1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2000, 2001
6 *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD$");
38
39/*
40 * National Semiconductor DP83820/DP83821 gigabit ethernet driver
41 * for FreeBSD. Datasheets are available from:
42 *
43 * http://www.national.com/ds/DP/DP83820.pdf
44 * http://www.national.com/ds/DP/DP83821.pdf
45 *
46 * These chips are used on several low cost gigabit ethernet NICs
47 * sold by D-Link, Addtron, SMC and Asante. Both parts are
48 * virtually the same, except the 83820 is a 64-bit/32-bit part,
49 * while the 83821 is 32-bit only.
50 *
51 * Many cards also use National gigE transceivers, such as the
52 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
53 * contains a full register description that applies to all of these
54 * components:
55 *
56 * http://www.national.com/ds/DP/DP83861.pdf
57 *
58 * Written by Bill Paul <wpaul@bsdi.com>
59 * BSDi Open Source Solutions
60 */
61
62/*
63 * The NatSemi DP83820 and 83821 controllers are enhanced versions
64 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
65 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
66 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
67 * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
68 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
69 * matching buffers, one perfect address filter buffer and interrupt
70 * moderation. The 83820 supports both 64-bit and 32-bit addressing
71 * and data transfers: the 64-bit support can be toggled on or off
72 * via software. This affects the size of certain fields in the DMA
73 * descriptors.
74 *
75 * There are two bugs/misfeatures in the 83820/83821 that I have
76 * discovered so far:
77 *
78 * - Receive buffers must be aligned on 64-bit boundaries, which means
79 *   you must resort to copying data in order to fix up the payload
80 *   alignment.
81 *
82 * - In order to transmit jumbo frames larger than 8170 bytes, you have
83 *   to turn off transmit checksum offloading, because the chip can't
84 *   compute the checksum on an outgoing frame unless it fits entirely
85 *   within the TX FIFO, which is only 8192 bytes in size. If you have
86 *   TX checksum offload enabled and you transmit attempt to transmit a
87 *   frame larger than 8170 bytes, the transmitter will wedge.
88 *
89 * To work around the latter problem, TX checksum offload is disabled
90 * if the user selects an MTU larger than 8152 (8170 - 18).
91 */
92
93#ifdef HAVE_KERNEL_OPTION_HEADERS
94#include "opt_device_polling.h"
95#endif
96
97#include <sys/param.h>
98#include <sys/systm.h>
99#include <sys/bus.h>
100#include <sys/endian.h>
101#include <sys/kernel.h>
102#include <sys/lock.h>
103#include <sys/malloc.h>
104#include <sys/mbuf.h>
105#include <sys/module.h>
106#include <sys/mutex.h>
107#include <sys/rman.h>
108#include <sys/socket.h>
109#include <sys/sockio.h>
110#include <sys/sysctl.h>
111
112#include <net/bpf.h>
113#include <net/if.h>
114#include <net/if_var.h>
115#include <net/if_arp.h>
116#include <net/ethernet.h>
117#include <net/if_dl.h>
118#include <net/if_media.h>
119#include <net/if_types.h>
120#include <net/if_vlan_var.h>
121
122#include <dev/mii/mii.h>
123#include <dev/mii/mii_bitbang.h>
124#include <dev/mii/miivar.h>
125
126#include <dev/pci/pcireg.h>
127#include <dev/pci/pcivar.h>
128
129#include <machine/bus.h>
130
131#include <dev/nge/if_ngereg.h>
132
133/* "device miibus" required.  See GENERIC if you get errors here. */
134#include "miibus_if.h"
135
136MODULE_DEPEND(nge, pci, 1, 1, 1);
137MODULE_DEPEND(nge, ether, 1, 1, 1);
138MODULE_DEPEND(nge, miibus, 1, 1, 1);
139
140#define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
141
142/*
143 * Various supported device vendors/types and their names.
144 */
145static const struct nge_type nge_devs[] = {
146	{ NGE_VENDORID, NGE_DEVICEID,
147	    "National Semiconductor Gigabit Ethernet" },
148	{ 0, 0, NULL }
149};
150
151static int nge_probe(device_t);
152static int nge_attach(device_t);
153static int nge_detach(device_t);
154static int nge_shutdown(device_t);
155static int nge_suspend(device_t);
156static int nge_resume(device_t);
157
158static __inline void nge_discard_rxbuf(struct nge_softc *, int);
159static int nge_newbuf(struct nge_softc *, int);
160static int nge_encap(struct nge_softc *, struct mbuf **);
161#ifndef __NO_STRICT_ALIGNMENT
162static __inline void nge_fixup_rx(struct mbuf *);
163#endif
164static int nge_rxeof(struct nge_softc *);
165static void nge_txeof(struct nge_softc *);
166static void nge_intr(void *);
167static void nge_tick(void *);
168static void nge_stats_update(struct nge_softc *);
169static void nge_start(struct ifnet *);
170static void nge_start_locked(struct ifnet *);
171static int nge_ioctl(struct ifnet *, u_long, caddr_t);
172static void nge_init(void *);
173static void nge_init_locked(struct nge_softc *);
174static int nge_stop_mac(struct nge_softc *);
175static void nge_stop(struct nge_softc *);
176static void nge_wol(struct nge_softc *);
177static void nge_watchdog(struct nge_softc *);
178static int nge_mediachange(struct ifnet *);
179static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
180
181static void nge_delay(struct nge_softc *);
182static void nge_eeprom_idle(struct nge_softc *);
183static void nge_eeprom_putbyte(struct nge_softc *, int);
184static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
185static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
186
187static int nge_miibus_readreg(device_t, int, int);
188static int nge_miibus_writereg(device_t, int, int, int);
189static void nge_miibus_statchg(device_t);
190
191static void nge_rxfilter(struct nge_softc *);
192static void nge_reset(struct nge_softc *);
193static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
194static int nge_dma_alloc(struct nge_softc *);
195static void nge_dma_free(struct nge_softc *);
196static int nge_list_rx_init(struct nge_softc *);
197static int nge_list_tx_init(struct nge_softc *);
198static void nge_sysctl_node(struct nge_softc *);
199static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
200static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
201
202/*
203 * MII bit-bang glue
204 */
205static uint32_t nge_mii_bitbang_read(device_t);
206static void nge_mii_bitbang_write(device_t, uint32_t);
207
208static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
209	nge_mii_bitbang_read,
210	nge_mii_bitbang_write,
211	{
212		NGE_MEAR_MII_DATA,	/* MII_BIT_MDO */
213		NGE_MEAR_MII_DATA,	/* MII_BIT_MDI */
214		NGE_MEAR_MII_CLK,	/* MII_BIT_MDC */
215		NGE_MEAR_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
216		0,			/* MII_BIT_DIR_PHY_HOST */
217	}
218};
219
220static device_method_t nge_methods[] = {
221	/* Device interface */
222	DEVMETHOD(device_probe,		nge_probe),
223	DEVMETHOD(device_attach,	nge_attach),
224	DEVMETHOD(device_detach,	nge_detach),
225	DEVMETHOD(device_shutdown,	nge_shutdown),
226	DEVMETHOD(device_suspend,	nge_suspend),
227	DEVMETHOD(device_resume,	nge_resume),
228
229	/* MII interface */
230	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
231	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
232	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
233
234	DEVMETHOD_END
235};
236
237static driver_t nge_driver = {
238	"nge",
239	nge_methods,
240	sizeof(struct nge_softc)
241};
242
243static devclass_t nge_devclass;
244
245DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
246DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
247
248#define NGE_SETBIT(sc, reg, x)				\
249	CSR_WRITE_4(sc, reg,				\
250		CSR_READ_4(sc, reg) | (x))
251
252#define NGE_CLRBIT(sc, reg, x)				\
253	CSR_WRITE_4(sc, reg,				\
254		CSR_READ_4(sc, reg) & ~(x))
255
256#define SIO_SET(x)					\
257	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
258
259#define SIO_CLR(x)					\
260	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
261
262static void
263nge_delay(struct nge_softc *sc)
264{
265	int idx;
266
267	for (idx = (300 / 33) + 1; idx > 0; idx--)
268		CSR_READ_4(sc, NGE_CSR);
269}
270
271static void
272nge_eeprom_idle(struct nge_softc *sc)
273{
274	int i;
275
276	SIO_SET(NGE_MEAR_EE_CSEL);
277	nge_delay(sc);
278	SIO_SET(NGE_MEAR_EE_CLK);
279	nge_delay(sc);
280
281	for (i = 0; i < 25; i++) {
282		SIO_CLR(NGE_MEAR_EE_CLK);
283		nge_delay(sc);
284		SIO_SET(NGE_MEAR_EE_CLK);
285		nge_delay(sc);
286	}
287
288	SIO_CLR(NGE_MEAR_EE_CLK);
289	nge_delay(sc);
290	SIO_CLR(NGE_MEAR_EE_CSEL);
291	nge_delay(sc);
292	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
293}
294
295/*
296 * Send a read command and address to the EEPROM, check for ACK.
297 */
298static void
299nge_eeprom_putbyte(struct nge_softc *sc, int addr)
300{
301	int d, i;
302
303	d = addr | NGE_EECMD_READ;
304
305	/*
306	 * Feed in each bit and stobe the clock.
307	 */
308	for (i = 0x400; i; i >>= 1) {
309		if (d & i) {
310			SIO_SET(NGE_MEAR_EE_DIN);
311		} else {
312			SIO_CLR(NGE_MEAR_EE_DIN);
313		}
314		nge_delay(sc);
315		SIO_SET(NGE_MEAR_EE_CLK);
316		nge_delay(sc);
317		SIO_CLR(NGE_MEAR_EE_CLK);
318		nge_delay(sc);
319	}
320}
321
322/*
323 * Read a word of data stored in the EEPROM at address 'addr.'
