1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2001 George Reid <greid@ukug.uk.freebsd.org>
5 * Copyright (c) 1999 Cameron Grant <cg@freebsd.org>
6 * Copyright (c) 1997,1998 Luigi Rizzo
7 * Copyright (c) 1994,1995 Hannu Savolainen
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32#ifdef HAVE_KERNEL_OPTION_HEADERS
33#include "opt_snd.h"
34#endif
35
36#include <dev/sound/pcm/sound.h>
37
38SND_DECLARE_FILE("$FreeBSD$");
39
40/* board-specific include files */
41#include <dev/sound/isa/mss.h>
42#include <dev/sound/isa/sb.h>
43#include <dev/sound/chip.h>
44
45#include <isa/isavar.h>
46
47#include "mixer_if.h"
48
49#define MSS_DEFAULT_BUFSZ (4096)
50#define MSS_INDEXED_REGS 0x20
51#define OPL_INDEXED_REGS 0x19
52
53struct mss_info;
54
55struct mss_chinfo {
56	struct mss_info *parent;
57	struct pcm_channel *channel;
58	struct snd_dbuf *buffer;
59	int dir;
60	u_int32_t fmt, blksz;
61};
62
63struct mss_info {
64    struct resource *io_base;	/* primary I/O address for the board */
65    int		     io_rid;
66    struct resource *conf_base; /* and the opti931 also has a config space */
67    int		     conf_rid;
68    struct resource *irq;
69    int		     irq_rid;
70    struct resource *drq1; /* play */
71    int		     drq1_rid;
72    struct resource *drq2; /* rec */
73    int		     drq2_rid;
74    void 	    *ih;
75    bus_dma_tag_t    parent_dmat;
76    struct mtx	    *lock;
77
78    char mss_indexed_regs[MSS_INDEXED_REGS];
79    char opl_indexed_regs[OPL_INDEXED_REGS];
80    int bd_id;      /* used to hold board-id info, eg. sb version,
81		     * mss codec type, etc. etc.
82		     */
83    int opti_offset;		/* offset from config_base for opti931 */
84    u_long  bd_flags;       /* board-specific flags */
85    int optibase;		/* base address for OPTi9xx config */
86    struct resource *indir;	/* Indirect register index address */
87    int indir_rid;
88    int password;		/* password for opti9xx cards */
89    int passwdreg;		/* password register */
90    unsigned int bufsize;
91    struct mss_chinfo pch, rch;
92};
93
94static int 		mss_probe(device_t dev);
95static int 		mss_attach(device_t dev);
96
97static driver_intr_t 	mss_intr;
98
99/* prototypes for local functions */
100static int 		mss_detect(device_t dev, struct mss_info *mss);
101static int		opti_detect(device_t dev, struct mss_info *mss);
102static char 		*ymf_test(device_t dev, struct mss_info *mss);
103static void		ad_unmute(struct mss_info *mss);
104
105/* mixer set funcs */
106static int 		mss_mixer_set(struct mss_info *mss, int dev, int left, int right);
107static int 		mss_set_recsrc(struct mss_info *mss, int mask);
108
109/* io funcs */
110static int 		ad_wait_init(struct mss_info *mss, int x);
111static int 		ad_read(struct mss_info *mss, int reg);
112static void 		ad_write(struct mss_info *mss, int reg, u_char data);
113static void 		ad_write_cnt(struct mss_info *mss, int reg, u_short data);
114static void    		ad_enter_MCE(struct mss_info *mss);
115static void             ad_leave_MCE(struct mss_info *mss);
116
117/* OPTi-specific functions */
118static void		opti_write(struct mss_info *mss, u_char reg,
119				   u_char data);
120static u_char		opti_read(struct mss_info *mss, u_char reg);
121static int		opti_init(device_t dev, struct mss_info *mss);
122
123/* io primitives */
124static void 		conf_wr(struct mss_info *mss, u_char reg, u_char data);
125static u_char 		conf_rd(struct mss_info *mss, u_char reg);
126
127static int 		pnpmss_probe(device_t dev);
128static int 		pnpmss_attach(device_t dev);
129
130static driver_intr_t 	opti931_intr;
131
132static u_int32_t mss_fmt[] = {
133	SND_FORMAT(AFMT_U8, 1, 0),
134	SND_FORMAT(AFMT_U8, 2, 0),
135	SND_FORMAT(AFMT_S16_LE, 1, 0),
136	SND_FORMAT(AFMT_S16_LE, 2, 0),
137	SND_FORMAT(AFMT_MU_LAW, 1, 0),
138	SND_FORMAT(AFMT_MU_LAW, 2, 0),
139	SND_FORMAT(AFMT_A_LAW, 1, 0),
140	SND_FORMAT(AFMT_A_LAW, 2, 0),
141	0
142};
143static struct pcmchan_caps mss_caps = {4000, 48000, mss_fmt, 0};
144
145static u_int32_t guspnp_fmt[] = {
146	SND_FORMAT(AFMT_U8, 1, 0),
147	SND_FORMAT(AFMT_U8, 2, 0),
148	SND_FORMAT(AFMT_S16_LE, 1, 0),
149	SND_FORMAT(AFMT_S16_LE, 2, 0),
150	SND_FORMAT(AFMT_A_LAW, 1, 0),
151	SND_FORMAT(AFMT_A_LAW, 2, 0),
152	0
153};
154static struct pcmchan_caps guspnp_caps = {4000, 48000, guspnp_fmt, 0};
155
156static u_int32_t opti931_fmt[] = {
157	SND_FORMAT(AFMT_U8, 1, 0),
158	SND_FORMAT(AFMT_U8, 2, 0),
159	SND_FORMAT(AFMT_S16_LE, 1, 0),
160	SND_FORMAT(AFMT_S16_LE, 2, 0),
161	0
162};
163static struct pcmchan_caps opti931_caps = {4000, 48000, opti931_fmt, 0};
164
165#define MD_AD1848	0x91
166#define MD_AD1845	0x92
167#define MD_CS42XX	0xA1
168#define MD_CS423X	0xA2
169#define MD_OPTI930	0xB0
170#define	MD_OPTI931	0xB1
171#define MD_OPTI925	0xB2
172#define MD_OPTI924	0xB3
173#define	MD_GUSPNP	0xB8
174#define MD_GUSMAX	0xB9
175#define	MD_YM0020	0xC1
176#define	MD_VIVO		0xD1
177
178#define	DV_F_TRUE_MSS	0x00010000	/* mss _with_ base regs */
179
180#define FULL_DUPLEX(x) ((x)->bd_flags & BD_F_DUPLEX)
181
182static void
183mss_lock(struct mss_info *mss)
184{
185	snd_mtxlock(mss->lock);
186}
187
188static void
189mss_unlock(struct mss_info *mss)
190{
191	snd_mtxunlock(mss->lock);
192}
193
194static int
195port_rd(struct resource *port, int off)
196{
197	if (port)
198		return bus_space_read_1(rman_get_bustag(port),
199					rman_get_bushandle(port),
200					off);
201	else
202		return -1;
203}
204
205static void
206port_wr(struct resource *port, int off, u_int8_t data)
207{
208	if (port)
209		bus_space_write_1(rman_get_bustag(port),
210				  rman_get_bushandle(port),
211				  off, data);
212}
213
214static int
215io_rd(struct mss_info *mss, int reg)
216{
217	if (mss->bd_flags & BD_F_MSS_OFFSET) reg -= 4;
218	return port_rd(mss->io_base, reg);
219}
220
221static void
222io_wr(struct mss_info *mss, int reg, u_int8_t data)
223{
224	if (mss->bd_flags & BD_F_MSS_OFFSET) reg -= 4;
225	port_wr(mss->io_base, reg, data);
226}
227
228static void
229conf_wr(struct mss_info *mss, u_char reg, u_char value)
230{
231    	port_wr(mss->conf_base, 0, reg);
232    	port_wr(mss->conf_base, 1, value);
233}
234
235static u_char
236conf_rd(struct mss_info *mss, u_char reg)
237{
238	port_wr(mss->conf_base, 0, reg);
239    	return port_rd(mss->conf_base, 1);
240}
241
242static void
243opti_wr(struct mss_info *mss, u_char reg, u_char value)
244{
245    	port_wr(mss->conf_base, mss->opti_offset + 0, reg);
246    	port_wr(mss->conf_base, mss->opti_offset + 1, value);
247}
248
249static u_char
250opti_rd(struct mss_info *mss, u_char reg)
251{
252	port_wr(mss->conf_base, mss->opti_offset + 0, reg);
253    	return port_rd(mss->conf_base, mss->opti_offset + 1);
254}
255
256static void
257gus_wr(struct mss_info *mss, u_char reg, u_char value)
258{
259    	port_wr(mss->conf_base, 3, reg);
260    	port_wr(mss->conf_base, 5, value);
261}
262
263static u_char
264gus_rd(struct mss_info *mss, u_char reg)
265{
266    	port_wr(mss->conf_base, 3, reg);
267    	return port_rd(mss->conf_base, 5);
268}
269
270static void
271mss_release_resources(struct mss_info *mss, device_t dev)
272{
273    	if (mss->irq) {
274    		if (mss->ih)
275			bus_teardown_intr(dev, mss->irq, mss->ih);
276 		bus_release_resource(dev, SYS_RES_IRQ, mss->irq_rid,
277				     mss->irq);
278		mss->irq = NULL;
279    	}
280    	if (mss->drq2) {
281		if (mss->drq2 != mss->drq1) {
282			isa_dma_release(rman_get_start(mss->drq2));
283			bus_release_resource(dev, SYS_RES_DRQ, mss->drq2_rid,
284				     	mss->drq2);
285		}
286		mss->drq2 = NULL;
287    	}
288     	if (mss->drq1) {
289		isa_dma_release(rman_get_start(mss->drq1));
290		bus_release_resource(dev, SYS_RES_DRQ, mss->drq1_rid,
291				     mss->drq1);
292		mss->drq1 = NULL;
293    	}
294   	if (mss->io_base) {
295		bus_release_resource(dev, SYS_RES_IOPORT, mss->io_rid,
296				     mss->io_base);
297		mss->io_base = NULL;
298    	}
299    	if (mss->conf_base) {
300		bus_release_resource(dev, SYS_RES_IOPORT, mss->conf_rid,
301				     mss->conf_base);
302		mss->conf_base = NULL;
303    	}
304	if (mss->indir) {
305		bus_release_resource(dev, SYS_RES_IOPORT, mss->indir_rid,
306				     mss->indir);
307		mss->indir = NULL;
308	}
309    	if (mss->parent_dmat) {
310		bus_dma_tag_destroy(mss->parent_dmat);
311		mss->parent_dmat = 0;
312    	}
313	if (mss->lock) snd_mtxfree(mss->lock);
314
315     	free(mss, M_DEVBUF);
316}
317
318static int
319mss_alloc_resources(struct mss_info *mss, device_t dev)
320{
321    	int pdma, rdma, ok = 1;
322	if (!mss->io_base)
323    		mss->io_base = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
324						      &mss->io_rid, RF_ACTIVE);
325	if (!mss->irq)
326    		mss->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
327						  &mss->irq_rid, RF_ACTIVE);
328	if (!mss->drq1)
329    		mss->drq1 = bus_alloc_resource_any(dev, SYS_RES_DRQ,
330						   &mss->drq1_rid,
331						   RF_ACTIVE);
332    	if (mss->conf_rid >= 0 && !mss->conf_base)
333        	mss->conf_base = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
334							&mss->conf_rid,
335							RF_ACTIVE);
336    	if (mss->drq2_rid >= 0 && !mss->drq2)
337        	mss->drq2 = bus_alloc_resource_any(dev, SYS_RES_DRQ,
338						   &mss->drq2_rid,
339						   RF_ACTIVE);
340
341	if (!mss->io_base || !mss->drq1 || !mss->irq) ok = 0;
342	if (mss->conf_rid >= 0 && !mss->conf_base) ok = 0;
343	if (mss->drq2_rid >= 0 && !mss->drq2) ok = 0;
344
345	if (ok) {
346		pdma = rman_get_start(mss->drq1);
347		isa_dma_acquire(pdma);
348		isa_dmainit(pdma, mss->bufsize);
349		mss->bd_flags &= ~BD_F_DUPLEX;
350		if (mss->drq2) {
351			rdma = rman_get_start(mss->drq2);
352			isa_dma_acquire(rdma);
353			isa_dmainit(rdma, mss->bufsize);
354			mss->bd_flags |= BD_F_DUPLEX;
355		} else mss->drq2 = mss->drq1;
356	}
357    	return ok;
358}
359
360/*
361 * The various mixers use a variety of bitmasks etc. The Voxware
362 * driver had a very nice technique to describe a mixer and interface
363 * to it. A table defines, for each channel, which register, bits,
364 * offset, polarity to use. This procedure creates the new value
365 * using the table and the old value.
