1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2008 Alexander Motin <mav@FreeBSD.org>
5 * Copyright (c) 2017 Marius Strobl <marius@FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/bus.h>
35#include <sys/callout.h>
36#include <sys/conf.h>
37#include <sys/kernel.h>
38#include <sys/kobj.h>
39#include <sys/libkern.h>
40#include <sys/lock.h>
41#include <sys/malloc.h>
42#include <sys/module.h>
43#include <sys/mutex.h>
44#include <sys/resource.h>
45#include <sys/rman.h>
46#include <sys/sysctl.h>
47#include <sys/taskqueue.h>
48
49#include <machine/bus.h>
50#include <machine/resource.h>
51#include <machine/stdarg.h>
52
53#include <dev/mmc/bridge.h>
54#include <dev/mmc/mmcreg.h>
55#include <dev/mmc/mmcbrvar.h>
56
57#include <dev/sdhci/sdhci.h>
58
59#include <cam/cam.h>
60#include <cam/cam_ccb.h>
61#include <cam/cam_debug.h>
62#include <cam/cam_sim.h>
63#include <cam/cam_xpt_sim.h>
64
65#include "mmcbr_if.h"
66#include "sdhci_if.h"
67
68#include "opt_mmccam.h"
69
70SYSCTL_NODE(_hw, OID_AUTO, sdhci, CTLFLAG_RD, 0, "sdhci driver");
71
72static int sdhci_debug = 0;
73SYSCTL_INT(_hw_sdhci, OID_AUTO, debug, CTLFLAG_RWTUN, &sdhci_debug, 0,
74    "Debug level");
75u_int sdhci_quirk_clear = 0;
76SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_clear, CTLFLAG_RWTUN, &sdhci_quirk_clear,
77    0, "Mask of quirks to clear");
78u_int sdhci_quirk_set = 0;
79SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_set, CTLFLAG_RWTUN, &sdhci_quirk_set, 0,
80    "Mask of quirks to set");
81
82#define	RD1(slot, off)	SDHCI_READ_1((slot)->bus, (slot), (off))
83#define	RD2(slot, off)	SDHCI_READ_2((slot)->bus, (slot), (off))
84#define	RD4(slot, off)	SDHCI_READ_4((slot)->bus, (slot), (off))
85#define	RD_MULTI_4(slot, off, ptr, count)	\
86    SDHCI_READ_MULTI_4((slot)->bus, (slot), (off), (ptr), (count))
87
88#define	WR1(slot, off, val)	SDHCI_WRITE_1((slot)->bus, (slot), (off), (val))
89#define	WR2(slot, off, val)	SDHCI_WRITE_2((slot)->bus, (slot), (off), (val))
90#define	WR4(slot, off, val)	SDHCI_WRITE_4((slot)->bus, (slot), (off), (val))
91#define	WR_MULTI_4(slot, off, ptr, count)	\
92    SDHCI_WRITE_MULTI_4((slot)->bus, (slot), (off), (ptr), (count))
93
94static void sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err);
95static void sdhci_card_poll(void *arg);
96static void sdhci_card_task(void *arg, int pending);
97static void sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask);
98static void sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask);
99static int sdhci_exec_tuning(struct sdhci_slot *slot, bool reset);
100static void sdhci_handle_card_present_locked(struct sdhci_slot *slot,
101    bool is_present);
102static void sdhci_finish_command(struct sdhci_slot *slot);
103static void sdhci_init(struct sdhci_slot *slot);
104static void sdhci_read_block_pio(struct sdhci_slot *slot);
105static void sdhci_req_done(struct sdhci_slot *slot);
106static void sdhci_req_wakeup(struct mmc_request *req);
107static void sdhci_reset(struct sdhci_slot *slot, uint8_t mask);
108static void sdhci_retune(void *arg);
109static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock);
110static void sdhci_set_power(struct sdhci_slot *slot, u_char power);
111static void sdhci_set_transfer_mode(struct sdhci_slot *slot,
112   const struct mmc_data *data);
113static void sdhci_start(struct sdhci_slot *slot);
114static void sdhci_timeout(void *arg);
115static void sdhci_start_command(struct sdhci_slot *slot,
116   struct mmc_command *cmd);
117static void sdhci_start_data(struct sdhci_slot *slot,
118   const struct mmc_data *data);
119static void sdhci_write_block_pio(struct sdhci_slot *slot);
120static void sdhci_transfer_pio(struct sdhci_slot *slot);
121
122#ifdef MMCCAM
123/* CAM-related */
124static void sdhci_cam_action(struct cam_sim *sim, union ccb *ccb);
125static int sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot,
126    int proposed_clock);
127static void sdhci_cam_handle_mmcio(struct cam_sim *sim, union ccb *ccb);
128static void sdhci_cam_poll(struct cam_sim *sim);
129static int sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb);
130static int sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb);
131static int sdhci_cam_update_ios(struct sdhci_slot *slot);
132#endif
133
134/* helper routines */
135static int sdhci_dma_alloc(struct sdhci_slot *slot);
136static void sdhci_dma_free(struct sdhci_slot *slot);
137static void sdhci_dumpregs(struct sdhci_slot *slot);
138static void sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs,
139    int error);
140static int slot_printf(const struct sdhci_slot *slot, const char * fmt, ...)
141    __printflike(2, 3);
142static uint32_t sdhci_tuning_intmask(const struct sdhci_slot *slot);
143
144#define	SDHCI_LOCK(_slot)		mtx_lock(&(_slot)->mtx)
145#define	SDHCI_UNLOCK(_slot)		mtx_unlock(&(_slot)->mtx)
146#define	SDHCI_LOCK_INIT(_slot) \
147	mtx_init(&_slot->mtx, "SD slot mtx", "sdhci", MTX_DEF)
148#define	SDHCI_LOCK_DESTROY(_slot)	mtx_destroy(&_slot->mtx);
149#define	SDHCI_ASSERT_LOCKED(_slot)	mtx_assert(&_slot->mtx, MA_OWNED);
150#define	SDHCI_ASSERT_UNLOCKED(_slot)	mtx_assert(&_slot->mtx, MA_NOTOWNED);
151
152#define	SDHCI_DEFAULT_MAX_FREQ	50
153
154#define	SDHCI_200_MAX_DIVIDER	256
155#define	SDHCI_300_MAX_DIVIDER	2046
156
157#define	SDHCI_CARD_PRESENT_TICKS	(hz / 5)
158#define	SDHCI_INSERT_DELAY_TICKS	(hz / 2)
159
160/*
161 * Broadcom BCM577xx Controller Constants
162 */
163/* Maximum divider supported by the default clock source. */
164#define	BCM577XX_DEFAULT_MAX_DIVIDER	256
165/* Alternative clock's base frequency. */
166#define	BCM577XX_ALT_CLOCK_BASE		63000000
167
168#define	BCM577XX_HOST_CONTROL		0x198
169#define	BCM577XX_CTRL_CLKSEL_MASK	0xFFFFCFFF
170#define	BCM577XX_CTRL_CLKSEL_SHIFT	12
171#define	BCM577XX_CTRL_CLKSEL_DEFAULT	0x0
172#define	BCM577XX_CTRL_CLKSEL_64MHZ	0x3
173
174static void
175sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
176{
177
178	if (error != 0) {
179		printf("getaddr: error %d\n", error);
180		return;
181	}
182	*(bus_addr_t *)arg = segs[0].ds_addr;
183}
184
185static int
186slot_printf(const struct sdhci_slot *slot, const char * fmt, ...)
187{
188	va_list ap;
189	int retval;
190
191	retval = printf("%s-slot%d: ",
192	    device_get_nameunit(slot->bus), slot->num);
193
194	va_start(ap, fmt);
195	retval += vprintf(fmt, ap);
196	va_end(ap);
197	return (retval);
198}
199
200static void
201sdhci_dumpregs(struct sdhci_slot *slot)
202{
203
204	slot_printf(slot,
205	    "============== REGISTER DUMP ==============\n");
206
207	slot_printf(slot, "Sys addr: 0x%08x | Version:  0x%08x\n",
208	    RD4(slot, SDHCI_DMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION));
209	slot_printf(slot, "Blk size: 0x%08x | Blk cnt:  0x%08x\n",
210	    RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT));
211	slot_printf(slot, "Argument: 0x%08x | Trn mode: 0x%08x\n",
212	    RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE));
213	slot_printf(slot, "Present:  0x%08x | Host ctl: 0x%08x\n",
214	    RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL));
215	slot_printf(slot, "Power:    0x%08x | Blk gap:  0x%08x\n",
216	    RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL));
217	slot_printf(slot, "Wake-up:  0x%08x | Clock:    0x%08x\n",
218	    RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL));
219	slot_printf(slot, "Timeout:  0x%08x | Int stat: 0x%08x\n",
220	    RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS));
221	slot_printf(slot, "Int enab: 0x%08x | Sig enab: 0x%08x\n",
222	    RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE));
223	slot_printf(slot, "AC12 err: 0x%08x | Host ctl2:0x%08x\n",
224	    RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_HOST_CONTROL2));
225	slot_printf(slot, "Caps:     0x%08x | Caps2:    0x%08x\n",
226	    RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_CAPABILITIES2));
227	slot_printf(slot, "Max curr: 0x%08x | ADMA err: 0x%08x\n",
228	    RD4(slot, SDHCI_MAX_CURRENT), RD1(slot, SDHCI_ADMA_ERR));
229	slot_printf(slot, "ADMA addr:0x%08x | Slot int: 0x%08x\n",
230	    RD4(slot, SDHCI_ADMA_ADDRESS_LO), RD2(slot, SDHCI_SLOT_INT_STATUS));
231
232	slot_printf(slot,
233	    "===========================================\n");
234}
235
236static void
237sdhci_reset(struct sdhci_slot *slot, uint8_t mask)
238{
239	int timeout;
240	uint32_t clock;
241
242	if (slot->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
243		if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot))
244			return;
245	}
246
247	/* Some controllers need this kick or reset won't work. */
248	if ((mask & SDHCI_RESET_ALL) == 0 &&
249	    (slot->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) {
250		/* This is to force an update */
251		clock = slot->clock;
252		slot->clock = 0;
253		sdhci_set_clock(slot, clock);
254	}
255
256	if (mask & SDHCI_RESET_ALL) {
257		slot->clock = 0;
258		slot->power = 0;
259	}
260
261	WR1(slot, SDHCI_SOFTWARE_RESET, mask);
262
263	if (slot->quirks & SDHCI_QUIRK_WAITFOR_RESET_ASSERTED) {
264		/*
265		 * Resets on TI OMAPs and AM335x are incompatible with SDHCI
266		 * specification.  The reset bit has internal propagation delay,
267		 * so a fast read after write returns 0 even if reset process is
268		 * in progress.  The workaround is to poll for 1 before polling
269		 * for 0.  In the worst case, if we miss seeing it asserted the
270		 * time we spent waiting is enough to ensure the reset finishes.
271		 */
272		timeout = 10000;
273		while ((RD1(slot, SDHCI_SOFTWARE_RESET) & mask) != mask) {
274			if (timeout <= 0)
275				break;
276			timeout--;
277			DELAY(1);
278		}
279	}
280
281	/* Wait max 100 ms */
282	timeout = 10000;
283	/* Controller clears the bits when it's done */
284	while (RD1(slot, SDHCI_SOFTWARE_RESET) & mask) {
285		if (timeout <= 0) {
286			slot_printf(slot, "Reset 0x%x never completed.\n",
287			    mask);
288			sdhci_dumpregs(slot);
289			return;
290		}
291		timeout--;
292		DELAY(10);
293	}
294}
295
296static uint32_t
297sdhci_tuning_intmask(const struct sdhci_slot *slot)
298{
299	uint32_t intmask;
300
301	intmask = 0;
302	if (slot->opt & SDHCI_TUNING_ENABLED) {
303		intmask |= SDHCI_INT_TUNEERR;
304		if (slot->retune_mode == SDHCI_RETUNE_MODE_2 ||
305		    slot->retune_mode == SDHCI_RETUNE_MODE_3)
306			intmask |= SDHCI_INT_RETUNE;
307	}
308	return (intmask);
309}
310
311static void
312sdhci_init(struct sdhci_slot *slot)
313{
314
315	sdhci_reset(slot, SDHCI_RESET_ALL);
316
317	/* Enable interrupts. */
318	slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
319	    SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX |
320	    SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT |
321	    SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
322	    SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE |
323	    SDHCI_INT_ACMD12ERR;
324
325	if (!(slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) &&
326	    !(slot->opt & SDHCI_NON_REMOVABLE)) {
327		slot->intmask |= SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT;
328	}
329
330	WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
331	WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
332}
333
334static void
335sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock)
336{
337	uint32_t clk_base;
338	uint32_t clk_sel;
339	uint32_t res;
340	uint16_t clk;
341	uint16_t div;
342	int timeout;
343
344	if (clock == slot->clock)
345		return;
346	slot->clock = clock;
347
348	/* Turn off the clock. */
349	clk = RD2(slot, SDHCI_CLOCK_CONTROL);
350	WR2(slot, SDHCI_CLOCK_CONTROL, clk & ~SDHCI_CLOCK_CARD_EN);
351	/* If no clock requested - leave it so. */
352	if (clock == 0)
353		return;
354
355	/* Determine the clock base frequency */
356	clk_base = slot->max_clk;
357	if (slot->quirks & SDHCI_QUIRK_BCM577XX_400KHZ_CLKSRC) {
358		clk_sel = RD2(slot, BCM577XX_HOST_CONTROL) &
359		    BCM577XX_CTRL_CLKSEL_MASK;
360
361		/*
362		 * Select clock source appropriate for the requested frequency.
