1/* SPDX-License-Identifier: BSD-3-Clause */
2/*  Copyright (c) 2020, Intel Corporation
3 *  All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions are met:
7 *
8 *   1. Redistributions of source code must retain the above copyright notice,
9 *      this list of conditions and the following disclaimer.
10 *
11 *   2. Redistributions in binary form must reproduce the above copyright
12 *      notice, this list of conditions and the following disclaimer in the
13 *      documentation and/or other materials provided with the distribution.
14 *
15 *   3. Neither the name of the Intel Corporation nor the names of its
16 *      contributors may be used to endorse or promote products derived from
17 *      this software without specific prior written permission.
18 *
19 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 *  POSSIBILITY OF SUCH DAMAGE.
30 */
31/*$FreeBSD$*/
32
33#include "ice_common.h"
34#include "ice_flex_pipe.h"
35#include "ice_protocol_type.h"
36#include "ice_flow.h"
37
38/* To support tunneling entries by PF, the package will append the PF number to
39 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
40 */
41static const struct ice_tunnel_type_scan tnls[] = {
42	{ TNL_VXLAN,		"TNL_VXLAN_PF" },
43	{ TNL_GENEVE,		"TNL_GENEVE_PF" },
44	{ TNL_LAST,		"" }
45};
46
47static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
48	/* SWITCH */
49	{
50		ICE_SID_XLT0_SW,
51		ICE_SID_XLT_KEY_BUILDER_SW,
52		ICE_SID_XLT1_SW,
53		ICE_SID_XLT2_SW,
54		ICE_SID_PROFID_TCAM_SW,
55		ICE_SID_PROFID_REDIR_SW,
56		ICE_SID_FLD_VEC_SW,
57		ICE_SID_CDID_KEY_BUILDER_SW,
58		ICE_SID_CDID_REDIR_SW
59	},
60
61	/* ACL */
62	{
63		ICE_SID_XLT0_ACL,
64		ICE_SID_XLT_KEY_BUILDER_ACL,
65		ICE_SID_XLT1_ACL,
66		ICE_SID_XLT2_ACL,
67		ICE_SID_PROFID_TCAM_ACL,
68		ICE_SID_PROFID_REDIR_ACL,
69		ICE_SID_FLD_VEC_ACL,
70		ICE_SID_CDID_KEY_BUILDER_ACL,
71		ICE_SID_CDID_REDIR_ACL
72	},
73
74	/* FD */
75	{
76		ICE_SID_XLT0_FD,
77		ICE_SID_XLT_KEY_BUILDER_FD,
78		ICE_SID_XLT1_FD,
79		ICE_SID_XLT2_FD,
80		ICE_SID_PROFID_TCAM_FD,
81		ICE_SID_PROFID_REDIR_FD,
82		ICE_SID_FLD_VEC_FD,
83		ICE_SID_CDID_KEY_BUILDER_FD,
84		ICE_SID_CDID_REDIR_FD
85	},
86
87	/* RSS */
88	{
89		ICE_SID_XLT0_RSS,
90		ICE_SID_XLT_KEY_BUILDER_RSS,
91		ICE_SID_XLT1_RSS,
92		ICE_SID_XLT2_RSS,
93		ICE_SID_PROFID_TCAM_RSS,
94		ICE_SID_PROFID_REDIR_RSS,
95		ICE_SID_FLD_VEC_RSS,
96		ICE_SID_CDID_KEY_BUILDER_RSS,
97		ICE_SID_CDID_REDIR_RSS
98	},
99
100	/* PE */
101	{
102		ICE_SID_XLT0_PE,
103		ICE_SID_XLT_KEY_BUILDER_PE,
104		ICE_SID_XLT1_PE,
105		ICE_SID_XLT2_PE,
106		ICE_SID_PROFID_TCAM_PE,
107		ICE_SID_PROFID_REDIR_PE,
108		ICE_SID_FLD_VEC_PE,
109		ICE_SID_CDID_KEY_BUILDER_PE,
110		ICE_SID_CDID_REDIR_PE
111	}
112};
113
114/**
115 * ice_sect_id - returns section ID
116 * @blk: block type
117 * @sect: section type
118 *
119 * This helper function returns the proper section ID given a block type and a
120 * section type.
121 */
122static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
123{
124	return ice_sect_lkup[blk][sect];
125}
126
127/**
128 * ice_pkg_val_buf
129 * @buf: pointer to the ice buffer
130 *
131 * This helper function validates a buffer's header.
132 */
133static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
134{
135	struct ice_buf_hdr *hdr;
136	u16 section_count;
137	u16 data_end;
138
139	hdr = (struct ice_buf_hdr *)buf->buf;
140	/* verify data */
141	section_count = LE16_TO_CPU(hdr->section_count);
142	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
143		return NULL;
144
145	data_end = LE16_TO_CPU(hdr->data_end);
146	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
147		return NULL;
148
149	return hdr;
150}
151
152/**
153 * ice_find_buf_table
154 * @ice_seg: pointer to the ice segment
155 *
156 * Returns the address of the buffer table within the ice segment.
