1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2013-2016 Vincenzo Maffione
5 * Copyright (C) 2013-2016 Luigi Rizzo
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *   1. Redistributions of source code must retain the above copyright
12 *      notice, this list of conditions and the following disclaimer.
13 *   2. Redistributions in binary form must reproduce the above copyright
14 *      notice, this list of conditions and the following disclaimer in the
15 *      documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * This module implements netmap support on top of standard,
32 * unmodified device drivers.
33 *
34 * A NIOCREGIF request is handled here if the device does not
35 * have native support. TX and RX rings are emulated as follows:
36 *
37 * NIOCREGIF
38 *	We preallocate a block of TX mbufs (roughly as many as
39 *	tx descriptors; the number is not critical) to speed up
40 *	operation during transmissions. The refcount on most of
41 *	these buffers is artificially bumped up so we can recycle
42 *	them more easily. Also, the destructor is intercepted
43 *	so we use it as an interrupt notification to wake up
44 *	processes blocked on a poll().
45 *
46 *	For each receive ring we allocate one "struct mbq"
47 *	(an mbuf tailq plus a spinlock). We intercept packets
48 *	(through if_input)
49 *	on the receive path and put them in the mbq from which
50 *	netmap receive routines can grab them.
51 *
52 * TX:
53 *	in the generic_txsync() routine, netmap buffers are copied
54 *	(or linked, in a future) to the preallocated mbufs
55 *	and pushed to the transmit queue. Some of these mbufs
56 *	(those with NS_REPORT, or otherwise every half ring)
57 *	have the refcount=1, others have refcount=2.
58 *	When the destructor is invoked, we take that as
59 *	a notification that all mbufs up to that one in
60 *	the specific ring have been completed, and generate
61 *	the equivalent of a transmit interrupt.
62 *
63 * RX:
64 *
65 */
66
67#ifdef __FreeBSD__
68
69#include <sys/cdefs.h> /* prerequisite */
70__FBSDID("$FreeBSD$");
71
72#include <sys/types.h>
73#include <sys/errno.h>
74#include <sys/malloc.h>
75#include <sys/lock.h>   /* PROT_EXEC */
76#include <sys/rwlock.h>
77#include <sys/socket.h> /* sockaddrs */
78#include <sys/selinfo.h>
79#include <net/if.h>
80#include <net/if_types.h>
81#include <net/if_var.h>
82#include <machine/bus.h>        /* bus_dmamap_* in netmap_kern.h */
83
84#include <net/netmap.h>
85#include <dev/netmap/netmap_kern.h>
86#include <dev/netmap/netmap_mem2.h>
87
88#define MBUF_RXQ(m)	((m)->m_pkthdr.flowid)
89#define smp_mb()
90
91#elif defined _WIN32
92
93#include "win_glue.h"
94
95#define MBUF_TXQ(m) 	0//((m)->m_pkthdr.flowid)
96#define MBUF_RXQ(m)	    0//((m)->m_pkthdr.flowid)
97#define smp_mb()		//XXX: to be correctly defined
98
99#else /* linux */
100
101#include "bsd_glue.h"
102
103#include <linux/ethtool.h>      /* struct ethtool_ops, get_ringparam */
104#include <linux/hrtimer.h>
105
106static inline struct mbuf *
107nm_os_get_mbuf(struct ifnet *ifp, int len)
108{
109	return alloc_skb(ifp->needed_headroom + len +
110			 ifp->needed_tailroom, GFP_ATOMIC);
111}
112
113#endif /* linux */
114
115
116/* Common headers. */
117#include <net/netmap.h>
118#include <dev/netmap/netmap_kern.h>
119#include <dev/netmap/netmap_mem2.h>
120
121
122#define for_each_kring_n(_i, _k, _karr, _n) \
123	for ((_k)=*(_karr), (_i) = 0; (_i) < (_n); (_i)++, (_k) = (_karr)[(_i)])
124
125#define for_each_tx_kring(_i, _k, _na) \
126		for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings)
127#define for_each_tx_kring_h(_i, _k, _na) \
128		for_each_kring_n(_i, _k, (_na)->tx_rings, (_na)->num_tx_rings + 1)
129
130#define for_each_rx_kring(_i, _k, _na) \
131		for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings)
132#define for_each_rx_kring_h(_i, _k, _na) \
133		for_each_kring_n(_i, _k, (_na)->rx_rings, (_na)->num_rx_rings + 1)
134
135
136/* ======================== PERFORMANCE STATISTICS =========================== */
137
138#ifdef RATE_GENERIC
139#define IFRATE(x) x
140struct rate_stats {
141	unsigned long txpkt;
142	unsigned long txsync;
143	unsigned long txirq;
144	unsigned long txrepl;
145	unsigned long txdrop;
146	unsigned long rxpkt;
147	unsigned long rxirq;
148	unsigned long rxsync;
149};
150
151struct rate_context {
152	unsigned refcount;
153	struct timer_list timer;
154	struct rate_stats new;
155	struct rate_stats old;
156};
157
158#define RATE_PRINTK(_NAME_) \
159	printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
160#define RATE_PERIOD  2
161static void rate_callback(unsigned long arg)
162{
163	struct rate_context * ctx = (struct rate_context *)arg;
164	struct rate_stats cur = ctx->new;
165	int r;