363		 */
364		if ((clk_base / BCM577XX_DEFAULT_MAX_DIVIDER) > clock) {
365			clk_base = BCM577XX_ALT_CLOCK_BASE;
366			clk_sel |= (BCM577XX_CTRL_CLKSEL_64MHZ <<
367			    BCM577XX_CTRL_CLKSEL_SHIFT);
368		} else {
369			clk_sel |= (BCM577XX_CTRL_CLKSEL_DEFAULT <<
370			    BCM577XX_CTRL_CLKSEL_SHIFT);
371		}
372
373		WR2(slot, BCM577XX_HOST_CONTROL, clk_sel);
374	}
375
376	/* Recalculate timeout clock frequency based on the new sd clock. */
377	if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)
378		slot->timeout_clk = slot->clock / 1000;
379
380	if (slot->version < SDHCI_SPEC_300) {
381		/* Looking for highest freq <= clock. */
382		res = clk_base;
383		for (div = 1; div < SDHCI_200_MAX_DIVIDER; div <<= 1) {
384			if (res <= clock)
385				break;
386			res >>= 1;
387		}
388		/* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */
389		div >>= 1;
390	} else {
391		/* Version 3.0 divisors are multiples of two up to 1023 * 2 */
392		if (clock >= clk_base)
393			div = 0;
394		else {
395			for (div = 2; div < SDHCI_300_MAX_DIVIDER; div += 2) {
396				if ((clk_base / div) <= clock)
397					break;
398			}
399		}
400		div >>= 1;
401	}
402
403	if (bootverbose || sdhci_debug)
404		slot_printf(slot, "Divider %d for freq %d (base %d)\n",
405			div, clock, clk_base);
406
407	/* Now we have got divider, set it. */
408	clk = (div & SDHCI_DIVIDER_MASK) << SDHCI_DIVIDER_SHIFT;
409	clk |= ((div >> SDHCI_DIVIDER_MASK_LEN) & SDHCI_DIVIDER_HI_MASK)
410		<< SDHCI_DIVIDER_HI_SHIFT;
411
412	WR2(slot, SDHCI_CLOCK_CONTROL, clk);
413	/* Enable clock. */
414	clk |= SDHCI_CLOCK_INT_EN;
415	WR2(slot, SDHCI_CLOCK_CONTROL, clk);
416	/* Wait up to 10 ms until it stabilize. */
417	timeout = 10;
418	while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL))
419		& SDHCI_CLOCK_INT_STABLE)) {
420		if (timeout == 0) {
421			slot_printf(slot,
422			    "Internal clock never stabilised.\n");
423			sdhci_dumpregs(slot);
424			return;
425		}
426		timeout--;
427		DELAY(1000);
428	}
429	/* Pass clock signal to the bus. */
430	clk |= SDHCI_CLOCK_CARD_EN;
431	WR2(slot, SDHCI_CLOCK_CONTROL, clk);
432}
433
434static void
435sdhci_set_power(struct sdhci_slot *slot, u_char power)
436{
437	int i;
438	uint8_t pwr;
439
440	if (slot->power == power)
441		return;
442
443	slot->power = power;
444
445	/* Turn off the power. */
446	pwr = 0;
447	WR1(slot, SDHCI_POWER_CONTROL, pwr);
448	/* If power down requested - leave it so. */
449	if (power == 0)
450		return;
451	/* Set voltage. */
452	switch (1 << power) {
453	case MMC_OCR_LOW_VOLTAGE:
454		pwr |= SDHCI_POWER_180;
455		break;
456	case MMC_OCR_290_300:
457	case MMC_OCR_300_310:
458		pwr |= SDHCI_POWER_300;
459		break;
460	case MMC_OCR_320_330:
461	case MMC_OCR_330_340:
462		pwr |= SDHCI_POWER_330;
463		break;
464	}
465	WR1(slot, SDHCI_POWER_CONTROL, pwr);
466	/*
467	 * Turn on VDD1 power.  Note that at least some Intel controllers can
468	 * fail to enable bus power on the first try after transiting from D3
469	 * to D0, so we give them up to 2 ms.
470	 */
471	pwr |= SDHCI_POWER_ON;
472	for (i = 0; i < 20; i++) {
473		WR1(slot, SDHCI_POWER_CONTROL, pwr);
474		if (RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON)
475			break;
476		DELAY(100);
477	}
478	if (!(RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON))
479		slot_printf(slot, "Bus power failed to enable\n");
480
481	if (slot->quirks & SDHCI_QUIRK_INTEL_POWER_UP_RESET) {
482		WR1(slot, SDHCI_POWER_CONTROL, pwr | 0x10);
483		DELAY(10);
484		WR1(slot, SDHCI_POWER_CONTROL, pwr);
485		DELAY(300);
486	}
487}
488
489static void
490sdhci_read_block_pio(struct sdhci_slot *slot)
491{
492	uint32_t data;
493	char *buffer;
494	size_t left;
495
496	buffer = slot->curcmd->data->data;
497	buffer += slot->offset;
498	/* Transfer one block at a time. */
499	left = min(512, slot->curcmd->data->len - slot->offset);
500	slot->offset += left;
501
502	/* If we are too fast, broken controllers return zeroes. */
503	if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS)
504		DELAY(10);
505	/* Handle unaligned and aligned buffer cases. */
506	if ((intptr_t)buffer & 3) {
507		while (left > 3) {
508			data = RD4(slot, SDHCI_BUFFER);
509			buffer[0] = data;
510			buffer[1] = (data >> 8);
511			buffer[2] = (data >> 16);
512			buffer[3] = (data >> 24);
513			buffer += 4;
514			left -= 4;
515		}
516	} else {
517		RD_MULTI_4(slot, SDHCI_BUFFER,
518		    (uint32_t *)buffer, left >> 2);
519		left &= 3;
520	}
521	/* Handle uneven size case. */
522	if (left > 0) {
523		data = RD4(slot, SDHCI_BUFFER);
524		while (left > 0) {
525			*(buffer++) = data;
526			data >>= 8;
527			left--;
528		}
529	}
530}
531
532static void
533sdhci_write_block_pio(struct sdhci_slot *slot)
534{
535	uint32_t data = 0;
536	char *buffer;
537	size_t left;
538
539	buffer = slot->curcmd->data->data;
540	buffer += slot->offset;
541	/* Transfer one block at a time. */
542	left = min(512, slot->curcmd->data->len - slot->offset);
543	slot->offset += left;
544
545	/* Handle unaligned and aligned buffer cases. */
546	if ((intptr_t)buffer & 3) {
547		while (left > 3) {
548			data = buffer[0] +
549			    (buffer[1] << 8) +
550			    (buffer[2] << 16) +
551			    (buffer[3] << 24);
552			left -= 4;
553			buffer += 4;
554			WR4(slot, SDHCI_BUFFER, data);
555		}
556	} else {
557		WR_MULTI_4(slot, SDHCI_BUFFER,
558		    (uint32_t *)buffer, left >> 2);
559		left &= 3;
560	}
561	/* Handle uneven size case. */
562	if (left > 0) {
563		while (left > 0) {
564			data <<= 8;
565			data += *(buffer++);
566			left--;
567		}
568		WR4(slot, SDHCI_BUFFER, data);
569	}
570}
571
572static void
573sdhci_transfer_pio(struct sdhci_slot *slot)
574{
575
576	/* Read as many blocks as possible. */
577	if (slot->curcmd->data->flags & MMC_DATA_READ) {
578		while (RD4(slot, SDHCI_PRESENT_STATE) &
579		    SDHCI_DATA_AVAILABLE) {
580			sdhci_read_block_pio(slot);
581			if (slot->offset >= slot->curcmd->data->len)
582				break;
583		}
584	} else {
585		while (RD4(slot, SDHCI_PRESENT_STATE) &
586		    SDHCI_SPACE_AVAILABLE) {
587			sdhci_write_block_pio(slot);
588			if (slot->offset >= slot->curcmd->data->len)
589				break;
590		}
591	}
592}
593
594static void
595sdhci_card_task(void *arg, int pending __unused)
596{
597	struct sdhci_slot *slot = arg;
598	device_t d;
599
600	SDHCI_LOCK(slot);
601	if (SDHCI_GET_CARD_PRESENT(slot->bus, slot)) {
602#ifdef MMCCAM
603		if (slot->card_present == 0) {
604#else
605		if (slot->dev == NULL) {
606#endif
607			/* If card is present - attach mmc bus. */
608			if (bootverbose || sdhci_debug)
609				slot_printf(slot, "Card inserted\n");
610#ifdef MMCCAM
611			slot->card_present = 1;
612			union ccb *ccb;
613			uint32_t pathid;
614			pathid = cam_sim_path(slot->sim);
615			ccb = xpt_alloc_ccb_nowait();
616			if (ccb == NULL) {
617				slot_printf(slot, "Unable to alloc CCB for rescan\n");
618				SDHCI_UNLOCK(slot);
619				return;
620			}
621
622			/*
623			 * We create a rescan request for BUS:0:0, since the card
624			 * will be at lun 0.
625			 */
626			if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid,
627					    /* target */ 0, /* lun */ 0) != CAM_REQ_CMP) {
628				slot_printf(slot, "Unable to create path for rescan\n");
629				SDHCI_UNLOCK(slot);
630				xpt_free_ccb(ccb);
631				return;
632			}
633			SDHCI_UNLOCK(slot);
634			xpt_rescan(ccb);
635#else
636			d = slot->dev = device_add_child(slot->bus, "mmc", -1);
637			SDHCI_UNLOCK(slot);
638			if (d) {
639				device_set_ivars(d, slot);
640				(void)device_probe_and_attach(d);
641			}
642#endif
643		} else
644			SDHCI_UNLOCK(slot);
645	} else {
646#ifdef MMCCAM
647		if (slot->card_present == 1) {
648#else
649		if (slot->dev != NULL) {
650#endif
651			/* If no card present - detach mmc bus. */
652			if (bootverbose || sdhci_debug)
653				slot_printf(slot, "Card removed\n");
654			d = slot->dev;
655			slot->dev = NULL;
656#ifdef MMCCAM
657			slot->card_present = 0;
658			union ccb *ccb;
659			uint32_t pathid;
660			pathid = cam_sim_path(slot->sim);
661			ccb = xpt_alloc_ccb_nowait();
662			if (ccb == NULL) {
663				slot_printf(slot, "Unable to alloc CCB for rescan\n");
664				SDHCI_UNLOCK(slot);
665				return;
666			}
667
668			/*
669			 * We create a rescan request for BUS:0:0, since the card
670			 * will be at lun 0.
671			 */
672			if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid,
673					    /* target */ 0, /* lun */ 0) != CAM_REQ_CMP) {
674				slot_printf(slot, "Unable to create path for rescan\n");
675				SDHCI_UNLOCK(slot);
676				xpt_free_ccb(ccb);
677				return;
678			}
679			SDHCI_UNLOCK(slot);
680			xpt_rescan(ccb);
681#else
682			slot->intmask &= ~sdhci_tuning_intmask(slot);
683			WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
684			WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
685			slot->opt &= ~SDHCI_TUNING_ENABLED;
686			SDHCI_UNLOCK(slot);
687			callout_drain(&slot->retune_callout);
688			device_delete_child(slot->bus, d);
689#endif
690		} else
691			SDHCI_UNLOCK(slot);
692	}
693}
694
695static void
696sdhci_handle_card_present_locked(struct sdhci_slot *slot, bool is_present)
697{
698	bool was_present;
699
700	/*
701	 * If there was no card and now there is one, schedule the task to
702	 * create the child device after a short delay.  The delay is to
703	 * debounce the card insert (sometimes the card detect pin stabilizes
704	 * before the other pins have made good contact).
705	 *
706	 * If there was a card present and now it's gone, immediately schedule
707	 * the task to delete the child device.  No debouncing -- gone is gone,
708	 * because once power is removed, a full card re-init is needed, and
709	 * that happens by deleting and recreating the child device.
710	 */
711#ifdef MMCCAM
712	was_present = slot->card_present;
713#else
714	was_present = slot->dev != NULL;
715#endif
716	if (!was_present && is_present) {
717		taskqueue_enqueue_timeout(taskqueue_swi_giant,
718		    &slot->card_delayed_task, -SDHCI_INSERT_DELAY_TICKS);
719	} else if (was_present && !is_present) {
720		taskqueue_enqueue(taskqueue_swi_giant, &slot->card_task);
721	}
722}
723
724void
725sdhci_handle_card_present(struct sdhci_slot *slot, bool is_present)
726{
727
728	SDHCI_LOCK(slot);
729	sdhci_handle_card_present_locked(slot, is_present);
730	SDHCI_UNLOCK(slot);
731}
732
733static void
734sdhci_card_poll(void *arg)
735{
736	struct sdhci_slot *slot = arg;
737
738	sdhci_handle_card_present(slot,
739	    SDHCI_GET_CARD_PRESENT(slot->bus, slot));
740	callout_reset(&slot->card_poll_callout, SDHCI_CARD_PRESENT_TICKS,
741	    sdhci_card_poll, slot);
742}
743
744static int
745sdhci_dma_alloc(struct sdhci_slot *slot)
746{
747	int err;
748
749	if (!(slot->quirks & SDHCI_QUIRK_BROKEN_SDMA_BOUNDARY)) {
750		if (MAXPHYS <= 1024 * 4)
751			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_4K;
752		else if (MAXPHYS <= 1024 * 8)
753			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_8K;
754		else if (MAXPHYS <= 1024 * 16)
755			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_16K;
756		else if (MAXPHYS <= 1024 * 32)
757			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_32K;
758		else if (MAXPHYS <= 1024 * 64)
759			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_64K;
760		else if (MAXPHYS <= 1024 * 128)
761			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_128K;
762		else if (MAXPHYS <= 1024 * 256)
763			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_256K;
764		else
765			slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_512K;
766	}
767	slot->sdma_bbufsz = SDHCI_SDMA_BNDRY_TO_BBUFSZ(slot->sdma_boundary);
768
769	/*
770	 * Allocate the DMA tag for an SDMA bounce buffer.