324 */
325static void
326nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
327{
328	int i;
329	uint16_t word = 0;
330
331	/* Force EEPROM to idle state. */
332	nge_eeprom_idle(sc);
333
334	/* Enter EEPROM access mode. */
335	nge_delay(sc);
336	SIO_CLR(NGE_MEAR_EE_CLK);
337	nge_delay(sc);
338	SIO_SET(NGE_MEAR_EE_CSEL);
339	nge_delay(sc);
340
341	/*
342	 * Send address of word we want to read.
343	 */
344	nge_eeprom_putbyte(sc, addr);
345
346	/*
347	 * Start reading bits from EEPROM.
348	 */
349	for (i = 0x8000; i; i >>= 1) {
350		SIO_SET(NGE_MEAR_EE_CLK);
351		nge_delay(sc);
352		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
353			word |= i;
354		nge_delay(sc);
355		SIO_CLR(NGE_MEAR_EE_CLK);
356		nge_delay(sc);
357	}
358
359	/* Turn off EEPROM access mode. */
360	nge_eeprom_idle(sc);
361
362	*dest = word;
363}
364
365/*
366 * Read a sequence of words from the EEPROM.
367 */
368static void
369nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
370{
371	int i;
372	uint16_t word = 0, *ptr;
373
374	for (i = 0; i < cnt; i++) {
375		nge_eeprom_getword(sc, off + i, &word);
376		ptr = (uint16_t *)(dest + (i * 2));
377		*ptr = word;
378	}
379}
380
381/*
382 * Read the MII serial port for the MII bit-bang module.
383 */
384static uint32_t
385nge_mii_bitbang_read(device_t dev)
386{
387	struct nge_softc *sc;
388	uint32_t val;
389
390	sc = device_get_softc(dev);
391
392	val = CSR_READ_4(sc, NGE_MEAR);
393	CSR_BARRIER_4(sc, NGE_MEAR,
394	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
395
396	return (val);
397}
398
399/*
400 * Write the MII serial port for the MII bit-bang module.
401 */
402static void
403nge_mii_bitbang_write(device_t dev, uint32_t val)
404{
405	struct nge_softc *sc;
406
407	sc = device_get_softc(dev);
408
409	CSR_WRITE_4(sc, NGE_MEAR, val);
410	CSR_BARRIER_4(sc, NGE_MEAR,
411	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
412}
413
414static int
415nge_miibus_readreg(device_t dev, int phy, int reg)
416{
417	struct nge_softc *sc;
418	int rv;
419
420	sc = device_get_softc(dev);
421	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
422		/* Pretend PHY is at address 0. */
423		if (phy != 0)
424			return (0);
425		switch (reg) {
426		case MII_BMCR:
427			reg = NGE_TBI_BMCR;
428			break;
429		case MII_BMSR:
430			/* 83820/83821 has different bit layout for BMSR. */
431			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
432			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
433			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
434				rv |= BMSR_ACOMP;
435			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
436				rv |= BMSR_LINK;
437			return (rv);
438		case MII_ANAR:
439			reg = NGE_TBI_ANAR;
440			break;
441		case MII_ANLPAR:
442			reg = NGE_TBI_ANLPAR;
443			break;
444		case MII_ANER:
445			reg = NGE_TBI_ANER;
446			break;
447		case MII_EXTSR:
448			reg = NGE_TBI_ESR;
449			break;
450		case MII_PHYIDR1:
451		case MII_PHYIDR2:
452			return (0);
453		default:
454			device_printf(sc->nge_dev,
455			    "bad phy register read : %d\n", reg);
456			return (0);
457		}
458		return (CSR_READ_4(sc, reg));
459	}
460
461	return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
462}
463
464static int
465nge_miibus_writereg(device_t dev, int phy, int reg, int data)
466{
467	struct nge_softc *sc;
468
469	sc = device_get_softc(dev);
470	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
471		/* Pretend PHY is at address 0. */
472		if (phy != 0)
473			return (0);
474		switch (reg) {
475		case MII_BMCR:
476			reg = NGE_TBI_BMCR;
477			break;
478		case MII_BMSR:
479			return (0);
480		case MII_ANAR:
481			reg = NGE_TBI_ANAR;
482			break;
483		case MII_ANLPAR:
484			reg = NGE_TBI_ANLPAR;
485			break;
486		case MII_ANER:
487			reg = NGE_TBI_ANER;
488			break;
489		case MII_EXTSR:
490			reg = NGE_TBI_ESR;
491			break;
492		case MII_PHYIDR1:
493		case MII_PHYIDR2:
494			return (0);
495		default:
496			device_printf(sc->nge_dev,
497			    "bad phy register write : %d\n", reg);
498			return (0);
499		}
500		CSR_WRITE_4(sc, reg, data);
501		return (0);
502	}
503
504	mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
505
506	return (0);
507}
508
509/*
510 * media status/link state change handler.
511 */
512static void
513nge_miibus_statchg(device_t dev)
514{
515	struct nge_softc *sc;
516	struct mii_data *mii;
517	struct ifnet *ifp;
518	struct nge_txdesc *txd;
519	uint32_t done, reg, status;
520	int i;
521
522	sc = device_get_softc(dev);
523	NGE_LOCK_ASSERT(sc);
524
525	mii = device_get_softc(sc->nge_miibus);
526	ifp = sc->nge_ifp;
527	if (mii == NULL || ifp == NULL ||
528	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
529		return;
530
531	sc->nge_flags &= ~NGE_FLAG_LINK;
532	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
533	    (IFM_AVALID | IFM_ACTIVE)) {
534		switch (IFM_SUBTYPE(mii->mii_media_active)) {
535		case IFM_10_T:
536		case IFM_100_TX:
537		case IFM_1000_T:
538		case IFM_1000_SX:
539		case IFM_1000_LX:
540		case IFM_1000_CX:
541			sc->nge_flags |= NGE_FLAG_LINK;
542			break;
543		default:
544			break;
545		}
546	}
547
548	/* Stop Tx/Rx MACs. */
549	if (nge_stop_mac(sc) == ETIMEDOUT)
550		device_printf(sc->nge_dev,
551		    "%s: unable to stop Tx/Rx MAC\n", __func__);
552	nge_txeof(sc);
553	nge_rxeof(sc);
554	if (sc->nge_head != NULL) {
555		m_freem(sc->nge_head);
556		sc->nge_head = sc->nge_tail = NULL;
557	}
558
559	/* Release queued frames. */
560	for (i = 0; i < NGE_TX_RING_CNT; i++) {
561		txd = &sc->nge_cdata.nge_txdesc[i];
562		if (txd->tx_m != NULL) {
563			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
564			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
565			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
566			    txd->tx_dmamap);
567			m_freem(txd->tx_m);
568			txd->tx_m = NULL;
569		}
570	}
571
572	/* Program MAC with resolved speed/duplex. */
573	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
574		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
575			NGE_SETBIT(sc, NGE_TX_CFG,
576			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
577			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
578#ifdef notyet
579			/* Enable flow-control. */
580			if ((IFM_OPTIONS(mii->mii_media_active) &
581			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
582				NGE_SETBIT(sc, NGE_PAUSECSR,
583				    NGE_PAUSECSR_PAUSE_ENB);
584#endif
585		} else {
586			NGE_CLRBIT(sc, NGE_TX_CFG,
587			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
588			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
589			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
590		}
591		/* If we have a 1000Mbps link, set the mode_1000 bit. */
592		reg = CSR_READ_4(sc, NGE_CFG);
593		switch (IFM_SUBTYPE(mii->mii_media_active)) {
594		case IFM_1000_SX:
595		case IFM_1000_LX:
596		case IFM_1000_CX:
597		case IFM_1000_T:
598			reg |= NGE_CFG_MODE_1000;
599			break;
600		default:
601			reg &= ~NGE_CFG_MODE_1000;
602			break;
603		}
604		CSR_WRITE_4(sc, NGE_CFG, reg);
605
606		/* Reset Tx/Rx MAC. */
607		reg = CSR_READ_4(sc, NGE_CSR);
608		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
609		CSR_WRITE_4(sc, NGE_CSR, reg);
610		/* Check the completion of reset. */
611		done = 0;
612		for (i = 0; i < NGE_TIMEOUT; i++) {
613			DELAY(1);
614			status = CSR_READ_4(sc, NGE_ISR);
615			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
616				done |= NGE_ISR_RX_RESET_DONE;
617			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
618				done |= NGE_ISR_TX_RESET_DONE;
619			if (done ==
620			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
621				break;
622		}
623		if (i == NGE_TIMEOUT)
624			device_printf(sc->nge_dev,
625			    "%s: unable to reset Tx/Rx MAC\n", __func__);
626		/* Reuse Rx buffer and reset consumer pointer. */
627		sc->nge_cdata.nge_rx_cons = 0;
628		/*
629		 * It seems that resetting Rx/Tx MAC results in
630		 * resetting Tx/Rx descriptor pointer registers such
631		 * that reloading Tx/Rx lists address are needed.
632		 */
633		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
634		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
635		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
636		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
637		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
638		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
639		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
640		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
641		/* Reinitialize Tx buffers. */
642		nge_list_tx_init(sc);
643
644		/* Restart Rx MAC. */
645		reg = CSR_READ_4(sc, NGE_CSR);
646		reg |= NGE_CSR_RX_ENABLE;
647		CSR_WRITE_4(sc, NGE_CSR, reg);
648		for (i = 0; i < NGE_TIMEOUT; i++) {
649			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
650				break;
651			DELAY(1);
652		}
653		if (i == NGE_TIMEOUT)
654			device_printf(sc->nge_dev,
655			    "%s: unable to restart Rx MAC\n", __func__);
656	}
657
658	/* Data LED off for TBI mode */
659	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
660		CSR_WRITE_4(sc, NGE_GPIO,
661		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
662}
663
664static void
665nge_rxfilter(struct nge_softc *sc)
666{
667	struct ifnet *ifp;
668	struct ifmultiaddr *ifma;
669	uint32_t h, i, rxfilt;
670	int bit, index;
671
672	NGE_LOCK_ASSERT(sc);
673	ifp = sc->nge_ifp;
674
675	/* Make sure to stop Rx filtering. */
676	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
677	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
678	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
679	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
680
681	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
682	rxfilt &= ~NGE_RXFILTCTL_BROAD;
683	/*
684	 * We don't want to use the hash table for matching unicast
685	 * addresses.