166
167	RATE_PRINTK(txpkt);
168	RATE_PRINTK(txsync);
169	RATE_PRINTK(txirq);
170	RATE_PRINTK(txrepl);
171	RATE_PRINTK(txdrop);
172	RATE_PRINTK(rxpkt);
173	RATE_PRINTK(rxsync);
174	RATE_PRINTK(rxirq);
175	printk("\n");
176
177	ctx->old = cur;
178	r = mod_timer(&ctx->timer, jiffies +
179			msecs_to_jiffies(RATE_PERIOD * 1000));
180	if (unlikely(r))
181		nm_prerr("mod_timer() failed");
182}
183
184static struct rate_context rate_ctx;
185
186void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi)
187{
188	if (txp) rate_ctx.new.txpkt++;
189	if (txs) rate_ctx.new.txsync++;
190	if (txi) rate_ctx.new.txirq++;
191	if (rxp) rate_ctx.new.rxpkt++;
192	if (rxs) rate_ctx.new.rxsync++;
193	if (rxi) rate_ctx.new.rxirq++;
194}
195
196#else /* !RATE */
197#define IFRATE(x)
198#endif /* !RATE */
199
200
201/* ========== GENERIC (EMULATED) NETMAP ADAPTER SUPPORT ============= */
202
203/*
204 * Wrapper used by the generic adapter layer to notify
205 * the poller threads. Differently from netmap_rx_irq(), we check
206 * only NAF_NETMAP_ON instead of NAF_NATIVE_ON to enable the irq.
207 */
208void
209netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
210{
211	if (unlikely(!nm_netmap_on(na)))
212		return;
213
214	netmap_common_irq(na, q, work_done);
215#ifdef RATE_GENERIC
216	if (work_done)
217		rate_ctx.new.rxirq++;
218	else
219		rate_ctx.new.txirq++;
220#endif  /* RATE_GENERIC */
221}
222
223static int
224generic_netmap_unregister(struct netmap_adapter *na)
225{
226	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
227	struct netmap_kring *kring = NULL;
228	int i, r;
229
230	if (na->active_fds == 0) {
231		na->na_flags &= ~NAF_NETMAP_ON;
232
233		/* Stop intercepting packets on the RX path. */
234		nm_os_catch_rx(gna, 0);
235
236		/* Release packet steering control. */
237		nm_os_catch_tx(gna, 0);
238	}
239
240	netmap_krings_mode_commit(na, /*onoff=*/0);
241
242	for_each_rx_kring(r, kring, na) {
243		/* Free the mbufs still pending in the RX queues,
244		 * that did not end up into the corresponding netmap
245		 * RX rings. */
246		mbq_safe_purge(&kring->rx_queue);
247		nm_os_mitigation_cleanup(&gna->mit[r]);
248	}
249
250	/* Decrement reference counter for the mbufs in the
251	 * TX pools. These mbufs can be still pending in drivers,
252	 * (e.g. this happens with virtio-net driver, which
253	 * does lazy reclaiming of transmitted mbufs). */
254	for_each_tx_kring(r, kring, na) {
255		/* We must remove the destructor on the TX event,
256		 * because the destructor invokes netmap code, and
257		 * the netmap module may disappear before the
258		 * TX event is consumed. */
259		mtx_lock_spin(&kring->tx_event_lock);
260		if (kring->tx_event) {
261			SET_MBUF_DESTRUCTOR(kring->tx_event, NULL);
262		}
263		kring->tx_event = NULL;
264		mtx_unlock_spin(&kring->tx_event_lock);
265	}
266
267	if (na->active_fds == 0) {
268		nm_os_free(gna->mit);
269
270		for_each_rx_kring(r, kring, na) {
271			mbq_safe_fini(&kring->rx_queue);
272		}
273
274		for_each_tx_kring(r, kring, na) {
275			mtx_destroy(&kring->tx_event_lock);
276			if (kring->tx_pool == NULL) {
277				continue;
278			}
279
280			for (i=0; i<na->num_tx_desc; i++) {
281				if (kring->tx_pool[i]) {
282					m_freem(kring->tx_pool[i]);
283				}
284			}
285			nm_os_free(kring->tx_pool);
286			kring->tx_pool = NULL;
287		}
288
289#ifdef RATE_GENERIC
290		if (--rate_ctx.refcount == 0) {
291			nm_prinf("del_timer()");
292			del_timer(&rate_ctx.timer);
293		}
294#endif
295		nm_prinf("Emulated adapter for %s deactivated", na->name);
296	}
297
298	return 0;
299}
300
301/* Enable/disable netmap mode for a generic network interface. */
302static int
303generic_netmap_register(struct netmap_adapter *na, int enable)
304{
305	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
306	struct netmap_kring *kring = NULL;
307	int error;
308	int i, r;
309
310	if (!na) {
311		return EINVAL;
312	}
313
314	if (!enable) {
315		/* This is actually an unregif. */
316		return generic_netmap_unregister(na);
317	}
318
319	if (na->active_fds == 0) {
320		nm_prinf("Emulated adapter for %s activated", na->name);
321		/* Do all memory allocations when (na->active_fds == 0), to
322		 * simplify error management. */
323
324		/* Allocate memory for mitigation support on all the rx queues. */
325		gna->mit = nm_os_malloc(na->num_rx_rings * sizeof(struct nm_generic_mit));
326		if (!gna->mit) {
327			nm_prerr("mitigation allocation failed");
328			error = ENOMEM;
329			goto out;
330		}
331
332		for_each_rx_kring(r, kring, na) {
333			/* Init mitigation support. */
334			nm_os_mitigation_init(&gna->mit[r], r, na);
335
336			/* Initialize the rx queue, as generic_rx_handler() can
337			 * be called as soon as nm_os_catch_rx() returns.