771	 * Note that the SDHCI specification doesn't state any alignment
772	 * constraint for the SDMA system address.  However, controllers
773	 * typically ignore the SDMA boundary bits in SDHCI_DMA_ADDRESS when
774	 * forming the actual address of data, requiring the SDMA buffer to
775	 * be aligned to the SDMA boundary.
776	 */
777	err = bus_dma_tag_create(bus_get_dma_tag(slot->bus), slot->sdma_bbufsz,
778	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
779	    slot->sdma_bbufsz, 1, slot->sdma_bbufsz, BUS_DMA_ALLOCNOW,
780	    NULL, NULL, &slot->dmatag);
781	if (err != 0) {
782		slot_printf(slot, "Can't create DMA tag for SDMA\n");
783		return (err);
784	}
785	/* Allocate DMA memory for the SDMA bounce buffer. */
786	err = bus_dmamem_alloc(slot->dmatag, (void **)&slot->dmamem,
787	    BUS_DMA_NOWAIT, &slot->dmamap);
788	if (err != 0) {
789		slot_printf(slot, "Can't alloc DMA memory for SDMA\n");
790		bus_dma_tag_destroy(slot->dmatag);
791		return (err);
792	}
793	/* Map the memory of the SDMA bounce buffer. */
794	err = bus_dmamap_load(slot->dmatag, slot->dmamap,
795	    (void *)slot->dmamem, slot->sdma_bbufsz, sdhci_getaddr,
796	    &slot->paddr, 0);
797	if (err != 0 || slot->paddr == 0) {
798		slot_printf(slot, "Can't load DMA memory for SDMA\n");
799		bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap);
800		bus_dma_tag_destroy(slot->dmatag);
801		if (err)
802			return (err);
803		else
804			return (EFAULT);
805	}
806
807	return (0);
808}
809
810static void
811sdhci_dma_free(struct sdhci_slot *slot)
812{
813
814	bus_dmamap_unload(slot->dmatag, slot->dmamap);
815	bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap);
816	bus_dma_tag_destroy(slot->dmatag);
817}
818
819int
820sdhci_init_slot(device_t dev, struct sdhci_slot *slot, int num)
821{
822	kobjop_desc_t kobj_desc;
823	kobj_method_t *kobj_method;
824	uint32_t caps, caps2, freq, host_caps;
825	int err;
826
827	SDHCI_LOCK_INIT(slot);
828
829	slot->num = num;
830	slot->bus = dev;
831
832	slot->version = (RD2(slot, SDHCI_HOST_VERSION)
833		>> SDHCI_SPEC_VER_SHIFT) & SDHCI_SPEC_VER_MASK;
834	if (slot->quirks & SDHCI_QUIRK_MISSING_CAPS) {
835		caps = slot->caps;
836		caps2 = slot->caps2;
837	} else {
838		caps = RD4(slot, SDHCI_CAPABILITIES);
839		if (slot->version >= SDHCI_SPEC_300)
840			caps2 = RD4(slot, SDHCI_CAPABILITIES2);
841		else
842			caps2 = 0;
843	}
844	if (slot->version >= SDHCI_SPEC_300) {
845		if ((caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_REMOVABLE &&
846		    (caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_EMBEDDED) {
847			slot_printf(slot,
848			    "Driver doesn't support shared bus slots\n");
849			SDHCI_LOCK_DESTROY(slot);
850			return (ENXIO);
851		} else if ((caps & SDHCI_SLOTTYPE_MASK) ==
852		    SDHCI_SLOTTYPE_EMBEDDED) {
853			slot->opt |= SDHCI_SLOT_EMBEDDED | SDHCI_NON_REMOVABLE;
854		}
855	}
856	/* Calculate base clock frequency. */
857	if (slot->version >= SDHCI_SPEC_300)
858		freq = (caps & SDHCI_CLOCK_V3_BASE_MASK) >>
859		    SDHCI_CLOCK_BASE_SHIFT;
860	else
861		freq = (caps & SDHCI_CLOCK_BASE_MASK) >>
862		    SDHCI_CLOCK_BASE_SHIFT;
863	if (freq != 0)
864		slot->max_clk = freq * 1000000;
865	/*
866	 * If the frequency wasn't in the capabilities and the hardware driver
867	 * hasn't already set max_clk we're probably not going to work right
868	 * with an assumption, so complain about it.
869	 */
870	if (slot->max_clk == 0) {
871		slot->max_clk = SDHCI_DEFAULT_MAX_FREQ * 1000000;
872		slot_printf(slot, "Hardware doesn't specify base clock "
873		    "frequency, using %dMHz as default.\n",
874		    SDHCI_DEFAULT_MAX_FREQ);
875	}
876	/* Calculate/set timeout clock frequency. */
877	if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) {
878		slot->timeout_clk = slot->max_clk / 1000;
879	} else if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_1MHZ) {
880		slot->timeout_clk = 1000;
881	} else {
882		slot->timeout_clk = (caps & SDHCI_TIMEOUT_CLK_MASK) >>
883		    SDHCI_TIMEOUT_CLK_SHIFT;
884		if (caps & SDHCI_TIMEOUT_CLK_UNIT)
885			slot->timeout_clk *= 1000;
886	}
887	/*
888	 * If the frequency wasn't in the capabilities and the hardware driver
889	 * hasn't already set timeout_clk we'll probably work okay using the
890	 * max timeout, but still mention it.
891	 */
892	if (slot->timeout_clk == 0) {
893		slot_printf(slot, "Hardware doesn't specify timeout clock "
894		    "frequency, setting BROKEN_TIMEOUT quirk.\n");
895		slot->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
896	}
897
898	slot->host.f_min = SDHCI_MIN_FREQ(slot->bus, slot);
899	slot->host.f_max = slot->max_clk;
900	slot->host.host_ocr = 0;
901	if (caps & SDHCI_CAN_VDD_330)
902	    slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340;
903	if (caps & SDHCI_CAN_VDD_300)
904	    slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310;
905	/*
906	 * 1.8V VDD is not supposed to be used for removable cards.  Hardware
907	 * prior to v3.0 had no way to indicate embedded slots, but did
908	 * sometimes support 1.8v for non-removable devices.
909	 */
910	if ((caps & SDHCI_CAN_VDD_180) && (slot->version < SDHCI_SPEC_300 ||
911	    (slot->opt & SDHCI_SLOT_EMBEDDED)))
912	    slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE;
913	if (slot->host.host_ocr == 0) {
914		slot_printf(slot, "Hardware doesn't report any "
915		    "support voltages.\n");
916	}
917
918	host_caps = MMC_CAP_4_BIT_DATA;
919	if (caps & SDHCI_CAN_DO_8BITBUS)
920		host_caps |= MMC_CAP_8_BIT_DATA;
921	if (caps & SDHCI_CAN_DO_HISPD)
922		host_caps |= MMC_CAP_HSPEED;
923	if (slot->quirks & SDHCI_QUIRK_BOOT_NOACC)
924		host_caps |= MMC_CAP_BOOT_NOACC;
925	if (slot->quirks & SDHCI_QUIRK_WAIT_WHILE_BUSY)
926		host_caps |= MMC_CAP_WAIT_WHILE_BUSY;
927
928	/* Determine supported UHS-I and eMMC modes. */
929	if (caps2 & (SDHCI_CAN_SDR50 | SDHCI_CAN_SDR104 | SDHCI_CAN_DDR50))
930		host_caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
931	if (caps2 & SDHCI_CAN_SDR104) {
932		host_caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
933		if (!(slot->quirks & SDHCI_QUIRK_BROKEN_MMC_HS200))
934			host_caps |= MMC_CAP_MMC_HS200;
935	} else if (caps2 & SDHCI_CAN_SDR50)
936		host_caps |= MMC_CAP_UHS_SDR50;
937	if (caps2 & SDHCI_CAN_DDR50 &&
938	    !(slot->quirks & SDHCI_QUIRK_BROKEN_UHS_DDR50))
939		host_caps |= MMC_CAP_UHS_DDR50;
940	if (slot->quirks & SDHCI_QUIRK_MMC_DDR52)
941		host_caps |= MMC_CAP_MMC_DDR52;
942	if (slot->quirks & SDHCI_QUIRK_CAPS_BIT63_FOR_MMC_HS400 &&
943	    caps2 & SDHCI_CAN_MMC_HS400)
944		host_caps |= MMC_CAP_MMC_HS400;
945	if (slot->quirks & SDHCI_QUIRK_MMC_HS400_IF_CAN_SDR104 &&
946	    caps2 & SDHCI_CAN_SDR104)
947		host_caps |= MMC_CAP_MMC_HS400;
948
949	/*
950	 * Disable UHS-I and eMMC modes if the set_uhs_timing method is the
951	 * default NULL implementation.
952	 */
953	kobj_desc = &sdhci_set_uhs_timing_desc;
954	kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
955	    kobj_desc);
956	if (kobj_method == &kobj_desc->deflt)
957		host_caps &= ~(MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
958		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 |
959		    MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | MMC_CAP_MMC_HS400);
960
961#define	SDHCI_CAP_MODES_TUNING(caps2)					\
962    (((caps2) & SDHCI_TUNE_SDR50 ? MMC_CAP_UHS_SDR50 : 0) |		\
963    MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_MMC_HS200 |	\
964    MMC_CAP_MMC_HS400)
965
966	/*
967	 * Disable UHS-I and eMMC modes that require (re-)tuning if either
968	 * the tune or re-tune method is the default NULL implementation.
969	 */
970	kobj_desc = &mmcbr_tune_desc;
971	kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
972	    kobj_desc);
973	if (kobj_method == &kobj_desc->deflt)
974		goto no_tuning;
975	kobj_desc = &mmcbr_retune_desc;
976	kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
977	    kobj_desc);
978	if (kobj_method == &kobj_desc->deflt) {
979no_tuning:
980		host_caps &= ~(SDHCI_CAP_MODES_TUNING(caps2));
981	}
982
983	/* Allocate tuning structures and determine tuning parameters. */
984	if (host_caps & SDHCI_CAP_MODES_TUNING(caps2)) {
985		slot->opt |= SDHCI_TUNING_SUPPORTED;
986		slot->tune_req = malloc(sizeof(*slot->tune_req), M_DEVBUF,
987		    M_WAITOK);
988		slot->tune_cmd = malloc(sizeof(*slot->tune_cmd), M_DEVBUF,
989		    M_WAITOK);
990		slot->tune_data = malloc(sizeof(*slot->tune_data), M_DEVBUF,
991		    M_WAITOK);
992		if (caps2 & SDHCI_TUNE_SDR50)
993			slot->opt |= SDHCI_SDR50_NEEDS_TUNING;
994		slot->retune_mode = (caps2 & SDHCI_RETUNE_MODES_MASK) >>
995		    SDHCI_RETUNE_MODES_SHIFT;
996		if (slot->retune_mode == SDHCI_RETUNE_MODE_1) {
997			slot->retune_count = (caps2 & SDHCI_RETUNE_CNT_MASK) >>
998			    SDHCI_RETUNE_CNT_SHIFT;
999			if (slot->retune_count > 0xb) {
1000				slot_printf(slot, "Unknown re-tuning count "
1001				    "%x, using 1 sec\n", slot->retune_count);
1002				slot->retune_count = 1;
1003			} else if (slot->retune_count != 0)
1004				slot->retune_count =
1005				    1 << (slot->retune_count - 1);
1006		}
1007	}
1008
1009#undef SDHCI_CAP_MODES_TUNING
1010
1011	/* Determine supported VCCQ signaling levels. */
1012	host_caps |= MMC_CAP_SIGNALING_330;
1013	if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
1014	    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 |
1015	    MMC_CAP_MMC_DDR52_180 | MMC_CAP_MMC_HS200_180 |
1016	    MMC_CAP_MMC_HS400_180))
1017		host_caps |= MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180;
1018
1019	/*
1020	 * Disable 1.2 V and 1.8 V signaling if the switch_vccq method is the
1021	 * default NULL implementation.  Disable 1.2 V support if it's the
1022	 * generic SDHCI implementation.