686	 */
687	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
688
689	/*
690	 * For the NatSemi chip, we have to explicitly enable the
691	 * reception of ARP frames, as well as turn on the 'perfect
692	 * match' filter where we store the station address, otherwise
693	 * we won't receive unicasts meant for this host.
694	 */
695	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
696
697	/*
698	 * Set the capture broadcast bit to capture broadcast frames.
699	 */
700	if ((ifp->if_flags & IFF_BROADCAST) != 0)
701		rxfilt |= NGE_RXFILTCTL_BROAD;
702
703	if ((ifp->if_flags & IFF_PROMISC) != 0 ||
704	    (ifp->if_flags & IFF_ALLMULTI) != 0) {
705		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
706		if ((ifp->if_flags & IFF_PROMISC) != 0)
707			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
708		goto done;
709	}
710
711	/*
712	 * We have to explicitly enable the multicast hash table
713	 * on the NatSemi chip if we want to use it, which we do.
714	 */
715	rxfilt |= NGE_RXFILTCTL_MCHASH;
716
717	/* first, zot all the existing hash bits */
718	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
719		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
720		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
721	}
722
723	/*
724	 * From the 11 bits returned by the crc routine, the top 7
725	 * bits represent the 16-bit word in the mcast hash table
726	 * that needs to be updated, and the lower 4 bits represent
727	 * which bit within that byte needs to be set.
728	 */
729	if_maddr_rlock(ifp);
730	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
731		if (ifma->ifma_addr->sa_family != AF_LINK)
732			continue;
733		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
734		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
735		index = (h >> 4) & 0x7F;
736		bit = h & 0xF;
737		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
738		    NGE_FILTADDR_MCAST_LO + (index * 2));
739		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
740	}
741	if_maddr_runlock(ifp);
742
743done:
744	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
745	/* Turn the receive filter on. */
746	rxfilt |= NGE_RXFILTCTL_ENABLE;
747	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
748	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
749}
750
751static void
752nge_reset(struct nge_softc *sc)
753{
754	uint32_t v;
755	int i;
756
757	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
758
759	for (i = 0; i < NGE_TIMEOUT; i++) {
760		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
761			break;
762		DELAY(1);
763	}
764
765	if (i == NGE_TIMEOUT)
766		device_printf(sc->nge_dev, "reset never completed\n");
767
768	/* Wait a little while for the chip to get its brains in order. */
769	DELAY(1000);
770
771	/*
772	 * If this is a NetSemi chip, make sure to clear
773	 * PME mode.
774	 */
775	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
776	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
777
778	/* Clear WOL events which may interfere normal Rx filter opertaion. */
779	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
780
781	/*
782	 * Only DP83820 supports 64bits addressing/data transfers and
783	 * 64bit addressing requires different descriptor structures.
784	 * To make it simple, disable 64bit addressing/data transfers.
785	 */
786	v = CSR_READ_4(sc, NGE_CFG);
787	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
788	CSR_WRITE_4(sc, NGE_CFG, v);
789}
790
791/*
792 * Probe for a NatSemi chip. Check the PCI vendor and device
793 * IDs against our list and return a device name if we find a match.
794 */
795static int
796nge_probe(device_t dev)
797{
798	const struct nge_type *t;
799
800	t = nge_devs;
801
802	while (t->nge_name != NULL) {
803		if ((pci_get_vendor(dev) == t->nge_vid) &&
804		    (pci_get_device(dev) == t->nge_did)) {
805			device_set_desc(dev, t->nge_name);
806			return (BUS_PROBE_DEFAULT);
807		}
808		t++;
809	}
810
811	return (ENXIO);
812}
813
814/*
815 * Attach the interface. Allocate softc structures, do ifmedia
816 * setup and ethernet/BPF attach.
817 */
818static int
819nge_attach(device_t dev)
820{
821	uint8_t eaddr[ETHER_ADDR_LEN];
822	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
823	struct nge_softc *sc;
824	struct ifnet *ifp;
825	int error, i, rid;
826
827	error = 0;
828	sc = device_get_softc(dev);
829	sc->nge_dev = dev;
830
831	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
832	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
833
834	/*
835	 * Map control/status registers.
836	 */
837	pci_enable_busmaster(dev);
838
839#ifdef NGE_USEIOSPACE
840	sc->nge_res_type = SYS_RES_IOPORT;
841	sc->nge_res_id = PCIR_BAR(0);
842#else
843	sc->nge_res_type = SYS_RES_MEMORY;
844	sc->nge_res_id = PCIR_BAR(1);
845#endif
846	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
847	    &sc->nge_res_id, RF_ACTIVE);
848
849	if (sc->nge_res == NULL) {
850		if (sc->nge_res_type == SYS_RES_MEMORY) {
851			sc->nge_res_type = SYS_RES_IOPORT;
852			sc->nge_res_id = PCIR_BAR(0);
853		} else {
854			sc->nge_res_type = SYS_RES_MEMORY;
855			sc->nge_res_id = PCIR_BAR(1);
856		}
857		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
858		    &sc->nge_res_id, RF_ACTIVE);
859		if (sc->nge_res == NULL) {
860			device_printf(dev, "couldn't allocate %s resources\n",
861			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
862			    "I/O");
863			NGE_LOCK_DESTROY(sc);
864			return (ENXIO);
865		}
866	}
867
868	/* Allocate interrupt */
869	rid = 0;
870	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
871	    RF_SHAREABLE | RF_ACTIVE);
872
873	if (sc->nge_irq == NULL) {
874		device_printf(dev, "couldn't map interrupt\n");
875		error = ENXIO;
876		goto fail;
877	}
878
879	/* Enable MWI. */
880	reg = pci_read_config(dev, PCIR_COMMAND, 2);
881	reg |= PCIM_CMD_MWRICEN;
882	pci_write_config(dev, PCIR_COMMAND, reg, 2);
883
884	/* Reset the adapter. */
885	nge_reset(sc);
886
887	/*
888	 * Get station address from the EEPROM.
889	 */
890	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
891	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
892		ea[i] = le16toh(ea[i]);
893	ea_temp = ea[0];
894	ea[0] = ea[2];
895	ea[2] = ea_temp;
896	bcopy(ea, eaddr, sizeof(eaddr));
897
898	if (nge_dma_alloc(sc) != 0) {
899		error = ENXIO;
900		goto fail;
901	}
902
903	nge_sysctl_node(sc);
904
905	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
906	if (ifp == NULL) {
907		device_printf(dev, "can not allocate ifnet structure\n");
908		error = ENOSPC;
909		goto fail;
910	}
911	ifp->if_softc = sc;
912	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
913	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
914	ifp->if_ioctl = nge_ioctl;
915	ifp->if_start = nge_start;
916	ifp->if_init = nge_init;
917	ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
918	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
919	IFQ_SET_READY(&ifp->if_snd);
920	ifp->if_hwassist = NGE_CSUM_FEATURES;
921	ifp->if_capabilities = IFCAP_HWCSUM;
922	/*
923	 * It seems that some hardwares doesn't provide 3.3V auxiliary
924	 * supply(3VAUX) to drive PME such that checking PCI power
925	 * management capability is necessary.
926	 */
927	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
928		ifp->if_capabilities |= IFCAP_WOL;
929	ifp->if_capenable = ifp->if_capabilities;
930
931	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
932		sc->nge_flags |= NGE_FLAG_TBI;
933		device_printf(dev, "Using TBI\n");
934		/* Configure GPIO. */
935		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
936		    | NGE_GPIO_GP4_OUT
937		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
938		    | NGE_GPIO_GP3_OUTENB
939		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
940	}
941
942	/*
943	 * Do MII setup.
944	 */
945	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
946	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
947	if (error != 0) {
948		device_printf(dev, "attaching PHYs failed\n");
949		goto fail;
950	}
951
952	/*
953	 * Call MI attach routine.
954	 */
955	ether_ifattach(ifp, eaddr);
956
957	/* VLAN capability setup. */
958	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
959	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
960	ifp->if_capenable = ifp->if_capabilities;
961#ifdef DEVICE_POLLING
962	ifp->if_capabilities |= IFCAP_POLLING;
963#endif
964	/*
965	 * Tell the upper layer(s) we support long frames.
966	 * Must appear after the call to ether_ifattach() because
967	 * ether_ifattach() sets ifi_hdrlen to the default value.
968	 */
969	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
970
971	/*
972	 * Hookup IRQ last.