157 */
158static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
159{
160	struct ice_nvm_table *nvms;
161
162	nvms = (struct ice_nvm_table *)
163		(ice_seg->device_table +
164		 LE32_TO_CPU(ice_seg->device_table_count));
165
166	return (_FORCE_ struct ice_buf_table *)
167		(nvms->vers + LE32_TO_CPU(nvms->table_count));
168}
169
170/**
171 * ice_pkg_enum_buf
172 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
173 * @state: pointer to the enum state
174 *
175 * This function will enumerate all the buffers in the ice segment. The first
176 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
177 * ice_seg is set to NULL which continues the enumeration. When the function
178 * returns a NULL pointer, then the end of the buffers has been reached, or an
179 * unexpected value has been detected (for example an invalid section count or
180 * an invalid buffer end value).
181 */
182static struct ice_buf_hdr *
183ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
184{
185	if (ice_seg) {
186		state->buf_table = ice_find_buf_table(ice_seg);
187		if (!state->buf_table)
188			return NULL;
189
190		state->buf_idx = 0;
191		return ice_pkg_val_buf(state->buf_table->buf_array);
192	}
193
194	if (++state->buf_idx < LE32_TO_CPU(state->buf_table->buf_count))
195		return ice_pkg_val_buf(state->buf_table->buf_array +
196				       state->buf_idx);
197	else
198		return NULL;
199}
200
201/**
202 * ice_pkg_advance_sect
203 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
204 * @state: pointer to the enum state
205 *
206 * This helper function will advance the section within the ice segment,
207 * also advancing the buffer if needed.
208 */
209static bool
210ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
211{
212	if (!ice_seg && !state->buf)
213		return false;
214
215	if (!ice_seg && state->buf)
216		if (++state->sect_idx < LE16_TO_CPU(state->buf->section_count))
217			return true;
218
219	state->buf = ice_pkg_enum_buf(ice_seg, state);
220	if (!state->buf)
221		return false;
222
223	/* start of new buffer, reset section index */
224	state->sect_idx = 0;
225	return true;
226}
227
228/**
229 * ice_pkg_enum_section
230 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
231 * @state: pointer to the enum state
232 * @sect_type: section type to enumerate
233 *
234 * This function will enumerate all the sections of a particular type in the
235 * ice segment. The first call is made with the ice_seg parameter non-NULL;
236 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
237 * When the function returns a NULL pointer, then the end of the matching
238 * sections has been reached.
239 */
240static void *
241ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
242		     u32 sect_type)
243{
244	u16 offset, size;
245
246	if (ice_seg)
247		state->type = sect_type;
248
249	if (!ice_pkg_advance_sect(ice_seg, state))
250		return NULL;
251
252	/* scan for next matching section */
253	while (state->buf->section_entry[state->sect_idx].type !=
254	       CPU_TO_LE32(state->type))
255		if (!ice_pkg_advance_sect(NULL, state))
256			return NULL;
257
258	/* validate section */
259	offset = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
260	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
261		return NULL;
262
263	size = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].size);
264	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
265		return NULL;
266
267	/* make sure the section fits in the buffer */
268	if (offset + size > ICE_PKG_BUF_SIZE)
269		return NULL;
270
271	state->sect_type =
272		LE32_TO_CPU(state->buf->section_entry[state->sect_idx].type);
273
274	/* calc pointer to this section */
275	state->sect = ((u8 *)state->buf) +
276		LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
277
278	return state->sect;
279}
280
281/**
282 * ice_pkg_enum_entry
283 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
284 * @state: pointer to the enum state
285 * @sect_type: section type to enumerate
286 * @offset: pointer to variable that receives the offset in the table (optional)
287 * @handler: function that handles access to the entries into the section type
288 *
289 * This function will enumerate all the entries in particular section type in
290 * the ice segment. The first call is made with the ice_seg parameter non-NULL;
291 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
292 * When the function returns a NULL pointer, then the end of the entries has
293 * been reached.
294 *
295 * Since each section may have a different header and entry size, the handler
296 * function is needed to determine the number and location entries in each
297 * section.
298 *
299 * The offset parameter is optional, but should be used for sections that
300 * contain an offset for each section table. For such cases, the section handler
301 * function must return the appropriate offset + index to give the absolution
302 * offset for each entry. For example, if the base for a section's header
303 * indicates a base offset of 10, and the index for the entry is 2, then
304 * section handler function should set the offset to 10 + 2 = 12.