1023	 */
1024	kobj_desc = &mmcbr_switch_vccq_desc;
1025	kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
1026	    kobj_desc);
1027	if (kobj_method == &kobj_desc->deflt)
1028		host_caps &= ~(MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180);
1029	else if (kobj_method->func == (kobjop_t)sdhci_generic_switch_vccq)
1030		host_caps &= ~MMC_CAP_SIGNALING_120;
1031
1032	/* Determine supported driver types (type B is always mandatory). */
1033	if (caps2 & SDHCI_CAN_DRIVE_TYPE_A)
1034		host_caps |= MMC_CAP_DRIVER_TYPE_A;
1035	if (caps2 & SDHCI_CAN_DRIVE_TYPE_C)
1036		host_caps |= MMC_CAP_DRIVER_TYPE_C;
1037	if (caps2 & SDHCI_CAN_DRIVE_TYPE_D)
1038		host_caps |= MMC_CAP_DRIVER_TYPE_D;
1039	slot->host.caps = host_caps;
1040
1041	/* Decide if we have usable DMA. */
1042	if (caps & SDHCI_CAN_DO_DMA)
1043		slot->opt |= SDHCI_HAVE_DMA;
1044
1045	if (slot->quirks & SDHCI_QUIRK_BROKEN_DMA)
1046		slot->opt &= ~SDHCI_HAVE_DMA;
1047	if (slot->quirks & SDHCI_QUIRK_FORCE_DMA)
1048		slot->opt |= SDHCI_HAVE_DMA;
1049	if (slot->quirks & SDHCI_QUIRK_ALL_SLOTS_NON_REMOVABLE)
1050		slot->opt |= SDHCI_NON_REMOVABLE;
1051
1052	/*
1053	 * Use platform-provided transfer backend
1054	 * with PIO as a fallback mechanism
1055	 */
1056	if (slot->opt & SDHCI_PLATFORM_TRANSFER)
1057		slot->opt &= ~SDHCI_HAVE_DMA;
1058
1059	if (slot->opt & SDHCI_HAVE_DMA) {
1060		err = sdhci_dma_alloc(slot);
1061		if (err != 0) {
1062			if (slot->opt & SDHCI_TUNING_SUPPORTED) {
1063				free(slot->tune_req, M_DEVBUF);
1064				free(slot->tune_cmd, M_DEVBUF);
1065				free(slot->tune_data, M_DEVBUF);
1066			}
1067			SDHCI_LOCK_DESTROY(slot);
1068			return (err);
1069		}
1070	}
1071
1072	if (bootverbose || sdhci_debug) {
1073		slot_printf(slot,
1074		    "%uMHz%s %s VDD:%s%s%s VCCQ: 3.3V%s%s DRV: B%s%s%s %s %s\n",
1075		    slot->max_clk / 1000000,
1076		    (caps & SDHCI_CAN_DO_HISPD) ? " HS" : "",
1077		    (host_caps & MMC_CAP_8_BIT_DATA) ? "8bits" :
1078			((host_caps & MMC_CAP_4_BIT_DATA) ? "4bits" : "1bit"),
1079		    (caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "",
1080		    (caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "",
1081		    ((caps & SDHCI_CAN_VDD_180) &&
1082		    (slot->opt & SDHCI_SLOT_EMBEDDED)) ? " 1.8V" : "",
1083		    (host_caps & MMC_CAP_SIGNALING_180) ? " 1.8V" : "",
1084		    (host_caps & MMC_CAP_SIGNALING_120) ? " 1.2V" : "",
1085		    (host_caps & MMC_CAP_DRIVER_TYPE_A) ? "A" : "",
1086		    (host_caps & MMC_CAP_DRIVER_TYPE_C) ? "C" : "",
1087		    (host_caps & MMC_CAP_DRIVER_TYPE_D) ? "D" : "",
1088		    (slot->opt & SDHCI_HAVE_DMA) ? "DMA" : "PIO",
1089		    (slot->opt & SDHCI_SLOT_EMBEDDED) ? "embedded" :
1090		    (slot->opt & SDHCI_NON_REMOVABLE) ? "non-removable" :
1091		    "removable");
1092		if (host_caps & (MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 |
1093		    MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE))
1094			slot_printf(slot, "eMMC:%s%s%s%s\n",
1095			    (host_caps & MMC_CAP_MMC_DDR52) ? " DDR52" : "",
1096			    (host_caps & MMC_CAP_MMC_HS200) ? " HS200" : "",
1097			    (host_caps & MMC_CAP_MMC_HS400) ? " HS400" : "",
1098			    ((host_caps &
1099			    (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ==
1100			    (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ?
1101			    " HS400ES" : "");
1102		if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
1103		    MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104))
1104			slot_printf(slot, "UHS-I:%s%s%s%s%s\n",
1105			    (host_caps & MMC_CAP_UHS_SDR12) ? " SDR12" : "",
1106			    (host_caps & MMC_CAP_UHS_SDR25) ? " SDR25" : "",
1107			    (host_caps & MMC_CAP_UHS_SDR50) ? " SDR50" : "",
1108			    (host_caps & MMC_CAP_UHS_SDR104) ? " SDR104" : "",
1109			    (host_caps & MMC_CAP_UHS_DDR50) ? " DDR50" : "");
1110		if (slot->opt & SDHCI_TUNING_SUPPORTED)
1111			slot_printf(slot, "Re-tuning count %d secs, mode %d\n",
1112			    slot->retune_count, slot->retune_mode + 1);
1113		sdhci_dumpregs(slot);
1114	}
1115
1116	slot->timeout = 10;
1117	SYSCTL_ADD_INT(device_get_sysctl_ctx(slot->bus),
1118	    SYSCTL_CHILDREN(device_get_sysctl_tree(slot->bus)), OID_AUTO,
1119	    "timeout", CTLFLAG_RWTUN, &slot->timeout, 0,
1120	    "Maximum timeout for SDHCI transfers (in secs)");
1121	TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot);
1122	TIMEOUT_TASK_INIT(taskqueue_swi_giant, &slot->card_delayed_task, 0,
1123		sdhci_card_task, slot);
1124	callout_init(&slot->card_poll_callout, 1);
1125	callout_init_mtx(&slot->timeout_callout, &slot->mtx, 0);
1126	callout_init_mtx(&slot->retune_callout, &slot->mtx, 0);
1127
1128	if ((slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) &&
1129	    !(slot->opt & SDHCI_NON_REMOVABLE)) {
1130		callout_reset(&slot->card_poll_callout,
1131		    SDHCI_CARD_PRESENT_TICKS, sdhci_card_poll, slot);
1132	}
1133
1134	sdhci_init(slot);
1135
1136	return (0);
1137}
1138
1139#ifndef MMCCAM
1140void
1141sdhci_start_slot(struct sdhci_slot *slot)
1142{
1143
1144	sdhci_card_task(slot, 0);
1145}
1146#endif
1147
1148int
1149sdhci_cleanup_slot(struct sdhci_slot *slot)
1150{
1151	device_t d;
1152
1153	callout_drain(&slot->timeout_callout);
1154	callout_drain(&slot->card_poll_callout);
1155	callout_drain(&slot->retune_callout);
1156	taskqueue_drain(taskqueue_swi_giant, &slot->card_task);
1157	taskqueue_drain_timeout(taskqueue_swi_giant, &slot->card_delayed_task);
1158
1159	SDHCI_LOCK(slot);
1160	d = slot->dev;
1161	slot->dev = NULL;
1162	SDHCI_UNLOCK(slot);
1163	if (d != NULL)
1164		device_delete_child(slot->bus, d);
1165
1166	SDHCI_LOCK(slot);
1167	sdhci_reset(slot, SDHCI_RESET_ALL);
1168	SDHCI_UNLOCK(slot);
1169	if (slot->opt & SDHCI_HAVE_DMA)
1170		sdhci_dma_free(slot);
1171	if (slot->opt & SDHCI_TUNING_SUPPORTED) {
1172		free(slot->tune_req, M_DEVBUF);
1173		free(slot->tune_cmd, M_DEVBUF);
1174		free(slot->tune_data, M_DEVBUF);
1175	}
1176
1177	SDHCI_LOCK_DESTROY(slot);
1178
1179	return (0);
1180}
1181
1182int
1183sdhci_generic_suspend(struct sdhci_slot *slot)
1184{
1185
1186	/*
1187	 * We expect the MMC layer to issue initial tuning after resume.
1188	 * Otherwise, we'd need to indicate re-tuning including circuit reset
1189	 * being required at least for re-tuning modes 1 and 2 ourselves.
1190	 */
1191	callout_drain(&slot->retune_callout);
1192	SDHCI_LOCK(slot);
1193	slot->opt &= ~SDHCI_TUNING_ENABLED;
1194	sdhci_reset(slot, SDHCI_RESET_ALL);
1195	SDHCI_UNLOCK(slot);
1196
1197	return (0);
1198}
1199
1200int
1201sdhci_generic_resume(struct sdhci_slot *slot)
1202{
1203
1204	SDHCI_LOCK(slot);
1205	sdhci_init(slot);
1206	SDHCI_UNLOCK(slot);
1207
1208	return (0);
1209}
1210
1211uint32_t
1212sdhci_generic_min_freq(device_t brdev __unused, struct sdhci_slot *slot)
1213{
1214
1215	if (slot->version >= SDHCI_SPEC_300)
1216		return (slot->max_clk / SDHCI_300_MAX_DIVIDER);
1217	else
1218		return (slot->max_clk / SDHCI_200_MAX_DIVIDER);
1219}
1220
1221bool
1222sdhci_generic_get_card_present(device_t brdev __unused, struct sdhci_slot *slot)
1223{
1224
1225	if (slot->opt & SDHCI_NON_REMOVABLE)
1226		return true;
1227
1228	return (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
1229}
1230
1231void
1232sdhci_generic_set_uhs_timing(device_t brdev __unused, struct sdhci_slot *slot)
1233{
1234	const struct mmc_ios *ios;
1235	uint16_t hostctrl2;
1236
1237	if (slot->version < SDHCI_SPEC_300)
1238		return;
1239
1240	SDHCI_ASSERT_LOCKED(slot);
1241	ios = &slot->host.ios;
1242	sdhci_set_clock(slot, 0);
1243	hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1244	hostctrl2 &= ~SDHCI_CTRL2_UHS_MASK;
1245	if (ios->clock > SD_SDR50_MAX) {
1246		if (ios->timing == bus_timing_mmc_hs400 ||
1247		    ios->timing == bus_timing_mmc_hs400es)
1248			hostctrl2 |= SDHCI_CTRL2_MMC_HS400;
1249		else
1250			hostctrl2 |= SDHCI_CTRL2_UHS_SDR104;
1251	}
1252	else if (ios->clock > SD_SDR25_MAX)
1253		hostctrl2 |= SDHCI_CTRL2_UHS_SDR50;
1254	else if (ios->clock > SD_SDR12_MAX) {
1255		if (ios->timing == bus_timing_uhs_ddr50 ||
1256		    ios->timing == bus_timing_mmc_ddr52)
1257			hostctrl2 |= SDHCI_CTRL2_UHS_DDR50;
1258		else
1259			hostctrl2 |= SDHCI_CTRL2_UHS_SDR25;
1260	} else if (ios->clock > SD_MMC_CARD_ID_FREQUENCY)
1261		hostctrl2 |= SDHCI_CTRL2_UHS_SDR12;
1262	WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1263	sdhci_set_clock(slot, ios->clock);
1264}
1265
1266int
1267sdhci_generic_update_ios(device_t brdev, device_t reqdev)
1268{
1269	struct sdhci_slot *slot = device_get_ivars(reqdev);
1270	struct mmc_ios *ios = &slot->host.ios;
1271
1272	SDHCI_LOCK(slot);
1273	/* Do full reset on bus power down to clear from any state. */
1274	if (ios->power_mode == power_off) {
1275		WR4(slot, SDHCI_SIGNAL_ENABLE, 0);
1276		sdhci_init(slot);
1277	}
1278	/* Configure the bus. */
1279	sdhci_set_clock(slot, ios->clock);
1280	sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd);
1281	if (ios->bus_width == bus_width_8) {
1282		slot->hostctrl |= SDHCI_CTRL_8BITBUS;
1283		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
1284	} else if (ios->bus_width == bus_width_4) {
1285		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
1286		slot->hostctrl |= SDHCI_CTRL_4BITBUS;
1287	} else if (ios->bus_width == bus_width_1) {
1288		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
1289		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
1290	} else {
1291		panic("Invalid bus width: %d", ios->bus_width);
1292	}
1293	if (ios->clock > SD_SDR12_MAX &&
1294	    !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT))
1295		slot->hostctrl |= SDHCI_CTRL_HISPD;
1296	else
1297		slot->hostctrl &= ~SDHCI_CTRL_HISPD;
1298	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
1299	SDHCI_SET_UHS_TIMING(brdev, slot);
1300	/* Some controllers like reset after bus changes. */
1301	if (slot->quirks & SDHCI_QUIRK_RESET_ON_IOS)
1302		sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
1303
1304	SDHCI_UNLOCK(slot);
1305	return (0);
1306}
1307
1308int
1309sdhci_generic_switch_vccq(device_t brdev __unused, device_t reqdev)
1310{
1311	struct sdhci_slot *slot = device_get_ivars(reqdev);
1312	enum mmc_vccq vccq;
1313	int err;
1314	uint16_t hostctrl2;
1315
1316	if (slot->version < SDHCI_SPEC_300)
1317		return (0);
1318
1319	err = 0;
1320	vccq = slot->host.ios.vccq;
1321	SDHCI_LOCK(slot);
1322	sdhci_set_clock(slot, 0);
1323	hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1324	switch (vccq) {
1325	case vccq_330:
1326		if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE))
1327			goto done;
1328		hostctrl2 &= ~SDHCI_CTRL2_S18_ENABLE;
1329		WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1330		DELAY(5000);
1331		hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1332		if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE))
1333			goto done;
1334		err = EAGAIN;
1335		break;
1336	case vccq_180:
1337		if (!(slot->host.caps & MMC_CAP_SIGNALING_180)) {
1338			err = EINVAL;
1339			goto done;
1340		}
1341		if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE)
1342			goto done;
1343		hostctrl2 |= SDHCI_CTRL2_S18_ENABLE;
1344		WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
1345		DELAY(5000);
1346		hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1347		if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE)
1348			goto done;
1349		err = EAGAIN;
1350		break;
1351	default:
1352		slot_printf(slot,
1353		    "Attempt to set unsupported signaling voltage\n");
1354		err = EINVAL;
1355		break;
1356	}
1357done:
1358	sdhci_set_clock(slot, slot->host.ios.clock);
1359	SDHCI_UNLOCK(slot);
1360	return (err);
1361}
1362
1363int
1364sdhci_generic_tune(device_t brdev __unused, device_t reqdev, bool hs400)
1365{
1366	struct sdhci_slot *slot = device_get_ivars(reqdev);
1367	const struct mmc_ios *ios = &slot->host.ios;
1368	struct mmc_command *tune_cmd;
1369	struct mmc_data *tune_data;
1370	uint32_t opcode;
1371	int err;
1372
1373	if (!(slot->opt & SDHCI_TUNING_SUPPORTED))
1374		return (0);
1375
1376	slot->retune_ticks = slot->retune_count * hz;
1377	opcode = MMC_SEND_TUNING_BLOCK;
1378	SDHCI_LOCK(slot);
1379	switch (ios->timing) {
1380	case bus_timing_mmc_hs400:
1381		slot_printf(slot, "HS400 must be tuned in HS200 mode\n");
1382		SDHCI_UNLOCK(slot);
1383		return (EINVAL);
1384	case bus_timing_mmc_hs200:
1385		/*
1386		 * In HS400 mode, controllers use the data strobe line to
1387		 * latch data from the devices so periodic re-tuning isn't
1388		 * expected to be required.