973	 */
974	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
975	    NULL, nge_intr, sc, &sc->nge_intrhand);
976	if (error) {
977		device_printf(dev, "couldn't set up irq\n");
978		goto fail;
979	}
980
981fail:
982	if (error != 0)
983		nge_detach(dev);
984	return (error);
985}
986
987static int
988nge_detach(device_t dev)
989{
990	struct nge_softc *sc;
991	struct ifnet *ifp;
992
993	sc = device_get_softc(dev);
994	ifp = sc->nge_ifp;
995
996#ifdef DEVICE_POLLING
997	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
998		ether_poll_deregister(ifp);
999#endif
1000
1001	if (device_is_attached(dev)) {
1002		NGE_LOCK(sc);
1003		sc->nge_flags |= NGE_FLAG_DETACH;
1004		nge_stop(sc);
1005		NGE_UNLOCK(sc);
1006		callout_drain(&sc->nge_stat_ch);
1007		if (ifp != NULL)
1008			ether_ifdetach(ifp);
1009	}
1010
1011	if (sc->nge_miibus != NULL) {
1012		device_delete_child(dev, sc->nge_miibus);
1013		sc->nge_miibus = NULL;
1014	}
1015	bus_generic_detach(dev);
1016	if (sc->nge_intrhand != NULL)
1017		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1018	if (sc->nge_irq != NULL)
1019		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1020	if (sc->nge_res != NULL)
1021		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1022		    sc->nge_res);
1023
1024	nge_dma_free(sc);
1025	if (ifp != NULL)
1026		if_free(ifp);
1027
1028	NGE_LOCK_DESTROY(sc);
1029
1030	return (0);
1031}
1032
1033struct nge_dmamap_arg {
1034	bus_addr_t	nge_busaddr;
1035};
1036
1037static void
1038nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1039{
1040	struct nge_dmamap_arg *ctx;
1041
1042	if (error != 0)
1043		return;
1044	ctx = arg;
1045	ctx->nge_busaddr = segs[0].ds_addr;
1046}
1047
1048static int
1049nge_dma_alloc(struct nge_softc *sc)
1050{
1051	struct nge_dmamap_arg ctx;
1052	struct nge_txdesc *txd;
1053	struct nge_rxdesc *rxd;
1054	int error, i;
1055
1056	/* Create parent DMA tag. */
1057	error = bus_dma_tag_create(
1058	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1059	    1, 0,			/* alignment, boundary */
1060	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1061	    BUS_SPACE_MAXADDR,		/* highaddr */
1062	    NULL, NULL,			/* filter, filterarg */
1063	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1064	    0,				/* nsegments */
1065	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1066	    0,				/* flags */
1067	    NULL, NULL,			/* lockfunc, lockarg */
1068	    &sc->nge_cdata.nge_parent_tag);
1069	if (error != 0) {
1070		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1071		goto fail;
1072	}
1073	/* Create tag for Tx ring. */
1074	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1075	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1076	    BUS_SPACE_MAXADDR,		/* lowaddr */
1077	    BUS_SPACE_MAXADDR,		/* highaddr */
1078	    NULL, NULL,			/* filter, filterarg */
1079	    NGE_TX_RING_SIZE,		/* maxsize */
1080	    1,				/* nsegments */
1081	    NGE_TX_RING_SIZE,		/* maxsegsize */
1082	    0,				/* flags */
1083	    NULL, NULL,			/* lockfunc, lockarg */
1084	    &sc->nge_cdata.nge_tx_ring_tag);
1085	if (error != 0) {
1086		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1087		goto fail;
1088	}
1089
1090	/* Create tag for Rx ring. */
1091	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1092	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1093	    BUS_SPACE_MAXADDR,		/* lowaddr */
1094	    BUS_SPACE_MAXADDR,		/* highaddr */
1095	    NULL, NULL,			/* filter, filterarg */
1096	    NGE_RX_RING_SIZE,		/* maxsize */
1097	    1,				/* nsegments */
1098	    NGE_RX_RING_SIZE,		/* maxsegsize */
1099	    0,				/* flags */
1100	    NULL, NULL,			/* lockfunc, lockarg */
1101	    &sc->nge_cdata.nge_rx_ring_tag);
1102	if (error != 0) {
1103		device_printf(sc->nge_dev,
1104		    "failed to create Rx ring DMA tag\n");
1105		goto fail;
1106	}
1107
1108	/* Create tag for Tx buffers. */
1109	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1110	    1, 0,			/* alignment, boundary */
1111	    BUS_SPACE_MAXADDR,		/* lowaddr */
1112	    BUS_SPACE_MAXADDR,		/* highaddr */
1113	    NULL, NULL,			/* filter, filterarg */
1114	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1115	    NGE_MAXTXSEGS,		/* nsegments */
1116	    MCLBYTES,			/* maxsegsize */
1117	    0,				/* flags */
1118	    NULL, NULL,			/* lockfunc, lockarg */
1119	    &sc->nge_cdata.nge_tx_tag);
1120	if (error != 0) {
1121		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1122		goto fail;
1123	}
1124
1125	/* Create tag for Rx buffers. */
1126	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1127	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1128	    BUS_SPACE_MAXADDR,		/* lowaddr */
1129	    BUS_SPACE_MAXADDR,		/* highaddr */
1130	    NULL, NULL,			/* filter, filterarg */
1131	    MCLBYTES,			/* maxsize */
1132	    1,				/* nsegments */
1133	    MCLBYTES,			/* maxsegsize */
1134	    0,				/* flags */
1135	    NULL, NULL,			/* lockfunc, lockarg */
1136	    &sc->nge_cdata.nge_rx_tag);
1137	if (error != 0) {
1138		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1139		goto fail;
1140	}
1141
1142	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1143	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1144	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1145	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1146	if (error != 0) {
1147		device_printf(sc->nge_dev,
1148		    "failed to allocate DMA'able memory for Tx ring\n");
1149		goto fail;
1150	}
1151
1152	ctx.nge_busaddr = 0;
1153	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1154	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1155	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1156	if (error != 0 || ctx.nge_busaddr == 0) {
1157		device_printf(sc->nge_dev,
1158		    "failed to load DMA'able memory for Tx ring\n");
1159		goto fail;
1160	}
1161	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1162
1163	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1164	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1165	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1166	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1167	if (error != 0) {
1168		device_printf(sc->nge_dev,
1169		    "failed to allocate DMA'able memory for Rx ring\n");
1170		goto fail;
1171	}
1172
1173	ctx.nge_busaddr = 0;
1174	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1175	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1176	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1177	if (error != 0 || ctx.nge_busaddr == 0) {
1178		device_printf(sc->nge_dev,
1179		    "failed to load DMA'able memory for Rx ring\n");
1180		goto fail;
1181	}
1182	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1183
1184	/* Create DMA maps for Tx buffers. */
1185	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1186		txd = &sc->nge_cdata.nge_txdesc[i];
1187		txd->tx_m = NULL;
1188		txd->tx_dmamap = NULL;
1189		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1190		    &txd->tx_dmamap);
1191		if (error != 0) {
1192			device_printf(sc->nge_dev,
1193			    "failed to create Tx dmamap\n");
1194			goto fail;
1195		}
1196	}
1197	/* Create DMA maps for Rx buffers. */
1198	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1199	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1200		device_printf(sc->nge_dev,
1201		    "failed to create spare Rx dmamap\n");
1202		goto fail;
1203	}
1204	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1205		rxd = &sc->nge_cdata.nge_rxdesc[i];
1206		rxd->rx_m = NULL;
1207		rxd->rx_dmamap = NULL;
1208		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1209		    &rxd->rx_dmamap);
1210		if (error != 0) {
1211			device_printf(sc->nge_dev,
1212			    "failed to create Rx dmamap\n");
1213			goto fail;
1214		}
1215	}
1216
1217fail:
1218	return (error);
1219}
1220
1221static void
1222nge_dma_free(struct nge_softc *sc)
1223{
1224	struct nge_txdesc *txd;
1225	struct nge_rxdesc *rxd;
1226	int i;
1227
1228	/* Tx ring. */
1229	if (sc->nge_cdata.nge_tx_ring_tag) {
1230		if (sc->nge_rdata.nge_tx_ring_paddr)
1231			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1232			    sc->nge_cdata.nge_tx_ring_map);
1233		if (sc->nge_rdata.nge_tx_ring)
1234			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1235			    sc->nge_rdata.nge_tx_ring,
1236			    sc->nge_cdata.nge_tx_ring_map);
1237		sc->nge_rdata.nge_tx_ring = NULL;
1238		sc->nge_rdata.nge_tx_ring_paddr = 0;
1239		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1240		sc->nge_cdata.nge_tx_ring_tag = NULL;
1241	}
1242	/* Rx ring. */
1243	if (sc->nge_cdata.nge_rx_ring_tag) {
1244		if (sc->nge_rdata.nge_rx_ring_paddr)
1245			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1246			    sc->nge_cdata.nge_rx_ring_map);
1247		if (sc->nge_rdata.nge_rx_ring)
1248			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1249			    sc->nge_rdata.nge_rx_ring,
1250			    sc->nge_cdata.nge_rx_ring_map);
1251		sc->nge_rdata.nge_rx_ring = NULL;
1252		sc->nge_rdata.nge_rx_ring_paddr = 0;
1253		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1254		sc->nge_cdata.nge_rx_ring_tag = NULL;
1255	}
1256	/* Tx buffers. */
1257	if (sc->nge_cdata.nge_tx_tag) {
1258		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1259			txd = &sc->nge_cdata.nge_txdesc[i];
1260			if (txd->tx_dmamap) {
1261				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1262				    txd->tx_dmamap);
1263				txd->tx_dmamap = NULL;
1264			}
1265		}
1266		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1267		sc->nge_cdata.nge_tx_tag = NULL;
1268	}
1269	/* Rx buffers. */
1270	if (sc->nge_cdata.nge_rx_tag) {
1271		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1272			rxd = &sc->nge_cdata.nge_rxdesc[i];
1273			if (rxd->rx_dmamap) {
1274				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1275				    rxd->rx_dmamap);
1276				rxd->rx_dmamap = NULL;
1277			}
1278		}
1279		if (sc->nge_cdata.nge_rx_sparemap) {
1280			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1281			    sc->nge_cdata.nge_rx_sparemap);
1282			sc->nge_cdata.nge_rx_sparemap = 0;
1283		}
1284		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1285		sc->nge_cdata.nge_rx_tag = NULL;
1286	}
1287
1288	if (sc->nge_cdata.nge_parent_tag) {
1289		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1290		sc->nge_cdata.nge_parent_tag = NULL;
1291	}
1292}
1293
1294/*
1295 * Initialize the transmit descriptors.
1296 */
1297static int
1298nge_list_tx_init(struct nge_softc *sc)
1299{
1300	struct nge_ring_data *rd;
1301	struct nge_txdesc *txd;
1302	bus_addr_t addr;
1303	int i;
1304
1305	sc->nge_cdata.nge_tx_prod = 0;
1306	sc->nge_cdata.nge_tx_cons = 0;
1307	sc->nge_cdata.nge_tx_cnt = 0;
1308
1309	rd = &sc->nge_rdata;
1310	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1311	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1312		if (i == NGE_TX_RING_CNT - 1)
1313			addr = NGE_TX_RING_ADDR(sc, 0);
1314		else
1315			addr = NGE_TX_RING_ADDR(sc, i + 1);
1316		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1317		txd = &sc->nge_cdata.nge_txdesc[i];
1318		txd->tx_m = NULL;
1319	}
1320
1321	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1322	    sc->nge_cdata.nge_tx_ring_map,
1323	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1324
1325	return (0);
1326}
1327
1328/*
1329 * Initialize the RX descriptors and allocate mbufs for them. Note that
1330 * we arrange the descriptors in a closed ring, so that the last descriptor
1331 * points back to the first.