366 */
367
368static void
369change_bits(mixer_tab *t, u_char *regval, int dev, int chn, int newval)
370{
371    	u_char mask;
372    	int shift;
373
374    	DEB(printf("ch_bits dev %d ch %d val %d old 0x%02x "
375		"r %d p %d bit %d off %d\n",
376		dev, chn, newval, *regval,
377		(*t)[dev][chn].regno, (*t)[dev][chn].polarity,
378		(*t)[dev][chn].nbits, (*t)[dev][chn].bitoffs ) );
379
380    	if ( (*t)[dev][chn].polarity == 1)	/* reverse */
381		newval = 100 - newval ;
382
383    	mask = (1 << (*t)[dev][chn].nbits) - 1;
384    	newval = (int) ((newval * mask) + 50) / 100; /* Scale it */
385    	shift = (*t)[dev][chn].bitoffs /*- (*t)[dev][LEFT_CHN].nbits + 1*/;
386
387    	*regval &= ~(mask << shift);        /* Filter out the previous value */
388    	*regval |= (newval & mask) << shift;        /* Set the new value */
389}
390
391/* -------------------------------------------------------------------- */
392/* only one source can be set... */
393static int
394mss_set_recsrc(struct mss_info *mss, int mask)
395{
396    	u_char   recdev;
397
398    	switch (mask) {
399    	case SOUND_MASK_LINE:
400    	case SOUND_MASK_LINE3:
401		recdev = 0;
402		break;
403
404    	case SOUND_MASK_CD:
405    	case SOUND_MASK_LINE1:
406		recdev = 0x40;
407		break;
408
409    	case SOUND_MASK_IMIX:
410		recdev = 0xc0;
411		break;
412
413    	case SOUND_MASK_MIC:
414    	default:
415		mask = SOUND_MASK_MIC;
416		recdev = 0x80;
417    	}
418    	ad_write(mss, 0, (ad_read(mss, 0) & 0x3f) | recdev);
419    	ad_write(mss, 1, (ad_read(mss, 1) & 0x3f) | recdev);
420    	return mask;
421}
422
423/* there are differences in the mixer depending on the actual sound card. */
424static int
425mss_mixer_set(struct mss_info *mss, int dev, int left, int right)
426{
427    	int        regoffs;
428    	mixer_tab *mix_d;
429    	u_char     old, val;
430
431	switch (mss->bd_id) {
432		case MD_OPTI931:
433			mix_d = &opti931_devices;
434			break;
435		case MD_OPTI930:
436			mix_d = &opti930_devices;
437			break;
438		default:
439			mix_d = &mix_devices;
440	}
441
442    	if ((*mix_d)[dev][LEFT_CHN].nbits == 0) {
443		DEB(printf("nbits = 0 for dev %d\n", dev));
444		return -1;
445    	}
446
447    	if ((*mix_d)[dev][RIGHT_CHN].nbits == 0) right = left; /* mono */
448
449    	/* Set the left channel */
450
451    	regoffs = (*mix_d)[dev][LEFT_CHN].regno;
452    	old = val = ad_read(mss, regoffs);
453    	/* if volume is 0, mute chan. Otherwise, unmute. */
454    	if (regoffs != 0) val = (left == 0)? old | 0x80 : old & 0x7f;
455    	change_bits(mix_d, &val, dev, LEFT_CHN, left);
456    	ad_write(mss, regoffs, val);
457
458    	DEB(printf("LEFT: dev %d reg %d old 0x%02x new 0x%02x\n",
459		dev, regoffs, old, val));
460
461    	if ((*mix_d)[dev][RIGHT_CHN].nbits != 0) { /* have stereo */
462		/* Set the right channel */
463		regoffs = (*mix_d)[dev][RIGHT_CHN].regno;
464		old = val = ad_read(mss, regoffs);
465		if (regoffs != 1) val = (right == 0)? old | 0x80 : old & 0x7f;
466		change_bits(mix_d, &val, dev, RIGHT_CHN, right);
467		ad_write(mss, regoffs, val);
468
469		DEB(printf("RIGHT: dev %d reg %d old 0x%02x new 0x%02x\n",
470	    	dev, regoffs, old, val));
471    	}
472    	return 0; /* success */
473}
474
475/* -------------------------------------------------------------------- */
476
477static int
478mssmix_init(struct snd_mixer *m)
479{
480	struct mss_info *mss = mix_getdevinfo(m);
481
482	mix_setdevs(m, MODE2_MIXER_DEVICES);
483	mix_setrecdevs(m, MSS_REC_DEVICES);
484	switch(mss->bd_id) {
485	case MD_OPTI930:
486		mix_setdevs(m, OPTI930_MIXER_DEVICES);
487		break;
488
489	case MD_OPTI931:
490		mix_setdevs(m, OPTI931_MIXER_DEVICES);
491		mss_lock(mss);
492		ad_write(mss, 20, 0x88);
493		ad_write(mss, 21, 0x88);
494		mss_unlock(mss);
495		break;
496
497	case MD_AD1848:
498		mix_setdevs(m, MODE1_MIXER_DEVICES);
499		break;
500
501	case MD_GUSPNP:
502	case MD_GUSMAX:
503		/* this is only necessary in mode 3 ... */
504		mss_lock(mss);
505		ad_write(mss, 22, 0x88);
506		ad_write(mss, 23, 0x88);
507		mss_unlock(mss);
508		break;
509	}
510	return 0;
511}
512
513static int
514mssmix_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right)
515{
516	struct mss_info *mss = mix_getdevinfo(m);
517
518	mss_lock(mss);
519	mss_mixer_set(mss, dev, left, right);
520	mss_unlock(mss);
521
522	return left | (right << 8);
523}
524
525static u_int32_t
526mssmix_setrecsrc(struct snd_mixer *m, u_int32_t src)
527{
528	struct mss_info *mss = mix_getdevinfo(m);
529
530	mss_lock(mss);
531	src = mss_set_recsrc(mss, src);
532	mss_unlock(mss);
533	return src;
534}
535
536static kobj_method_t mssmix_mixer_methods[] = {
537    	KOBJMETHOD(mixer_init,		mssmix_init),
538    	KOBJMETHOD(mixer_set,		mssmix_set),
539    	KOBJMETHOD(mixer_setrecsrc,	mssmix_setrecsrc),
540	KOBJMETHOD_END
541};
542MIXER_DECLARE(mssmix_mixer);
543
544/* -------------------------------------------------------------------- */
545
546static int
547ymmix_init(struct snd_mixer *m)
548{
549	struct mss_info *mss = mix_getdevinfo(m);
550
551	mssmix_init(m);
552	mix_setdevs(m, mix_getdevs(m) | SOUND_MASK_VOLUME | SOUND_MASK_MIC
553				      | SOUND_MASK_BASS | SOUND_MASK_TREBLE);
554	/* Set master volume */
555	mss_lock(mss);
556	conf_wr(mss, OPL3SAx_VOLUMEL, 7);
557	conf_wr(mss, OPL3SAx_VOLUMER, 7);
558	mss_unlock(mss);
559
560	return 0;
561}
562
563static int
564ymmix_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right)
565{
566	struct mss_info *mss = mix_getdevinfo(m);
567	int t, l, r;
568
569	mss_lock(mss);
570	switch (dev) {
571	case SOUND_MIXER_VOLUME:
572		if (left) t = 15 - (left * 15) / 100;
573		else t = 0x80; /* mute */
574		conf_wr(mss, OPL3SAx_VOLUMEL, t);
575		if (right) t = 15 - (right * 15) / 100;
576		else t = 0x80; /* mute */
577		conf_wr(mss, OPL3SAx_VOLUMER, t);
578		break;
579
580	case SOUND_MIXER_MIC:
581		t = left;
582		if (left) t = 31 - (left * 31) / 100;
583		else t = 0x80; /* mute */
584		conf_wr(mss, OPL3SAx_MIC, t);
585		break;
586
587	case SOUND_MIXER_BASS:
588		l = (left * 7) / 100;
589		r = (right * 7) / 100;
590		t = (r << 4) | l;
591		conf_wr(mss, OPL3SAx_BASS, t);
592		break;
593
594	case SOUND_MIXER_TREBLE:
595		l = (left * 7) / 100;
596		r = (right * 7) / 100;
597		t = (r << 4) | l;
598		conf_wr(mss, OPL3SAx_TREBLE, t);
599		break;
600
601	default:
602		mss_mixer_set(mss, dev, left, right);
603	}
604	mss_unlock(mss);
605
606	return left | (right << 8);
607}
608
609static u_int32_t
610ymmix_setrecsrc(struct snd_mixer *m, u_int32_t src)
611{
612	struct mss_info *mss = mix_getdevinfo(m);
613	mss_lock(mss);
614	src = mss_set_recsrc(mss, src);
615	mss_unlock(mss);
616	return src;
617}
618
619static kobj_method_t ymmix_mixer_methods[] = {
620    	KOBJMETHOD(mixer_init,		ymmix_init),
621    	KOBJMETHOD(mixer_set,		ymmix_set),
622    	KOBJMETHOD(mixer_setrecsrc,	ymmix_setrecsrc),
623	KOBJMETHOD_END
624};
625MIXER_DECLARE(ymmix_mixer);
626
627/* -------------------------------------------------------------------- */
628/*
629 * XXX This might be better off in the gusc driver.