1389		 */
1390		if (hs400)
1391			slot->retune_ticks = 0;
1392		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1393		break;
1394	case bus_timing_uhs_ddr50:
1395	case bus_timing_uhs_sdr104:
1396		break;
1397	case bus_timing_uhs_sdr50:
1398		if (slot->opt & SDHCI_SDR50_NEEDS_TUNING)
1399			break;
1400		/* FALLTHROUGH */
1401	default:
1402		SDHCI_UNLOCK(slot);
1403		return (0);
1404	}
1405
1406	tune_cmd = slot->tune_cmd;
1407	memset(tune_cmd, 0, sizeof(*tune_cmd));
1408	tune_cmd->opcode = opcode;
1409	tune_cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1410	tune_data = tune_cmd->data = slot->tune_data;
1411	memset(tune_data, 0, sizeof(*tune_data));
1412	tune_data->len = (opcode == MMC_SEND_TUNING_BLOCK_HS200 &&
1413	    ios->bus_width == bus_width_8) ? MMC_TUNING_LEN_HS200 :
1414	    MMC_TUNING_LEN;
1415	tune_data->flags = MMC_DATA_READ;
1416	tune_data->mrq = tune_cmd->mrq = slot->tune_req;
1417
1418	slot->opt &= ~SDHCI_TUNING_ENABLED;
1419	err = sdhci_exec_tuning(slot, true);
1420	if (err == 0) {
1421		slot->opt |= SDHCI_TUNING_ENABLED;
1422		slot->intmask |= sdhci_tuning_intmask(slot);
1423		WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
1424		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
1425		if (slot->retune_ticks) {
1426			callout_reset(&slot->retune_callout, slot->retune_ticks,
1427			    sdhci_retune, slot);
1428		}
1429	}
1430	SDHCI_UNLOCK(slot);
1431	return (err);
1432}
1433
1434int
1435sdhci_generic_retune(device_t brdev __unused, device_t reqdev, bool reset)
1436{
1437	struct sdhci_slot *slot = device_get_ivars(reqdev);
1438	int err;
1439
1440	if (!(slot->opt & SDHCI_TUNING_ENABLED))
1441		return (0);
1442
1443	/* HS400 must be tuned in HS200 mode. */
1444	if (slot->host.ios.timing == bus_timing_mmc_hs400)
1445		return (EINVAL);
1446
1447	SDHCI_LOCK(slot);
1448	err = sdhci_exec_tuning(slot, reset);
1449	/*
1450	 * There are two ways sdhci_exec_tuning() can fail:
1451	 * EBUSY should not actually happen when requests are only issued
1452	 *	 with the host properly acquired, and
1453	 * EIO   re-tuning failed (but it did work initially).
1454	 *
1455	 * In both cases, we should retry at later point if periodic re-tuning
1456	 * is enabled.  Note that due to slot->retune_req not being cleared in
1457	 * these failure cases, the MMC layer should trigger another attempt at
1458	 * re-tuning with the next request anyway, though.
1459	 */
1460	if (slot->retune_ticks) {
1461		callout_reset(&slot->retune_callout, slot->retune_ticks,
1462		    sdhci_retune, slot);
1463	}
1464	SDHCI_UNLOCK(slot);
1465	return (err);
1466}
1467
1468static int
1469sdhci_exec_tuning(struct sdhci_slot *slot, bool reset)
1470{
1471	struct mmc_request *tune_req;
1472	struct mmc_command *tune_cmd;
1473	int i;
1474	uint32_t intmask;
1475	uint16_t hostctrl2;
1476	u_char opt;
1477
1478	SDHCI_ASSERT_LOCKED(slot);
1479	if (slot->req != NULL)
1480		return (EBUSY);
1481
1482	/* Tuning doesn't work with DMA enabled. */
1483	opt = slot->opt;
1484	slot->opt = opt & ~SDHCI_HAVE_DMA;
1485
1486	/*
1487	 * Ensure that as documented, SDHCI_INT_DATA_AVAIL is the only
1488	 * kind of interrupt we receive in response to a tuning request.
1489	 */
1490	intmask = slot->intmask;
1491	slot->intmask = SDHCI_INT_DATA_AVAIL;
1492	WR4(slot, SDHCI_INT_ENABLE, SDHCI_INT_DATA_AVAIL);
1493	WR4(slot, SDHCI_SIGNAL_ENABLE, SDHCI_INT_DATA_AVAIL);
1494
1495	hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1496	if (reset)
1497		hostctrl2 &= ~SDHCI_CTRL2_SAMPLING_CLOCK;
1498	else
1499		hostctrl2 |= SDHCI_CTRL2_SAMPLING_CLOCK;
1500	WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 | SDHCI_CTRL2_EXEC_TUNING);
1501
1502	tune_req = slot->tune_req;
1503	tune_cmd = slot->tune_cmd;
1504	for (i = 0; i < MMC_TUNING_MAX; i++) {
1505		memset(tune_req, 0, sizeof(*tune_req));
1506		tune_req->cmd = tune_cmd;
1507		tune_req->done = sdhci_req_wakeup;
1508		tune_req->done_data = slot;
1509		slot->req = tune_req;
1510		slot->flags = 0;
1511		sdhci_start(slot);
1512		while (!(tune_req->flags & MMC_REQ_DONE))
1513			msleep(tune_req, &slot->mtx, 0, "sdhciet", 0);
1514		if (!(tune_req->flags & MMC_TUNE_DONE))
1515			break;
1516		hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
1517		if (!(hostctrl2 & SDHCI_CTRL2_EXEC_TUNING))
1518			break;
1519		if (tune_cmd->opcode == MMC_SEND_TUNING_BLOCK)
1520			DELAY(1000);
1521	}
1522
1523	/*
1524	 * Restore DMA usage and interrupts.
1525	 * Note that the interrupt aggregation code might have cleared
1526	 * SDHCI_INT_DMA_END and/or SDHCI_INT_RESPONSE in slot->intmask
1527	 * and SDHCI_SIGNAL_ENABLE respectively so ensure SDHCI_INT_ENABLE
1528	 * doesn't lose these.
1529	 */
1530	slot->opt = opt;
1531	slot->intmask = intmask;
1532	WR4(slot, SDHCI_INT_ENABLE, intmask | SDHCI_INT_DMA_END |
1533	    SDHCI_INT_RESPONSE);
1534	WR4(slot, SDHCI_SIGNAL_ENABLE, intmask);
1535
1536	if ((hostctrl2 & (SDHCI_CTRL2_EXEC_TUNING |
1537	    SDHCI_CTRL2_SAMPLING_CLOCK)) == SDHCI_CTRL2_SAMPLING_CLOCK) {
1538		slot->retune_req = 0;
1539		return (0);
1540	}
1541
1542	slot_printf(slot, "Tuning failed, using fixed sampling clock\n");
1543	WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 & ~(SDHCI_CTRL2_EXEC_TUNING |
1544	    SDHCI_CTRL2_SAMPLING_CLOCK));
1545	sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
1546	return (EIO);
1547}
1548
1549static void
1550sdhci_retune(void *arg)
1551{
1552	struct sdhci_slot *slot = arg;
1553
1554	slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED;
1555}
1556
1557#ifdef MMCCAM
1558static void
1559sdhci_req_done(struct sdhci_slot *slot)
1560{
1561	union ccb *ccb;
1562
1563	if (__predict_false(sdhci_debug > 1))
1564		slot_printf(slot, "%s\n", __func__);
1565	if (slot->ccb != NULL && slot->curcmd != NULL) {
1566		callout_stop(&slot->timeout_callout);
1567		ccb = slot->ccb;
1568		slot->ccb = NULL;
1569		slot->curcmd = NULL;
1570
1571		/* Tell CAM the request is finished */
1572		struct ccb_mmcio *mmcio;
1573		mmcio = &ccb->mmcio;
1574
1575		ccb->ccb_h.status =
1576		    (mmcio->cmd.error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR);
1577		xpt_done(ccb);
1578	}
1579}
1580#else
1581static void
1582sdhci_req_done(struct sdhci_slot *slot)
1583{
1584	struct mmc_request *req;
1585
1586	if (slot->req != NULL && slot->curcmd != NULL) {
1587		callout_stop(&slot->timeout_callout);
1588		req = slot->req;
1589		slot->req = NULL;
1590		slot->curcmd = NULL;
1591		req->done(req);
1592	}
1593}
1594#endif
1595
1596static void
1597sdhci_req_wakeup(struct mmc_request *req)
1598{
1599	struct sdhci_slot *slot;
1600
1601	slot = req->done_data;
1602	req->flags |= MMC_REQ_DONE;
1603	wakeup(req);
1604}
1605
1606static void
1607sdhci_timeout(void *arg)
1608{
1609	struct sdhci_slot *slot = arg;
1610
1611	if (slot->curcmd != NULL) {
1612		slot_printf(slot, "Controller timeout\n");
1613		sdhci_dumpregs(slot);
1614		sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
1615		slot->curcmd->error = MMC_ERR_TIMEOUT;
1616		sdhci_req_done(slot);
1617	} else {
1618		slot_printf(slot, "Spurious timeout - no active command\n");
1619	}
1620}
1621
1622static void
1623sdhci_set_transfer_mode(struct sdhci_slot *slot, const struct mmc_data *data)
1624{
1625	uint16_t mode;
1626
1627	if (data == NULL)
1628		return;
1629
1630	mode = SDHCI_TRNS_BLK_CNT_EN;
1631	if (data->len > 512) {
1632		mode |= SDHCI_TRNS_MULTI;
1633		if (__predict_true(
1634#ifdef MMCCAM
1635		    slot->ccb->mmcio.stop.opcode == MMC_STOP_TRANSMISSION &&
1636#else
1637		    slot->req->stop != NULL &&
1638#endif
1639		    !(slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)))
1640			mode |= SDHCI_TRNS_ACMD12;
1641	}
1642	if (data->flags & MMC_DATA_READ)
1643		mode |= SDHCI_TRNS_READ;
1644	if (slot->flags & SDHCI_USE_DMA)
1645		mode |= SDHCI_TRNS_DMA;
1646
1647	WR2(slot, SDHCI_TRANSFER_MODE, mode);
1648}
1649
1650static void
1651sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd)
1652{
1653	int flags, timeout;
1654	uint32_t mask;
1655
1656	slot->curcmd = cmd;
1657	slot->cmd_done = 0;
1658
1659	cmd->error = MMC_ERR_NONE;
1660
1661	/* This flags combination is not supported by controller. */
1662	if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
1663		slot_printf(slot, "Unsupported response type!\n");
1664		cmd->error = MMC_ERR_FAILED;
1665		sdhci_req_done(slot);
1666		return;
1667	}
1668
1669	/*
1670	 * Do not issue command if there is no card, clock or power.
1671	 * Controller will not detect timeout without clock active.
1672	 */
1673	if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot) ||
1674	    slot->power == 0 ||
1675	    slot->clock == 0) {
1676		slot_printf(slot,
1677			    "Cannot issue a command (power=%d clock=%d)",
1678			    slot->power, slot->clock);
1679		cmd->error = MMC_ERR_FAILED;
1680		sdhci_req_done(slot);
1681		return;
1682	}
1683	/* Always wait for free CMD bus. */
1684	mask = SDHCI_CMD_INHIBIT;
1685	/* Wait for free DAT if we have data or busy signal. */
1686	if (cmd->data != NULL || (cmd->flags & MMC_RSP_BUSY))
1687		mask |= SDHCI_DAT_INHIBIT;
1688	/*
1689	 * We shouldn't wait for DAT for stop commands or CMD19/CMD21.  Note
1690	 * that these latter are also special in that SDHCI_CMD_DATA should
1691	 * be set below but no actual data is ever read from the controller.
1692	*/
1693#ifdef MMCCAM
1694	if (cmd == &slot->ccb->mmcio.stop ||
1695#else
1696	if (cmd == slot->req->stop ||
1697#endif
1698	    __predict_false(cmd->opcode == MMC_SEND_TUNING_BLOCK ||
1699	    cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))
1700		mask &= ~SDHCI_DAT_INHIBIT;
1701	/*
1702	 *  Wait for bus no more then 250 ms.  Typically there will be no wait
1703	 *  here at all, but when writing a crash dump we may be bypassing the
1704	 *  host platform's interrupt handler, and in some cases that handler
1705	 *  may be working around hardware quirks such as not respecting r1b
1706	 *  busy indications.  In those cases, this wait-loop serves the purpose
1707	 *  of waiting for the prior command and data transfers to be done, and
1708	 *  SD cards are allowed to take up to 250ms for write and erase ops.
1709	 *  (It's usually more like 20-30ms in the real world.)
1710	 */
1711	timeout = 250;
1712	while (mask & RD4(slot, SDHCI_PRESENT_STATE)) {
1713		if (timeout == 0) {
1714			slot_printf(slot, "Controller never released "
1715			    "inhibit bit(s).\n");
1716			sdhci_dumpregs(slot);
1717			cmd->error = MMC_ERR_FAILED;
1718			sdhci_req_done(slot);
1719			return;
1720		}
1721		timeout--;
1722		DELAY(1000);
1723	}
1724
1725	/* Prepare command flags. */
1726	if (!(cmd->flags & MMC_RSP_PRESENT))
1727		flags = SDHCI_CMD_RESP_NONE;
1728	else if (cmd->flags & MMC_RSP_136)
1729		flags = SDHCI_CMD_RESP_LONG;
1730	else if (cmd->flags & MMC_RSP_BUSY)
1731		flags = SDHCI_CMD_RESP_SHORT_BUSY;
1732	else
1733		flags = SDHCI_CMD_RESP_SHORT;
1734	if (cmd->flags & MMC_RSP_CRC)
1735		flags |= SDHCI_CMD_CRC;
1736	if (cmd->flags & MMC_RSP_OPCODE)
1737		flags |= SDHCI_CMD_INDEX;
1738	if (cmd->data != NULL)
1739		flags |= SDHCI_CMD_DATA;
1740	if (cmd->opcode == MMC_STOP_TRANSMISSION)
1741		flags |= SDHCI_CMD_TYPE_ABORT;
1742	/* Prepare data. */
1743	sdhci_start_data(slot, cmd->data);
1744	/*
1745	 * Interrupt aggregation: To reduce total number of interrupts
1746	 * group response interrupt with data interrupt when possible.