1332 */
1333static int
1334nge_list_rx_init(struct nge_softc *sc)
1335{
1336	struct nge_ring_data *rd;
1337	bus_addr_t addr;
1338	int i;
1339
1340	sc->nge_cdata.nge_rx_cons = 0;
1341	sc->nge_head = sc->nge_tail = NULL;
1342
1343	rd = &sc->nge_rdata;
1344	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1345	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1346		if (nge_newbuf(sc, i) != 0)
1347			return (ENOBUFS);
1348		if (i == NGE_RX_RING_CNT - 1)
1349			addr = NGE_RX_RING_ADDR(sc, 0);
1350		else
1351			addr = NGE_RX_RING_ADDR(sc, i + 1);
1352		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1353	}
1354
1355	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1356	    sc->nge_cdata.nge_rx_ring_map,
1357	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1358
1359	return (0);
1360}
1361
1362static __inline void
1363nge_discard_rxbuf(struct nge_softc *sc, int idx)
1364{
1365	struct nge_desc *desc;
1366
1367	desc = &sc->nge_rdata.nge_rx_ring[idx];
1368	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1369	desc->nge_extsts = 0;
1370}
1371
1372/*
1373 * Initialize an RX descriptor and attach an MBUF cluster.
1374 */
1375static int
1376nge_newbuf(struct nge_softc *sc, int idx)
1377{
1378	struct nge_desc *desc;
1379	struct nge_rxdesc *rxd;
1380	struct mbuf *m;
1381	bus_dma_segment_t segs[1];
1382	bus_dmamap_t map;
1383	int nsegs;
1384
1385	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1386	if (m == NULL)
1387		return (ENOBUFS);
1388	m->m_len = m->m_pkthdr.len = MCLBYTES;
1389	m_adj(m, sizeof(uint64_t));
1390
1391	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1392	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1393		m_freem(m);
1394		return (ENOBUFS);
1395	}
1396	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1397
1398	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1399	if (rxd->rx_m != NULL) {
1400		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1401		    BUS_DMASYNC_POSTREAD);
1402		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1403	}
1404	map = rxd->rx_dmamap;
1405	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1406	sc->nge_cdata.nge_rx_sparemap = map;
1407	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1408	    BUS_DMASYNC_PREREAD);
1409	rxd->rx_m = m;
1410	desc = &sc->nge_rdata.nge_rx_ring[idx];
1411	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1412	desc->nge_cmdsts = htole32(segs[0].ds_len);
1413	desc->nge_extsts = 0;
1414
1415	return (0);
1416}
1417
1418#ifndef __NO_STRICT_ALIGNMENT
1419static __inline void
1420nge_fixup_rx(struct mbuf *m)
1421{
1422	int			i;
1423	uint16_t		*src, *dst;
1424
1425	src = mtod(m, uint16_t *);
1426	dst = src - 1;
1427
1428	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1429		*dst++ = *src++;
1430
1431	m->m_data -= ETHER_ALIGN;
1432}
1433#endif
1434
1435/*
1436 * A frame has been uploaded: pass the resulting mbuf chain up to
1437 * the higher level protocols.
1438 */
1439static int
1440nge_rxeof(struct nge_softc *sc)
1441{
1442	struct mbuf *m;
1443	struct ifnet *ifp;
1444	struct nge_desc *cur_rx;
1445	struct nge_rxdesc *rxd;
1446	int cons, prog, rx_npkts, total_len;
1447	uint32_t cmdsts, extsts;
1448
1449	NGE_LOCK_ASSERT(sc);
1450
1451	ifp = sc->nge_ifp;
1452	cons = sc->nge_cdata.nge_rx_cons;
1453	rx_npkts = 0;
1454
1455	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1456	    sc->nge_cdata.nge_rx_ring_map,
1457	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1458
1459	for (prog = 0; prog < NGE_RX_RING_CNT &&
1460	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1461	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1462#ifdef DEVICE_POLLING
1463		if (ifp->if_capenable & IFCAP_POLLING) {
1464			if (sc->rxcycles <= 0)
1465				break;
1466			sc->rxcycles--;
1467		}
1468#endif
1469		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1470		cmdsts = le32toh(cur_rx->nge_cmdsts);
1471		extsts = le32toh(cur_rx->nge_extsts);
1472		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1473			break;
1474		prog++;
1475		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1476		m = rxd->rx_m;
1477		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1478
1479		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1480			if (nge_newbuf(sc, cons) != 0) {
1481				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1482				if (sc->nge_head != NULL) {
1483					m_freem(sc->nge_head);
1484					sc->nge_head = sc->nge_tail = NULL;
1485				}
1486				nge_discard_rxbuf(sc, cons);
1487				continue;
1488			}
1489			m->m_len = total_len;
1490			if (sc->nge_head == NULL) {
1491				m->m_pkthdr.len = total_len;
1492				sc->nge_head = sc->nge_tail = m;
1493			} else {
1494				m->m_flags &= ~M_PKTHDR;
1495				sc->nge_head->m_pkthdr.len += total_len;
1496				sc->nge_tail->m_next = m;
1497				sc->nge_tail = m;
1498			}
1499			continue;
1500		}
1501
1502		/*
1503		 * If an error occurs, update stats, clear the
1504		 * status word and leave the mbuf cluster in place:
1505		 * it should simply get re-used next time this descriptor
1506	 	 * comes up in the ring.
1507		 */
1508		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1509			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1510			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1511				/*
1512				 * Work-around hardware bug, accept runt frames
1513				 * if its length is larger than or equal to 56.
1514				 */
1515			} else {
1516				/*
1517				 * Input error counters are updated by hardware.
1518				 */
1519				if (sc->nge_head != NULL) {
1520					m_freem(sc->nge_head);
1521					sc->nge_head = sc->nge_tail = NULL;
1522				}
1523				nge_discard_rxbuf(sc, cons);
1524				continue;
1525			}
1526		}
1527
1528		/* Try conjure up a replacement mbuf. */
1529
1530		if (nge_newbuf(sc, cons) != 0) {
1531			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1532			if (sc->nge_head != NULL) {
1533				m_freem(sc->nge_head);
1534				sc->nge_head = sc->nge_tail = NULL;
1535			}
1536			nge_discard_rxbuf(sc, cons);
1537			continue;
1538		}
1539
1540		/* Chain received mbufs. */
1541		if (sc->nge_head != NULL) {
1542			m->m_len = total_len;
1543			m->m_flags &= ~M_PKTHDR;
1544			sc->nge_tail->m_next = m;
1545			m = sc->nge_head;
1546			m->m_pkthdr.len += total_len;
1547			sc->nge_head = sc->nge_tail = NULL;
1548		} else
1549			m->m_pkthdr.len = m->m_len = total_len;
1550
1551		/*
1552		 * Ok. NatSemi really screwed up here. This is the
1553		 * only gigE chip I know of with alignment constraints
1554		 * on receive buffers. RX buffers must be 64-bit aligned.
1555		 */
1556		/*
1557		 * By popular demand, ignore the alignment problems
1558		 * on the non-strict alignment platform. The performance hit
1559		 * incurred due to unaligned accesses is much smaller
1560		 * than the hit produced by forcing buffer copies all
1561		 * the time, especially with jumbo frames. We still
1562		 * need to fix up the alignment everywhere else though.
1563		 */
1564#ifndef __NO_STRICT_ALIGNMENT
1565		nge_fixup_rx(m);
1566#endif
1567		m->m_pkthdr.rcvif = ifp;
1568		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1569
1570		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1571			/* Do IP checksum checking. */
1572			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1573				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1574			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1575				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1576			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1577			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1578			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1579			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1580				m->m_pkthdr.csum_flags |=
1581				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1582				m->m_pkthdr.csum_data = 0xffff;
1583			}
1584		}
1585
1586		/*
1587		 * If we received a packet with a vlan tag, pass it
1588		 * to vlan_input() instead of ether_input().
1589		 */
1590		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1591		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1592			m->m_pkthdr.ether_vtag =
1593			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1594			m->m_flags |= M_VLANTAG;
1595		}
1596		NGE_UNLOCK(sc);
1597		(*ifp->if_input)(ifp, m);
1598		NGE_LOCK(sc);
1599		rx_npkts++;
1600	}
1601
1602	if (prog > 0) {
1603		sc->nge_cdata.nge_rx_cons = cons;
1604		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1605		    sc->nge_cdata.nge_rx_ring_map,
1606		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1607	}
1608	return (rx_npkts);
1609}
1610
1611/*
1612 * A frame was downloaded to the chip. It's safe for us to clean up
1613 * the list buffers.
1614 */
1615static void
1616nge_txeof(struct nge_softc *sc)
1617{
1618	struct nge_desc	*cur_tx;
1619	struct nge_txdesc *txd;
1620	struct ifnet *ifp;
1621	uint32_t cmdsts;
1622	int cons, prod;
1623
1624	NGE_LOCK_ASSERT(sc);
1625	ifp = sc->nge_ifp;
1626
1627	cons = sc->nge_cdata.nge_tx_cons;
1628	prod = sc->nge_cdata.nge_tx_prod;
1629	if (cons == prod)
1630		return;
1631
1632	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1633	    sc->nge_cdata.nge_tx_ring_map,
1634	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1635
1636	/*
1637	 * Go through our tx list and free mbufs for those
1638	 * frames that have been transmitted.