305 */
306static void *
307ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
308		   u32 sect_type, u32 *offset,
309		   void *(*handler)(u32 sect_type, void *section,
310				    u32 index, u32 *offset))
311{
312	void *entry;
313
314	if (ice_seg) {
315		if (!handler)
316			return NULL;
317
318		if (!ice_pkg_enum_section(ice_seg, state, sect_type))
319			return NULL;
320
321		state->entry_idx = 0;
322		state->handler = handler;
323	} else {
324		state->entry_idx++;
325	}
326
327	if (!state->handler)
328		return NULL;
329
330	/* get entry */
331	entry = state->handler(state->sect_type, state->sect, state->entry_idx,
332			       offset);
333	if (!entry) {
334		/* end of a section, look for another section of this type */
335		if (!ice_pkg_enum_section(NULL, state, 0))
336			return NULL;
337
338		state->entry_idx = 0;
339		entry = state->handler(state->sect_type, state->sect,
340				       state->entry_idx, offset);
341	}
342
343	return entry;
344}
345
346/**
347 * ice_boost_tcam_handler
348 * @sect_type: section type
349 * @section: pointer to section
350 * @index: index of the boost TCAM entry to be returned
351 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
352 *
353 * This is a callback function that can be passed to ice_pkg_enum_entry.
354 * Handles enumeration of individual boost TCAM entries.
355 */
356static void *
357ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
358{
359	struct ice_boost_tcam_section *boost;
360
361	if (!section)
362		return NULL;
363
364	if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
365		return NULL;
366
367	if (index > ICE_MAX_BST_TCAMS_IN_BUF)
368		return NULL;
369
370	if (offset)
371		*offset = 0;
372
373	boost = (struct ice_boost_tcam_section *)section;
374	if (index >= LE16_TO_CPU(boost->count))
375		return NULL;
376
377	return boost->tcam + index;
378}
379
380/**
381 * ice_find_boost_entry
382 * @ice_seg: pointer to the ice segment (non-NULL)
383 * @addr: Boost TCAM address of entry to search for
384 * @entry: returns pointer to the entry
385 *
386 * Finds a particular Boost TCAM entry and returns a pointer to that entry
387 * if it is found. The ice_seg parameter must not be NULL since the first call
388 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
389 */
390static enum ice_status
391ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
392		     struct ice_boost_tcam_entry **entry)
393{
394	struct ice_boost_tcam_entry *tcam;
395	struct ice_pkg_enum state;
396
397	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
398
399	if (!ice_seg)
400		return ICE_ERR_PARAM;
401
402	do {
403		tcam = (struct ice_boost_tcam_entry *)
404		       ice_pkg_enum_entry(ice_seg, &state,
405					  ICE_SID_RXPARSER_BOOST_TCAM, NULL,
406					  ice_boost_tcam_handler);
407		if (tcam && LE16_TO_CPU(tcam->addr) == addr) {
408			*entry = tcam;
409			return ICE_SUCCESS;
410		}
411
412		ice_seg = NULL;
413	} while (tcam);
414
415	*entry = NULL;
416	return ICE_ERR_CFG;
417}
418
419/**
420 * ice_label_enum_handler
421 * @sect_type: section type
422 * @section: pointer to section
423 * @index: index of the label entry to be returned
424 * @offset: pointer to receive absolute offset, always zero for label sections
425 *
426 * This is a callback function that can be passed to ice_pkg_enum_entry.
427 * Handles enumeration of individual label entries.
428 */
429static void *
430ice_label_enum_handler(u32 __ALWAYS_UNUSED sect_type, void *section, u32 index,
431		       u32 *offset)
432{
433	struct ice_label_section *labels;
434
435	if (!section)
436		return NULL;
437
438	if (index > ICE_MAX_LABELS_IN_BUF)
439		return NULL;
440
441	if (offset)
442		*offset = 0;
443
444	labels = (struct ice_label_section *)section;
445	if (index >= LE16_TO_CPU(labels->count))
446		return NULL;
447
448	return labels->label + index;
449}
450
451/**
452 * ice_enum_labels
453 * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
454 * @type: the section type that will contain the label (0 on subsequent calls)
455 * @state: ice_pkg_enum structure that will hold the state of the enumeration
456 * @value: pointer to a value that will return the label's value if found
457 *
458 * Enumerates a list of labels in the package. The caller will call
459 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
460 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
461 * the end of the list has been reached.
462 */
463static char *
464ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
465		u16 *value)
466{
467	struct ice_label *label;
468
469	/* Check for valid label section on first call */
470	if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
471		return NULL;
472
473	label = (struct ice_label *)ice_pkg_enum_entry(ice_seg, state, type,
474						       NULL,
475						       ice_label_enum_handler);
476	if (!label)
477		return NULL;
478
479	*value = LE16_TO_CPU(label->value);
480	return label->name;
481}
482
483/**
484 * ice_init_pkg_hints
485 * @hw: pointer to the HW structure
486 * @ice_seg: pointer to the segment of the package scan (non-NULL)
487 *
488 * This function will scan the package and save off relevant information
489 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
490 * since the first call to ice_enum_labels requires a pointer to an actual
491 * ice_seg structure.
492 */
493static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
494{
495	struct ice_pkg_enum state;
496	char *label_name;
497	u16 val;
498	int i;
499
500	ice_memset(&hw->tnl, 0, sizeof(hw->tnl), ICE_NONDMA_MEM);
501	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
502
503	if (!ice_seg)
504		return;
505
506	label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
507				     &val);
508
509	while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
510		for (i = 0; tnls[i].type != TNL_LAST; i++) {
511			size_t len = strlen(tnls[i].label_prefix);
512
513			/* Look for matching label start, before continuing */
514			if (strncmp(label_name, tnls[i].label_prefix, len))
515				continue;
516
517			/* Make sure this label matches our PF. Note that the PF
518			 * character ('0' - '7') will be located where our
519			 * prefix string's null terminator is located.