1747	 * If there going to be data interrupt, mask response one.
1748	 */
1749	if (slot->data_done == 0) {
1750		WR4(slot, SDHCI_SIGNAL_ENABLE,
1751		    slot->intmask &= ~SDHCI_INT_RESPONSE);
1752	}
1753	/* Set command argument. */
1754	WR4(slot, SDHCI_ARGUMENT, cmd->arg);
1755	/* Set data transfer mode. */
1756	sdhci_set_transfer_mode(slot, cmd->data);
1757	if (__predict_false(sdhci_debug > 1))
1758		slot_printf(slot, "Starting command!\n");
1759	/* Start command. */
1760	WR2(slot, SDHCI_COMMAND_FLAGS, (cmd->opcode << 8) | (flags & 0xff));
1761	/* Start timeout callout. */
1762	callout_reset(&slot->timeout_callout, slot->timeout * hz,
1763	    sdhci_timeout, slot);
1764}
1765
1766static void
1767sdhci_finish_command(struct sdhci_slot *slot)
1768{
1769	int i;
1770	uint32_t val;
1771	uint8_t extra;
1772
1773	if (__predict_false(sdhci_debug > 1))
1774		slot_printf(slot, "%s: called, err %d flags %d\n",
1775		    __func__, slot->curcmd->error, slot->curcmd->flags);
1776	slot->cmd_done = 1;
1777	/*
1778	 * Interrupt aggregation: Restore command interrupt.
1779	 * Main restore point for the case when command interrupt
1780	 * happened first.
1781	 */
1782	if (__predict_true(slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK &&
1783	    slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK_HS200))
1784		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |=
1785		    SDHCI_INT_RESPONSE);
1786	/* In case of error - reset host and return. */
1787	if (slot->curcmd->error) {
1788		if (slot->curcmd->error == MMC_ERR_BADCRC)
1789			slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
1790		sdhci_reset(slot, SDHCI_RESET_CMD);
1791		sdhci_reset(slot, SDHCI_RESET_DATA);
1792		sdhci_start(slot);
1793		return;
1794	}
1795	/* If command has response - fetch it. */
1796	if (slot->curcmd->flags & MMC_RSP_PRESENT) {
1797		if (slot->curcmd->flags & MMC_RSP_136) {
1798			/* CRC is stripped so we need one byte shift. */
1799			extra = 0;
1800			for (i = 0; i < 4; i++) {
1801				val = RD4(slot, SDHCI_RESPONSE + i * 4);
1802				if (slot->quirks &
1803				    SDHCI_QUIRK_DONT_SHIFT_RESPONSE)
1804					slot->curcmd->resp[3 - i] = val;
1805				else {
1806					slot->curcmd->resp[3 - i] =
1807					    (val << 8) | extra;
1808					extra = val >> 24;
1809				}
1810			}
1811		} else
1812			slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE);
1813	}
1814	if (__predict_false(sdhci_debug > 1))
1815		printf("Resp: %02x %02x %02x %02x\n",
1816		    slot->curcmd->resp[0], slot->curcmd->resp[1],
1817		    slot->curcmd->resp[2], slot->curcmd->resp[3]);
1818
1819	/* If data ready - finish. */
1820	if (slot->data_done)
1821		sdhci_start(slot);
1822}
1823
1824static void
1825sdhci_start_data(struct sdhci_slot *slot, const struct mmc_data *data)
1826{
1827	uint32_t blkcnt, blksz, current_timeout, sdma_bbufsz, target_timeout;
1828	uint8_t div;
1829
1830	if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
1831		slot->data_done = 1;
1832		return;
1833	}
1834
1835	slot->data_done = 0;
1836
1837	/* Calculate and set data timeout.*/
1838	/* XXX: We should have this from mmc layer, now assume 1 sec. */
1839	if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) {
1840		div = 0xE;
1841	} else {
1842		target_timeout = 1000000;
1843		div = 0;
1844		current_timeout = (1 << 13) * 1000 / slot->timeout_clk;
1845		while (current_timeout < target_timeout && div < 0xE) {
1846			++div;
1847			current_timeout <<= 1;
1848		}
1849		/* Compensate for an off-by-one error in the CaFe chip.*/
1850		if (div < 0xE &&
1851		    (slot->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL)) {
1852			++div;
1853		}
1854	}
1855	WR1(slot, SDHCI_TIMEOUT_CONTROL, div);
1856
1857	if (data == NULL)
1858		return;
1859
1860	/* Use DMA if possible. */
1861	if ((slot->opt & SDHCI_HAVE_DMA))
1862		slot->flags |= SDHCI_USE_DMA;
1863	/* If data is small, broken DMA may return zeroes instead of data. */
1864	if ((slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) &&
1865	    (data->len <= 512))
1866		slot->flags &= ~SDHCI_USE_DMA;
1867	/* Some controllers require even block sizes. */
1868	if ((slot->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) &&
1869	    ((data->len) & 0x3))
1870		slot->flags &= ~SDHCI_USE_DMA;
1871	/* Load DMA buffer. */
1872	if (slot->flags & SDHCI_USE_DMA) {
1873		sdma_bbufsz = slot->sdma_bbufsz;
1874		if (data->flags & MMC_DATA_READ)
1875			bus_dmamap_sync(slot->dmatag, slot->dmamap,
1876			    BUS_DMASYNC_PREREAD);
1877		else {
1878			memcpy(slot->dmamem, data->data, ulmin(data->len,
1879			    sdma_bbufsz));
1880			bus_dmamap_sync(slot->dmatag, slot->dmamap,
1881			    BUS_DMASYNC_PREWRITE);
1882		}
1883		WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr);
1884		/*
1885		 * Interrupt aggregation: Mask border interrupt for the last
1886		 * bounce buffer and unmask otherwise.
1887		 */
1888		if (data->len == sdma_bbufsz)
1889			slot->intmask &= ~SDHCI_INT_DMA_END;
1890		else
1891			slot->intmask |= SDHCI_INT_DMA_END;
1892		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
1893	}
1894	/* Current data offset for both PIO and DMA. */
1895	slot->offset = 0;
1896	/* Set block size and request border interrupts on the SDMA boundary. */
1897	blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, ulmin(data->len, 512));
1898	WR2(slot, SDHCI_BLOCK_SIZE, blksz);
1899	/* Set block count. */
1900	blkcnt = howmany(data->len, 512);
1901	WR2(slot, SDHCI_BLOCK_COUNT, blkcnt);
1902	if (__predict_false(sdhci_debug > 1))
1903		slot_printf(slot, "Blk size: 0x%08x | Blk cnt:  0x%08x\n",
1904		    blksz, blkcnt);
1905}
1906
1907void
1908sdhci_finish_data(struct sdhci_slot *slot)
1909{
1910	struct mmc_data *data = slot->curcmd->data;
1911	size_t left;
1912
1913	/* Interrupt aggregation: Restore command interrupt.
1914	 * Auxiliary restore point for the case when data interrupt
1915	 * happened first. */
1916	if (!slot->cmd_done) {
1917		WR4(slot, SDHCI_SIGNAL_ENABLE,
1918		    slot->intmask |= SDHCI_INT_RESPONSE);
1919	}
1920	/* Unload rest of data from DMA buffer. */
1921	if (!slot->data_done && (slot->flags & SDHCI_USE_DMA) &&
1922	    slot->curcmd->data != NULL) {
1923		if (data->flags & MMC_DATA_READ) {
1924			left = data->len - slot->offset;
1925			bus_dmamap_sync(slot->dmatag, slot->dmamap,
1926			    BUS_DMASYNC_POSTREAD);
1927			memcpy((u_char*)data->data + slot->offset, slot->dmamem,
1928			    ulmin(left, slot->sdma_bbufsz));
1929		} else
1930			bus_dmamap_sync(slot->dmatag, slot->dmamap,
1931			    BUS_DMASYNC_POSTWRITE);
1932	}
1933	slot->data_done = 1;
1934	/* If there was error - reset the host. */
1935	if (slot->curcmd->error) {
1936		if (slot->curcmd->error == MMC_ERR_BADCRC)
1937			slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
1938		sdhci_reset(slot, SDHCI_RESET_CMD);
1939		sdhci_reset(slot, SDHCI_RESET_DATA);
1940		sdhci_start(slot);
1941		return;
1942	}
1943	/* If we already have command response - finish. */
1944	if (slot->cmd_done)
1945		sdhci_start(slot);
1946}
1947
1948#ifdef MMCCAM
1949static void
1950sdhci_start(struct sdhci_slot *slot)
1951{
1952	union ccb *ccb;
1953	struct ccb_mmcio *mmcio;
1954
1955	ccb = slot->ccb;
1956	if (ccb == NULL)
1957		return;
1958
1959	mmcio = &ccb->mmcio;
1960	if (!(slot->flags & CMD_STARTED)) {
1961		slot->flags |= CMD_STARTED;
1962		sdhci_start_command(slot, &mmcio->cmd);
1963		return;
1964	}
1965
1966	/*
1967	 * Old stack doesn't use this!
1968	 * Enabling this code causes significant performance degradation
1969	 * and IRQ storms on BBB, Wandboard behaves fine.
1970	 * Not using this code does no harm...
