
2460	class = LOCK_CLASS(lock);
2461	if (class->lc_flags & LC_SLEEPLOCK)
2462		lock_list = curthread->td_sleeplocks;
2463	else {
2464		if (witness_skipspin)
2465			return;
2466		lock_list = PCPU_GET(spinlocks);
2467	}
2468	instance = find_instance(lock_list, lock);
2469	if (instance == NULL) {
2470		kassert_panic("%s: lock (%s) %s not locked", __func__,
2471		    class->lc_name, lock->lo_name);
2472		return;
2473	}
2474
2475	if (set)
2476		instance->li_flags |= flag;
2477	else
2478		instance->li_flags &= ~flag;
2479}
2480
2481void
2482witness_norelease(struct lock_object *lock)
2483{
2484
2485	witness_setflag(lock, LI_NORELEASE, 1);
2486}
2487
2488void
2489witness_releaseok(struct lock_object *lock)
2490{
2491
2492	witness_setflag(lock, LI_NORELEASE, 0);
2493}
2494
2495#ifdef DDB
2496static void
2497witness_ddb_list(struct thread *td)
2498{
2499
2500	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2501	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2502
2503	if (witness_watch < 1)
2504		return;
2505
2506	witness_list_locks(&td->td_sleeplocks, db_printf);
2507
2508	/*
2509	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2510	 * if td is currently executing on some other CPU and holds spin locks
2511	 * as we won't display those locks.  If we had a MI way of getting
2512	 * the per-cpu data for a given cpu then we could use
2513	 * td->td_oncpu to get the list of spinlocks for this thread
2514	 * and "fix" this.
2515	 *
2516	 * That still wouldn't really fix this unless we locked the scheduler
2517	 * lock or stopped the other CPU to make sure it wasn't changing the
2518	 * list out from under us.  It is probably best to just not try to
2519	 * handle threads on other CPU's for now.
2520	 */
2521	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2522		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2523}
2524
2525DB_SHOW_COMMAND(locks, db_witness_list)
2526{
2527	struct thread *td;
2528
2529	if (have_addr)
2530		td = db_lookup_thread(addr, true);
2531	else
2532		td = kdb_thread;
2533	witness_ddb_list(td);
2534}
2535
2536DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2537{
2538	struct thread *td;
2539	struct proc *p;
2540
2541	/*
2542	 * It would be nice to list only threads and processes that actually
2543	 * held sleep locks, but that information is currently not exported
2544	 * by WITNESS.
2545	 */
2546	FOREACH_PROC_IN_SYSTEM(p) {
2547		if (!witness_proc_has_locks(p))
2548			continue;
2549		FOREACH_THREAD_IN_PROC(p, td) {
2550			if (!witness_thread_has_locks(td))
2551				continue;
2552			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2553			    p->p_comm, td, td->td_tid);
2554			witness_ddb_list(td);
2555			if (db_pager_quit)
2556				return;
2557		}
2558	}
2559}
2560DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2561
2562DB_SHOW_COMMAND(witness, db_witness_display)
2563{
2564
2565	witness_ddb_display(db_printf);
2566}
2567#endif
2568
2569static void
2570sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2571{
2572	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2573	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2574	int generation, i, j;
2575
2576	tmp_data1 = NULL;
2577	tmp_data2 = NULL;
2578	tmp_w1 = NULL;
2579	tmp_w2 = NULL;
2580
2581	/* Allocate and init temporary storage space. */
2582	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2583	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2584	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2585	    M_WAITOK | M_ZERO);
2586	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2587	    M_WAITOK | M_ZERO);
2588	stack_zero(&tmp_data1->wlod_stack);
2589	stack_zero(&tmp_data2->wlod_stack);
2590
2591restart:
2592	mtx_lock_spin(&w_mtx);
2593	generation = w_generation;
2594	mtx_unlock_spin(&w_mtx);
2595	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2596	    w_lohash.wloh_count);
2597	for (i = 1; i < w_max_used_index; i++) {
2598		mtx_lock_spin(&w_mtx);
2599		if (generation != w_generation) {
2600			mtx_unlock_spin(&w_mtx);
2601
2602			/* The graph has changed, try again. */
2603			*oldidx = 0;
2604			sbuf_clear(sb);
2605			goto restart;
2606		}
2607
2608		w1 = &w_data[i];
2609		if (w1->w_reversed == 0) {
2610			mtx_unlock_spin(&w_mtx);
2611			continue;
2612		}
2613
2614		/* Copy w1 locally so we can release the spin lock. */
2615		*tmp_w1 = *w1;
2616		mtx_unlock_spin(&w_mtx);
2617
2618		if (tmp_w1->w_reversed == 0)
2619			continue;
2620		for (j = 1; j < w_max_used_index; j++) {
2621			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2622				continue;
2623
2624			mtx_lock_spin(&w_mtx);
2625			if (generation != w_generation) {
2626				mtx_unlock_spin(&w_mtx);
2627
2628				/* The graph has changed, try again. */
2629				*oldidx = 0;
2630				sbuf_clear(sb);
2631				goto restart;
2632			}
2633
2634			w2 = &w_data[j];
2635			data1 = witness_lock_order_get(w1, w2);
2636			data2 = witness_lock_order_get(w2, w1);
2637
2638			/*
2639			 * Copy information locally so we can release the
2640			 * spin lock.