520			 */
521			if ((label_name[len] - '0') == hw->pf_id) {
522				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
523				hw->tnl.tbl[hw->tnl.count].valid = false;
524				hw->tnl.tbl[hw->tnl.count].in_use = false;
525				hw->tnl.tbl[hw->tnl.count].marked = false;
526				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
527				hw->tnl.tbl[hw->tnl.count].port = 0;
528				hw->tnl.count++;
529				break;
530			}
531		}
532
533		label_name = ice_enum_labels(NULL, 0, &state, &val);
534	}
535
536	/* Cache the appropriate boost TCAM entry pointers */
537	for (i = 0; i < hw->tnl.count; i++) {
538		ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
539				     &hw->tnl.tbl[i].boost_entry);
540		if (hw->tnl.tbl[i].boost_entry)
541			hw->tnl.tbl[i].valid = true;
542	}
543}
544
545/* Key creation */
546
547#define ICE_DC_KEY	0x1	/* don't care */
548#define ICE_DC_KEYINV	0x1
549#define ICE_NM_KEY	0x0	/* never match */
550#define ICE_NM_KEYINV	0x0
551#define ICE_0_KEY	0x1	/* match 0 */
552#define ICE_0_KEYINV	0x0
553#define ICE_1_KEY	0x0	/* match 1 */
554#define ICE_1_KEYINV	0x1
555
556/**
557 * ice_gen_key_word - generate 16-bits of a key/mask word
558 * @val: the value
559 * @valid: valid bits mask (change only the valid bits)
560 * @dont_care: don't care mask
561 * @nvr_mtch: never match mask
562 * @key: pointer to an array of where the resulting key portion
563 * @key_inv: pointer to an array of where the resulting key invert portion
564 *
565 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
566 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
567 * of key and 8 bits of key invert.
568 *
569 *     '0' =    b01, always match a 0 bit
570 *     '1' =    b10, always match a 1 bit
571 *     '?' =    b11, don't care bit (always matches)
572 *     '~' =    b00, never match bit
573 *
574 * Input:
575 *          val:         b0  1  0  1  0  1
576 *          dont_care:   b0  0  1  1  0  0
577 *          never_mtch:  b0  0  0  0  1  1
578 *          ------------------------------
579 * Result:  key:        b01 10 11 11 00 00
580 */
581static enum ice_status
582ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
583		 u8 *key_inv)
584{
585	u8 in_key = *key, in_key_inv = *key_inv;
586	u8 i;
587
588	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
589	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
590		return ICE_ERR_CFG;
591
592	*key = 0;
593	*key_inv = 0;
594
595	/* encode the 8 bits into 8-bit key and 8-bit key invert */
596	for (i = 0; i < 8; i++) {
597		*key >>= 1;
598		*key_inv >>= 1;
599
600		if (!(valid & 0x1)) { /* change only valid bits */
601			*key |= (in_key & 0x1) << 7;
602			*key_inv |= (in_key_inv & 0x1) << 7;
603		} else if (dont_care & 0x1) { /* don't care bit */
604			*key |= ICE_DC_KEY << 7;
605			*key_inv |= ICE_DC_KEYINV << 7;
606		} else if (nvr_mtch & 0x1) { /* never match bit */
607			*key |= ICE_NM_KEY << 7;
608			*key_inv |= ICE_NM_KEYINV << 7;
609		} else if (val & 0x01) { /* exact 1 match */
610			*key |= ICE_1_KEY << 7;
611			*key_inv |= ICE_1_KEYINV << 7;
612		} else { /* exact 0 match */
613			*key |= ICE_0_KEY << 7;
614			*key_inv |= ICE_0_KEYINV << 7;
615		}
616
617		dont_care >>= 1;
618		nvr_mtch >>= 1;
619		valid >>= 1;
620		val >>= 1;
621		in_key >>= 1;
622		in_key_inv >>= 1;
623	}
624
625	return ICE_SUCCESS;
626}
627
628/**
629 * ice_bits_max_set - determine if the number of bits set is within a maximum
630 * @mask: pointer to the byte array which is the mask
631 * @size: the number of bytes in the mask
632 * @max: the max number of set bits
633 *
634 * This function determines if there are at most 'max' number of bits set in an
635 * array. Returns true if the number for bits set is <= max or will return false
636 * otherwise.
637 */
638static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
639{
640	u16 count = 0;
641	u16 i;
642
643	/* check each byte */
644	for (i = 0; i < size; i++) {
645		/* if 0, go to next byte */
646		if (!mask[i])
647			continue;
648
649		/* We know there is at least one set bit in this byte because of
650		 * the above check; if we already have found 'max' number of
651		 * bits set, then we can return failure now.