1971	if (!(slot->flags & STOP_STARTED) && mmcio->stop.opcode != 0) {
1972		slot->flags |= STOP_STARTED;
1973		sdhci_start_command(slot, &mmcio->stop);
1974		return;
1975	}
1976	*/
1977	if (__predict_false(sdhci_debug > 1))
1978		slot_printf(slot, "result: %d\n", mmcio->cmd.error);
1979	if (mmcio->cmd.error == 0 &&
1980	    (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)) {
1981		sdhci_reset(slot, SDHCI_RESET_CMD);
1982		sdhci_reset(slot, SDHCI_RESET_DATA);
1983	}
1984
1985	sdhci_req_done(slot);
1986}
1987#else
1988static void
1989sdhci_start(struct sdhci_slot *slot)
1990{
1991	const struct mmc_request *req;
1992
1993	req = slot->req;
1994	if (req == NULL)
1995		return;
1996
1997	if (!(slot->flags & CMD_STARTED)) {
1998		slot->flags |= CMD_STARTED;
1999		sdhci_start_command(slot, req->cmd);
2000		return;
2001	}
2002	if ((slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP) &&
2003	    !(slot->flags & STOP_STARTED) && req->stop) {
2004		slot->flags |= STOP_STARTED;
2005		sdhci_start_command(slot, req->stop);
2006		return;
2007	}
2008	if (__predict_false(sdhci_debug > 1))
2009		slot_printf(slot, "result: %d\n", req->cmd->error);
2010	if (!req->cmd->error &&
2011	    ((slot->curcmd == req->stop &&
2012	     (slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)) ||
2013	     (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) {
2014		sdhci_reset(slot, SDHCI_RESET_CMD);
2015		sdhci_reset(slot, SDHCI_RESET_DATA);
2016	}
2017
2018	sdhci_req_done(slot);
2019}
2020#endif
2021
2022int
2023sdhci_generic_request(device_t brdev __unused, device_t reqdev,
2024    struct mmc_request *req)
2025{
2026	struct sdhci_slot *slot = device_get_ivars(reqdev);
2027
2028	SDHCI_LOCK(slot);
2029	if (slot->req != NULL) {
2030		SDHCI_UNLOCK(slot);
2031		return (EBUSY);
2032	}
2033	if (__predict_false(sdhci_debug > 1)) {
2034		slot_printf(slot,
2035		    "CMD%u arg %#x flags %#x dlen %u dflags %#x\n",
2036		    req->cmd->opcode, req->cmd->arg, req->cmd->flags,
2037		    (req->cmd->data)?(u_int)req->cmd->data->len:0,
2038		    (req->cmd->data)?req->cmd->data->flags:0);
2039	}
2040	slot->req = req;
2041	slot->flags = 0;
2042	sdhci_start(slot);
2043	SDHCI_UNLOCK(slot);
2044	if (dumping) {
2045		while (slot->req != NULL) {
2046			sdhci_generic_intr(slot);
2047			DELAY(10);
2048		}
2049	}
2050	return (0);
2051}
2052
2053int
2054sdhci_generic_get_ro(device_t brdev __unused, device_t reqdev)
2055{
2056	struct sdhci_slot *slot = device_get_ivars(reqdev);
2057	uint32_t val;
2058
2059	SDHCI_LOCK(slot);
2060	val = RD4(slot, SDHCI_PRESENT_STATE);
2061	SDHCI_UNLOCK(slot);
2062	return (!(val & SDHCI_WRITE_PROTECT));
2063}
2064
2065int
2066sdhci_generic_acquire_host(device_t brdev __unused, device_t reqdev)
2067{
2068	struct sdhci_slot *slot = device_get_ivars(reqdev);
2069	int err = 0;
2070
2071	SDHCI_LOCK(slot);
2072	while (slot->bus_busy)
2073		msleep(slot, &slot->mtx, 0, "sdhciah", 0);
2074	slot->bus_busy++;
2075	/* Activate led. */
2076	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED);
2077	SDHCI_UNLOCK(slot);
2078	return (err);
2079}
2080
2081int
2082sdhci_generic_release_host(device_t brdev __unused, device_t reqdev)
2083{
2084	struct sdhci_slot *slot = device_get_ivars(reqdev);
2085
2086	SDHCI_LOCK(slot);
2087	/* Deactivate led. */
2088	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED);
2089	slot->bus_busy--;
2090	SDHCI_UNLOCK(slot);
2091	wakeup(slot);
2092	return (0);
2093}
2094
2095static void
2096sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask)
2097{
2098
2099	if (!slot->curcmd) {
2100		slot_printf(slot, "Got command interrupt 0x%08x, but "
2101		    "there is no active command.\n", intmask);
2102		sdhci_dumpregs(slot);
2103		return;
2104	}
2105	if (intmask & SDHCI_INT_TIMEOUT)
2106		slot->curcmd->error = MMC_ERR_TIMEOUT;
2107	else if (intmask & SDHCI_INT_CRC)
2108		slot->curcmd->error = MMC_ERR_BADCRC;
2109	else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX))
2110		slot->curcmd->error = MMC_ERR_FIFO;
2111
2112	sdhci_finish_command(slot);
2113}
2114
2115static void
2116sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask)
2117{
2118	struct mmc_data *data;
2119	size_t left;
2120	uint32_t sdma_bbufsz;
2121
2122	if (!slot->curcmd) {
2123		slot_printf(slot, "Got data interrupt 0x%08x, but "
2124		    "there is no active command.\n", intmask);
2125		sdhci_dumpregs(slot);
2126		return;
2127	}
2128	if (slot->curcmd->data == NULL &&
2129	    (slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
2130		slot_printf(slot, "Got data interrupt 0x%08x, but "
2131		    "there is no active data operation.\n",
2132		    intmask);
2133		sdhci_dumpregs(slot);
2134		return;
2135	}
2136	if (intmask & SDHCI_INT_DATA_TIMEOUT)
2137		slot->curcmd->error = MMC_ERR_TIMEOUT;
2138	else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT))
2139		slot->curcmd->error = MMC_ERR_BADCRC;
2140	if (slot->curcmd->data == NULL &&
2141	    (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
2142	    SDHCI_INT_DMA_END))) {
2143		slot_printf(slot, "Got data interrupt 0x%08x, but "
2144		    "there is busy-only command.\n", intmask);
2145		sdhci_dumpregs(slot);
2146		slot->curcmd->error = MMC_ERR_INVALID;
2147	}
2148	if (slot->curcmd->error) {
2149		/* No need to continue after any error. */
2150		goto done;
2151	}
2152
2153	/* Handle tuning completion interrupt. */
2154	if (__predict_false((intmask & SDHCI_INT_DATA_AVAIL) &&
2155	    (slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK ||
2156	    slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))) {
2157		slot->req->flags |= MMC_TUNE_DONE;
2158		sdhci_finish_command(slot);
2159		sdhci_finish_data(slot);
2160		return;
2161	}
2162	/* Handle PIO interrupt. */
2163	if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) {
2164		if ((slot->opt & SDHCI_PLATFORM_TRANSFER) &&
2165		    SDHCI_PLATFORM_WILL_HANDLE(slot->bus, slot)) {
2166			SDHCI_PLATFORM_START_TRANSFER(slot->bus, slot,
2167			    &intmask);
2168			slot->flags |= PLATFORM_DATA_STARTED;
2169		} else
2170			sdhci_transfer_pio(slot);
2171	}
2172	/* Handle DMA border. */
2173	if (intmask & SDHCI_INT_DMA_END) {
2174		data = slot->curcmd->data;
2175		sdma_bbufsz = slot->sdma_bbufsz;
2176
2177		/* Unload DMA buffer ... */
2178		left = data->len - slot->offset;
2179		if (data->flags & MMC_DATA_READ) {
2180			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2181			    BUS_DMASYNC_POSTREAD);
2182			memcpy((u_char*)data->data + slot->offset, slot->dmamem,
2183			    ulmin(left, sdma_bbufsz));
2184		} else {
2185			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2186			    BUS_DMASYNC_POSTWRITE);
2187		}
2188		/* ... and reload it again. */
2189		slot->offset += sdma_bbufsz;
2190		left = data->len - slot->offset;
2191		if (data->flags & MMC_DATA_READ) {
2192			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2193			    BUS_DMASYNC_PREREAD);
2194		} else {
2195			memcpy(slot->dmamem, (u_char*)data->data + slot->offset,
2196			    ulmin(left, sdma_bbufsz));
2197			bus_dmamap_sync(slot->dmatag, slot->dmamap,
2198			    BUS_DMASYNC_PREWRITE);
2199		}
2200		/*
2201		 * Interrupt aggregation: Mask border interrupt for the last
2202		 * bounce buffer.
2203		 */
2204		if (left == sdma_bbufsz) {
2205			slot->intmask &= ~SDHCI_INT_DMA_END;
2206			WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
2207		}
2208		/* Restart DMA. */
2209		WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr);
2210	}
2211	/* We have got all data. */
2212	if (intmask & SDHCI_INT_DATA_END) {
2213		if (slot->flags & PLATFORM_DATA_STARTED) {
2214			slot->flags &= ~PLATFORM_DATA_STARTED;
2215			SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot);
2216		} else
2217			sdhci_finish_data(slot);
2218	}
2219done:
2220	if (slot->curcmd != NULL && slot->curcmd->error != 0) {
2221		if (slot->flags & PLATFORM_DATA_STARTED) {
2222			slot->flags &= ~PLATFORM_DATA_STARTED;
2223			SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot);
2224		} else
2225			sdhci_finish_data(slot);
2226	}
2227}
2228
2229static void
2230sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err)
2231{
2232
2233	if (!slot->curcmd) {
2234		slot_printf(slot, "Got AutoCMD12 error 0x%04x, but "
2235		    "there is no active command.\n", acmd_err);
2236		sdhci_dumpregs(slot);
2237		return;
2238	}
2239	slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", acmd_err);
2240	sdhci_reset(slot, SDHCI_RESET_CMD);
2241}
2242
2243void
2244sdhci_generic_intr(struct sdhci_slot *slot)
2245{
2246	uint32_t intmask, present;
2247	uint16_t val16;
2248
2249	SDHCI_LOCK(slot);
2250	/* Read slot interrupt status. */
2251	intmask = RD4(slot, SDHCI_INT_STATUS);
2252	if (intmask == 0 || intmask == 0xffffffff) {
2253		SDHCI_UNLOCK(slot);
2254		return;
2255	}
2256	if (__predict_false(sdhci_debug > 2))
2257		slot_printf(slot, "Interrupt %#x\n", intmask);
2258
2259	/* Handle tuning error interrupt. */
2260	if (__predict_false(intmask & SDHCI_INT_TUNEERR)) {
2261		WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_TUNEERR);
2262		slot_printf(slot, "Tuning error indicated\n");
2263		slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
2264		if (slot->curcmd) {
2265			slot->curcmd->error = MMC_ERR_BADCRC;
2266			sdhci_finish_command(slot);
2267		}
2268	}
2269	/* Handle re-tuning interrupt. */
2270	if (__predict_false(intmask & SDHCI_INT_RETUNE))
2271		slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED;
2272	/* Handle card presence interrupts. */
2273	if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
2274		present = (intmask & SDHCI_INT_CARD_INSERT) != 0;
2275		slot->intmask &=
2276		    ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);
2277		slot->intmask |= present ? SDHCI_INT_CARD_REMOVE :
2278		    SDHCI_INT_CARD_INSERT;
2279		WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
2280		WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
2281		WR4(slot, SDHCI_INT_STATUS, intmask &
2282		    (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE));
2283		sdhci_handle_card_present_locked(slot, present);
2284	}
2285	/* Handle command interrupts. */
2286	if (intmask & SDHCI_INT_CMD_MASK) {
2287		WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK);
2288		sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK);
2289	}
2290	/* Handle data interrupts. */
2291	if (intmask & SDHCI_INT_DATA_MASK) {
2292		WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK);
2293		/* Don't call data_irq in case of errored command. */
2294		if ((intmask & SDHCI_INT_CMD_ERROR_MASK) == 0)
2295			sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK);
2296	}
2297	/* Handle AutoCMD12 error interrupt. */
2298	if (intmask & SDHCI_INT_ACMD12ERR) {
2299		/* Clearing SDHCI_INT_ACMD12ERR may clear SDHCI_ACMD12_ERR. */
2300		val16 = RD2(slot, SDHCI_ACMD12_ERR);
2301		WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR);
2302		sdhci_acmd_irq(slot, val16);
2303	}
2304	/* Handle bus power interrupt. */
2305	if (intmask & SDHCI_INT_BUS_POWER) {
2306		WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER);
2307		slot_printf(slot, "Card is consuming too much power!\n");
2308	}
2309	intmask &= ~(SDHCI_INT_ERROR | SDHCI_INT_TUNEERR | SDHCI_INT_RETUNE |
2310	    SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CMD_MASK |
2311	    SDHCI_INT_DATA_MASK | SDHCI_INT_ACMD12ERR | SDHCI_INT_BUS_POWER);
2312	/* The rest is unknown. */
2313	if (intmask) {
2314		WR4(slot, SDHCI_INT_STATUS, intmask);
2315		slot_printf(slot, "Unexpected interrupt 0x%08x.\n",
2316		    intmask);
2317		sdhci_dumpregs(slot);
2318	}
2319
2320	SDHCI_UNLOCK(slot);
2321}
2322
2323int
2324sdhci_generic_read_ivar(device_t bus, device_t child, int which,
2325    uintptr_t *result)
2326{
2327	const struct sdhci_slot *slot = device_get_ivars(child);
2328
2329	switch (which) {
2330	default:
2331		return (EINVAL);
2332	case MMCBR_IVAR_BUS_MODE:
2333		*result = slot->host.ios.bus_mode;
2334		break;
2335	case MMCBR_IVAR_BUS_WIDTH:
2336		*result = slot->host.ios.bus_width;
2337		break;
2338	case MMCBR_IVAR_CHIP_SELECT:
2339		*result = slot->host.ios.chip_select;
2340		break;
2341	case MMCBR_IVAR_CLOCK:
2342		*result = slot->host.ios.clock;
2343		break;
2344	case MMCBR_IVAR_F_MIN:
2345		*result = slot->host.f_min;
2346		break;
2347	case MMCBR_IVAR_F_MAX:
2348		*result = slot->host.f_max;
2349		break;
2350	case MMCBR_IVAR_HOST_OCR:
2351		*result = slot->host.host_ocr;
2352		break;
2353	case MMCBR_IVAR_MODE:
2354		*result = slot->host.mode;
2355		break;
2356	case MMCBR_IVAR_OCR:
2357		*result = slot->host.ocr;
2358		break;
2359	case MMCBR_IVAR_POWER_MODE:
2360		*result = slot->host.ios.power_mode;
2361		break;
2362	case MMCBR_IVAR_VDD:
2363		*result = slot->host.ios.vdd;
2364		break;
2365	case MMCBR_IVAR_RETUNE_REQ:
2366		if (slot->opt & SDHCI_TUNING_ENABLED) {
2367			if (slot->retune_req & SDHCI_RETUNE_REQ_RESET) {
2368				*result = retune_req_reset;
2369				break;
2370			}
2371			if (slot->retune_req & SDHCI_RETUNE_REQ_NEEDED) {
2372				*result = retune_req_normal;
2373				break;
2374			}
2375		}
2376		*result = retune_req_none;
2377		break;
2378	case MMCBR_IVAR_VCCQ:
2379		*result = slot->host.ios.vccq;
2380		break;
2381	case MMCBR_IVAR_CAPS:
2382		*result = slot->host.caps;
2383		break;
2384	case MMCBR_IVAR_TIMING:
2385		*result = slot->host.ios.timing;
2386		break;
2387	case MMCBR_IVAR_MAX_DATA:
2388		/*
2389		 * Re-tuning modes 1 and 2 restrict the maximum data length
2390		 * per read/write command to 4 MiB.
2391		 */
2392		if (slot->opt & SDHCI_TUNING_ENABLED &&
2393		    (slot->retune_mode == SDHCI_RETUNE_MODE_1 ||
2394		    slot->retune_mode == SDHCI_RETUNE_MODE_2)) {
2395			*result = 4 * 1024 * 1024 / MMC_SECTOR_SIZE;
2396			break;
2397		}
2398		*result = 65535;
2399		break;
2400	case MMCBR_IVAR_MAX_BUSY_TIMEOUT:
2401		/*
2402		 * Currently, sdhci_start_data() hardcodes 1 s for all CMDs.