630 */
631static void
632gusmax_setup(struct mss_info *mss, device_t dev, struct resource *alt)
633{
634	static const unsigned char irq_bits[16] = {
635		0, 0, 0, 3, 0, 2, 0, 4, 0, 1, 0, 5, 6, 0, 0, 7
636	};
637	static const unsigned char dma_bits[8] = {
638		0, 1, 0, 2, 0, 3, 4, 5
639	};
640	device_t parent = device_get_parent(dev);
641	unsigned char irqctl, dmactl;
642	int s;
643
644	s = splhigh();
645
646	port_wr(alt, 0x0f, 0x05);
647	port_wr(alt, 0x00, 0x0c);
648	port_wr(alt, 0x0b, 0x00);
649
650	port_wr(alt, 0x0f, 0x00);
651
652	irqctl = irq_bits[isa_get_irq(parent)];
653	/* Share the IRQ with the MIDI driver.  */
654	irqctl |= 0x40;
655	dmactl = dma_bits[isa_get_drq(parent)];
656	if (device_get_flags(parent) & DV_F_DUAL_DMA)
657		dmactl |= dma_bits[device_get_flags(parent) & DV_F_DRQ_MASK]
658		    << 3;
659
660	/*
661	 * Set the DMA and IRQ control latches.
662	 */
663	port_wr(alt, 0x00, 0x0c);
664	port_wr(alt, 0x0b, dmactl | 0x80);
665	port_wr(alt, 0x00, 0x4c);
666	port_wr(alt, 0x0b, irqctl);
667
668	port_wr(alt, 0x00, 0x0c);
669	port_wr(alt, 0x0b, dmactl);
670	port_wr(alt, 0x00, 0x4c);
671	port_wr(alt, 0x0b, irqctl);
672
673	port_wr(mss->conf_base, 2, 0);
674	port_wr(alt, 0x00, 0x0c);
675	port_wr(mss->conf_base, 2, 0);
676
677	splx(s);
678}
679
680static int
681mss_init(struct mss_info *mss, device_t dev)
682{
683       	u_char r6, r9;
684	struct resource *alt;
685	int rid, tmp;
686
687	mss->bd_flags |= BD_F_MCE_BIT;
688	switch(mss->bd_id) {
689	case MD_OPTI931:
690		/*
691		 * The MED3931 v.1.0 allocates 3 bytes for the config
692		 * space, whereas v.2.0 allocates 4 bytes. What I know
693		 * for sure is that the upper two ports must be used,
694		 * and they should end on a boundary of 4 bytes. So I
695		 * need the following trick.
696		 */
697		mss->opti_offset =
698			(rman_get_start(mss->conf_base) & ~3) + 2
699			- rman_get_start(mss->conf_base);
700		BVDDB(printf("mss_init: opti_offset=%d\n", mss->opti_offset));
701    		opti_wr(mss, 4, 0xd6); /* fifo empty, OPL3, audio enable, SB3.2 */
702    		ad_write(mss, 10, 2); /* enable interrupts */
703    		opti_wr(mss, 6, 2);  /* MCIR6: mss enable, sb disable */
704    		opti_wr(mss, 5, 0x28);  /* MCIR5: codec in exp. mode,fifo */
705		break;
706
707	case MD_GUSPNP:
708	case MD_GUSMAX:
709		gus_wr(mss, 0x4c /* _URSTI */, 0);/* Pull reset */
710    		DELAY(1000 * 30);
711    		/* release reset  and enable DAC */
712    		gus_wr(mss, 0x4c /* _URSTI */, 3);
713    		DELAY(1000 * 30);
714    		/* end of reset */
715
716		rid = 0;
717    		alt = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
718					     RF_ACTIVE);
719		if (alt == NULL) {
720			printf("XXX couldn't init GUS PnP/MAX\n");
721			break;
722		}
723    		port_wr(alt, 0, 0xC); /* enable int and dma */
724		if (mss->bd_id == MD_GUSMAX)
725			gusmax_setup(mss, dev, alt);
726		bus_release_resource(dev, SYS_RES_IOPORT, rid, alt);
727
728    		/*
729     		 * unmute left & right line. Need to go in mode3, unmute,
730     		 * and back to mode 2
731     		 */
732    		tmp = ad_read(mss, 0x0c);
733    		ad_write(mss, 0x0c, 0x6c); /* special value to enter mode 3 */
734    		ad_write(mss, 0x19, 0); /* unmute left */
735    		ad_write(mss, 0x1b, 0); /* unmute right */
736    		ad_write(mss, 0x0c, tmp); /* restore old mode */
737
738    		/* send codec interrupts on irq1 and only use that one */
739    		gus_wr(mss, 0x5a, 0x4f);
740
741    		/* enable access to hidden regs */
742    		tmp = gus_rd(mss, 0x5b /* IVERI */);
743    		gus_wr(mss, 0x5b, tmp | 1);
744    		BVDDB(printf("GUS: silicon rev %c\n", 'A' + ((tmp & 0xf) >> 4)));
745		break;
746
747    	case MD_YM0020:
748         	conf_wr(mss, OPL3SAx_DMACONF, 0xa9); /* dma-b rec, dma-a play */
749        	r6 = conf_rd(mss, OPL3SAx_DMACONF);
750        	r9 = conf_rd(mss, OPL3SAx_MISC); /* version */
751        	BVDDB(printf("Yamaha: ver 0x%x DMA config 0x%x\n", r6, r9);)
752		/* yamaha - set volume to max */
753		conf_wr(mss, OPL3SAx_VOLUMEL, 0);
754		conf_wr(mss, OPL3SAx_VOLUMER, 0);
755		conf_wr(mss, OPL3SAx_DMACONF, FULL_DUPLEX(mss)? 0xa9 : 0x8b);
756		break;
757 	}
758    	if (FULL_DUPLEX(mss) && mss->bd_id != MD_OPTI931)
759    		ad_write(mss, 12, ad_read(mss, 12) | 0x40); /* mode 2 */
760	ad_enter_MCE(mss);
761    	ad_write(mss, 9, FULL_DUPLEX(mss)? 0 : 4);
762    	ad_leave_MCE(mss);
763	ad_write(mss, 10, 2); /* int enable */
764    	io_wr(mss, MSS_STATUS, 0); /* Clear interrupt status */
765    	/* the following seem required on the CS4232 */
766    	ad_unmute(mss);
767	return 0;
768}
769
770
771/*
772 * main irq handler for the CS423x. The OPTi931 code is
773 * a separate one.
774 * The correct way to operate for a device with multiple internal
775 * interrupt sources is to loop on the status register and ack
776 * interrupts until all interrupts are served and none are reported. At
777 * this point the IRQ line to the ISA IRQ controller should go low
778 * and be raised at the next interrupt.
779 *
780 * Since the ISA IRQ controller is sent EOI _before_ passing control
781 * to the isr, it might happen that we serve an interrupt early, in
782 * which case the status register at the next interrupt should just
783 * say that there are no more interrupts...
784 */
785
786static void
787mss_intr(void *arg)
788{
789    	struct mss_info *mss = arg;
790    	u_char c = 0, served = 0;
791    	int i;
792
793    	DEB(printf("mss_intr\n"));
794	mss_lock(mss);
795    	ad_read(mss, 11); /* fake read of status bits */
796
797    	/* loop until there are interrupts, but no more than 10 times. */
798    	for (i = 10; i > 0 && io_rd(mss, MSS_STATUS) & 1; i--) {
799		/* get exact reason for full-duplex boards */
800		c = FULL_DUPLEX(mss)? ad_read(mss, 24) : 0x30;
801		c &= ~served;
802		if (sndbuf_runsz(mss->pch.buffer) && (c & 0x10)) {
803	    		served |= 0x10;
804			mss_unlock(mss);
805	    		chn_intr(mss->pch.channel);
806			mss_lock(mss);
807		}
808		if (sndbuf_runsz(mss->rch.buffer) && (c & 0x20)) {
809	    		served |= 0x20;
810			mss_unlock(mss);
811	    		chn_intr(mss->rch.channel);
812			mss_lock(mss);
813		}
814		/* now ack the interrupt */
815		if (FULL_DUPLEX(mss)) ad_write(mss, 24, ~c); /* ack selectively */
816		else io_wr(mss, MSS_STATUS, 0);	/* Clear interrupt status */
817    	}
818    	if (i == 10) {
819		BVDDB(printf("mss_intr: irq, but not from mss\n"));
820	} else if (served == 0) {
821		BVDDB(printf("mss_intr: unexpected irq with reason %x\n", c));
822		/*
823	 	* this should not happen... I have no idea what to do now.
824	 	* maybe should do a sanity check and restart dmas ?
825	 	*/
826		io_wr(mss, MSS_STATUS, 0);	/* Clear interrupt status */
827    	}
828	mss_unlock(mss);
829}
830
831/*
832 * AD_WAIT_INIT waits if we are initializing the board and
833 * we cannot modify its settings
834 */
835static int
836ad_wait_init(struct mss_info *mss, int x)
837{
838    	int arg = x, n = 0; /* to shut up the compiler... */
839    	for (; x > 0; x--)
840		if ((n = io_rd(mss, MSS_INDEX)) & MSS_IDXBUSY) DELAY(10);
841		else return n;
842    	printf("AD_WAIT_INIT FAILED %d 0x%02x\n", arg, n);
843    	return n;
844}
845
846static int
847ad_read(struct mss_info *mss, int reg)
848{
849    	int             x;
850
851    	ad_wait_init(mss, 201000);
852    	x = io_rd(mss, MSS_INDEX) & ~MSS_IDXMASK;
853    	io_wr(mss, MSS_INDEX, (u_char)(reg & MSS_IDXMASK) | x);
854    	x = io_rd(mss, MSS_IDATA);
855	/* printf("ad_read %d, %x\n", reg, x); */
856    	return x;
857}
858
859static void
860ad_write(struct mss_info *mss, int reg, u_char data)
861{
862    	int x;
863
864	/* printf("ad_write %d, %x\n", reg, data); */
865    	ad_wait_init(mss, 1002000);
866    	x = io_rd(mss, MSS_INDEX) & ~MSS_IDXMASK;
867    	io_wr(mss, MSS_INDEX, (u_char)(reg & MSS_IDXMASK) | x);
868    	io_wr(mss, MSS_IDATA, data);
869}
870
871static void
872ad_write_cnt(struct mss_info *mss, int reg, u_short cnt)
873{
874    	ad_write(mss, reg+1, cnt & 0xff);
875    	ad_write(mss, reg, cnt >> 8); /* upper base must be last */
876}
877
878static void
879wait_for_calibration(struct mss_info *mss)
880{
881    	int t;
882
883    	/*
884     	 * Wait until the auto calibration process has finished.
885     	 *
886     	 * 1) Wait until the chip becomes ready (reads don't return 0x80).
887     	 * 2) Wait until the ACI bit of I11 gets on
888     	 * 3) Wait until the ACI bit of I11 gets off
889     	 */
890
891    	t = ad_wait_init(mss, 1000000);
892    	if (t & MSS_IDXBUSY) printf("mss: Auto calibration timed out(1).\n");
893
894	/*
895	 * The calibration mode for chips that support it is set so that
896	 * we never see ACI go on.
897	 */
898	if (mss->bd_id == MD_GUSMAX || mss->bd_id == MD_GUSPNP) {
899		for (t = 100; t > 0 && (ad_read(mss, 11) & 0x20) == 0; t--);
900	} else {
901       		/*
902		 * XXX This should only be enabled for cards that *really*
903		 * need it.  Are there any?