1639	 */
1640	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1641		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1642		cmdsts = le32toh(cur_tx->nge_cmdsts);
1643		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1644			break;
1645		sc->nge_cdata.nge_tx_cnt--;
1646		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1647		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1648			continue;
1649
1650		txd = &sc->nge_cdata.nge_txdesc[cons];
1651		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1652		    BUS_DMASYNC_POSTWRITE);
1653		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1654		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1655			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1656			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1657				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1658			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1659				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1660		} else
1661			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1662
1663		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (cmdsts & NGE_TXSTAT_COLLCNT) >> 16);
1664		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1665		    __func__));
1666		m_freem(txd->tx_m);
1667		txd->tx_m = NULL;
1668	}
1669
1670	sc->nge_cdata.nge_tx_cons = cons;
1671	if (sc->nge_cdata.nge_tx_cnt == 0)
1672		sc->nge_watchdog_timer = 0;
1673}
1674
1675static void
1676nge_tick(void *xsc)
1677{
1678	struct nge_softc *sc;
1679	struct mii_data *mii;
1680
1681	sc = xsc;
1682	NGE_LOCK_ASSERT(sc);
1683	mii = device_get_softc(sc->nge_miibus);
1684	mii_tick(mii);
1685	/*
1686	 * For PHYs that does not reset established link, it is
1687	 * necessary to check whether driver still have a valid
1688	 * link(e.g link state change callback is not called).
1689	 * Otherwise, driver think it lost link because driver
1690	 * initialization routine clears link state flag.
1691	 */
1692	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1693		nge_miibus_statchg(sc->nge_dev);
1694	nge_stats_update(sc);
1695	nge_watchdog(sc);
1696	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1697}
1698
1699static void
1700nge_stats_update(struct nge_softc *sc)
1701{
1702	struct ifnet *ifp;
1703	struct nge_stats now, *stats, *nstats;
1704
1705	NGE_LOCK_ASSERT(sc);
1706
1707	ifp = sc->nge_ifp;
1708	stats = &now;
1709	stats->rx_pkts_errs =
1710	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1711	stats->rx_crc_errs =
1712	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1713	stats->rx_fifo_oflows =
1714	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1715	stats->rx_align_errs =
1716	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1717	stats->rx_sym_errs =
1718	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1719	stats->rx_pkts_jumbos =
1720	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1721	stats->rx_len_errs =
1722	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1723	stats->rx_unctl_frames =
1724	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1725	stats->rx_pause =
1726	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1727	stats->tx_pause =
1728	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1729	stats->tx_seq_errs =
1730	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1731
1732	/*
1733	 * Since we've accept errored frames exclude Rx length errors.
1734	 */
1735	if_inc_counter(ifp, IFCOUNTER_IERRORS,
1736	    stats->rx_pkts_errs + stats->rx_crc_errs +
1737	    stats->rx_fifo_oflows + stats->rx_sym_errs);
1738
1739	nstats = &sc->nge_stats;
1740	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1741	nstats->rx_crc_errs += stats->rx_crc_errs;
1742	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1743	nstats->rx_align_errs += stats->rx_align_errs;
1744	nstats->rx_sym_errs += stats->rx_sym_errs;
1745	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1746	nstats->rx_len_errs += stats->rx_len_errs;
1747	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1748	nstats->rx_pause += stats->rx_pause;
1749	nstats->tx_pause += stats->tx_pause;
1750	nstats->tx_seq_errs += stats->tx_seq_errs;
1751}
1752
1753#ifdef DEVICE_POLLING
1754static poll_handler_t nge_poll;
1755
1756static int
1757nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1758{
1759	struct nge_softc *sc;
1760	int rx_npkts = 0;
1761
1762	sc = ifp->if_softc;
1763
1764	NGE_LOCK(sc);
1765	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1766		NGE_UNLOCK(sc);
1767		return (rx_npkts);
1768	}
1769
1770	/*
1771	 * On the nge, reading the status register also clears it.
1772	 * So before returning to intr mode we must make sure that all
1773	 * possible pending sources of interrupts have been served.
1774	 * In practice this means run to completion the *eof routines,
1775	 * and then call the interrupt routine.
1776	 */
1777	sc->rxcycles = count;
1778	rx_npkts = nge_rxeof(sc);
1779	nge_txeof(sc);
1780	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1781		nge_start_locked(ifp);
1782
1783	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1784		uint32_t	status;
1785
1786		/* Reading the ISR register clears all interrupts. */
1787		status = CSR_READ_4(sc, NGE_ISR);
1788
1789		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1790			rx_npkts += nge_rxeof(sc);
1791
1792		if ((status & NGE_ISR_RX_IDLE) != 0)
1793			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1794
1795		if ((status & NGE_ISR_SYSERR) != 0) {
1796			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1797			nge_init_locked(sc);
1798		}
1799	}
1800	NGE_UNLOCK(sc);
1801	return (rx_npkts);
1802}
1803#endif /* DEVICE_POLLING */
1804
1805static void
1806nge_intr(void *arg)
1807{
1808	struct nge_softc *sc;
1809	struct ifnet *ifp;
1810	uint32_t status;
1811
1812	sc = (struct nge_softc *)arg;
1813	ifp = sc->nge_ifp;
1814
1815	NGE_LOCK(sc);
1816
1817	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1818		goto done_locked;
1819
1820	/* Reading the ISR register clears all interrupts. */
1821	status = CSR_READ_4(sc, NGE_ISR);
1822	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1823		goto done_locked;
1824#ifdef DEVICE_POLLING
1825	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1826		goto done_locked;
1827#endif
1828	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1829		goto done_locked;
1830
1831	/* Disable interrupts. */
1832	CSR_WRITE_4(sc, NGE_IER, 0);
1833
1834	/* Data LED on for TBI mode */
1835	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1836		CSR_WRITE_4(sc, NGE_GPIO,
1837		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1838
1839	for (; (status & NGE_INTRS) != 0;) {
1840		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1841		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1842			nge_txeof(sc);
1843
1844		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1845		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1846		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1847			nge_rxeof(sc);
1848
1849		if ((status & NGE_ISR_RX_IDLE) != 0)
1850			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1851
1852		if ((status & NGE_ISR_SYSERR) != 0) {
1853			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1854			nge_init_locked(sc);
1855		}
1856		/* Reading the ISR register clears all interrupts. */
1857		status = CSR_READ_4(sc, NGE_ISR);
1858	}
1859
1860	/* Re-enable interrupts. */
1861	CSR_WRITE_4(sc, NGE_IER, 1);
1862
1863	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1864		nge_start_locked(ifp);
1865
1866	/* Data LED off for TBI mode */
1867	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1868		CSR_WRITE_4(sc, NGE_GPIO,
1869		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
1870
1871done_locked:
1872	NGE_UNLOCK(sc);
1873}
1874
1875/*
1876 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1877 * pointers to the fragment pointers.
1878 */
1879static int
1880nge_encap(struct nge_softc *sc, struct mbuf **m_head)
1881{
1882	struct nge_txdesc *txd, *txd_last;
1883	struct nge_desc *desc;
1884	struct mbuf *m;
1885	bus_dmamap_t map;
1886	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
1887	int error, i, nsegs, prod, si;
1888
1889	NGE_LOCK_ASSERT(sc);
1890
1891	m = *m_head;
1892	prod = sc->nge_cdata.nge_tx_prod;
1893	txd = &sc->nge_cdata.nge_txdesc[prod];
1894	txd_last = txd;
1895	map = txd->tx_dmamap;
1896	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
1897	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1898	if (error == EFBIG) {
1899		m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
1900		if (m == NULL) {
1901			m_freem(*m_head);
1902			*m_head = NULL;
1903			return (ENOBUFS);
1904		}
1905		*m_head = m;
1906		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
1907		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1908		if (error != 0) {
1909			m_freem(*m_head);
1910			*m_head = NULL;
1911			return (error);
1912		}
1913	} else if (error != 0)
1914		return (error);
1915	if (nsegs == 0) {
1916		m_freem(*m_head);
1917		*m_head = NULL;
1918		return (EIO);
1919	}
1920
1921	/* Check number of available descriptors. */
1922	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
1923		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
1924		return (ENOBUFS);
1925	}
1926
1927	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
1928
1929	si = prod;
1930	for (i = 0; i < nsegs; i++) {
1931		desc = &sc->nge_rdata.nge_tx_ring[prod];
1932		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
1933		if (i == 0)
1934			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1935			    NGE_CMDSTS_MORE);
1936		else
1937			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1938			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
1939		desc->nge_extsts = 0;
1940		sc->nge_cdata.nge_tx_cnt++;
1941		NGE_INC(prod, NGE_TX_RING_CNT);
1942	}
1943	/* Update producer index. */
1944	sc->nge_cdata.nge_tx_prod = prod;
1945
1946	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
1947	desc = &sc->nge_rdata.nge_tx_ring[prod];
1948	/* Check if we have a VLAN tag to insert. */
1949	if ((m->m_flags & M_VLANTAG) != 0)
1950		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
1951		    bswap16(m->m_pkthdr.ether_vtag));
1952	/* Set EOP on the last desciptor. */
1953	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
1954
1955	/* Set checksum offload in the first descriptor. */
1956	desc = &sc->nge_rdata.nge_tx_ring[si];
1957	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
1958		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1959			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
1960		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1961			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
1962		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1963			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
1964	}
1965	/* Lastly, turn the first descriptor ownership to hardware. */
1966	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
1967
1968	txd = &sc->nge_cdata.nge_txdesc[prod];
1969	map = txd_last->tx_dmamap;
1970	txd_last->tx_dmamap = txd->tx_dmamap;
1971	txd->tx_dmamap = map;
1972	txd->tx_m = m;
1973
1974	return (0);
1975}
1976
1977/*
1978 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1979 * to the mbuf data regions directly in the transmit lists. We also save a
1980 * copy of the pointers since the transmit list fragment pointers are
1981 * physical addresses.
1982 */
1983
1984static void
1985nge_start(struct ifnet *ifp)
1986{
1987	struct nge_softc *sc;
1988
1989	sc = ifp->if_softc;
1990	NGE_LOCK(sc);
1991	nge_start_locked(ifp);
1992	NGE_UNLOCK(sc);
1993}
1994
1995static void
1996nge_start_locked(struct ifnet *ifp)
1997{
1998	struct nge_softc *sc;
1999	struct mbuf *m_head;
2000	int enq;
2001
2002	sc = ifp->if_softc;
2003
2004	NGE_LOCK_ASSERT(sc);
2005
2006	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2007	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2008		return;
2009
2010	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2011	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2012		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2013		if (m_head == NULL)
2014			break;
2015		/*
2016		 * Pack the data into the transmit ring. If we
2017		 * don't have room, set the OACTIVE flag and wait
2018		 * for the NIC to drain the ring.