2403		 */
2404		*result = 1000000;
2405		break;
2406	}
2407	return (0);
2408}
2409
2410int
2411sdhci_generic_write_ivar(device_t bus, device_t child, int which,
2412    uintptr_t value)
2413{
2414	struct sdhci_slot *slot = device_get_ivars(child);
2415	uint32_t clock, max_clock;
2416	int i;
2417
2418	if (sdhci_debug > 1)
2419		slot_printf(slot, "%s: var=%d\n", __func__, which);
2420	switch (which) {
2421	default:
2422		return (EINVAL);
2423	case MMCBR_IVAR_BUS_MODE:
2424		slot->host.ios.bus_mode = value;
2425		break;
2426	case MMCBR_IVAR_BUS_WIDTH:
2427		slot->host.ios.bus_width = value;
2428		break;
2429	case MMCBR_IVAR_CHIP_SELECT:
2430		slot->host.ios.chip_select = value;
2431		break;
2432	case MMCBR_IVAR_CLOCK:
2433		if (value > 0) {
2434			max_clock = slot->max_clk;
2435			clock = max_clock;
2436
2437			if (slot->version < SDHCI_SPEC_300) {
2438				for (i = 0; i < SDHCI_200_MAX_DIVIDER;
2439				    i <<= 1) {
2440					if (clock <= value)
2441						break;
2442					clock >>= 1;
2443				}
2444			} else {
2445				for (i = 0; i < SDHCI_300_MAX_DIVIDER;
2446				    i += 2) {
2447					if (clock <= value)
2448						break;
2449					clock = max_clock / (i + 2);
2450				}
2451			}
2452
2453			slot->host.ios.clock = clock;
2454		} else
2455			slot->host.ios.clock = 0;
2456		break;
2457	case MMCBR_IVAR_MODE:
2458		slot->host.mode = value;
2459		break;
2460	case MMCBR_IVAR_OCR:
2461		slot->host.ocr = value;
2462		break;
2463	case MMCBR_IVAR_POWER_MODE:
2464		slot->host.ios.power_mode = value;
2465		break;
2466	case MMCBR_IVAR_VDD:
2467		slot->host.ios.vdd = value;
2468		break;
2469	case MMCBR_IVAR_VCCQ:
2470		slot->host.ios.vccq = value;
2471		break;
2472	case MMCBR_IVAR_TIMING:
2473		slot->host.ios.timing = value;
2474		break;
2475	case MMCBR_IVAR_CAPS:
2476	case MMCBR_IVAR_HOST_OCR:
2477	case MMCBR_IVAR_F_MIN:
2478	case MMCBR_IVAR_F_MAX:
2479	case MMCBR_IVAR_MAX_DATA:
2480	case MMCBR_IVAR_RETUNE_REQ:
2481		return (EINVAL);
2482	}
2483	return (0);
2484}
2485
2486#ifdef MMCCAM
2487void
2488sdhci_start_slot(struct sdhci_slot *slot)
2489{
2490
2491	if ((slot->devq = cam_simq_alloc(1)) == NULL)
2492		goto fail;
2493
2494	mtx_init(&slot->sim_mtx, "sdhcisim", NULL, MTX_DEF);
2495	slot->sim = cam_sim_alloc(sdhci_cam_action, sdhci_cam_poll,
2496	    "sdhci_slot", slot, device_get_unit(slot->bus),
2497	    &slot->sim_mtx, 1, 1, slot->devq);
2498
2499	if (slot->sim == NULL) {
2500		cam_simq_free(slot->devq);
2501		slot_printf(slot, "cannot allocate CAM SIM\n");
2502		goto fail;
2503	}
2504
2505	mtx_lock(&slot->sim_mtx);
2506	if (xpt_bus_register(slot->sim, slot->bus, 0) != 0) {
2507		slot_printf(slot, "cannot register SCSI pass-through bus\n");
2508		cam_sim_free(slot->sim, FALSE);
2509		cam_simq_free(slot->devq);
2510		mtx_unlock(&slot->sim_mtx);
2511		goto fail;
2512	}
2513	mtx_unlock(&slot->sim_mtx);
2514
2515	/* End CAM-specific init */
2516	slot->card_present = 0;
2517	sdhci_card_task(slot, 0);
2518	return;
2519
2520fail:
2521	if (slot->sim != NULL) {
2522		mtx_lock(&slot->sim_mtx);
2523		xpt_bus_deregister(cam_sim_path(slot->sim));
2524		cam_sim_free(slot->sim, FALSE);
2525		mtx_unlock(&slot->sim_mtx);
2526	}
2527
2528	if (slot->devq != NULL)
2529		cam_simq_free(slot->devq);
2530}
2531
2532static void
2533sdhci_cam_handle_mmcio(struct cam_sim *sim, union ccb *ccb)
2534{
2535	struct sdhci_slot *slot;
2536
2537	slot = cam_sim_softc(sim);
2538
2539	sdhci_cam_request(slot, ccb);
2540}
2541
2542void
2543sdhci_cam_action(struct cam_sim *sim, union ccb *ccb)
2544{
2545	struct sdhci_slot *slot;
2546
2547	slot = cam_sim_softc(sim);
2548	if (slot == NULL) {
2549		ccb->ccb_h.status = CAM_SEL_TIMEOUT;
2550		xpt_done(ccb);
2551		return;
2552	}
2553
2554	mtx_assert(&slot->sim_mtx, MA_OWNED);
2555
2556	switch (ccb->ccb_h.func_code) {
2557	case XPT_PATH_INQ:
2558	{
2559		struct ccb_pathinq *cpi;
2560
2561		cpi = &ccb->cpi;
2562		cpi->version_num = 1;
2563		cpi->hba_inquiry = 0;
2564		cpi->target_sprt = 0;
2565		cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN;
2566		cpi->hba_eng_cnt = 0;
2567		cpi->max_target = 0;
2568		cpi->max_lun = 0;
2569		cpi->initiator_id = 1;
2570		cpi->maxio = MAXPHYS;
2571		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2572		strncpy(cpi->hba_vid, "Deglitch Networks", HBA_IDLEN);
2573		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2574		cpi->unit_number = cam_sim_unit(sim);
2575		cpi->bus_id = cam_sim_bus(sim);
2576		cpi->base_transfer_speed = 100; /* XXX WTF? */
2577		cpi->protocol = PROTO_MMCSD;
2578		cpi->protocol_version = SCSI_REV_0;
2579		cpi->transport = XPORT_MMCSD;
2580		cpi->transport_version = 0;
2581
2582		cpi->ccb_h.status = CAM_REQ_CMP;
2583		break;
2584	}
2585	case XPT_GET_TRAN_SETTINGS:
2586	{
2587		struct ccb_trans_settings *cts = &ccb->cts;
2588
2589		if (sdhci_debug > 1)
2590			slot_printf(slot, "Got XPT_GET_TRAN_SETTINGS\n");
2591
2592		cts->protocol = PROTO_MMCSD;
2593		cts->protocol_version = 1;
2594		cts->transport = XPORT_MMCSD;
2595		cts->transport_version = 1;
2596		cts->xport_specific.valid = 0;
2597		cts->proto_specific.mmc.host_ocr = slot->host.host_ocr;
2598		cts->proto_specific.mmc.host_f_min = slot->host.f_min;
2599		cts->proto_specific.mmc.host_f_max = slot->host.f_max;
2600		cts->proto_specific.mmc.host_caps = slot->host.caps;
2601		memcpy(&cts->proto_specific.mmc.ios, &slot->host.ios, sizeof(struct mmc_ios));
2602		ccb->ccb_h.status = CAM_REQ_CMP;
2603		break;
2604	}
2605	case XPT_SET_TRAN_SETTINGS:
2606	{
2607		if (sdhci_debug > 1)
2608			slot_printf(slot, "Got XPT_SET_TRAN_SETTINGS\n");
2609		sdhci_cam_settran_settings(slot, ccb);
2610		ccb->ccb_h.status = CAM_REQ_CMP;
2611		break;
2612	}
2613	case XPT_RESET_BUS:
2614		if (sdhci_debug > 1)
2615			slot_printf(slot, "Got XPT_RESET_BUS, ACK it...\n");
2616		ccb->ccb_h.status = CAM_REQ_CMP;
2617		break;
2618	case XPT_MMC_IO:
2619		/*
2620		 * Here is the HW-dependent part of
2621		 * sending the command to the underlying h/w
2622		 * At some point in the future an interrupt comes.
2623		 * Then the request will be marked as completed.
2624		 */
2625		if (__predict_false(sdhci_debug > 1))
2626			slot_printf(slot, "Got XPT_MMC_IO\n");
2627		ccb->ccb_h.status = CAM_REQ_INPROG;
2628
2629		sdhci_cam_handle_mmcio(sim, ccb);
2630		return;
2631		/* NOTREACHED */
2632		break;
2633	default:
2634		ccb->ccb_h.status = CAM_REQ_INVALID;
2635		break;
2636	}
2637	xpt_done(ccb);
2638	return;
2639}
2640
2641void
2642sdhci_cam_poll(struct cam_sim *sim)
2643{
2644	return;
2645}
2646
2647static int
2648sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot,
2649    int proposed_clock)
2650{
2651	int max_clock, clock, i;
2652
2653	if (proposed_clock == 0)
2654		return 0;
2655	max_clock = slot->max_clk;
2656	clock = max_clock;
2657
2658	if (slot->version < SDHCI_SPEC_300) {
2659		for (i = 0; i < SDHCI_200_MAX_DIVIDER; i <<= 1) {
2660			if (clock <= proposed_clock)
2661				break;
2662			clock >>= 1;
2663		}
2664	} else {
2665		for (i = 0; i < SDHCI_300_MAX_DIVIDER; i += 2) {
2666			if (clock <= proposed_clock)
2667				break;
2668			clock = max_clock / (i + 2);
2669		}
2670	}
2671	return clock;
2672}
2673
2674static int
2675sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb)
2676{
2677	struct mmc_ios *ios;
2678	const struct mmc_ios *new_ios;
2679	const struct ccb_trans_settings_mmc *cts;
2680
2681	ios = &slot->host.ios;
2682	cts = &ccb->cts.proto_specific.mmc;
2683	new_ios = &cts->ios;
2684
2685	/* Update only requested fields */
2686	if (cts->ios_valid & MMC_CLK) {
2687		ios->clock = sdhci_cam_get_possible_host_clock(slot, new_ios->clock);
2688		slot_printf(slot, "Clock => %d\n", ios->clock);
2689	}
2690	if (cts->ios_valid & MMC_VDD) {
2691		ios->vdd = new_ios->vdd;
2692		slot_printf(slot, "VDD => %d\n", ios->vdd);
2693	}
2694	if (cts->ios_valid & MMC_CS) {
2695		ios->chip_select = new_ios->chip_select;
2696		slot_printf(slot, "CS => %d\n", ios->chip_select);
2697	}
2698	if (cts->ios_valid & MMC_BW) {
2699		ios->bus_width = new_ios->bus_width;
2700		slot_printf(slot, "Bus width => %d\n", ios->bus_width);
2701	}
2702	if (cts->ios_valid & MMC_PM) {
2703		ios->power_mode = new_ios->power_mode;
2704		slot_printf(slot, "Power mode => %d\n", ios->power_mode);
2705	}
2706	if (cts->ios_valid & MMC_BT) {
2707		ios->timing = new_ios->timing;
2708		slot_printf(slot, "Timing => %d\n", ios->timing);
2709	}
2710	if (cts->ios_valid & MMC_BM) {
2711		ios->bus_mode = new_ios->bus_mode;
2712		slot_printf(slot, "Bus mode => %d\n", ios->bus_mode);
2713	}
2714
2715	/* XXX Provide a way to call a chip-specific IOS update, required for TI */
2716	return (sdhci_cam_update_ios(slot));
2717}
2718
2719static int
2720sdhci_cam_update_ios(struct sdhci_slot *slot)
2721{
2722	struct mmc_ios *ios = &slot->host.ios;
2723
2724	slot_printf(slot, "%s: power_mode=%d, clk=%d, bus_width=%d, timing=%d\n",
2725		    __func__, ios->power_mode, ios->clock, ios->bus_width, ios->timing);
2726	SDHCI_LOCK(slot);
2727	/* Do full reset on bus power down to clear from any state. */
2728	if (ios->power_mode == power_off) {
2729		WR4(slot, SDHCI_SIGNAL_ENABLE, 0);
2730		sdhci_init(slot);
2731	}
2732	/* Configure the bus. */
2733	sdhci_set_clock(slot, ios->clock);
2734	sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd);
2735	if (ios->bus_width == bus_width_8) {
2736		slot->hostctrl |= SDHCI_CTRL_8BITBUS;
2737		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
2738	} else if (ios->bus_width == bus_width_4) {
2739		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
2740		slot->hostctrl |= SDHCI_CTRL_4BITBUS;
2741	} else if (ios->bus_width == bus_width_1) {
2742		slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
2743		slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
2744	} else {
2745		panic("Invalid bus width: %d", ios->bus_width);
2746	}
2747	if (ios->timing == bus_timing_hs &&
2748	    !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT))
2749		slot->hostctrl |= SDHCI_CTRL_HISPD;
2750	else
2751		slot->hostctrl &= ~SDHCI_CTRL_HISPD;
2752	WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
2753	/* Some controllers like reset after bus changes. */
2754	if(slot->quirks & SDHCI_QUIRK_RESET_ON_IOS)
2755		sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
2756
2757	SDHCI_UNLOCK(slot);
2758	return (0);
2759}
2760
2761static int
2762sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb)
2763{
2764	const struct ccb_mmcio *mmcio;
2765
2766	mmcio = &ccb->mmcio;
2767
2768	SDHCI_LOCK(slot);
2769/*	if (slot->req != NULL) {
2770		SDHCI_UNLOCK(slot);
2771		return (EBUSY);
2772	}
2773*/
2774	if (__predict_false(sdhci_debug > 1)) {
2775		slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x\n",
2776			    mmcio->cmd.opcode, mmcio->cmd.arg, mmcio->cmd.flags,
2777			    mmcio->cmd.data != NULL ? (unsigned int) mmcio->cmd.data->len : 0,
2778			    mmcio->cmd.data != NULL ? mmcio->cmd.data->flags: 0);
2779	}
2780	if (mmcio->cmd.data != NULL) {
2781		if (mmcio->cmd.data->len == 0 || mmcio->cmd.data->flags == 0)
2782			panic("data->len = %d, data->flags = %d -- something is b0rked",
2783			    (int)mmcio->cmd.data->len, mmcio->cmd.data->flags);
2784	}
2785	slot->ccb = ccb;
2786	slot->flags = 0;
2787	sdhci_start(slot);
2788	SDHCI_UNLOCK(slot);
2789	if (dumping) {
2790		while (slot->ccb != NULL) {
2791			sdhci_generic_intr(slot);
2792			DELAY(10);
2793		}
2794	}
2795	return (0);
2796}
2797#endif /* MMCCAM */
2798
2799MODULE_VERSION(sdhci, SDHCI_VERSION);
2800