904		 */
905  		for (t = 100; t > 0 && (ad_read(mss, 11) & 0x20) == 0; t--) DELAY(100);
906	}
907    	for (t = 100; t > 0 && ad_read(mss, 11) & 0x20; t--) DELAY(100);
908}
909
910static void
911ad_unmute(struct mss_info *mss)
912{
913    	ad_write(mss, 6, ad_read(mss, 6) & ~I6_MUTE);
914    	ad_write(mss, 7, ad_read(mss, 7) & ~I6_MUTE);
915}
916
917static void
918ad_enter_MCE(struct mss_info *mss)
919{
920    	int prev;
921
922    	mss->bd_flags |= BD_F_MCE_BIT;
923    	ad_wait_init(mss, 203000);
924    	prev = io_rd(mss, MSS_INDEX);
925    	prev &= ~MSS_TRD;
926    	io_wr(mss, MSS_INDEX, prev | MSS_MCE);
927}
928
929static void
930ad_leave_MCE(struct mss_info *mss)
931{
932    	u_char   prev;
933
934    	if ((mss->bd_flags & BD_F_MCE_BIT) == 0) {
935		DEB(printf("--- hey, leave_MCE: MCE bit was not set!\n"));
936		return;
937    	}
938
939    	ad_wait_init(mss, 1000000);
940
941    	mss->bd_flags &= ~BD_F_MCE_BIT;
942
943    	prev = io_rd(mss, MSS_INDEX);
944    	prev &= ~MSS_TRD;
945    	io_wr(mss, MSS_INDEX, prev & ~MSS_MCE); /* Clear the MCE bit */
946    	wait_for_calibration(mss);
947}
948
949static int
950mss_speed(struct mss_chinfo *ch, int speed)
951{
952    	struct mss_info *mss = ch->parent;
953    	/*
954     	* In the CS4231, the low 4 bits of I8 are used to hold the
955     	* sample rate.  Only a fixed number of values is allowed. This
956     	* table lists them. The speed-setting routines scans the table
957     	* looking for the closest match. This is the only supported method.
958     	*
959     	* In the CS4236, there is an alternate metod (which we do not
960     	* support yet) which provides almost arbitrary frequency setting.
961     	* In the AD1845, it looks like the sample rate can be
962     	* almost arbitrary, and written directly to a register.
963     	* In the OPTi931, there is a SB command which provides for
964     	* almost arbitrary frequency setting.
965     	*
966     	*/
967    	ad_enter_MCE(mss);
968    	if (mss->bd_id == MD_AD1845) { /* Use alternate speed select regs */
969		ad_write(mss, 22, (speed >> 8) & 0xff);	/* Speed MSB */
970		ad_write(mss, 23, speed & 0xff);	/* Speed LSB */
971		/* XXX must also do something in I27 for the ad1845 */
972    	} else {
973        	int i, sel = 0; /* assume entry 0 does not contain -1 */
974        	static int speeds[] =
975      	    	{8000, 5512, 16000, 11025, 27429, 18900, 32000, 22050,
976	    	-1, 37800, -1, 44100, 48000, 33075, 9600, 6615};
977
978        	for (i = 1; i < 16; i++)
979   		    	if (speeds[i] > 0 &&
980			    abs(speed-speeds[i]) < abs(speed-speeds[sel])) sel = i;
981        	speed = speeds[sel];
982        	ad_write(mss, 8, (ad_read(mss, 8) & 0xf0) | sel);
983		ad_wait_init(mss, 10000);
984    	}
985    	ad_leave_MCE(mss);
986
987    	return speed;
988}
989
990/*
991 * mss_format checks that the format is supported (or defaults to AFMT_U8)
992 * and returns the bit setting for the 1848 register corresponding to
993 * the desired format.
994 *
995 * fixed lr970724
996 */
997
998static int
999mss_format(struct mss_chinfo *ch, u_int32_t format)
1000{
1001    	struct mss_info *mss = ch->parent;
1002    	int i, arg = AFMT_ENCODING(format);
1003
1004    	/*
1005     	* The data format uses 3 bits (just 2 on the 1848). For each
1006     	* bit setting, the following array returns the corresponding format.
1007     	* The code scans the array looking for a suitable format. In
1008     	* case it is not found, default to AFMT_U8 (not such a good
1009     	* choice, but let's do it for compatibility...).
1010     	*/
1011
1012    	static int fmts[] =
1013        	{AFMT_U8, AFMT_MU_LAW, AFMT_S16_LE, AFMT_A_LAW,
1014		-1, AFMT_IMA_ADPCM, AFMT_U16_BE, -1};
1015
1016	ch->fmt = format;
1017    	for (i = 0; i < 8; i++) if (arg == fmts[i]) break;
1018    	arg = i << 1;
1019    	if (AFMT_CHANNEL(format) > 1) arg |= 1;
1020    	arg <<= 4;
1021    	ad_enter_MCE(mss);
1022    	ad_write(mss, 8, (ad_read(mss, 8) & 0x0f) | arg);
1023	ad_wait_init(mss, 10000);
1024    	if (ad_read(mss, 12) & 0x40) {	/* mode2? */
1025		ad_write(mss, 28, arg); /* capture mode */
1026		ad_wait_init(mss, 10000);
1027	}
1028    	ad_leave_MCE(mss);
1029    	return format;
1030}
1031
1032static int
1033mss_trigger(struct mss_chinfo *ch, int go)
1034{
1035    	struct mss_info *mss = ch->parent;
1036    	u_char m;
1037    	int retry, wr, cnt, ss;
1038
1039	ss = 1;
1040	ss <<= (AFMT_CHANNEL(ch->fmt) > 1)? 1 : 0;
1041	ss <<= (ch->fmt & AFMT_16BIT)? 1 : 0;
1042
1043	wr = (ch->dir == PCMDIR_PLAY)? 1 : 0;
1044    	m = ad_read(mss, 9);
1045    	switch (go) {
1046    	case PCMTRIG_START:
1047		cnt = (ch->blksz / ss) - 1;
1048
1049		DEB(if (m & 4) printf("OUCH! reg 9 0x%02x\n", m););
1050		m |= wr? I9_PEN : I9_CEN; /* enable DMA */
1051		ad_write_cnt(mss, (wr || !FULL_DUPLEX(mss))? 14 : 30, cnt);
1052		break;
1053
1054    	case PCMTRIG_STOP:
1055    	case PCMTRIG_ABORT: /* XXX check this... */
1056		m &= ~(wr? I9_PEN : I9_CEN); /* Stop DMA */
1057#if 0
1058		/*
1059	 	* try to disable DMA by clearing count registers. Not sure it
1060	 	* is needed, and it might cause false interrupts when the
1061	 	* DMA is re-enabled later.
1062	 	*/
1063		ad_write_cnt(mss, (wr || !FULL_DUPLEX(mss))? 14 : 30, 0);
1064#endif
1065    	}
1066    	/* on the OPTi931 the enable bit seems hard to set... */
1067    	for (retry = 10; retry > 0; retry--) {
1068        	ad_write(mss, 9, m);
1069        	if (ad_read(mss, 9) == m) break;
1070    	}
1071    	if (retry == 0) BVDDB(printf("stop dma, failed to set bit 0x%02x 0x%02x\n", \
1072			       m, ad_read(mss, 9)));
1073    	return 0;
1074}
1075
1076
1077/*
1078 * the opti931 seems to miss interrupts when working in full
1079 * duplex, so we try some heuristics to catch them.
1080 */
1081static void
1082opti931_intr(void *arg)
1083{
1084    	struct mss_info *mss = (struct mss_info *)arg;
1085    	u_char masked = 0, i11, mc11, c = 0;
1086    	u_char reason; /* b0 = playback, b1 = capture, b2 = timer */
1087    	int loops = 10;
1088
1089#if 0
1090    	reason = io_rd(mss, MSS_STATUS);
1091    	if (!(reason & 1)) {/* no int, maybe a shared line ? */
1092		DEB(printf("intr: flag 0, mcir11 0x%02x\n", ad_read(mss, 11)));
1093		return;
1094    	}
1095#endif
1096	mss_lock(mss);
1097    	i11 = ad_read(mss, 11); /* XXX what's for ? */
1098	again:
1099
1100    	c = mc11 = FULL_DUPLEX(mss)? opti_rd(mss, 11) : 0xc;
1101    	mc11 &= 0x0c;
1102    	if (c & 0x10) {
1103		DEB(printf("Warning: CD interrupt\n");)
1104		mc11 |= 0x10;
1105    	}
1106    	if (c & 0x20) {
1107		DEB(printf("Warning: MPU interrupt\n");)
1108		mc11 |= 0x20;
1109    	}
1110    	if (mc11 & masked) BVDDB(printf("irq reset failed, mc11 0x%02x, 0x%02x\n",\
1111                              	  mc11, masked));
1112    	masked |= mc11;
1113    	/*
1114     	* the nice OPTi931 sets the IRQ line before setting the bits in
1115     	* mc11. So, on some occasions I have to retry (max 10 times).