338			 */
339			mbq_safe_init(&kring->rx_queue);
340		}
341
342		/*
343		 * Prepare mbuf pools (parallel to the tx rings), for packet
344		 * transmission. Don't preallocate the mbufs here, it's simpler
345		 * to leave this task to txsync.
346		 */
347		for_each_tx_kring(r, kring, na) {
348			kring->tx_pool = NULL;
349		}
350		for_each_tx_kring(r, kring, na) {
351			kring->tx_pool =
352				nm_os_malloc(na->num_tx_desc * sizeof(struct mbuf *));
353			if (!kring->tx_pool) {
354				nm_prerr("tx_pool allocation failed");
355				error = ENOMEM;
356				goto free_tx_pools;
357			}
358			mtx_init(&kring->tx_event_lock, "tx_event_lock",
359				 NULL, MTX_SPIN);
360		}
361	}
362
363	netmap_krings_mode_commit(na, /*onoff=*/1);
364
365	for_each_tx_kring(r, kring, na) {
366		/* Initialize tx_pool and tx_event. */
367		for (i=0; i<na->num_tx_desc; i++) {
368			kring->tx_pool[i] = NULL;
369		}
370
371		kring->tx_event = NULL;
372	}
373
374	if (na->active_fds == 0) {
375		/* Prepare to intercept incoming traffic. */
376		error = nm_os_catch_rx(gna, 1);
377		if (error) {
378			nm_prerr("nm_os_catch_rx(1) failed (%d)", error);
379			goto free_tx_pools;
380		}
381
382		/* Let netmap control the packet steering. */
383		error = nm_os_catch_tx(gna, 1);
384		if (error) {
385			nm_prerr("nm_os_catch_tx(1) failed (%d)", error);
386			goto catch_rx;
387		}
388
389		na->na_flags |= NAF_NETMAP_ON;
390
391#ifdef RATE_GENERIC
392		if (rate_ctx.refcount == 0) {
393			nm_prinf("setup_timer()");
394			memset(&rate_ctx, 0, sizeof(rate_ctx));
395			setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
396			if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
397				nm_prerr("Error: mod_timer()");
398			}
399		}
400		rate_ctx.refcount++;
401#endif /* RATE */
402	}
403
404	return 0;
405
406	/* Here (na->active_fds == 0) holds. */
407catch_rx:
408	nm_os_catch_rx(gna, 0);
409free_tx_pools:
410	for_each_tx_kring(r, kring, na) {
411		mtx_destroy(&kring->tx_event_lock);
412		if (kring->tx_pool == NULL) {
413			continue;
414		}
415		nm_os_free(kring->tx_pool);
416		kring->tx_pool = NULL;
417	}
418	for_each_rx_kring(r, kring, na) {
419		mbq_safe_fini(&kring->rx_queue);
420	}
421	nm_os_free(gna->mit);
422out:
423
424	return error;
425}
426
427/*
428 * Callback invoked when the device driver frees an mbuf used
429 * by netmap to transmit a packet. This usually happens when
430 * the NIC notifies the driver that transmission is completed.
431 */
432static void
433generic_mbuf_destructor(struct mbuf *m)
434{
435	struct netmap_adapter *na = NA(GEN_TX_MBUF_IFP(m));
436	struct netmap_kring *kring;
437	unsigned int r = MBUF_TXQ(m);
438	unsigned int r_orig = r;
439
440	if (unlikely(!nm_netmap_on(na) || r >= na->num_tx_rings)) {
441		nm_prerr("Error: no netmap adapter on device %p",
442		  GEN_TX_MBUF_IFP(m));
443		return;
444	}
445
446	/*
447	 * First, clear the event mbuf.
