1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2006 Poul-Henning Kamp
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD$
29 *
30 * Convert MS-DOS FAT format timestamps to and from unix timespecs
31 *
32 * FAT filestamps originally consisted of two 16 bit integers, encoded like
33 * this:
34 *
35 *	yyyyyyymmmmddddd (year - 1980, month, day)
36 *
37 *      hhhhhmmmmmmsssss (hour, minutes, seconds divided by two)
38 *
39 * Subsequently even Microsoft realized that files could be accessed in less
40 * than two seconds and a byte was added containing:
41 *
42 *      sfffffff	 (second mod two, 100ths of second)
43 *
44 * FAT timestamps are in the local timezone, with no indication of which
45 * timezone much less if daylight savings time applies.
46 *
47 * Later on again, in Windows NT, timestamps were defined relative to GMT.
48 *
49 * Purists will point out that UTC replaced GMT for such uses around
50 * half a century ago, already then.  Ironically "NT" was an abbreviation of
51 * "New Technology".  Anyway...
52 *
53 * The 'utc' argument determines if the resulting FATTIME timestamp
54 * should be on the UTC or local timezone calendar.
55 *
56 * The conversion functions below cut time into four-year leap-year
57 * cycles rather than single years and uses table lookups inside those
58 * cycles to get the months and years sorted out.
59 *
60 * Obviously we cannot calculate the correct table index going from
61 * a posix seconds count to Y/M/D, but we can get pretty close by
62 * dividing the daycount by 32 (giving a too low index), and then
63 * adjusting upwards a couple of steps if necessary.
64 *
65 * FAT timestamps have 7 bits for the year and starts at 1980, so
66 * they can represent up to 2107 which means that the non-leap-year
67 * 2100 must be handled.
68 *
69 * XXX: As long as time_t is 32 bits this is not relevant or easily
70 * XXX: testable.  Revisit when time_t grows bigger.
71 * XXX: grepfodder: 64 bit time_t, y2100, y2.1k, 2100, leap year
72 *
73 */
74
75#include <sys/param.h>
76#include <sys/types.h>
77#include <sys/time.h>
78#include <sys/clock.h>
79
80#define DAY	(24 * 60 * 60)	/* Length of day in seconds */
81#define YEAR	365		/* Length of normal year */
82#define LYC	(4 * YEAR + 1)	/* Length of 4 year leap-year cycle */
83#define T1980	(10 * 365 + 2)	/* Days from 1970 to 1980 */
84
85/* End of month is N days from start of (normal) year */
86#define JAN	31
87#define FEB	(JAN + 28)
88#define MAR	(FEB + 31)
89#define APR	(MAR + 30)
90#define MAY	(APR + 31)
91#define JUN	(MAY + 30)
92#define JUL	(JUN + 31)
93#define AUG	(JUL + 31)
94#define SEP	(AUG + 30)
95#define OCT	(SEP + 31)
96#define NOV	(OCT + 30)
97#define DEC	(NOV + 31)
98
99/* Table of months in a 4 year leap-year cycle */
100
101#define ENC(y,m)	(((y) << 9) | ((m) << 5))
102
103static const struct {
104	uint16_t	days;	/* month start in days relative to cycle */
105	uint16_t	coded;	/* encoded year + month information */
106} mtab[48] = {
107	{   0 + 0 * YEAR,     ENC(0, 1)  },
108
109	{ JAN + 0 * YEAR,     ENC(0, 2)  }, { FEB + 0 * YEAR + 1, ENC(0, 3)  },
110	{ MAR + 0 * YEAR + 1, ENC(0, 4)  }, { APR + 0 * YEAR + 1, ENC(0, 5)  },
111	{ MAY + 0 * YEAR + 1, ENC(0, 6)  }, { JUN + 0 * YEAR + 1, ENC(0, 7)  },