1116     	*/
1117    	if (mc11 == 0) { /* perhaps can return ... */
1118		reason = io_rd(mss, MSS_STATUS);
1119		if (reason & 1) {
1120	    		DEB(printf("one more try...\n");)
1121	    		if (--loops) goto again;
1122	    		else BVDDB(printf("intr, but mc11 not set\n");)
1123		}
1124		if (loops == 0) BVDDB(printf("intr, nothing in mcir11 0x%02x\n", mc11));
1125		mss_unlock(mss);
1126		return;
1127    	}
1128
1129    	if (sndbuf_runsz(mss->rch.buffer) && (mc11 & 8)) {
1130		mss_unlock(mss);
1131		chn_intr(mss->rch.channel);
1132		mss_lock(mss);
1133	}
1134    	if (sndbuf_runsz(mss->pch.buffer) && (mc11 & 4)) {
1135		mss_unlock(mss);
1136		chn_intr(mss->pch.channel);
1137		mss_lock(mss);
1138	}
1139    	opti_wr(mss, 11, ~mc11); /* ack */
1140    	if (--loops) goto again;
1141	mss_unlock(mss);
1142    	DEB(printf("xxx too many loops\n");)
1143}
1144
1145/* -------------------------------------------------------------------- */
1146/* channel interface */
1147static void *
1148msschan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir)
1149{
1150	struct mss_info *mss = devinfo;
1151	struct mss_chinfo *ch = (dir == PCMDIR_PLAY)? &mss->pch : &mss->rch;
1152
1153	ch->parent = mss;
1154	ch->channel = c;
1155	ch->buffer = b;
1156	ch->dir = dir;
1157	if (sndbuf_alloc(ch->buffer, mss->parent_dmat, 0, mss->bufsize) != 0)
1158		return NULL;
1159	sndbuf_dmasetup(ch->buffer, (dir == PCMDIR_PLAY)? mss->drq1 : mss->drq2);
1160	return ch;
1161}
1162
1163static int
1164msschan_setformat(kobj_t obj, void *data, u_int32_t format)
1165{
1166	struct mss_chinfo *ch = data;
1167	struct mss_info *mss = ch->parent;
1168
1169	mss_lock(mss);
1170	mss_format(ch, format);
1171	mss_unlock(mss);
1172	return 0;
1173}
1174
1175static u_int32_t
1176msschan_setspeed(kobj_t obj, void *data, u_int32_t speed)
1177{
1178	struct mss_chinfo *ch = data;
1179	struct mss_info *mss = ch->parent;
1180	u_int32_t r;
1181
1182	mss_lock(mss);
1183	r = mss_speed(ch, speed);
1184	mss_unlock(mss);
1185
1186	return r;
1187}
1188
1189static u_int32_t
1190msschan_setblocksize(kobj_t obj, void *data, u_int32_t blocksize)
1191{
1192	struct mss_chinfo *ch = data;
1193
1194	ch->blksz = blocksize;
1195	sndbuf_resize(ch->buffer, 2, ch->blksz);
1196
1197	return ch->blksz;
1198}
1199
1200static int
1201msschan_trigger(kobj_t obj, void *data, int go)
1202{
1203	struct mss_chinfo *ch = data;
1204	struct mss_info *mss = ch->parent;
1205
1206	if (!PCMTRIG_COMMON(go))
1207		return 0;
1208
1209	sndbuf_dma(ch->buffer, go);
1210	mss_lock(mss);
1211	mss_trigger(ch, go);
1212	mss_unlock(mss);
1213	return 0;
1214}
1215
1216static u_int32_t
1217msschan_getptr(kobj_t obj, void *data)
1218{
1219	struct mss_chinfo *ch = data;
1220	return sndbuf_dmaptr(ch->buffer);
1221}
1222
1223static struct pcmchan_caps *
1224msschan_getcaps(kobj_t obj, void *data)
1225{
1226	struct mss_chinfo *ch = data;
1227
1228	switch(ch->parent->bd_id) {
1229	case MD_OPTI931:
1230		return &opti931_caps;
1231		break;
1232
1233	case MD_GUSPNP:
1234	case MD_GUSMAX:
1235		return &guspnp_caps;
1236		break;
1237
1238	default:
1239		return &mss_caps;
1240		break;
1241	}
1242}
1243
1244static kobj_method_t msschan_methods[] = {
1245    	KOBJMETHOD(channel_init,		msschan_init),
1246    	KOBJMETHOD(channel_setformat,		msschan_setformat),
1247    	KOBJMETHOD(channel_setspeed,		msschan_setspeed),
1248    	KOBJMETHOD(channel_setblocksize,	msschan_setblocksize),
1249    	KOBJMETHOD(channel_trigger,		msschan_trigger),
1250    	KOBJMETHOD(channel_getptr,		msschan_getptr),
1251    	KOBJMETHOD(channel_getcaps,		msschan_getcaps),
1252	KOBJMETHOD_END
1253};
1254CHANNEL_DECLARE(msschan);
1255
1256/* -------------------------------------------------------------------- */
1257
1258/*
1259 * mss_probe() is the probe routine. Note, it is not necessary to
1260 * go through this for PnP devices, since they are already
1261 * indentified precisely using their PnP id.
1262 *
1263 * The base address supplied in the device refers to the old MSS
1264 * specs where the four 4 registers in io space contain configuration
1265 * information. Some boards (as an example, early MSS boards)
1266 * has such a block of registers, whereas others (generally CS42xx)
1267 * do not.  In order to distinguish between the two and do not have
1268 * to supply two separate probe routines, the flags entry in isa_device
1269 * has a bit to mark this.
1270 *
1271 */
1272
1273static int
1274mss_probe(device_t dev)
1275{
1276    	u_char tmp, tmpx;
1277    	int flags, irq, drq, result = ENXIO, setres = 0;
1278    	struct mss_info *mss;
1279
1280    	if (isa_get_logicalid(dev)) return ENXIO; /* not yet */
1281
1282    	mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO);
1283    	if (!mss) return ENXIO;
1284
1285    	mss->io_rid = 0;
1286    	mss->conf_rid = -1;
1287    	mss->irq_rid = 0;
1288    	mss->drq1_rid = 0;
1289    	mss->drq2_rid = -1;
1290    	mss->io_base = bus_alloc_resource_anywhere(dev, SYS_RES_IOPORT,
1291    						&mss->io_rid, 8, RF_ACTIVE);
1292    	if (!mss->io_base) {
1293        	BVDDB(printf("mss_probe: no address given, try 0x%x\n", 0x530));
1294		mss->io_rid = 0;
1295		/* XXX verify this */
1296		setres = 1;
1297		bus_set_resource(dev, SYS_RES_IOPORT, mss->io_rid,
1298    		         	0x530, 8);
1299		mss->io_base = bus_alloc_resource_anywhere(dev, SYS_RES_IOPORT,
1300							&mss->io_rid,
1301							8, RF_ACTIVE);
1302    	}
1303    	if (!mss->io_base) goto no;
1304
1305    	/* got irq/dma regs? */
1306    	flags = device_get_flags(dev);
1307    	irq = isa_get_irq(dev);
1308    	drq = isa_get_drq(dev);
1309
1310    	if (!(device_get_flags(dev) & DV_F_TRUE_MSS)) goto mss_probe_end;
1311
1312    	/*
1313     	* Check if the IO port returns valid signature. The original MS
1314     	* Sound system returns 0x04 while some cards
1315     	* (AudioTriX Pro for example) return 0x00 or 0x0f.
1316     	*/
1317
1318    	device_set_desc(dev, "MSS");
1319    	tmpx = tmp = io_rd(mss, 3);
1320    	if (tmp == 0xff) {	/* Bus float */
1321		BVDDB(printf("I/O addr inactive (%x), try pseudo_mss\n", tmp));
1322		device_set_flags(dev, flags & ~DV_F_TRUE_MSS);
1323		goto mss_probe_end;
1324    	}
1325    	tmp &= 0x3f;
1326    	if (!(tmp == 0x04 || tmp == 0x0f || tmp == 0x00 || tmp == 0x05)) {
1327		BVDDB(printf("No MSS signature detected on port 0x%jx (0x%x)\n",
1328		     	rman_get_start(mss->io_base), tmpx));
1329		goto no;
1330    	}
1331    	if (irq > 11) {
1332		printf("MSS: Bad IRQ %d\n", irq);
1333		goto no;
1334    	}
1335    	if (!(drq == 0 || drq == 1 || drq == 3)) {
1336		printf("MSS: Bad DMA %d\n", drq);
1337		goto no;
1338    	}
1339    	if (tmpx & 0x80) {
1340		/* 8-bit board: only drq1/3 and irq7/9 */
1341		if (drq == 0) {
1342		    	printf("MSS: Can't use DMA0 with a 8 bit card/slot\n");
1343		    	goto no;
1344		}
1345		if (!(irq == 7 || irq == 9)) {
1346		    	printf("MSS: Can't use IRQ%d with a 8 bit card/slot\n",
1347			       irq);
1348		    	goto no;
1349		}
1350    	}
1351	mss_probe_end:
1352    	result = mss_detect(dev, mss);
1353	no:
1354    	mss_release_resources(mss, dev);
1355#if 0
1356    	if (setres) ISA_DELETE_RESOURCE(device_get_parent(dev), dev,
1357    				    	SYS_RES_IOPORT, mss->io_rid); /* XXX ? */
1358#endif
1359    	return result;
1360}
1361
1362static int
1363mss_detect(device_t dev, struct mss_info *mss)
1364{
1365    	int          i;
1366    	u_char       tmp = 0, tmp1, tmp2;
1367    	char        *name, *yamaha;
1368
1369    	if (mss->bd_id != 0) {
1370		device_printf(dev, "presel bd_id 0x%04x -- %s\n", mss->bd_id,
1371		      	device_get_desc(dev));
1372		return 0;
1373    	}
1374
1375    	name = "AD1848";
1376    	mss->bd_id = MD_AD1848; /* AD1848 or CS4248 */
1377
1378	if (opti_detect(dev, mss)) {
1379		switch (mss->bd_id) {
1380			case MD_OPTI924:
1381				name = "OPTi924";
1382				break;
1383			case MD_OPTI930:
1384				name = "OPTi930";
1385				break;
1386		}
1387		printf("Found OPTi device %s\n", name);
1388		if (opti_init(dev, mss) == 0) goto gotit;
1389	}
1390
1391   	/*
1392     	* Check that the I/O address is in use.
1393     	*
1394     	* bit 7 of the base I/O port is known to be 0 after the chip has
1395     	* performed its power on initialization. Just assume this has
1396     	* happened before the OS is starting.
1397     	*
1398     	* If the I/O address is unused, it typically returns 0xff.
1399     	*/
1400
1401    	for (i = 0; i < 10; i++)
1402		if ((tmp = io_rd(mss, MSS_INDEX)) & MSS_IDXBUSY) DELAY(10000);
1403		else break;
1404
1405    	if (i >= 10) {	/* Not an AD1848 */
1406		BVDDB(printf("mss_detect, busy still set (0x%02x)\n", tmp));
1407		goto no;
1408    	}
1409    	/*
1410     	* Test if it's possible to change contents of the indirect
1411     	* registers. Registers 0 and 1 are ADC volume registers. The bit
1412     	* 0x10 is read only so try to avoid using it.
1413     	*/
1414
1415    	ad_write(mss, 0, 0xaa);
1416    	ad_write(mss, 1, 0x45);/* 0x55 with bit 0x10 clear */
1417    	tmp1 = ad_read(mss, 0);
1418    	tmp2 = ad_read(mss, 1);
1419    	if (tmp1 != 0xaa || tmp2 != 0x45) {
1420		BVDDB(printf("mss_detect error - IREG (%x/%x)\n", tmp1, tmp2));
1421		goto no;
1422    	}
1423
1424    	ad_write(mss, 0, 0x45);
1425    	ad_write(mss, 1, 0xaa);
1426    	tmp1 = ad_read(mss, 0);
1427    	tmp2 = ad_read(mss, 1);
1428    	if (tmp1 != 0x45 || tmp2 != 0xaa) {
1429		BVDDB(printf("mss_detect error - IREG2 (%x/%x)\n", tmp1, tmp2));
1430		goto no;
1431    	}
1432
1433    	/*
1434     	* The indirect register I12 has some read only bits. Lets try to
1435     	* change them.
1436     	*/
1437
1438    	tmp = ad_read(mss, 12);
1439    	ad_write(mss, 12, (~tmp) & 0x0f);
1440    	tmp1 = ad_read(mss, 12);
1441
1442    	if ((tmp & 0x0f) != (tmp1 & 0x0f)) {
1443		BVDDB(printf("mss_detect - I12 (0x%02x was 0x%02x)\n", tmp1, tmp));
1444		goto no;
1445    	}
1446
1447    	/*
1448     	* NOTE! Last 4 bits of the reg I12 tell the chip revision.
1449     	*	0x01=RevB
1450     	*  0x0A=RevC. also CS4231/CS4231A and OPTi931
1451     	*/
1452
1453    	BVDDB(printf("mss_detect - chip revision 0x%02x\n", tmp & 0x0f);)
1454
1455    	/*
1456     	* The original AD1848/CS4248 has just 16 indirect registers. This
1457     	* means that I0 and I16 should return the same value (etc.). Ensure
1458     	* that the Mode2 enable bit of I12 is 0. Otherwise this test fails
1459     	* with new parts.