448	 * In principle, the event 'm' should match the one stored
449	 * on ring 'r'. However we check it explicitely to stay
450	 * safe against lower layers (qdisc, driver, etc.) changing
451	 * MBUF_TXQ(m) under our feet. If the match is not found
452	 * on 'r', we try to see if it belongs to some other ring.
453	 */
454	for (;;) {
455		bool match = false;
456
457		kring = na->tx_rings[r];
458		mtx_lock_spin(&kring->tx_event_lock);
459		if (kring->tx_event == m) {
460			kring->tx_event = NULL;
461			match = true;
462		}
463		mtx_unlock_spin(&kring->tx_event_lock);
464
465		if (match) {
466			if (r != r_orig) {
467				nm_prlim(1, "event %p migrated: ring %u --> %u",
468				      m, r_orig, r);
469			}
470			break;
471		}
472
473		if (++r == na->num_tx_rings) r = 0;
474
475		if (r == r_orig) {
476			nm_prlim(1, "Cannot match event %p", m);
477			return;
478		}
479	}
480
481	/* Second, wake up clients. They will reclaim the event through
482	 * txsync. */
483	netmap_generic_irq(na, r, NULL);
484#ifdef __FreeBSD__
485#if __FreeBSD_version <= 1200050
486	void_mbuf_dtor(m, NULL, NULL);
487#else  /* __FreeBSD_version >= 1200051 */
488	void_mbuf_dtor(m);
489#endif /* __FreeBSD_version >= 1200051 */
490#endif
491}
492
493/* Record completed transmissions and update hwtail.
494 *
495 * The oldest tx buffer not yet completed is at nr_hwtail + 1,
496 * nr_hwcur is the first unsent buffer.
497 */
498static u_int
499generic_netmap_tx_clean(struct netmap_kring *kring, int txqdisc)
500{
501	u_int const lim = kring->nkr_num_slots - 1;
502	u_int nm_i = nm_next(kring->nr_hwtail, lim);
503	u_int hwcur = kring->nr_hwcur;
504	u_int n = 0;
505	struct mbuf **tx_pool = kring->tx_pool;
506
507	nm_prdis("hwcur = %d, hwtail = %d", kring->nr_hwcur, kring->nr_hwtail);
508
509	while (nm_i != hwcur) { /* buffers not completed */
510		struct mbuf *m = tx_pool[nm_i];
511
512		if (txqdisc) {
513			if (m == NULL) {
514				/* Nothing to do, this is going
515				 * to be replenished. */
516				nm_prlim(3, "Is this happening?");
517
518			} else if (MBUF_QUEUED(m)) {
519				break; /* Not dequeued yet. */
520
521			} else if (MBUF_REFCNT(m) != 1) {
522				/* This mbuf has been dequeued but is still busy
523				 * (refcount is 2).
524				 * Leave it to the driver and replenish. */
525				m_freem(m);
526				tx_pool[nm_i] = NULL;
527			}
528
529		} else {
530			if (unlikely(m == NULL)) {
531				int event_consumed;
532
533				/* This slot was used to place an event. */
534				mtx_lock_spin(&kring->tx_event_lock);
535				event_consumed = (kring->tx_event == NULL);
536				mtx_unlock_spin(&kring->tx_event_lock);
537				if (!event_consumed) {
538					/* The event has not been consumed yet,
539					 * still busy in the driver. */
540					break;
541				}
542				/* The event has been consumed, we can go
543				 * ahead. */
544
545			} else if (MBUF_REFCNT(m) != 1) {
546				/* This mbuf is still busy: its refcnt is 2. */
547				break;
548			}
549		}
550
551		n++;
552		nm_i = nm_next(nm_i, lim);
553	}
554	kring->nr_hwtail = nm_prev(nm_i, lim);
555	nm_prdis("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
556
557	return n;
558}
559
560/* Compute a slot index in the middle between inf and sup. */
561static inline u_int
562ring_middle(u_int inf, u_int sup, u_int lim)
563{
564	u_int n = lim + 1;
565	u_int e;
566
567	if (sup >= inf) {
568		e = (sup + inf) / 2;
569	} else { /* wrap around */
570		e = (sup + n + inf) / 2;
571		if (e >= n) {
572			e -= n;
573		}
574	}
575
576	if (unlikely(e >= n)) {
577		nm_prerr("This cannot happen");
578		e = 0;
579	}
580
581	return e;
582}
583
584static void
585generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
586{
587	u_int lim = kring->nkr_num_slots - 1;
588	struct mbuf *m;
589	u_int e;
590	u_int ntc = nm_next(kring->nr_hwtail, lim); /* next to clean */
591
592	if (ntc == hwcur) {
593		return; /* all buffers are free */
594	}
595
596	/*
597	 * We have pending packets in the driver between hwtail+1
598	 * and hwcur, and we have to chose one of these slot to
599	 * generate a notification.