652		 */
653		if (count == max)
654			return false;
655
656		/* count the bits in this byte, checking threshold */
657		count += ice_hweight8(mask[i]);
658		if (count > max)
659			return false;
660	}
661
662	return true;
663}
664
665/**
666 * ice_set_key - generate a variable sized key with multiples of 16-bits
667 * @key: pointer to where the key will be stored
668 * @size: the size of the complete key in bytes (must be even)
669 * @val: array of 8-bit values that makes up the value portion of the key
670 * @upd: array of 8-bit masks that determine what key portion to update
671 * @dc: array of 8-bit masks that make up the don't care mask
672 * @nm: array of 8-bit masks that make up the never match mask
673 * @off: the offset of the first byte in the key to update
674 * @len: the number of bytes in the key update
675 *
676 * This function generates a key from a value, a don't care mask and a never
677 * match mask.
678 * upd, dc, and nm are optional parameters, and can be NULL:
679 *	upd == NULL --> upd mask is all 1's (update all bits)
680 *	dc == NULL --> dc mask is all 0's (no don't care bits)
681 *	nm == NULL --> nm mask is all 0's (no never match bits)
682 */
683static enum ice_status
684ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
685	    u16 len)
686{
687	u16 half_size;
688	u16 i;
689
690	/* size must be a multiple of 2 bytes. */
691	if (size % 2)
692		return ICE_ERR_CFG;
693	half_size = size / 2;
694
695	if (off + len > half_size)
696		return ICE_ERR_CFG;
697
698	/* Make sure at most one bit is set in the never match mask. Having more
699	 * than one never match mask bit set will cause HW to consume excessive
700	 * power otherwise; this is a power management efficiency check.
701	 */
702#define ICE_NVR_MTCH_BITS_MAX	1
703	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
704		return ICE_ERR_CFG;
705
706	for (i = 0; i < len; i++)
707		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
708				     dc ? dc[i] : 0, nm ? nm[i] : 0,
709				     key + off + i, key + half_size + off + i))
710			return ICE_ERR_CFG;
711
712	return ICE_SUCCESS;
713}
714
715/**
716 * ice_acquire_global_cfg_lock
717 * @hw: pointer to the HW structure
718 * @access: access type (read or write)
719 *
720 * This function will request ownership of the global config lock for reading
721 * or writing of the package. When attempting to obtain write access, the
722 * caller must check for the following two return values:
723 *
724 * ICE_SUCCESS        - Means the caller has acquired the global config lock
725 *                      and can perform writing of the package.
726 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
727 *                      package or has found that no update was necessary; in
728 *                      this case, the caller can just skip performing any
729 *                      update of the package.
730 */
731static enum ice_status
732ice_acquire_global_cfg_lock(struct ice_hw *hw,
733			    enum ice_aq_res_access_type access)
734{
735	enum ice_status status;
736
737	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
738
739	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
740				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
741
742	if (status == ICE_ERR_AQ_NO_WORK)
743		ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
744
745	return status;
746}
747
748/**
749 * ice_release_global_cfg_lock
750 * @hw: pointer to the HW structure
751 *
752 * This function will release the global config lock.
753 */
754static void ice_release_global_cfg_lock(struct ice_hw *hw)
755{
756	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
757}
758
759/**
760 * ice_acquire_change_lock
761 * @hw: pointer to the HW structure
762 * @access: access type (read or write)
763 *
764 * This function will request ownership of the change lock.
765 */
766static enum ice_status
767ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
768{
769	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
770
771	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
772			       ICE_CHANGE_LOCK_TIMEOUT);
773}
774
775/**
776 * ice_release_change_lock
777 * @hw: pointer to the HW structure
778 *
779 * This function will release the change lock using the proper Admin Command.