1460     	*/
1461
1462    	ad_write(mss, 12, 0);	/* Mode2=disabled */
1463#if 0
1464    	for (i = 0; i < 16; i++) {
1465		if ((tmp1 = ad_read(mss, i)) != (tmp2 = ad_read(mss, i + 16))) {
1466	    	BVDDB(printf("mss_detect warning - I%d: 0x%02x/0x%02x\n",
1467			i, tmp1, tmp2));
1468	    	/*
1469	     	* note - this seems to fail on the 4232 on I11. So we just break
1470	     	* rather than fail.  (which makes this test pointless - cg)
1471	     	*/
1472	    	break; /* return 0; */
1473		}
1474    	}
1475#endif
1476    	/*
1477     	* Try to switch the chip to mode2 (CS4231) by setting the MODE2 bit
1478     	* (0x40). The bit 0x80 is always 1 in CS4248 and CS4231.
1479     	*
1480     	* On the OPTi931, however, I12 is readonly and only contains the
1481     	* chip revision ID (as in the CS4231A). The upper bits return 0.
1482     	*/
1483
1484    	ad_write(mss, 12, 0x40);	/* Set mode2, clear 0x80 */
1485
1486    	tmp1 = ad_read(mss, 12);
1487    	if (tmp1 & 0x80) name = "CS4248"; /* Our best knowledge just now */
1488    	if ((tmp1 & 0xf0) == 0x00) {
1489		BVDDB(printf("this should be an OPTi931\n");)
1490    	} else if ((tmp1 & 0xc0) != 0xC0) goto gotit;
1491	/*
1492	* The 4231 has bit7=1 always, and bit6 we just set to 1.
1493	* We want to check that this is really a CS4231
1494	* Verify that setting I0 doesn't change I16.
1495	*/
1496	ad_write(mss, 16, 0);	/* Set I16 to known value */
1497	ad_write(mss, 0, 0x45);
1498	if ((tmp1 = ad_read(mss, 16)) == 0x45) goto gotit;
1499
1500	ad_write(mss, 0, 0xaa);
1501       	if ((tmp1 = ad_read(mss, 16)) == 0xaa) {	/* Rotten bits? */
1502       		BVDDB(printf("mss_detect error - step H(%x)\n", tmp1));
1503		goto no;
1504	}
1505	/* Verify that some bits of I25 are read only. */
1506	tmp1 = ad_read(mss, 25);	/* Original bits */
1507	ad_write(mss, 25, ~tmp1);	/* Invert all bits */
1508	if ((ad_read(mss, 25) & 0xe7) == (tmp1 & 0xe7)) {
1509		int id;
1510
1511		/* It's at least CS4231 */
1512		name = "CS4231";
1513		mss->bd_id = MD_CS42XX;
1514
1515		/*
1516		* It could be an AD1845 or CS4231A as well.
1517		* CS4231 and AD1845 report the same revision info in I25
1518		* while the CS4231A reports different.
1519		*/
1520
1521		id = ad_read(mss, 25) & 0xe7;
1522		/*
1523		* b7-b5 = version number;
1524		*	100 : all CS4231
1525		*	101 : CS4231A
1526		*
1527		* b2-b0 = chip id;
1528		*/
1529		switch (id) {
1530
1531		case 0xa0:
1532			name = "CS4231A";
1533			mss->bd_id = MD_CS42XX;
1534		break;
1535
1536		case 0xa2:
1537			name = "CS4232";
1538			mss->bd_id = MD_CS42XX;
1539		break;
1540
1541		case 0xb2:
1542		/* strange: the 4231 data sheet says b4-b3 are XX
1543		* so this should be the same as 0xa2
1544		*/
1545			name = "CS4232A";
1546			mss->bd_id = MD_CS42XX;
1547		break;
1548
1549		case 0x80:
1550			/*
1551			* It must be a CS4231 or AD1845. The register I23
1552			* of CS4231 is undefined and it appears to be read
1553			* only. AD1845 uses I23 for setting sample rate.
1554			* Assume the chip is AD1845 if I23 is changeable.
1555			*/
1556
1557			tmp = ad_read(mss, 23);
1558
1559			ad_write(mss, 23, ~tmp);
1560			if (ad_read(mss, 23) != tmp) {	/* AD1845 ? */
1561				name = "AD1845";
1562				mss->bd_id = MD_AD1845;
1563			}
1564			ad_write(mss, 23, tmp);	/* Restore */
1565
1566			yamaha = ymf_test(dev, mss);
1567			if (yamaha) {
1568				mss->bd_id = MD_YM0020;
1569				name = yamaha;
1570			}
1571			break;
1572
1573		case 0x83:	/* CS4236 */
1574		case 0x03:      /* CS4236 on Intel PR440FX motherboard XXX */
1575			name = "CS4236";
1576			mss->bd_id = MD_CS42XX;
1577			break;
1578
1579		default:	/* Assume CS4231 */
1580	 		BVDDB(printf("unknown id 0x%02x, assuming CS4231\n", id);)
1581			mss->bd_id = MD_CS42XX;
1582		}
1583	}
1584	ad_write(mss, 25, tmp1);	/* Restore bits */
1585gotit:
1586    	BVDDB(printf("mss_detect() - Detected %s\n", name));
1587    	device_set_desc(dev, name);
1588    	device_set_flags(dev,
1589			 ((device_get_flags(dev) & ~DV_F_DEV_MASK) |
1590			  ((mss->bd_id << DV_F_DEV_SHIFT) & DV_F_DEV_MASK)));
1591    	return 0;
1592no:
1593    	return ENXIO;
1594}
1595
1596static int
1597opti_detect(device_t dev, struct mss_info *mss)
1598{
1599	int c;
1600	static const struct opticard {
1601		int boardid;
1602		int passwdreg;
1603		int password;
1604		int base;
1605		int indir_reg;
1606	} cards[] = {
1607		{ MD_OPTI930, 0, 0xe4, 0xf8f, 0xe0e },	/* 930 */
1608		{ MD_OPTI924, 3, 0xe5, 0xf8c, 0,    },	/* 924 */
1609		{ 0 },
1610	};
1611	mss->conf_rid = 3;
1612	mss->indir_rid = 4;
1613	for (c = 0; cards[c].base; c++) {
1614		mss->optibase = cards[c].base;
1615		mss->password = cards[c].password;
1616		mss->passwdreg = cards[c].passwdreg;
1617		mss->bd_id = cards[c].boardid;
1618
1619		if (cards[c].indir_reg)
1620			mss->indir = bus_alloc_resource(dev, SYS_RES_IOPORT,
1621				&mss->indir_rid, cards[c].indir_reg,
1622				cards[c].indir_reg+1, 1, RF_ACTIVE);
1623
1624		mss->conf_base = bus_alloc_resource(dev, SYS_RES_IOPORT,
1625			&mss->conf_rid, mss->optibase, mss->optibase+9,
1626			9, RF_ACTIVE);
1627
1628		if (opti_read(mss, 1) != 0xff) {
1629			return 1;
1630		} else {
1631			if (mss->indir)
1632				bus_release_resource(dev, SYS_RES_IOPORT, mss->indir_rid, mss->indir);
1633			mss->indir = NULL;
1634			if (mss->conf_base)
1635				bus_release_resource(dev, SYS_RES_IOPORT, mss->conf_rid, mss->conf_base);
1636			mss->conf_base = NULL;
1637		}
1638	}
1639	return 0;
1640}
1641
1642static char *
1643ymf_test(device_t dev, struct mss_info *mss)
1644{
1645    	static int ports[] = {0x370, 0x310, 0x538};
1646    	int p, i, j, version;
1647    	static char *chipset[] = {
1648		NULL,			/* 0 */
1649		"OPL3-SA2 (YMF711)",	/* 1 */
1650		"OPL3-SA3 (YMF715)",	/* 2 */
1651		"OPL3-SA3 (YMF715)",	/* 3 */
1652		"OPL3-SAx (YMF719)",	/* 4 */
1653		"OPL3-SAx (YMF719)",	/* 5 */
1654		"OPL3-SAx (YMF719)",	/* 6 */
1655		"OPL3-SAx (YMF719)",	/* 7 */
1656    	};
1657
1658    	for (p = 0; p < 3; p++) {
1659		mss->conf_rid = 1;
1660		mss->conf_base = bus_alloc_resource(dev,
1661					  	SYS_RES_IOPORT,
1662					  	&mss->conf_rid,
1663					  	ports[p], ports[p] + 1, 2,
1664					  	RF_ACTIVE);
1665		if (!mss->conf_base) return 0;
1666
1667		/* Test the index port of the config registers */
1668		i = port_rd(mss->conf_base, 0);
1669		port_wr(mss->conf_base, 0, OPL3SAx_DMACONF);
1670		j = (port_rd(mss->conf_base, 0) == OPL3SAx_DMACONF)? 1 : 0;
1671		port_wr(mss->conf_base, 0, i);
1672		if (!j) {
1673	    		bus_release_resource(dev, SYS_RES_IOPORT,
1674			 		     mss->conf_rid, mss->conf_base);
1675	    		mss->conf_base = NULL;
1676	    		continue;
1677		}
1678		version = conf_rd(mss, OPL3SAx_MISC) & 0x07;
1679		return chipset[version];
1680    	}
1681    	return NULL;
1682}
1683
1684static int
1685mss_doattach(device_t dev, struct mss_info *mss)
1686{
1687    	int pdma, rdma, flags = device_get_flags(dev);
1688    	char status[SND_STATUSLEN], status2[SND_STATUSLEN];
1689
1690	mss->lock = snd_mtxcreate(device_get_nameunit(dev), "snd_mss softc");
1691	mss->bufsize = pcm_getbuffersize(dev, 4096, MSS_DEFAULT_BUFSZ, 65536);
1692    	if (!mss_alloc_resources(mss, dev)) goto no;
1693    	mss_init(mss, dev);
1694	pdma = rman_get_start(mss->drq1);
1695	rdma = rman_get_start(mss->drq2);
1696    	if (flags & DV_F_TRUE_MSS) {
1697		/* has IRQ/DMA registers, set IRQ and DMA addr */
1698		static char     interrupt_bits[12] =
1699	    	{-1, -1, -1, -1, -1, 0x28, -1, 0x08, -1, 0x10, 0x18, 0x20};
1700		static char     pdma_bits[4] =  {1, 2, -1, 3};
1701		static char	valid_rdma[4] = {1, 0, -1, 0};
1702		char		bits;
1703
1704		if (!mss->irq || (bits = interrupt_bits[rman_get_start(mss->irq)]) == -1)
1705			goto no;
1706		io_wr(mss, 0, bits | 0x40);	/* config port */
1707		if ((io_rd(mss, 3) & 0x40) == 0) device_printf(dev, "IRQ Conflict?\n");
1708		/* Write IRQ+DMA setup */
1709		if (pdma_bits[pdma] == -1) goto no;
1710		bits |= pdma_bits[pdma];
1711		if (pdma != rdma) {
1712	    		if (rdma == valid_rdma[pdma]) bits |= 4;
1713	    		else {
1714				printf("invalid dual dma config %d:%d\n", pdma, rdma);
1715				goto no;
1716	    		}
1717		}
1718		io_wr(mss, 0, bits);