600	 * There is a race but this is only called within txsync which
601	 * does a double check.
602	 */
603#if 0
604	/* Choose a slot in the middle, so that we don't risk ending
605	 * up in a situation where the client continuously wake up,
606	 * fills one or a few TX slots and go to sleep again. */
607	e = ring_middle(ntc, hwcur, lim);
608#else
609	/* Choose the first pending slot, to be safe against driver
610	 * reordering mbuf transmissions. */
611	e = ntc;
612#endif
613
614	m = kring->tx_pool[e];
615	if (m == NULL) {
616		/* An event is already in place. */
617		return;
618	}
619
620	mtx_lock_spin(&kring->tx_event_lock);
621	if (kring->tx_event) {
622		/* An event is already in place. */
623		mtx_unlock_spin(&kring->tx_event_lock);
624		return;
625	}
626
627	SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor);
628	kring->tx_event = m;
629	mtx_unlock_spin(&kring->tx_event_lock);
630
631	kring->tx_pool[e] = NULL;
632
633	nm_prdis("Request Event at %d mbuf %p refcnt %d", e, m, m ? MBUF_REFCNT(m) : -2 );
634
635	/* Decrement the refcount. This will free it if we lose the race
636	 * with the driver. */
637	m_freem(m);
638	smp_mb();
639}
640
641
642/*
643 * generic_netmap_txsync() transforms netmap buffers into mbufs
644 * and passes them to the standard device driver
645 * (ndo_start_xmit() or ifp->if_transmit() ).
646 * On linux this is not done directly, but using dev_queue_xmit(),
647 * since it implements the TX flow control (and takes some locks).
648 */
649static int
650generic_netmap_txsync(struct netmap_kring *kring, int flags)
651{
652	struct netmap_adapter *na = kring->na;
653	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
654	struct ifnet *ifp = na->ifp;
655	struct netmap_ring *ring = kring->ring;
656	u_int nm_i;	/* index into the netmap ring */ // j
657	u_int const lim = kring->nkr_num_slots - 1;
658	u_int const head = kring->rhead;
659	u_int ring_nr = kring->ring_id;
660
661	IFRATE(rate_ctx.new.txsync++);
662
663	rmb();
664
665	/*
666	 * First part: process new packets to send.
667	 */
668	nm_i = kring->nr_hwcur;
669	if (nm_i != head) {	/* we have new packets to send */
670		struct nm_os_gen_arg a;
671		u_int event = -1;
672
673		if (gna->txqdisc && nm_kr_txempty(kring)) {
674			/* In txqdisc mode, we ask for a delayed notification,
675			 * but only when cur == hwtail, which means that the
676			 * client is going to block. */
677			event = ring_middle(nm_i, head, lim);
678			nm_prdis("Place txqdisc event (hwcur=%u,event=%u,"
679			      "head=%u,hwtail=%u)", nm_i, event, head,
680			      kring->nr_hwtail);
681		}
682
683		a.ifp = ifp;
684		a.ring_nr = ring_nr;
685		a.head = a.tail = NULL;
686
687		while (nm_i != head) {
688			struct netmap_slot *slot = &ring->slot[nm_i];
689			u_int len = slot->len;
690			void *addr = NMB(na, slot);
691			/* device-specific */
692			struct mbuf *m;
693			int tx_ret;
694
695			NM_CHECK_ADDR_LEN(na, addr, len);
696
697			/* Tale a mbuf from the tx pool (replenishing the pool
698			 * entry if necessary) and copy in the user packet. */
699			m = kring->tx_pool[nm_i];
700			if (unlikely(m == NULL)) {
701				kring->tx_pool[nm_i] = m =
702					nm_os_get_mbuf(ifp, NETMAP_BUF_SIZE(na));
703				if (m == NULL) {
704					nm_prlim(2, "Failed to replenish mbuf");
705					/* Here we could schedule a timer which
706					 * retries to replenish after a while,
707					 * and notifies the client when it
708					 * manages to replenish some slots. In
709					 * any case we break early to avoid
710					 * crashes. */
711					break;
712				}
713				IFRATE(rate_ctx.new.txrepl++);
714			}
715
716			a.m = m;
717			a.addr = addr;
718			a.len = len;
719			a.qevent = (nm_i == event);
720			/* When not in txqdisc mode, we should ask
721			 * notifications when NS_REPORT is set, or roughly
722			 * every half ring. To optimize this, we set a
723			 * notification event when the client runs out of
724			 * TX ring space, or when transmission fails. In
725			 * the latter case we also break early.