2641			 */
2642			*tmp_w2 = *w2;
2643
2644			if (data1) {
2645				stack_zero(&tmp_data1->wlod_stack);
2646				stack_copy(&data1->wlod_stack,
2647				    &tmp_data1->wlod_stack);
2648			}
2649			if (data2 && data2 != data1) {
2650				stack_zero(&tmp_data2->wlod_stack);
2651				stack_copy(&data2->wlod_stack,
2652				    &tmp_data2->wlod_stack);
2653			}
2654			mtx_unlock_spin(&w_mtx);
2655
2656			if (blessed(tmp_w1, tmp_w2))
2657				continue;
2658
2659			sbuf_printf(sb,
2660	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2661			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2662			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2663			if (data1) {
2664				sbuf_printf(sb,
2665			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2666				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2667				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2668				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2669				sbuf_printf(sb, "\n");
2670			}
2671			if (data2 && data2 != data1) {
2672				sbuf_printf(sb,
2673			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2674				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2675				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2676				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2677				sbuf_printf(sb, "\n");
2678			}
2679		}
2680	}
2681	mtx_lock_spin(&w_mtx);
2682	if (generation != w_generation) {
2683		mtx_unlock_spin(&w_mtx);
2684
2685		/*
2686		 * The graph changed while we were printing stack data,
2687		 * try again.
2688		 */
2689		*oldidx = 0;
2690		sbuf_clear(sb);
2691		goto restart;
2692	}
2693	mtx_unlock_spin(&w_mtx);
2694
2695	/* Free temporary storage space. */
2696	free(tmp_data1, M_TEMP);
2697	free(tmp_data2, M_TEMP);
2698	free(tmp_w1, M_TEMP);
2699	free(tmp_w2, M_TEMP);
2700}
2701
2702static int
2703sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2704{
2705	struct sbuf *sb;
2706	int error;
2707
2708	if (witness_watch < 1) {
2709		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2710		return (error);
2711	}
2712	if (witness_cold) {
2713		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2714		return (error);
2715	}
2716	error = 0;
2717	sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2718	if (sb == NULL)
2719		return (ENOMEM);
2720
2721	sbuf_print_witness_badstacks(sb, &req->oldidx);
2722
2723	sbuf_finish(sb);
2724	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2725	sbuf_delete(sb);
2726
2727	return (error);
2728}
2729
2730#ifdef DDB
2731static int
2732sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2733{
2734
2735	return (db_printf("%.*s", len, data));
2736}
2737
2738DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2739{
2740	struct sbuf sb;
2741	char buffer[128];
2742	size_t dummy;
2743
2744	sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2745	sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2746	sbuf_print_witness_badstacks(&sb, &dummy);
2747	sbuf_finish(&sb);
2748}
2749#endif
2750
2751static int
2752sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2753{
2754	static const struct {
2755		enum witness_channel channel;
2756		const char *name;
2757	} channels[] = {
2758		{ WITNESS_CONSOLE, "console" },
2759		{ WITNESS_LOG, "log" },
2760		{ WITNESS_NONE, "none" },
2761	};
2762	char buf[16];
2763	u_int i;
2764	int error;
2765
2766	buf[0] = '\0';
2767	for (i = 0; i < nitems(channels); i++)
2768		if (witness_channel == channels[i].channel) {
2769			snprintf(buf, sizeof(buf), "%s", channels[i].name);
2770			break;
2771		}
2772
2773	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2774	if (error != 0 || req->newptr == NULL)
2775		return (error);
2776
2777	error = EINVAL;
2778	for (i = 0; i < nitems(channels); i++)
2779		if (strcmp(channels[i].name, buf) == 0) {
2780			witness_channel = channels[i].channel;
2781			error = 0;
2782			break;
2783		}
2784	return (error);
2785}
2786
2787static int
2788sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2789{
2790	struct witness *w;
2791	struct sbuf *sb;
2792	int error;
2793
2794#ifdef __i386__
2795	error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2796	return (error);
2797#endif
2798
2799	if (witness_watch < 1) {
2800		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2801		return (error);
2802	}
2803	if (witness_cold) {
2804		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2805		return (error);
2806	}
2807	error = 0;
2808
2809	error = sysctl_wire_old_buffer(req, 0);
2810	if (error != 0)
2811		return (error);
2812	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2813	if (sb == NULL)
2814		return (ENOMEM);
2815	sbuf_printf(sb, "\n");
2816
2817	mtx_lock_spin(&w_mtx);
2818	STAILQ_FOREACH(w, &w_all, w_list)
2819		w->w_displayed = 0;
2820	STAILQ_FOREACH(w, &w_all, w_list)
2821		witness_add_fullgraph(sb, w);
2822	mtx_unlock_spin(&w_mtx);
2823
2824	/*
2825	 * Close the sbuf and return to userland.