1719		printf("drq/irq conf %x\n", io_rd(mss, 0));
1720    	}
1721    	mixer_init(dev, (mss->bd_id == MD_YM0020)? &ymmix_mixer_class : &mssmix_mixer_class, mss);
1722    	switch (mss->bd_id) {
1723    	case MD_OPTI931:
1724		snd_setup_intr(dev, mss->irq, 0, opti931_intr, mss, &mss->ih);
1725		break;
1726    	default:
1727		snd_setup_intr(dev, mss->irq, 0, mss_intr, mss, &mss->ih);
1728    	}
1729    	if (pdma == rdma)
1730		pcm_setflags(dev, pcm_getflags(dev) | SD_F_SIMPLEX);
1731    	if (bus_dma_tag_create(/*parent*/bus_get_dma_tag(dev), /*alignment*/2,
1732			/*boundary*/0,
1733			/*lowaddr*/BUS_SPACE_MAXADDR_24BIT,
1734			/*highaddr*/BUS_SPACE_MAXADDR,
1735			/*filter*/NULL, /*filterarg*/NULL,
1736			/*maxsize*/mss->bufsize, /*nsegments*/1,
1737			/*maxsegz*/0x3ffff, /*flags*/0,
1738			/*lockfunc*/busdma_lock_mutex, /*lockarg*/&Giant,
1739			&mss->parent_dmat) != 0) {
1740		device_printf(dev, "unable to create dma tag\n");
1741		goto no;
1742    	}
1743
1744    	if (pdma != rdma)
1745		snprintf(status2, SND_STATUSLEN, ":%d", rdma);
1746	else
1747		status2[0] = '\0';
1748
1749    	snprintf(status, SND_STATUSLEN, "at io 0x%jx irq %jd drq %d%s bufsz %u",
1750    	     	rman_get_start(mss->io_base), rman_get_start(mss->irq), pdma, status2, mss->bufsize);
1751
1752    	if (pcm_register(dev, mss, 1, 1)) goto no;
1753    	pcm_addchan(dev, PCMDIR_REC, &msschan_class, mss);
1754    	pcm_addchan(dev, PCMDIR_PLAY, &msschan_class, mss);
1755    	pcm_setstatus(dev, status);
1756
1757    	return 0;
1758no:
1759    	mss_release_resources(mss, dev);
1760    	return ENXIO;
1761}
1762
1763static int
1764mss_detach(device_t dev)
1765{
1766	int r;
1767    	struct mss_info *mss;
1768
1769	r = pcm_unregister(dev);
1770	if (r)
1771		return r;
1772
1773	mss = pcm_getdevinfo(dev);
1774    	mss_release_resources(mss, dev);
1775
1776	return 0;
1777}
1778
1779static int
1780mss_attach(device_t dev)
1781{
1782    	struct mss_info *mss;
1783    	int flags = device_get_flags(dev);
1784
1785    	mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO);
1786    	if (!mss) return ENXIO;
1787
1788    	mss->io_rid = 0;
1789    	mss->conf_rid = -1;
1790    	mss->irq_rid = 0;
1791    	mss->drq1_rid = 0;
1792    	mss->drq2_rid = -1;
1793    	if (flags & DV_F_DUAL_DMA) {
1794        	bus_set_resource(dev, SYS_RES_DRQ, 1,
1795    		         	 flags & DV_F_DRQ_MASK, 1);
1796		mss->drq2_rid = 1;
1797    	}
1798    	mss->bd_id = (device_get_flags(dev) & DV_F_DEV_MASK) >> DV_F_DEV_SHIFT;
1799    	if (mss->bd_id == MD_YM0020) ymf_test(dev, mss);
1800    	return mss_doattach(dev, mss);
1801}
1802
1803/*
1804 * mss_resume() is the code to allow a laptop to resume using the sound
1805 * card.
1806 *
1807 * This routine re-sets the state of the board to the state before going
1808 * to sleep.  According to the yamaha docs this is the right thing to do,
1809 * but getting DMA restarted appears to be a bit of a trick, so the device
1810 * has to be closed and re-opened to be re-used, but there is no skipping
1811 * problem, and volume, bass/treble and most other things are restored
1812 * properly.
1813 *
1814 */
1815
1816static int
1817mss_resume(device_t dev)
1818{
1819    	/*
1820     	 * Restore the state taken below.
1821     	 */
1822    	struct mss_info *mss;
1823    	int i;
1824
1825    	mss = pcm_getdevinfo(dev);
1826
1827    	if(mss->bd_id == MD_YM0020 || mss->bd_id == MD_CS423X) {
1828		/* This works on a Toshiba Libretto 100CT. */
1829		for (i = 0; i < MSS_INDEXED_REGS; i++)
1830    			ad_write(mss, i, mss->mss_indexed_regs[i]);
1831		for (i = 0; i < OPL_INDEXED_REGS; i++)
1832    			conf_wr(mss, i, mss->opl_indexed_regs[i]);
1833		mss_intr(mss);
1834    	}
1835
1836	if (mss->bd_id == MD_CS423X) {
1837		/* Needed on IBM Thinkpad 600E */
1838		mss_lock(mss);
1839		mss_format(&mss->pch, mss->pch.channel->format);
1840		mss_speed(&mss->pch, mss->pch.channel->speed);
1841		mss_unlock(mss);
1842	}
1843
1844    	return 0;
1845
1846}
1847
1848/*
1849 * mss_suspend() is the code that gets called right before a laptop
1850 * suspends.
1851 *
1852 * This code saves the state of the sound card right before shutdown
1853 * so it can be restored above.
1854 *
1855 */
1856
1857static int
1858mss_suspend(device_t dev)
1859{
1860    	int i;
1861    	struct mss_info *mss;
1862
1863    	mss = pcm_getdevinfo(dev);
1864
1865    	if(mss->bd_id == MD_YM0020 || mss->bd_id == MD_CS423X)
1866    	{
1867		/* this stops playback. */
1868		conf_wr(mss, 0x12, 0x0c);
1869		for(i = 0; i < MSS_INDEXED_REGS; i++)
1870    			mss->mss_indexed_regs[i] = ad_read(mss, i);
1871		for(i = 0; i < OPL_INDEXED_REGS; i++)
1872    			mss->opl_indexed_regs[i] = conf_rd(mss, i);
1873		mss->opl_indexed_regs[0x12] = 0x0;
1874    	}
1875    	return 0;
1876}
1877
1878static device_method_t mss_methods[] = {
1879	/* Device interface */
1880	DEVMETHOD(device_probe,		mss_probe),
1881	DEVMETHOD(device_attach,	mss_attach),
1882	DEVMETHOD(device_detach,	mss_detach),
1883	DEVMETHOD(device_suspend,       mss_suspend),
1884	DEVMETHOD(device_resume,        mss_resume),
1885
1886	{ 0, 0 }
1887};
1888
1889static driver_t mss_driver = {
1890	"pcm",
1891	mss_methods,
1892	PCM_SOFTC_SIZE,
1893};
1894
1895DRIVER_MODULE(snd_mss, isa, mss_driver, pcm_devclass, 0, 0);
1896MODULE_DEPEND(snd_mss, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
1897MODULE_VERSION(snd_mss, 1);
1898
1899static int
1900azt2320_mss_mode(struct mss_info *mss, device_t dev)
1901{
1902	struct resource *sbport;
1903	int		i, ret, rid;
1904
1905	rid = 0;
1906	ret = -1;
1907	sbport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE);
1908	if (sbport) {
1909		for (i = 0; i < 1000; i++) {
1910			if ((port_rd(sbport, SBDSP_STATUS) & 0x80))
1911				DELAY((i > 100) ? 1000 : 10);
1912			else {
1913				port_wr(sbport, SBDSP_CMD, 0x09);
1914				break;
1915			}
1916		}
1917		for (i = 0; i < 1000; i++) {
1918			if ((port_rd(sbport, SBDSP_STATUS) & 0x80))
1919				DELAY((i > 100) ? 1000 : 10);
1920			else {
1921				port_wr(sbport, SBDSP_CMD, 0x00);
1922				ret = 0;
1923				break;
1924			}
1925		}
1926		DELAY(1000);
1927		bus_release_resource(dev, SYS_RES_IOPORT, rid, sbport);
1928	}
1929	return ret;
1930}
1931
1932static struct isa_pnp_id pnpmss_ids[] = {
1933	{0x0000630e, "CS423x"},				/* CSC0000 */
1934	{0x0001630e, "CS423x-PCI"},			/* CSC0100 */
1935    	{0x01000000, "CMI8330"},			/* @@@0001 */
1936	{0x2100a865, "Yamaha OPL-SAx"},			/* YMH0021 */
1937	{0x1110d315, "ENSONIQ SoundscapeVIVO"},		/* ENS1011 */
1938	{0x1093143e, "OPTi931"},			/* OPT9310 */
1939	{0x5092143e, "OPTi925"},			/* OPT9250 XXX guess */
1940	{0x0000143e, "OPTi924"},			/* OPT0924 */
1941	{0x1022b839, "Neomagic 256AV (non-ac97)"},	/* NMX2210 */
1942	{0x01005407, "Aztech 2320"},			/* AZT0001 */
1943#if 0
1944	{0x0000561e, "GusPnP"},				/* GRV0000 */
1945#endif
1946	{0},
1947};
1948
1949static int
1950pnpmss_probe(device_t dev)
1951{
1952	u_int32_t lid, vid;
1953
1954	lid = isa_get_logicalid(dev);
1955	vid = isa_get_vendorid(dev);
1956	if (lid == 0x01000000 && vid != 0x0100a90d) /* CMI0001 */
1957		return ENXIO;
1958	return ISA_PNP_PROBE(device_get_parent(dev), dev, pnpmss_ids);
1959}
1960
1961static int
1962pnpmss_attach(device_t dev)
1963{
1964	struct mss_info *mss;
1965
1966	mss = malloc(sizeof(*mss), M_DEVBUF, M_WAITOK | M_ZERO);
1967	mss->io_rid = 0;
1968	mss->conf_rid = -1;
1969	mss->irq_rid = 0;
1970	mss->drq1_rid = 0;
1971	mss->drq2_rid = 1;
1972	mss->bd_id = MD_CS42XX;
1973
1974	switch (isa_get_logicalid(dev)) {
1975	case 0x0000630e:			/* CSC0000 */
1976	case 0x0001630e:			/* CSC0100 */
1977	    mss->bd_flags |= BD_F_MSS_OFFSET;
1978	    mss->bd_id = MD_CS423X;
1979	    break;
1980
1981	case 0x2100a865:			/* YHM0021 */
1982	    mss->io_rid = 1;
1983	    mss->conf_rid = 4;
1984	    mss->bd_id = MD_YM0020;
1985	    break;
1986
1987	case 0x1110d315:			/* ENS1011 */
1988	    mss->io_rid = 1;
1989	    mss->bd_id = MD_VIVO;
1990	    break;
1991
1992	case 0x1093143e:			/* OPT9310 */
1993            mss->bd_flags |= BD_F_MSS_OFFSET;
1994    	    mss->conf_rid = 3;
1995            mss->bd_id = MD_OPTI931;
1996	    break;
1997
1998	case 0x5092143e:			/* OPT9250 XXX guess */