726			 */
727			tx_ret = nm_os_generic_xmit_frame(&a);
728			if (unlikely(tx_ret)) {
729				if (!gna->txqdisc) {
730					/*
731					 * No room for this mbuf in the device driver.
732					 * Request a notification FOR A PREVIOUS MBUF,
733					 * then call generic_netmap_tx_clean(kring) to do the
734					 * double check and see if we can free more buffers.
735					 * If there is space continue, else break;
736					 * NOTE: the double check is necessary if the problem
737					 * occurs in the txsync call after selrecord().
738					 * Also, we need some way to tell the caller that not
739					 * all buffers were queued onto the device (this was
740					 * not a problem with native netmap driver where space
741					 * is preallocated). The bridge has a similar problem
742					 * and we solve it there by dropping the excess packets.
743					 */
744					generic_set_tx_event(kring, nm_i);
745					if (generic_netmap_tx_clean(kring, gna->txqdisc)) {
746						/* space now available */
747						continue;
748					} else {
749						break;
750					}
751				}
752
753				/* In txqdisc mode, the netmap-aware qdisc
754				 * queue has the same length as the number of
755				 * netmap slots (N). Since tail is advanced
756				 * only when packets are dequeued, qdisc
757				 * queue overrun cannot happen, so
758				 * nm_os_generic_xmit_frame() did not fail
759				 * because of that.
760				 * However, packets can be dropped because
761				 * carrier is off, or because our qdisc is
762				 * being deactivated, or possibly for other
763				 * reasons. In these cases, we just let the
764				 * packet to be dropped. */
765				IFRATE(rate_ctx.new.txdrop++);
766			}
767
768			slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
769			nm_i = nm_next(nm_i, lim);
770			IFRATE(rate_ctx.new.txpkt++);
771		}
772		if (a.head != NULL) {
773			a.addr = NULL;
774			nm_os_generic_xmit_frame(&a);
775		}
776		/* Update hwcur to the next slot to transmit. Here nm_i
777		 * is not necessarily head, we could break early. */
778		kring->nr_hwcur = nm_i;
779	}
780
781	/*
782	 * Second, reclaim completed buffers
783	 */
784	if (!gna->txqdisc && (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring))) {
785		/* No more available slots? Set a notification event
786		 * on a netmap slot that will be cleaned in the future.
787		 * No doublecheck is performed, since txsync() will be
788		 * called twice by netmap_poll().
789		 */
790		generic_set_tx_event(kring, nm_i);
791	}
792
793	generic_netmap_tx_clean(kring, gna->txqdisc);
794
795	return 0;
796}
797
798
799/*
800 * This handler is registered (through nm_os_catch_rx())
801 * within the attached network interface
802 * in the RX subsystem, so that every mbuf passed up by
803 * the driver can be stolen to the network stack.
804 * Stolen packets are put in a queue where the
805 * generic_netmap_rxsync() callback can extract them.
806 * Returns 1 if the packet was stolen, 0 otherwise.
807 */
808int
809generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
810{
811	struct netmap_adapter *na = NA(ifp);
812	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
813	struct netmap_kring *kring;
814	u_int work_done;
815	u_int r = MBUF_RXQ(m); /* receive ring number */
816
817	if (r >= na->num_rx_rings) {
818		r = r % na->num_rx_rings;
819	}
820
821	kring = na->rx_rings[r];
822
823	if (kring->nr_mode == NKR_NETMAP_OFF) {
824		/* We must not intercept this mbuf. */
825		return 0;
826	}
827
828	/* limit the size of the queue */
829	if (unlikely(!gna->rxsg && MBUF_LEN(m) > NETMAP_BUF_SIZE(na))) {
830		/* This may happen when GRO/LRO features are enabled for
831		 * the NIC driver when the generic adapter does not
832		 * support RX scatter-gather. */
833		nm_prlim(2, "Warning: driver pushed up big packet "
834				"(size=%d)", (int)MBUF_LEN(m));
835		m_freem(m);
836	} else if (unlikely(mbq_len(&kring->rx_queue) > 1024)) {
837		m_freem(m);
838	} else {
839		mbq_safe_enqueue(&kring->rx_queue, m);
840	}
841
842	if (netmap_generic_mit < 32768) {
843		/* no rx mitigation, pass notification up */
844		netmap_generic_irq(na, r, &work_done);
845	} else {
846		/* same as send combining, filter notification if there is a
847		 * pending timer, otherwise pass it up and start a timer.
848		 */
849		if (likely(nm_os_mitigation_active(&gna->mit[r]))) {
850			/* Record that there is some pending work. */
851			gna->mit[r].mit_pending = 1;
852		} else {
853			netmap_generic_irq(na, r, &work_done);
854			nm_os_mitigation_start(&gna->mit[r]);
855		}
856	}
857
858	/* We have intercepted the mbuf. */
859	return 1;
860}
861
862/*
863 * generic_netmap_rxsync() extracts mbufs from the queue filled by
864 * generic_netmap_rx_handler() and puts their content in the netmap
865 * receive ring.