780 */
781static void ice_release_change_lock(struct ice_hw *hw)
782{
783	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
784
785	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
786}
787
788/**
789 * ice_aq_download_pkg
790 * @hw: pointer to the hardware structure
791 * @pkg_buf: the package buffer to transfer
792 * @buf_size: the size of the package buffer
793 * @last_buf: last buffer indicator
794 * @error_offset: returns error offset
795 * @error_info: returns error information
796 * @cd: pointer to command details structure or NULL
797 *
798 * Download Package (0x0C40)
799 */
800static enum ice_status
801ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
802		    u16 buf_size, bool last_buf, u32 *error_offset,
803		    u32 *error_info, struct ice_sq_cd *cd)
804{
805	struct ice_aqc_download_pkg *cmd;
806	struct ice_aq_desc desc;
807	enum ice_status status;
808
809	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
810
811	if (error_offset)
812		*error_offset = 0;
813	if (error_info)
814		*error_info = 0;
815
816	cmd = &desc.params.download_pkg;
817	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
818	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
819
820	if (last_buf)
821		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
822
823	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
824	if (status == ICE_ERR_AQ_ERROR) {
825		/* Read error from buffer only when the FW returned an error */
826		struct ice_aqc_download_pkg_resp *resp;
827
828		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
829		if (error_offset)
830			*error_offset = LE32_TO_CPU(resp->error_offset);
831		if (error_info)
832			*error_info = LE32_TO_CPU(resp->error_info);
833	}
834
835	return status;
836}
837
838/**
839 * ice_aq_upload_section
840 * @hw: pointer to the hardware structure
841 * @pkg_buf: the package buffer which will receive the section
842 * @buf_size: the size of the package buffer
843 * @cd: pointer to command details structure or NULL
844 *
845 * Upload Section (0x0C41)
846 */
847enum ice_status
848ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
849		      u16 buf_size, struct ice_sq_cd *cd)
850{
851	struct ice_aq_desc desc;
852
853	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
854	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
855	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
856
857	return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
858}
859
860/**
861 * ice_aq_update_pkg
862 * @hw: pointer to the hardware structure
863 * @pkg_buf: the package cmd buffer
864 * @buf_size: the size of the package cmd buffer
865 * @last_buf: last buffer indicator
866 * @error_offset: returns error offset
867 * @error_info: returns error information
868 * @cd: pointer to command details structure or NULL
869 *
870 * Update Package (0x0C42)
871 */
872static enum ice_status
873ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
874		  bool last_buf, u32 *error_offset, u32 *error_info,
875		  struct ice_sq_cd *cd)
876{
877	struct ice_aqc_download_pkg *cmd;
878	struct ice_aq_desc desc;
879	enum ice_status status;
880
881	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
882
883	if (error_offset)
884		*error_offset = 0;
885	if (error_info)
886		*error_info = 0;
887
888	cmd = &desc.params.download_pkg;
889	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
890	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
891
892	if (last_buf)
893		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
894
895	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
896	if (status == ICE_ERR_AQ_ERROR) {
897		/* Read error from buffer only when the FW returned an error */
898		struct ice_aqc_download_pkg_resp *resp;
899
900		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
901		if (error_offset)
902			*error_offset = LE32_TO_CPU(resp->error_offset);
903		if (error_info)
904			*error_info = LE32_TO_CPU(resp->error_info);
905	}
906
907	return status;
908}
909
910/**
911 * ice_find_seg_in_pkg
912 * @hw: pointer to the hardware structure
913 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
914 * @pkg_hdr: pointer to the package header to be searched
915 *
916 * This function searches a package file for a particular segment type. On
917 * success it returns a pointer to the segment header, otherwise it will
918 * return NULL.
919 */
920static struct ice_generic_seg_hdr *
921ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
922		    struct ice_pkg_hdr *pkg_hdr)
923{
924	u32 i;
925
926	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
927	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
928		  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
929		  pkg_hdr->pkg_format_ver.update,
930		  pkg_hdr->pkg_format_ver.draft);
931
932	/* Search all package segments for the requested segment type */
933	for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) {
934		struct ice_generic_seg_hdr *seg;
935
936		seg = (struct ice_generic_seg_hdr *)
937			((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[i]));
938
939		if (LE32_TO_CPU(seg->seg_type) == seg_type)
940			return seg;
941	}
942
943	return NULL;
944}
945
946/**
947 * ice_update_pkg
948 * @hw: pointer to the hardware structure
949 * @bufs: pointer to an array of buffers
950 * @count: the number of buffers in the array
951 *
952 * Obtains change lock and updates package.
953 */
954enum ice_status
955ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
956{
957	enum ice_status status;
958	u32 offset, info, i;
959
960	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
961	if (status)
962		return status;
963
964	for (i = 0; i < count; i++) {
965		struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
966		bool last = ((i + 1) == count);
967
968		status = ice_aq_update_pkg(hw, bh, LE16_TO_CPU(bh->data_end),
969					   last, &offset, &info, NULL);
970
971		if (status) {
972			ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
973				  status, offset, info);
974			break;
975		}
976	}
977
978	ice_release_change_lock(hw);
979
980	return status;
981}
982
983/**
984 * ice_dwnld_cfg_bufs
985 * @hw: pointer to the hardware structure
986 * @bufs: pointer to an array of buffers
987 * @count: the number of buffers in the array
988 *
989 * Obtains global config lock and downloads the package configuration buffers
990 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
991 * found indicates that the rest of the buffers are all metadata buffers.
992 */
993static enum ice_status
994ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
995{
996	enum ice_status status;
997	struct ice_buf_hdr *bh;
998	u32 offset, info, i;
999
1000	if (!bufs || !count)
1001		return ICE_ERR_PARAM;
1002
1003	/* If the first buffer's first section has its metadata bit set
1004	 * then there are no buffers to be downloaded, and the operation is
1005	 * considered a success.