112	{ JUL + 0 * YEAR + 1, ENC(0, 8)  }, { AUG + 0 * YEAR + 1, ENC(0, 9)  },
113	{ SEP + 0 * YEAR + 1, ENC(0, 10) }, { OCT + 0 * YEAR + 1, ENC(0, 11) },
114	{ NOV + 0 * YEAR + 1, ENC(0, 12) }, { DEC + 0 * YEAR + 1, ENC(1, 1)  },
115
116	{ JAN + 1 * YEAR + 1, ENC(1, 2)  }, { FEB + 1 * YEAR + 1, ENC(1, 3)  },
117	{ MAR + 1 * YEAR + 1, ENC(1, 4)  }, { APR + 1 * YEAR + 1, ENC(1, 5)  },
118	{ MAY + 1 * YEAR + 1, ENC(1, 6)  }, { JUN + 1 * YEAR + 1, ENC(1, 7)  },
119	{ JUL + 1 * YEAR + 1, ENC(1, 8)  }, { AUG + 1 * YEAR + 1, ENC(1, 9)  },
120	{ SEP + 1 * YEAR + 1, ENC(1, 10) }, { OCT + 1 * YEAR + 1, ENC(1, 11) },
121	{ NOV + 1 * YEAR + 1, ENC(1, 12) }, { DEC + 1 * YEAR + 1, ENC(2, 1)  },
122
123	{ JAN + 2 * YEAR + 1, ENC(2, 2)  }, { FEB + 2 * YEAR + 1, ENC(2, 3)  },
124	{ MAR + 2 * YEAR + 1, ENC(2, 4)  }, { APR + 2 * YEAR + 1, ENC(2, 5)  },
125	{ MAY + 2 * YEAR + 1, ENC(2, 6)  }, { JUN + 2 * YEAR + 1, ENC(2, 7)  },
126	{ JUL + 2 * YEAR + 1, ENC(2, 8)  }, { AUG + 2 * YEAR + 1, ENC(2, 9)  },
127	{ SEP + 2 * YEAR + 1, ENC(2, 10) }, { OCT + 2 * YEAR + 1, ENC(2, 11) },
128	{ NOV + 2 * YEAR + 1, ENC(2, 12) }, { DEC + 2 * YEAR + 1, ENC(3, 1)  },
129
130	{ JAN + 3 * YEAR + 1, ENC(3, 2)  }, { FEB + 3 * YEAR + 1, ENC(3, 3)  },
131	{ MAR + 3 * YEAR + 1, ENC(3, 4)  }, { APR + 3 * YEAR + 1, ENC(3, 5)  },
132	{ MAY + 3 * YEAR + 1, ENC(3, 6)  }, { JUN + 3 * YEAR + 1, ENC(3, 7)  },
133	{ JUL + 3 * YEAR + 1, ENC(3, 8)  }, { AUG + 3 * YEAR + 1, ENC(3, 9)  },
134	{ SEP + 3 * YEAR + 1, ENC(3, 10) }, { OCT + 3 * YEAR + 1, ENC(3, 11) },
135	{ NOV + 3 * YEAR + 1, ENC(3, 12) }
136};
137
138
139void
140timespec2fattime(const struct timespec *tsp, int utc, uint16_t *ddp,
141    uint16_t *dtp, uint8_t *dhp)
142{
143	time_t t1;
144	unsigned t2, l, m;
145
146	t1 = tsp->tv_sec;
147	if (!utc)
148		t1 -= utc_offset();
149
150	if (dhp != NULL)
151		*dhp = (tsp->tv_sec & 1) * 100 + tsp->tv_nsec / 10000000;
152	if (dtp != NULL) {
153		*dtp = (t1 / 2) % 30;
154		*dtp |= ((t1 / 60) % 60) << 5;
155		*dtp |= ((t1 / 3600) % 24) << 11;
156	}
157	if (ddp != NULL) {
158		t2 = t1 / DAY;
159		if (t2 < T1980) {
160			/* Impossible date, truncate to 1980-01-01 */
161			*ddp = 0x0021;
162		} else {
163			t2 -= T1980;
164
165			/*
166			 * 2100 is not a leap year.
167			 * XXX: a 32 bit time_t can not get us here.
168			 */
169			if (t2 >= ((2100 - 1980) / 4 * LYC + FEB))
170				t2++;
171
172			/* Account for full leapyear cycles */
173			l = t2 / LYC;
174			*ddp = (l * 4) << 9;
175			t2 -= l * LYC;
176
177			/* Find approximate table entry */
178			m = t2 / 32;
179
180			/* Find correct table entry */
181			while (m < 47 && mtab[m + 1].days <= t2)
182				m++;
183
184			/* Get year + month from the table */
185			*ddp += mtab[m].coded;
186
187			/* And apply the day in the month */
188			t2 -= mtab[m].days - 1;
189			*ddp |= t2;
190		}
191	}
192}
193
194/*
195 * Table indexed by the bottom two bits of year + four bits of the month
196 * from the FAT timestamp, returning number of days into 4 year long
197 * leap-year cycle
198 */
199
200#define DCOD(m, y, l)	((m) + YEAR * (y) + (l))
201static const uint16_t daytab[64] = {
202	0, 		 DCOD(  0, 0, 0), DCOD(JAN, 0, 0), DCOD(FEB, 0, 1),
203	DCOD(MAR, 0, 1), DCOD(APR, 0, 1), DCOD(MAY, 0, 1), DCOD(JUN, 0, 1),