866 * Access must be protected because the rx handler is asynchronous,
867 */
868static int
869generic_netmap_rxsync(struct netmap_kring *kring, int flags)
870{
871	struct netmap_ring *ring = kring->ring;
872	struct netmap_adapter *na = kring->na;
873	u_int nm_i;	/* index into the netmap ring */ //j,
874	u_int n;
875	u_int const lim = kring->nkr_num_slots - 1;
876	u_int const head = kring->rhead;
877	int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
878
879	/* Adapter-specific variables. */
880	u_int nm_buf_len = NETMAP_BUF_SIZE(na);
881	struct mbq tmpq;
882	struct mbuf *m;
883	int avail; /* in bytes */
884	int mlen;
885	int copy;
886
887	if (head > lim)
888		return netmap_ring_reinit(kring);
889
890	IFRATE(rate_ctx.new.rxsync++);
891
892	/*
893	 * First part: skip past packets that userspace has released.
894	 * This can possibly make room for the second part.
895	 */
896	nm_i = kring->nr_hwcur;
897	if (nm_i != head) {
898		/* Userspace has released some packets. */
899		for (n = 0; nm_i != head; n++) {
900			struct netmap_slot *slot = &ring->slot[nm_i];
901
902			slot->flags &= ~NS_BUF_CHANGED;
903			nm_i = nm_next(nm_i, lim);
904		}
905		kring->nr_hwcur = head;
906	}
907
908	/*
909	 * Second part: import newly received packets.
910	 */
911	if (!netmap_no_pendintr && !force_update) {
912		return 0;
913	}
914
915	nm_i = kring->nr_hwtail; /* First empty slot in the receive ring. */
916
917	/* Compute the available space (in bytes) in this netmap ring.
918	 * The first slot that is not considered in is the one before
919	 * nr_hwcur. */
920
921	avail = nm_prev(kring->nr_hwcur, lim) - nm_i;
922	if (avail < 0)
923		avail += lim + 1;
924	avail *= nm_buf_len;
925
926	/* First pass: While holding the lock on the RX mbuf queue,
927	 * extract as many mbufs as they fit the available space,
928	 * and put them in a temporary queue.
929	 * To avoid performing a per-mbuf division (mlen / nm_buf_len) to
930	 * to update avail, we do the update in a while loop that we
931	 * also use to set the RX slots, but without performing the copy. */
932	mbq_init(&tmpq);
933	mbq_lock(&kring->rx_queue);
934	for (n = 0;; n++) {
935		m = mbq_peek(&kring->rx_queue);
936		if (!m) {
937			/* No more packets from the driver. */
938			break;
939		}
940
941		mlen = MBUF_LEN(m);
942		if (mlen > avail) {
943			/* No more space in the ring. */
944			break;
945		}
946
947		mbq_dequeue(&kring->rx_queue);
948
949		while (mlen) {
950			copy = nm_buf_len;
951			if (mlen < copy) {
952				copy = mlen;
953			}
954			mlen -= copy;
955			avail -= nm_buf_len;
956
957			ring->slot[nm_i].len = copy;
958			ring->slot[nm_i].flags = (mlen ? NS_MOREFRAG : 0);
959			nm_i = nm_next(nm_i, lim);
960		}
961
962		mbq_enqueue(&tmpq, m);
963	}
964	mbq_unlock(&kring->rx_queue);
965
966	/* Second pass: Drain the temporary queue, going over the used RX slots,
967	 * and perform the copy out of the RX queue lock. */
968	nm_i = kring->nr_hwtail;
969
970	for (;;) {
971		void *nmaddr;
972		int ofs = 0;
973		int morefrag;
974
975		m = mbq_dequeue(&tmpq);
976		if (!m)	{
977			break;
978		}
979
980		do {
981			nmaddr = NMB(na, &ring->slot[nm_i]);
982			/* We only check the address here on generic rx rings. */
983			if (nmaddr == NETMAP_BUF_BASE(na)) { /* Bad buffer */
984				m_freem(m);
985				mbq_purge(&tmpq);
986				mbq_fini(&tmpq);
987				return netmap_ring_reinit(kring);
988			}
989
990			copy = ring->slot[nm_i].len;
991			m_copydata(m, ofs, copy, nmaddr);
992			ofs += copy;
993			morefrag = ring->slot[nm_i].flags & NS_MOREFRAG;
994			nm_i = nm_next(nm_i, lim);
995		} while (morefrag);
996
997		m_freem(m);
998	}
999
1000	mbq_fini(&tmpq);
1001
1002	if (n) {
1003		kring->nr_hwtail = nm_i;
1004		IFRATE(rate_ctx.new.rxpkt += n);
1005	}
1006	kring->nr_kflags &= ~NKR_PENDINTR;
1007
1008	return 0;
1009}
1010
1011static void
1012generic_netmap_dtor(struct netmap_adapter *na)
1013{
1014	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
1015	struct ifnet *ifp = netmap_generic_getifp(gna);
1016	struct netmap_adapter *prev_na = gna->prev;
1017
1018	if (prev_na != NULL) {
1019		netmap_adapter_put(prev_na);
1020		if (nm_iszombie(na)) {
1021		        /*
1022		         * The driver has been removed without releasing
1023		         * the reference so we need to do it here.