1006	 */
1007	bh = (struct ice_buf_hdr *)bufs;
1008	if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF)
1009		return ICE_SUCCESS;
1010
1011	/* reset pkg_dwnld_status in case this function is called in the
1012	 * reset/rebuild flow
1013	 */
1014	hw->pkg_dwnld_status = ICE_AQ_RC_OK;
1015
1016	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1017	if (status) {
1018		if (status == ICE_ERR_AQ_NO_WORK)
1019			hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
1020		else
1021			hw->pkg_dwnld_status = hw->adminq.sq_last_status;
1022		return status;
1023	}
1024
1025	for (i = 0; i < count; i++) {
1026		bool last = ((i + 1) == count);
1027
1028		if (!last) {
1029			/* check next buffer for metadata flag */
1030			bh = (struct ice_buf_hdr *)(bufs + i + 1);
1031
1032			/* A set metadata flag in the next buffer will signal
1033			 * that the current buffer will be the last buffer
1034			 * downloaded
1035			 */
1036			if (LE16_TO_CPU(bh->section_count))
1037				if (LE32_TO_CPU(bh->section_entry[0].type) &
1038				    ICE_METADATA_BUF)
1039					last = true;
1040		}
1041
1042		bh = (struct ice_buf_hdr *)(bufs + i);
1043
1044		status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
1045					     &offset, &info, NULL);
1046
1047		/* Save AQ status from download package */
1048		hw->pkg_dwnld_status = hw->adminq.sq_last_status;
1049		if (status) {
1050			ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
1051				  status, offset, info);
1052
1053			break;
1054		}
1055
1056		if (last)
1057			break;
1058	}
1059
1060	ice_release_global_cfg_lock(hw);
1061
1062	return status;
1063}
1064
1065/**
1066 * ice_aq_get_pkg_info_list
1067 * @hw: pointer to the hardware structure
1068 * @pkg_info: the buffer which will receive the information list
1069 * @buf_size: the size of the pkg_info information buffer
1070 * @cd: pointer to command details structure or NULL
1071 *
1072 * Get Package Info List (0x0C43)
1073 */
1074static enum ice_status
1075ice_aq_get_pkg_info_list(struct ice_hw *hw,
1076			 struct ice_aqc_get_pkg_info_resp *pkg_info,
1077			 u16 buf_size, struct ice_sq_cd *cd)
1078{
1079	struct ice_aq_desc desc;
1080
1081	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1082	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1083
1084	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1085}
1086
1087/**
1088 * ice_download_pkg
1089 * @hw: pointer to the hardware structure
1090 * @ice_seg: pointer to the segment of the package to be downloaded
1091 *
1092 * Handles the download of a complete package.
1093 */
1094static enum ice_status
1095ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1096{
1097	struct ice_buf_table *ice_buf_tbl;
1098
1099	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1100	ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1101		  ice_seg->hdr.seg_format_ver.major,
1102		  ice_seg->hdr.seg_format_ver.minor,
1103		  ice_seg->hdr.seg_format_ver.update,
1104		  ice_seg->hdr.seg_format_ver.draft);
1105
1106	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1107		  LE32_TO_CPU(ice_seg->hdr.seg_type),
1108		  LE32_TO_CPU(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1109
1110	ice_buf_tbl = ice_find_buf_table(ice_seg);
1111
1112	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1113		  LE32_TO_CPU(ice_buf_tbl->buf_count));
1114
1115	return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1116				  LE32_TO_CPU(ice_buf_tbl->buf_count));
1117}
1118
1119/**
1120 * ice_init_pkg_info
1121 * @hw: pointer to the hardware structure
1122 * @pkg_hdr: pointer to the driver's package hdr
1123 *
1124 * Saves off the package details into the HW structure.
1125 */
1126static enum ice_status
1127ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1128{
1129	struct ice_global_metadata_seg *meta_seg;
1130	struct ice_generic_seg_hdr *seg_hdr;
1131
1132	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1133	if (!pkg_hdr)
1134		return ICE_ERR_PARAM;
1135
1136	meta_seg = (struct ice_global_metadata_seg *)
1137		   ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr);
1138	if (meta_seg) {
1139		hw->pkg_ver = meta_seg->pkg_ver;
1140		ice_memcpy(hw->pkg_name, meta_seg->pkg_name,
1141			   sizeof(hw->pkg_name), ICE_NONDMA_TO_NONDMA);
1142
1143		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1144			  meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor,
1145			  meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft,
1146			  meta_seg->pkg_name);
1147	} else {
1148		ice_debug(hw, ICE_DBG_INIT, "Did not find metadata segment in driver package\n");
1149		return ICE_ERR_CFG;
1150	}
1151
1152	seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1153	if (seg_hdr) {
1154		hw->ice_pkg_ver = seg_hdr->seg_format_ver;
1155		ice_memcpy(hw->ice_pkg_name, seg_hdr->seg_id,
1156			   sizeof(hw->ice_pkg_name), ICE_NONDMA_TO_NONDMA);
1157
1158		ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1159			  seg_hdr->seg_format_ver.major,
1160			  seg_hdr->seg_format_ver.minor,
1161			  seg_hdr->seg_format_ver.update,
1162			  seg_hdr->seg_format_ver.draft,
1163			  seg_hdr->seg_id);
1164	} else {
1165		ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1166		return ICE_ERR_CFG;
1167	}
1168
1169	return ICE_SUCCESS;
1170}
1171
1172/**
1173 * ice_get_pkg_info
1174 * @hw: pointer to the hardware structure
1175 *
1176 * Store details of the package currently loaded in HW into the HW structure.