204	DCOD(JUL, 0, 1), DCOD(AUG, 0, 1), DCOD(SEP, 0, 1), DCOD(OCT, 0, 1),
205	DCOD(NOV, 0, 1), DCOD(DEC, 0, 1), 0,               0,
206	0, 		 DCOD(  0, 1, 1), DCOD(JAN, 1, 1), DCOD(FEB, 1, 1),
207	DCOD(MAR, 1, 1), DCOD(APR, 1, 1), DCOD(MAY, 1, 1), DCOD(JUN, 1, 1),
208	DCOD(JUL, 1, 1), DCOD(AUG, 1, 1), DCOD(SEP, 1, 1), DCOD(OCT, 1, 1),
209	DCOD(NOV, 1, 1), DCOD(DEC, 1, 1), 0,               0,
210	0,		 DCOD(  0, 2, 1), DCOD(JAN, 2, 1), DCOD(FEB, 2, 1),
211	DCOD(MAR, 2, 1), DCOD(APR, 2, 1), DCOD(MAY, 2, 1), DCOD(JUN, 2, 1),
212	DCOD(JUL, 2, 1), DCOD(AUG, 2, 1), DCOD(SEP, 2, 1), DCOD(OCT, 2, 1),
213	DCOD(NOV, 2, 1), DCOD(DEC, 2, 1), 0,               0,
214	0,		 DCOD(  0, 3, 1), DCOD(JAN, 3, 1), DCOD(FEB, 3, 1),
215	DCOD(MAR, 3, 1), DCOD(APR, 3, 1), DCOD(MAY, 3, 1), DCOD(JUN, 3, 1),
216	DCOD(JUL, 3, 1), DCOD(AUG, 3, 1), DCOD(SEP, 3, 1), DCOD(OCT, 3, 1),
217	DCOD(NOV, 3, 1), DCOD(DEC, 3, 1), 0,               0
218};
219
220void
221fattime2timespec(unsigned dd, unsigned dt, unsigned dh, int utc,
222    struct timespec *tsp)
223{
224	unsigned day;
225
226	/* Unpack time fields */
227	tsp->tv_sec = (dt & 0x1f) << 1;
228	tsp->tv_sec += ((dt & 0x7e0) >> 5) * 60;
229	tsp->tv_sec += ((dt & 0xf800) >> 11) * 3600;
230	tsp->tv_sec += dh / 100;
231	tsp->tv_nsec = (dh % 100) * 10000000;
232
233	/* Day of month */
234	day = (dd & 0x1f) - 1;
235
236	/* Full leap-year cycles */
237	day += LYC * ((dd >> 11) & 0x1f);
238
239	/* Month offset from leap-year cycle */
240	day += daytab[(dd >> 5) & 0x3f];
241
242	/*
243	 * 2100 is not a leap year.
244	 * XXX: a 32 bit time_t can not get us here.
245	 */
246	if (day >= ((2100 - 1980) / 4 * LYC + FEB))
247		day--;
248
249	/* Align with time_t epoch */
250	day += T1980;
251
252	tsp->tv_sec += DAY * day;
253	if (!utc)
254		tsp->tv_sec += utc_offset();
255}
256
257#ifdef TEST_DRIVER
258
259#include <stdio.h>
260#include <unistd.h>
261#include <stdlib.h>
262
263int
264main(int argc __unused, char **argv __unused)
265{
266	int i;
267	struct timespec ts;
268	struct tm tm;
269	double a;
270	uint16_t d, t;
271	uint8_t p;
272	char buf[100];
273
274	for (i = 0; i < 10000; i++) {
275		do {
276			ts.tv_sec = random();
277		} while (ts.tv_sec < T1980 * 86400);
278		ts.tv_nsec = random() % 1000000000;
279
280		printf("%10d.%03ld -- ", ts.tv_sec, ts.tv_nsec / 1000000);
281
282		gmtime_r(&ts.tv_sec, &tm);
283		strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
284		printf("%s -- ", buf);
285
286		a = ts.tv_sec + ts.tv_nsec * 1e-9;
287		d = t = p = 0;
288		timet2fattime(&ts, &d, &t, &p);
289		printf("%04x %04x %02x -- ", d, t, p);
290		printf("%3d %02d %02d %02d %02d %02d -- ",
291		    ((d >> 9)  & 0x7f) + 1980,
292		    (d >> 5)  & 0x0f,
293		    (d >> 0)  & 0x1f,
294		    (t >> 11) & 0x1f,
295		    (t >> 5)  & 0x3f,
296		    ((t >> 0)  & 0x1f) * 2);
297
298		ts.tv_sec = ts.tv_nsec = 0;
299		fattime2timet(d, t, p, &ts);
300		printf("%10d.%03ld == ", ts.tv_sec, ts.tv_nsec / 1000000);
301		gmtime_r(&ts.tv_sec, &tm);
302		strftime(buf, sizeof buf, "%Y %m %d %H %M %S", &tm);
303		printf("%s -- ", buf);
304		a -= ts.tv_sec + ts.tv_nsec * 1e-9;
305		printf("%.3f", a);
306		printf("\n");
307	}
308	return (0);
309}
310
311#endif /* TEST_DRIVER */
312