1024		         */
1025		        netmap_adapter_put(prev_na);
1026		}
1027		nm_prinf("Native netmap adapter for %s restored", prev_na->name);
1028	}
1029	NM_RESTORE_NA(ifp, prev_na);
1030	/*
1031	 * netmap_detach_common(), that it's called after this function,
1032	 * overrides WNA(ifp) if na->ifp is not NULL.
1033	 */
1034	na->ifp = NULL;
1035	nm_prinf("Emulated netmap adapter for %s destroyed", na->name);
1036}
1037
1038int
1039na_is_generic(struct netmap_adapter *na)
1040{
1041	return na->nm_register == generic_netmap_register;
1042}
1043
1044/*
1045 * generic_netmap_attach() makes it possible to use netmap on
1046 * a device without native netmap support.
1047 * This is less performant than native support but potentially
1048 * faster than raw sockets or similar schemes.
1049 *
1050 * In this "emulated" mode, netmap rings do not necessarily
1051 * have the same size as those in the NIC. We use a default
1052 * value and possibly override it if the OS has ways to fetch the
1053 * actual configuration.
1054 */
1055int
1056generic_netmap_attach(struct ifnet *ifp)
1057{
1058	struct netmap_adapter *na;
1059	struct netmap_generic_adapter *gna;
1060	int retval;
1061	u_int num_tx_desc, num_rx_desc;
1062
1063#ifdef __FreeBSD__
1064	if (ifp->if_type == IFT_LOOP) {
1065		nm_prerr("if_loop is not supported by %s", __func__);
1066		return EINVAL;
1067	}
1068#endif
1069
1070	if (NM_NA_CLASH(ifp)) {
1071		/* If NA(ifp) is not null but there is no valid netmap
1072		 * adapter it means that someone else is using the same
1073		 * pointer (e.g. ax25_ptr on linux). This happens for
1074		 * instance when also PF_RING is in use. */
1075		nm_prerr("Error: netmap adapter hook is busy");
1076		return EBUSY;
1077	}
1078
1079	num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
1080
1081	nm_os_generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc); /* ignore errors */
1082	if (num_tx_desc == 0 || num_rx_desc == 0) {
1083		nm_prerr("Device has no hw slots (tx %u, rx %u)", num_tx_desc, num_rx_desc);
1084		return EINVAL;
1085	}
1086
1087	gna = nm_os_malloc(sizeof(*gna));
1088	if (gna == NULL) {
1089		nm_prerr("no memory on attach, give up");
1090		return ENOMEM;
1091	}
1092	na = (struct netmap_adapter *)gna;
1093	strlcpy(na->name, ifp->if_xname, sizeof(na->name));
1094	na->ifp = ifp;
1095	na->num_tx_desc = num_tx_desc;
1096	na->num_rx_desc = num_rx_desc;
1097	na->rx_buf_maxsize = 32768;
1098	na->nm_register = &generic_netmap_register;
1099	na->nm_txsync = &generic_netmap_txsync;
1100	na->nm_rxsync = &generic_netmap_rxsync;
1101	na->nm_dtor = &generic_netmap_dtor;
1102	/* when using generic, NAF_NETMAP_ON is set so we force
1103	 * NAF_SKIP_INTR to use the regular interrupt handler
1104	 */
1105	na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS;
1106
1107	nm_prdis("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
1108			ifp->num_tx_queues, ifp->real_num_tx_queues,
1109			ifp->tx_queue_len);
1110	nm_prdis("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
1111			ifp->num_rx_queues, ifp->real_num_rx_queues);
1112
1113	nm_os_generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
1114
1115	retval = netmap_attach_common(na);
1116	if (retval) {
1117		nm_os_free(gna);
1118		return retval;
1119	}
1120
1121	if (NM_NA_VALID(ifp)) {
1122		gna->prev = NA(ifp); /* save old na */
1123		netmap_adapter_get(gna->prev);
1124	}
1125	NM_ATTACH_NA(ifp, na);
1126
1127	nm_os_generic_set_features(gna);
1128
1129	nm_prinf("Emulated adapter for %s created (prev was %s)", na->name,
1130	    gna->prev ? gna->prev->name : "NULL");
1131
1132	return retval;
1133}
1134