2826	 */
2827	error = sbuf_finish(sb);
2828	sbuf_delete(sb);
2829
2830	return (error);
2831}
2832
2833static int
2834sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2835{
2836	int error, value;
2837
2838	value = witness_watch;
2839	error = sysctl_handle_int(oidp, &value, 0, req);
2840	if (error != 0 || req->newptr == NULL)
2841		return (error);
2842	if (value > 1 || value < -1 ||
2843	    (witness_watch == -1 && value != witness_watch))
2844		return (EINVAL);
2845	witness_watch = value;
2846	return (0);
2847}
2848
2849static void
2850witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2851{
2852	int i;
2853
2854	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2855		return;
2856	w->w_displayed = 1;
2857
2858	WITNESS_INDEX_ASSERT(w->w_index);
2859	for (i = 1; i <= w_max_used_index; i++) {
2860		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2861			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2862			    w_data[i].w_name);
2863			witness_add_fullgraph(sb, &w_data[i]);
2864		}
2865	}
2866}
2867
2868/*
2869 * A simple hash function. Takes a key pointer and a key size. If size == 0,
2870 * interprets the key as a string and reads until the null
2871 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2872 * hash value computed from the key.
2873 */
2874static uint32_t
2875witness_hash_djb2(const uint8_t *key, uint32_t size)
2876{
2877	unsigned int hash = 5381;
2878	int i;
2879
2880	/* hash = hash * 33 + key[i] */
2881	if (size)
2882		for (i = 0; i < size; i++)
2883			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2884	else
2885		for (i = 0; key[i] != 0; i++)
2886			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2887
2888	return (hash);
2889}
2890
2891
2892/*
2893 * Initializes the two witness hash tables. Called exactly once from
2894 * witness_initialize().
2895 */
2896static void
2897witness_init_hash_tables(void)
2898{
2899	int i;
2900
2901	MPASS(witness_cold);
2902
2903	/* Initialize the hash tables. */
2904	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2905		w_hash.wh_array[i] = NULL;
2906
2907	w_hash.wh_size = WITNESS_HASH_SIZE;
2908	w_hash.wh_count = 0;
2909
2910	/* Initialize the lock order data hash. */
2911	w_lofree = NULL;
2912	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2913		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2914		w_lodata[i].wlod_next = w_lofree;
2915		w_lofree = &w_lodata[i];
2916	}
2917	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2918	w_lohash.wloh_count = 0;
2919	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2920		w_lohash.wloh_array[i] = NULL;
2921}
2922
2923static struct witness *
2924witness_hash_get(const char *key)
2925{
2926	struct witness *w;
2927	uint32_t hash;
2928
2929	MPASS(key != NULL);
2930	if (witness_cold == 0)
2931		mtx_assert(&w_mtx, MA_OWNED);
2932	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2933	w = w_hash.wh_array[hash];
2934	while (w != NULL) {
2935		if (strcmp(w->w_name, key) == 0)
2936			goto out;
2937		w = w->w_hash_next;
2938	}
2939
2940out:
2941	return (w);
2942}
2943
2944static void
2945witness_hash_put(struct witness *w)
2946{
2947	uint32_t hash;
2948
2949	MPASS(w != NULL);
2950	MPASS(w->w_name != NULL);
2951	if (witness_cold == 0)
2952		mtx_assert(&w_mtx, MA_OWNED);
2953	KASSERT(witness_hash_get(w->w_name) == NULL,
2954	    ("%s: trying to add a hash entry that already exists!", __func__));
2955	KASSERT(w->w_hash_next == NULL,
2956	    ("%s: w->w_hash_next != NULL", __func__));
2957