2019		 */
2020		if (nge_encap(sc, &m_head)) {
2021			if (m_head == NULL)
2022				break;
2023			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2024			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2025			break;
2026		}
2027
2028		enq++;
2029		/*
2030		 * If there's a BPF listener, bounce a copy of this frame
2031		 * to him.
2032		 */
2033		ETHER_BPF_MTAP(ifp, m_head);
2034	}
2035
2036	if (enq > 0) {
2037		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2038		    sc->nge_cdata.nge_tx_ring_map,
2039		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2040		/* Transmit */
2041		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2042
2043		/* Set a timeout in case the chip goes out to lunch. */
2044		sc->nge_watchdog_timer = 5;
2045	}
2046}
2047
2048static void
2049nge_init(void *xsc)
2050{
2051	struct nge_softc *sc = xsc;
2052
2053	NGE_LOCK(sc);
2054	nge_init_locked(sc);
2055	NGE_UNLOCK(sc);
2056}
2057
2058static void
2059nge_init_locked(struct nge_softc *sc)
2060{
2061	struct ifnet *ifp = sc->nge_ifp;
2062	struct mii_data *mii;
2063	uint8_t *eaddr;
2064	uint32_t reg;
2065
2066	NGE_LOCK_ASSERT(sc);
2067
2068	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2069		return;
2070
2071	/*
2072	 * Cancel pending I/O and free all RX/TX buffers.
2073	 */
2074	nge_stop(sc);
2075
2076	/* Reset the adapter. */
2077	nge_reset(sc);
2078
2079	/* Disable Rx filter prior to programming Rx filter. */
2080	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2081	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
2082
2083	mii = device_get_softc(sc->nge_miibus);
2084
2085	/* Set MAC address. */
2086	eaddr = IF_LLADDR(sc->nge_ifp);
2087	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2088	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2089	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2090	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2091	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2092	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2093
2094	/* Init circular RX list. */
2095	if (nge_list_rx_init(sc) == ENOBUFS) {
2096		device_printf(sc->nge_dev, "initialization failed: no "
2097			"memory for rx buffers\n");
2098		nge_stop(sc);
2099		return;
2100	}
2101
2102	/*
2103	 * Init tx descriptors.
2104	 */
2105	nge_list_tx_init(sc);
2106
2107	/* Set Rx filter. */
2108	nge_rxfilter(sc);
2109
2110	/* Disable PRIQ ctl. */
2111	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2112
2113	/*
2114	 * Set pause frames parameters.
2115	 *  Rx stat FIFO hi-threshold : 2 or more packets
2116	 *  Rx stat FIFO lo-threshold : less than 2 packets
2117	 *  Rx data FIFO hi-threshold : 2K or more bytes
2118	 *  Rx data FIFO lo-threshold : less than 2K bytes
2119	 *  pause time : (512ns * 0xffff) -> 33.55ms
2120	 */
2121	CSR_WRITE_4(sc, NGE_PAUSECSR,
2122	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2123	    NGE_PAUSECSR_PAUSE_ON_DA |
2124	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2125	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2126	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2127	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2128	    NGE_PAUSECSR_CNT);
2129
2130	/*
2131	 * Load the address of the RX and TX lists.
2132	 */
2133	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2134	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2135	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2136	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2137	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2138	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2139	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2140	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2141
2142	/* Set RX configuration. */
2143	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2144
2145	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2146	/*
2147	 * Enable hardware checksum validation for all IPv4
2148	 * packets, do not reject packets with bad checksums.
2149	 */
2150	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2151		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2152
2153	/*
2154	 * Tell the chip to detect and strip VLAN tag info from
2155	 * received frames. The tag will be provided in the extsts
2156	 * field in the RX descriptors.
2157	 */
2158	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2159	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2160		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2161
2162	/* Set TX configuration. */
2163	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2164
2165	/*
2166	 * Enable TX IPv4 checksumming on a per-packet basis.
2167	 */
2168	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2169
2170	/*
2171	 * Tell the chip to insert VLAN tags on a per-packet basis as
2172	 * dictated by the code in the frame encapsulation routine.
2173	 */
2174	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2175
2176	/*
2177	 * Enable the delivery of PHY interrupts based on
2178	 * link/speed/duplex status changes. Also enable the
2179	 * extsts field in the DMA descriptors (needed for
2180	 * TCP/IP checksum offload on transmit).
2181	 */
2182	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2183	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2184
2185	/*
2186	 * Configure interrupt holdoff (moderation). We can
2187	 * have the chip delay interrupt delivery for a certain
2188	 * period. Units are in 100us, and the max setting
2189	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2190	 */
2191	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2192
2193	/*
2194	 * Enable MAC statistics counters and clear.
2195	 */
2196	reg = CSR_READ_4(sc, NGE_MIBCTL);
2197	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2198	reg |= NGE_MIBCTL_CLEAR_CNT;
2199	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2200
2201	/*
2202	 * Enable interrupts.
2203	 */
2204	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2205#ifdef DEVICE_POLLING
2206	/*
2207	 * ... only enable interrupts if we are not polling, make sure
2208	 * they are off otherwise.
2209	 */
2210	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2211		CSR_WRITE_4(sc, NGE_IER, 0);
2212	else
2213#endif
2214	CSR_WRITE_4(sc, NGE_IER, 1);
2215
2216	sc->nge_flags &= ~NGE_FLAG_LINK;
2217	mii_mediachg(mii);
2218
2219	sc->nge_watchdog_timer = 0;
2220	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2221
2222	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2223	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2224}
2225
2226/*
2227 * Set media options.
2228 */
2229static int
2230nge_mediachange(struct ifnet *ifp)
2231{
2232	struct nge_softc *sc;
2233	struct mii_data	*mii;
2234	struct mii_softc *miisc;
2235	int error;
2236
2237	sc = ifp->if_softc;
2238	NGE_LOCK(sc);
2239	mii = device_get_softc(sc->nge_miibus);
2240	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2241		PHY_RESET(miisc);
2242	error = mii_mediachg(mii);
2243	NGE_UNLOCK(sc);
2244
2245	return (error);
2246}
2247
2248/*
2249 * Report current media status.
2250 */
2251static void
2252nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2253{
2254	struct nge_softc *sc;
2255	struct mii_data *mii;
2256
2257	sc = ifp->if_softc;
2258	NGE_LOCK(sc);
2259	mii = device_get_softc(sc->nge_miibus);
2260	mii_pollstat(mii);
2261	ifmr->ifm_active = mii->mii_media_active;
2262	ifmr->ifm_status = mii->mii_media_status;
2263	NGE_UNLOCK(sc);
2264}
2265
2266static int
2267nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2268{
2269	struct nge_softc *sc = ifp->if_softc;
2270	struct ifreq *ifr = (struct ifreq *) data;
2271	struct mii_data *mii;
2272	int error = 0, mask;
2273
2274	switch (command) {
2275	case SIOCSIFMTU:
2276		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2277			error = EINVAL;
2278		else {
2279			NGE_LOCK(sc);
2280			ifp->if_mtu = ifr->ifr_mtu;
2281			/*
2282			 * Workaround: if the MTU is larger than
2283			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2284			 * TX checksum offloading.
2285			 */
2286			if (ifr->ifr_mtu >= 8152) {
2287				ifp->if_capenable &= ~IFCAP_TXCSUM;
2288				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2289			} else {
2290				ifp->if_capenable |= IFCAP_TXCSUM;
2291				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2292			}
2293			NGE_UNLOCK(sc);
2294			VLAN_CAPABILITIES(ifp);
2295		}
2296		break;
2297	case SIOCSIFFLAGS:
2298		NGE_LOCK(sc);
2299		if ((ifp->if_flags & IFF_UP) != 0) {
2300			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2301				if ((ifp->if_flags ^ sc->nge_if_flags) &
2302				    (IFF_PROMISC | IFF_ALLMULTI))
2303					nge_rxfilter(sc);
2304			} else {
2305				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2306					nge_init_locked(sc);
2307			}
2308		} else {
2309			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2310				nge_stop(sc);
2311		}
2312		sc->nge_if_flags = ifp->if_flags;
2313		NGE_UNLOCK(sc);
2314		error = 0;
2315		break;
2316	case SIOCADDMULTI:
2317	case SIOCDELMULTI:
2318		NGE_LOCK(sc);
2319		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2320			nge_rxfilter(sc);
2321		NGE_UNLOCK(sc);
2322		break;
2323	case SIOCGIFMEDIA:
2324	case SIOCSIFMEDIA:
2325		mii = device_get_softc(sc->nge_miibus);
2326		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2327		break;
2328	case SIOCSIFCAP:
2329		NGE_LOCK(sc);
2330		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2331#ifdef DEVICE_POLLING
2332		if ((mask & IFCAP_POLLING) != 0 &&
2333		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2334			ifp->if_capenable ^= IFCAP_POLLING;
2335			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2336				error = ether_poll_register(nge_poll, ifp);
2337				if (error != 0) {
2338					NGE_UNLOCK(sc);
2339					break;
2340				}
2341				/* Disable interrupts. */
2342				CSR_WRITE_4(sc, NGE_IER, 0);
2343			} else {
2344				error = ether_poll_deregister(ifp);
2345				/* Enable interrupts. */
2346				CSR_WRITE_4(sc, NGE_IER, 1);
2347			}
2348		}
2349#endif /* DEVICE_POLLING */
2350		if ((mask & IFCAP_TXCSUM) != 0 &&
2351		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2352			ifp->if_capenable ^= IFCAP_TXCSUM;
2353			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2354				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2355			else
2356				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2357		}
2358		if ((mask & IFCAP_RXCSUM) != 0 &&
2359		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2360			ifp->if_capenable ^= IFCAP_RXCSUM;
2361
2362		if ((mask & IFCAP_WOL) != 0 &&
2363		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2364			if ((mask & IFCAP_WOL_UCAST) != 0)
2365				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2366			if ((mask & IFCAP_WOL_MCAST) != 0)
2367				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2368			if ((mask & IFCAP_WOL_MAGIC) != 0)
2369				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2370		}
2371
2372		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2373		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2374			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2375		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2376		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2377			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2378			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2379				if ((ifp->if_capenable &
2380				    IFCAP_VLAN_HWTAGGING) != 0)
2381					NGE_SETBIT(sc,
2382					    NGE_VLAN_IP_RXCTL,
2383					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2384				else
2385					NGE_CLRBIT(sc,
2386					    NGE_VLAN_IP_RXCTL,
2387					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2388			}
2389		}
2390		/*
2391		 * Both VLAN hardware tagging and checksum offload is
2392		 * required to do checksum offload on VLAN interface.