1999            mss->io_rid = 1;
2000            mss->conf_rid = 3;
2001	    mss->bd_id = MD_OPTI925;
2002	    break;
2003
2004	case 0x0000143e:			/* OPT0924 */
2005	    mss->password = 0xe5;
2006	    mss->passwdreg = 3;
2007	    mss->optibase = 0xf0c;
2008	    mss->io_rid = 2;
2009	    mss->conf_rid = 3;
2010	    mss->bd_id = MD_OPTI924;
2011	    mss->bd_flags |= BD_F_924PNP;
2012	    if(opti_init(dev, mss) != 0) {
2013		    free(mss, M_DEVBUF);
2014		    return ENXIO;
2015	    }
2016	    break;
2017
2018	case 0x1022b839:			/* NMX2210 */
2019	    mss->io_rid = 1;
2020	    break;
2021
2022	case 0x01005407:			/* AZT0001 */
2023	    /* put into MSS mode first (snatched from NetBSD) */
2024	    if (azt2320_mss_mode(mss, dev) == -1) {
2025		    free(mss, M_DEVBUF);
2026		    return ENXIO;
2027	    }
2028
2029	    mss->bd_flags |= BD_F_MSS_OFFSET;
2030	    mss->io_rid = 2;
2031	    break;
2032
2033#if 0
2034	case 0x0000561e:			/* GRV0000 */
2035	    mss->bd_flags |= BD_F_MSS_OFFSET;
2036            mss->io_rid = 2;
2037            mss->conf_rid = 1;
2038	    mss->drq1_rid = 1;
2039	    mss->drq2_rid = 0;
2040            mss->bd_id = MD_GUSPNP;
2041	    break;
2042#endif
2043	case 0x01000000:			/* @@@0001 */
2044	    mss->drq2_rid = -1;
2045            break;
2046
2047	/* Unknown MSS default.  We could let the CSC0000 stuff match too */
2048        default:
2049	    mss->bd_flags |= BD_F_MSS_OFFSET;
2050	    break;
2051	}
2052    	return mss_doattach(dev, mss);
2053}
2054
2055static int
2056opti_init(device_t dev, struct mss_info *mss)
2057{
2058	int flags = device_get_flags(dev);
2059	int basebits = 0;
2060
2061	if (!mss->conf_base) {
2062		bus_set_resource(dev, SYS_RES_IOPORT, mss->conf_rid,
2063			mss->optibase, 0x9);
2064
2065		mss->conf_base = bus_alloc_resource(dev, SYS_RES_IOPORT,
2066			&mss->conf_rid, mss->optibase, mss->optibase+0x9,
2067			0x9, RF_ACTIVE);
2068	}
2069
2070	if (!mss->conf_base)
2071		return ENXIO;
2072
2073	if (!mss->io_base)
2074		mss->io_base = bus_alloc_resource_anywhere(dev, SYS_RES_IOPORT,
2075			&mss->io_rid, 8, RF_ACTIVE);
2076
2077	if (!mss->io_base)	/* No hint specified, use 0x530 */
2078		mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT,
2079			&mss->io_rid, 0x530, 0x537, 8, RF_ACTIVE);
2080
2081	if (!mss->io_base)
2082		return ENXIO;
2083
2084	switch (rman_get_start(mss->io_base)) {
2085		case 0x530:
2086			basebits = 0x0;
2087			break;
2088		case 0xe80:
2089			basebits = 0x10;
2090			break;
2091		case 0xf40:
2092			basebits = 0x20;
2093			break;
2094		case 0x604:
2095			basebits = 0x30;
2096			break;
2097		default:
2098			printf("opti_init: invalid MSS base address!\n");
2099			return ENXIO;
2100	}
2101
2102
2103	switch (mss->bd_id) {
2104	case MD_OPTI924:
2105		opti_write(mss, 1, 0x80 | basebits);	/* MSS mode */
2106		opti_write(mss, 2, 0x00);	/* Disable CD */
2107		opti_write(mss, 3, 0xf0);	/* Disable SB IRQ */
2108		opti_write(mss, 4, 0xf0);
2109		opti_write(mss, 5, 0x00);
2110		opti_write(mss, 6, 0x02);	/* MPU stuff */
2111		break;
2112
2113	case MD_OPTI930:
2114		opti_write(mss, 1, 0x00 | basebits);
2115		opti_write(mss, 3, 0x00);	/* Disable SB IRQ/DMA */
2116		opti_write(mss, 4, 0x52);	/* Empty FIFO */
2117		opti_write(mss, 5, 0x3c);	/* Mode 2 */
2118		opti_write(mss, 6, 0x02);	/* Enable MSS */
2119		break;
2120	}
2121
2122	if (mss->bd_flags & BD_F_924PNP) {
2123		u_int32_t irq = isa_get_irq(dev);
2124		u_int32_t drq = isa_get_drq(dev);
2125		bus_set_resource(dev, SYS_RES_IRQ, 0, irq, 1);
2126		bus_set_resource(dev, SYS_RES_DRQ, mss->drq1_rid, drq, 1);
2127		if (flags & DV_F_DUAL_DMA) {
2128			bus_set_resource(dev, SYS_RES_DRQ, 1,
2129				flags & DV_F_DRQ_MASK, 1);
2130			mss->drq2_rid = 1;
2131		}
2132	}
2133
2134	/* OPTixxx has I/DRQ registers */
2135
2136	device_set_flags(dev, device_get_flags(dev) | DV_F_TRUE_MSS);
2137
2138	return 0;
2139}
2140
2141static void
2142opti_write(struct mss_info *mss, u_char reg, u_char val)
2143{
2144	port_wr(mss->conf_base, mss->passwdreg, mss->password);
2145
2146	switch(mss->bd_id) {
2147	case MD_OPTI924:
2148		if (reg > 7) {		/* Indirect register */
2149			port_wr(mss->conf_base, mss->passwdreg, reg);
2150			port_wr(mss->conf_base, mss->passwdreg,
2151				mss->password);
2152			port_wr(mss->conf_base, 9, val);
2153			return;
2154		}
2155		port_wr(mss->conf_base, reg, val);
2156		break;
2157
2158	case MD_OPTI930:
2159		port_wr(mss->indir, 0, reg);
2160		port_wr(mss->conf_base, mss->passwdreg, mss->password);
2161		port_wr(mss->indir, 1, val);
2162		break;
2163	}
2164}
2165
2166u_char
2167opti_read(struct mss_info *mss, u_char reg)
2168{
2169	port_wr(mss->conf_base, mss->passwdreg, mss->password);
2170
2171	switch(mss->bd_id) {
2172	case MD_OPTI924:
2173		if (reg > 7) {		/* Indirect register */
2174			port_wr(mss->conf_base, mss->passwdreg, reg);
2175			port_wr(mss->conf_base, mss->passwdreg, mss->password);
2176			return(port_rd(mss->conf_base, 9));
2177		}
2178		return(port_rd(mss->conf_base, reg));
2179		break;
2180
2181	case MD_OPTI930:
2182		port_wr(mss->indir, 0, reg);
2183		port_wr(mss->conf_base, mss->passwdreg, mss->password);
2184		return port_rd(mss->indir, 1);
2185		break;
2186	}
2187	return -1;
2188}
2189
2190static device_method_t pnpmss_methods[] = {
2191	/* Device interface */
2192	DEVMETHOD(device_probe,		pnpmss_probe),
2193	DEVMETHOD(device_attach,	pnpmss_attach),
2194	DEVMETHOD(device_detach,	mss_detach),
2195	DEVMETHOD(device_suspend,       mss_suspend),
2196	DEVMETHOD(device_resume,        mss_resume),
2197
2198	{ 0, 0 }
2199};
2200
2201static driver_t pnpmss_driver = {
2202	"pcm",
2203	pnpmss_methods,
2204	PCM_SOFTC_SIZE,
2205};
2206
2207DRIVER_MODULE(snd_pnpmss, isa, pnpmss_driver, pcm_devclass, 0, 0);
2208DRIVER_MODULE(snd_pnpmss, acpi, pnpmss_driver, pcm_devclass, 0, 0);
2209MODULE_DEPEND(snd_pnpmss, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
2210MODULE_VERSION(snd_pnpmss, 1);
2211
2212static int
2213guspcm_probe(device_t dev)
2214{
2215	struct sndcard_func *func;
2216
2217	func = device_get_ivars(dev);
2218	if (func == NULL || func->func != SCF_PCM)
2219		return ENXIO;
2220
2221	device_set_desc(dev, "GUS CS4231");
2222	return 0;
2223}
2224
2225static int
2226guspcm_attach(device_t dev)
2227{
2228	device_t parent = device_get_parent(dev);
2229	struct mss_info *mss;
2230	int base, flags;
2231	unsigned char ctl;
2232
2233	mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO);
2234	if (mss == NULL)
2235		return ENOMEM;
2236
2237	mss->bd_flags = BD_F_MSS_OFFSET;
2238	mss->io_rid = 2;
2239	mss->conf_rid = 1;
2240	mss->irq_rid = 0;
2241	mss->drq1_rid = 1;
2242	mss->drq2_rid = -1;
2243
2244	if (isa_get_logicalid(parent) == 0)
2245		mss->bd_id = MD_GUSMAX;
2246	else {
2247		mss->bd_id = MD_GUSPNP;
2248		mss->drq2_rid = 0;
2249		goto skip_setup;
2250	}
2251
2252	flags = device_get_flags(parent);
2253	if (flags & DV_F_DUAL_DMA)
2254		mss->drq2_rid = 0;
2255
2256	mss->conf_base = bus_alloc_resource_anywhere(dev, SYS_RES_IOPORT,
2257						     &mss->conf_rid,
2258						     8, RF_ACTIVE);
2259
2260	if (mss->conf_base == NULL) {
2261		mss_release_resources(mss, dev);
2262		return ENXIO;
2263	}
2264
2265	base = isa_get_port(parent);
2266
2267	ctl = 0x40;			/* CS4231 enable */
2268	if (isa_get_drq(dev) > 3)
2269		ctl |= 0x10;		/* 16-bit dma channel 1 */
2270	if ((flags & DV_F_DUAL_DMA) != 0 && (flags & DV_F_DRQ_MASK) > 3)
2271		ctl |= 0x20;		/* 16-bit dma channel 2 */
2272	ctl |= (base >> 4) & 0x0f;	/* 2X0 -> 3XC */
2273	port_wr(mss->conf_base, 6, ctl);
2274
2275skip_setup:
2276	return mss_doattach(dev, mss);
2277}
2278
2279static device_method_t guspcm_methods[] = {
2280	DEVMETHOD(device_probe,		guspcm_probe),
2281	DEVMETHOD(device_attach,	guspcm_attach),
2282	DEVMETHOD(device_detach,	mss_detach),
2283
2284	{ 0, 0 }
2285};
2286
2287static driver_t guspcm_driver = {
2288	"pcm",
2289	guspcm_methods,
2290	PCM_SOFTC_SIZE,
2291};
2292
2293DRIVER_MODULE(snd_guspcm, gusc, guspcm_driver, pcm_devclass, 0, 0);
2294MODULE_DEPEND(snd_guspcm, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
2295MODULE_VERSION(snd_guspcm, 1);
2296ISA_PNP_INFO(pnpmss_ids);
2297