2958	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2959	w->w_hash_next = w_hash.wh_array[hash];
2960	w_hash.wh_array[hash] = w;
2961	w_hash.wh_count++;
2962}
2963
2964
2965static struct witness_lock_order_data *
2966witness_lock_order_get(struct witness *parent, struct witness *child)
2967{
2968	struct witness_lock_order_data *data = NULL;
2969	struct witness_lock_order_key key;
2970	unsigned int hash;
2971
2972	MPASS(parent != NULL && child != NULL);
2973	key.from = parent->w_index;
2974	key.to = child->w_index;
2975	WITNESS_INDEX_ASSERT(key.from);
2976	WITNESS_INDEX_ASSERT(key.to);
2977	if ((w_rmatrix[parent->w_index][child->w_index]
2978	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2979		goto out;
2980
2981	hash = witness_hash_djb2((const char*)&key,
2982	    sizeof(key)) % w_lohash.wloh_size;
2983	data = w_lohash.wloh_array[hash];
2984	while (data != NULL) {
2985		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2986			break;
2987		data = data->wlod_next;
2988	}
2989
2990out:
2991	return (data);
2992}
2993
2994/*
2995 * Verify that parent and child have a known relationship, are not the same,
2996 * and child is actually a child of parent.  This is done without w_mtx
2997 * to avoid contention in the common case.
2998 */
2999static int
3000witness_lock_order_check(struct witness *parent, struct witness *child)
3001{
3002
3003	if (parent != child &&
3004	    w_rmatrix[parent->w_index][child->w_index]
3005	    & WITNESS_LOCK_ORDER_KNOWN &&
3006	    isitmychild(parent, child))
3007		return (1);
3008
3009	return (0);
3010}
3011
3012static int
3013witness_lock_order_add(struct witness *parent, struct witness *child)
3014{
3015	struct witness_lock_order_data *data = NULL;
3016	struct witness_lock_order_key key;
3017	unsigned int hash;
3018
3019	MPASS(parent != NULL && child != NULL);
3020	key.from = parent->w_index;
3021	key.to = child->w_index;
3022	WITNESS_INDEX_ASSERT(key.from);
3023	WITNESS_INDEX_ASSERT(key.to);
3024	if (w_rmatrix[parent->w_index][child->w_index]
3025	    & WITNESS_LOCK_ORDER_KNOWN)
3026		return (1);
3027
3028	hash = witness_hash_djb2((const char*)&key,
3029	    sizeof(key)) % w_lohash.wloh_size;
3030	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3031	data = w_lofree;
3032	if (data == NULL)
3033		return (0);
3034	w_lofree = data->wlod_next;
3035	data->wlod_next = w_lohash.wloh_array[hash];
3036	data->wlod_key = key;
3037	w_lohash.wloh_array[hash] = data;
3038	w_lohash.wloh_count++;
3039	stack_zero(&data->wlod_stack);
3040	stack_save(&data->wlod_stack);
3041	return (1);
3042}
3043
3044/* Call this whenever the structure of the witness graph changes. */
3045static void
3046witness_increment_graph_generation(void)
3047{
3048
3049	if (witness_cold == 0)
3050		mtx_assert(&w_mtx, MA_OWNED);
3051	w_generation++;
3052}
3053
3054static int
3055witness_output_drain(void *arg __unused, const char *data, int len)
3056{
3057
3058	witness_output("%.*s", len, data);
3059	return (len);
3060}
3061
3062static void
3063witness_debugger(int cond, const char *msg)
3064{
3065	char buf[32];
3066	struct sbuf sb;
3067	struct stack st;
3068
3069	if (!cond)
3070		return;
3071
3072	if (witness_trace) {
3073		sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3074		sbuf_set_drain(&sb, witness_output_drain, NULL);
3075
3076		stack_zero(&st);
3077		stack_save(&st);
3078		witness_output("stack backtrace:\n");
3079		stack_sbuf_print_ddb(&sb, &st);
3080
3081		sbuf_finish(&sb);
3082	}
3083
3084#ifdef KDB
3085	if (witness_kdb)
3086		kdb_enter(KDB_WHY_WITNESS, msg);
3087#endif
3088}
3089