2393		 */
2394		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2395			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2396		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2397			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2398		NGE_UNLOCK(sc);
2399		VLAN_CAPABILITIES(ifp);
2400		break;
2401	default:
2402		error = ether_ioctl(ifp, command, data);
2403		break;
2404	}
2405
2406	return (error);
2407}
2408
2409static void
2410nge_watchdog(struct nge_softc *sc)
2411{
2412	struct ifnet *ifp;
2413
2414	NGE_LOCK_ASSERT(sc);
2415
2416	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2417		return;
2418
2419	ifp = sc->nge_ifp;
2420	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2421	if_printf(ifp, "watchdog timeout\n");
2422
2423	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2424	nge_init_locked(sc);
2425
2426	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2427		nge_start_locked(ifp);
2428}
2429
2430static int
2431nge_stop_mac(struct nge_softc *sc)
2432{
2433	uint32_t reg;
2434	int i;
2435
2436	NGE_LOCK_ASSERT(sc);
2437
2438	reg = CSR_READ_4(sc, NGE_CSR);
2439	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2440		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2441		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2442		CSR_WRITE_4(sc, NGE_CSR, reg);
2443		for (i = 0; i < NGE_TIMEOUT; i++) {
2444			DELAY(1);
2445			if ((CSR_READ_4(sc, NGE_CSR) &
2446			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2447				break;
2448		}
2449		if (i == NGE_TIMEOUT)
2450			return (ETIMEDOUT);
2451	}
2452
2453	return (0);
2454}
2455
2456/*
2457 * Stop the adapter and free any mbufs allocated to the
2458 * RX and TX lists.
2459 */
2460static void
2461nge_stop(struct nge_softc *sc)
2462{
2463	struct nge_txdesc *txd;
2464	struct nge_rxdesc *rxd;
2465	int i;
2466	struct ifnet *ifp;
2467
2468	NGE_LOCK_ASSERT(sc);
2469	ifp = sc->nge_ifp;
2470
2471	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2472	sc->nge_flags &= ~NGE_FLAG_LINK;
2473	callout_stop(&sc->nge_stat_ch);
2474	sc->nge_watchdog_timer = 0;
2475
2476	CSR_WRITE_4(sc, NGE_IER, 0);
2477	CSR_WRITE_4(sc, NGE_IMR, 0);
2478	if (nge_stop_mac(sc) == ETIMEDOUT)
2479		device_printf(sc->nge_dev,
2480		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2481	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2482	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2483	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2484	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2485	nge_stats_update(sc);
2486	if (sc->nge_head != NULL) {
2487		m_freem(sc->nge_head);
2488		sc->nge_head = sc->nge_tail = NULL;
2489	}
2490
2491	/*
2492	 * Free RX and TX mbufs still in the queues.
2493	 */
2494	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2495		rxd = &sc->nge_cdata.nge_rxdesc[i];
2496		if (rxd->rx_m != NULL) {
2497			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2498			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2499			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2500			    rxd->rx_dmamap);
2501			m_freem(rxd->rx_m);
2502			rxd->rx_m = NULL;
2503		}
2504	}
2505	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2506		txd = &sc->nge_cdata.nge_txdesc[i];
2507		if (txd->tx_m != NULL) {
2508			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2509			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2510			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2511			    txd->tx_dmamap);
2512			m_freem(txd->tx_m);
2513			txd->tx_m = NULL;
2514		}
2515	}
2516}
2517
2518/*
2519 * Before setting WOL bits, caller should have stopped Receiver.
2520 */
2521static void
2522nge_wol(struct nge_softc *sc)
2523{
2524	struct ifnet *ifp;
2525	uint32_t reg;
2526	uint16_t pmstat;
2527	int pmc;
2528
2529	NGE_LOCK_ASSERT(sc);
2530
2531	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2532		return;
2533
2534	ifp = sc->nge_ifp;
2535	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
2536		/* Disable WOL & disconnect CLKRUN to save power. */
2537		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2538		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2539	} else {
2540		if (nge_stop_mac(sc) == ETIMEDOUT)
2541			device_printf(sc->nge_dev,
2542			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2543		/*
2544		 * Make sure wake frames will be buffered in the Rx FIFO.
2545		 * (i.e. Silent Rx mode.)
2546		 */
2547		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2548		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
2549		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2550		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
2551		/* Enable Rx again. */
2552		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2553		CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
2554
2555		/* Configure WOL events. */
2556		reg = 0;
2557		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2558			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2559		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2560			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2561		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2562			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2563		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2564
2565		/* Activate CLKRUN. */
2566		reg = CSR_READ_4(sc, NGE_CLKRUN);
2567		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2568		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2569	}
2570
2571	/* Request PME. */
2572	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2573	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2574	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2575		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2576	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2577}
2578
2579/*
2580 * Stop all chip I/O so that the kernel's probe routines don't
2581 * get confused by errant DMAs when rebooting.
2582 */
2583static int
2584nge_shutdown(device_t dev)
2585{
2586
2587	return (nge_suspend(dev));
2588}
2589
2590static int
2591nge_suspend(device_t dev)
2592{
2593	struct nge_softc *sc;
2594
2595	sc = device_get_softc(dev);
2596
2597	NGE_LOCK(sc);
2598	nge_stop(sc);
2599	nge_wol(sc);
2600	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2601	NGE_UNLOCK(sc);
2602
2603	return (0);
2604}
2605
2606static int
2607nge_resume(device_t dev)
2608{
2609	struct nge_softc *sc;
2610	struct ifnet *ifp;
2611	uint16_t pmstat;
2612	int pmc;
2613
2614	sc = device_get_softc(dev);
2615
2616	NGE_LOCK(sc);
2617	ifp = sc->nge_ifp;
2618	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2619		/* Disable PME and clear PME status. */
2620		pmstat = pci_read_config(sc->nge_dev,
2621		    pmc + PCIR_POWER_STATUS, 2);
2622		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2623			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2624			pci_write_config(sc->nge_dev,
2625			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2626		}
2627	}
2628	if (ifp->if_flags & IFF_UP) {
2629		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2630		nge_init_locked(sc);
2631	}
2632
2633	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2634	NGE_UNLOCK(sc);
2635
2636	return (0);
2637}
2638
2639#define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2640	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2641
2642static void
2643nge_sysctl_node(struct nge_softc *sc)
2644{
2645	struct sysctl_ctx_list *ctx;
2646	struct sysctl_oid_list *child, *parent;
2647	struct sysctl_oid *tree;
2648	struct nge_stats *stats;
2649	int error;
2650
2651	ctx = device_get_sysctl_ctx(sc->nge_dev);
2652	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2653	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2654	    CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0,
2655	    sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2656	/* Pull in device tunables. */
2657	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2658	error = resource_int_value(device_get_name(sc->nge_dev),
2659	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2660	if (error == 0) {
2661		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2662		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2663			device_printf(sc->nge_dev,
2664			    "int_holdoff value out of range; "
2665			    "using default: %d(%d us)\n",
2666			    NGE_INT_HOLDOFF_DEFAULT,
2667			    NGE_INT_HOLDOFF_DEFAULT * 100);
2668			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2669		}
2670	}
2671
2672	stats = &sc->nge_stats;
2673	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2674	    NULL, "NGE statistics");
2675	parent = SYSCTL_CHILDREN(tree);
2676
2677	/* Rx statistics. */
2678	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2679	    NULL, "Rx MAC statistics");
2680	child = SYSCTL_CHILDREN(tree);
2681	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2682	    &stats->rx_pkts_errs,
2683	    "Packet errors including both wire errors and FIFO overruns");
2684	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2685	    &stats->rx_crc_errs, "CRC errors");
2686	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2687	    &stats->rx_fifo_oflows, "FIFO overflows");
2688	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2689	    &stats->rx_align_errs, "Frame alignment errors");
2690	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2691	    &stats->rx_sym_errs, "One or more symbol errors");
2692	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2693	    &stats->rx_pkts_jumbos,
2694	    "Packets received with length greater than 1518 bytes");
2695	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2696	    &stats->rx_len_errs, "In Range Length errors");
2697	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2698	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2699	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2700	    &stats->rx_pause, "Pause frames");
2701
2702	/* Tx statistics. */
2703	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2704	    NULL, "Tx MAC statistics");
2705	child = SYSCTL_CHILDREN(tree);
2706	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2707	    &stats->tx_pause, "Pause frames");
2708	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2709	    &stats->tx_seq_errs,
2710	    "Loss of collision heartbeat during transmission");
2711}
2712
2713#undef NGE_SYSCTL_STAT_ADD32
2714
2715static int
2716sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2717{
2718	int error, value;
2719
2720	if (arg1 == NULL)
2721		return (EINVAL);
2722	value = *(int *)arg1;
2723	error = sysctl_handle_int(oidp, &value, 0, req);
2724	if (error != 0 || req->newptr == NULL)
2725		return (error);
2726	if (value < low || value > high)
2727		return (EINVAL);
2728	*(int *)arg1 = value;
2729
2730	return (0);
2731}
2732
2733static int
2734sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2735{
2736
2737	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2738	    NGE_INT_HOLDOFF_MAX));
2739}
2740