1177 */
1178static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
1179{
1180	struct ice_aqc_get_pkg_info_resp *pkg_info;
1181	enum ice_status status;
1182	u16 size;
1183	u32 i;
1184
1185	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1186
1187	size = ice_struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1188	pkg_info = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1189	if (!pkg_info)
1190		return ICE_ERR_NO_MEMORY;
1191
1192	status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
1193	if (status)
1194		goto init_pkg_free_alloc;
1195
1196	for (i = 0; i < LE32_TO_CPU(pkg_info->count); i++) {
1197#define ICE_PKG_FLAG_COUNT	4
1198		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1199		u8 place = 0;
1200
1201		if (pkg_info->pkg_info[i].is_active) {
1202			flags[place++] = 'A';
1203			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1204			hw->active_track_id =
1205				LE32_TO_CPU(pkg_info->pkg_info[i].track_id);
1206			ice_memcpy(hw->active_pkg_name,
1207				   pkg_info->pkg_info[i].name,
1208				   sizeof(pkg_info->pkg_info[i].name),
1209				   ICE_NONDMA_TO_NONDMA);
1210			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1211		}
1212		if (pkg_info->pkg_info[i].is_active_at_boot)
1213			flags[place++] = 'B';
1214		if (pkg_info->pkg_info[i].is_modified)
1215			flags[place++] = 'M';
1216		if (pkg_info->pkg_info[i].is_in_nvm)
1217			flags[place++] = 'N';
1218
1219		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1220			  i, pkg_info->pkg_info[i].ver.major,
1221			  pkg_info->pkg_info[i].ver.minor,
1222			  pkg_info->pkg_info[i].ver.update,
1223			  pkg_info->pkg_info[i].ver.draft,
1224			  pkg_info->pkg_info[i].name, flags);
1225	}
1226
1227init_pkg_free_alloc:
1228	ice_free(hw, pkg_info);
1229
1230	return status;
1231}
1232
1233/**
1234 * ice_find_label_value
1235 * @ice_seg: pointer to the ice segment (non-NULL)
1236 * @name: name of the label to search for
1237 * @type: the section type that will contain the label
1238 * @value: pointer to a value that will return the label's value if found
1239 *
1240 * Finds a label's value given the label name and the section type to search.
1241 * The ice_seg parameter must not be NULL since the first call to
1242 * ice_enum_labels requires a pointer to an actual ice_seg structure.
1243 */
1244enum ice_status
1245ice_find_label_value(struct ice_seg *ice_seg, char const *name, u32 type,
1246		     u16 *value)
1247{
1248	struct ice_pkg_enum state;
1249	char *label_name;
1250	u16 val;
1251
1252	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1253
1254	if (!ice_seg)
1255		return ICE_ERR_PARAM;
1256
1257	do {
1258		label_name = ice_enum_labels(ice_seg, type, &state, &val);
1259		if (label_name && !strcmp(label_name, name)) {
1260			*value = val;
1261			return ICE_SUCCESS;
1262		}
1263
1264		ice_seg = NULL;
1265	} while (label_name);
1266
1267	return ICE_ERR_CFG;
1268}
1269
1270/**
1271 * ice_verify_pkg - verify package
1272 * @pkg: pointer to the package buffer
1273 * @len: size of the package buffer
1274 *
1275 * Verifies various attributes of the package file, including length, format
1276 * version, and the requirement of at least one segment.
1277 */
1278static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1279{
1280	u32 seg_count;
1281	u32 i;
1282
1283	if (len < ice_struct_size(pkg, seg_offset, 1))
1284		return ICE_ERR_BUF_TOO_SHORT;
1285
1286	if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1287	    pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1288	    pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1289	    pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1290		return ICE_ERR_CFG;
1291
1292	/* pkg must have at least one segment */
1293	seg_count = LE32_TO_CPU(pkg->seg_count);
1294	if (seg_count < 1)
1295		return ICE_ERR_CFG;
1296
1297	/* make sure segment array fits in package length */
1298	if (len < ice_struct_size(pkg, seg_offset, seg_count))
1299		return ICE_ERR_BUF_TOO_SHORT;
1300
1301	/* all segments must fit within length */
1302	for (i = 0; i < seg_count; i++) {
1303		u32 off = LE32_TO_CPU(pkg->seg_offset[i]);
1304		struct ice_generic_seg_hdr *seg;
1305
1306		/* segment header must fit */
1307		if (len < off + sizeof(*seg))
1308			return ICE_ERR_BUF_TOO_SHORT;
1309
1310		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1311
1312		/* segment body must fit */
1313		if (len < off + LE32_TO_CPU(seg->seg_size))
1314			return ICE_ERR_BUF_TOO_SHORT;
1315	}
1316
1317	return ICE_SUCCESS;
1318}
1319
1320/**
1321 * ice_free_seg - free package segment pointer
1322 * @hw: pointer to the hardware structure
1323 *
1324 * Frees the package segment pointer in the proper manner, depending on if the
1325 * segment was allocated or just the passed in pointer was stored.
1326 */
1327void ice_free_seg(struct ice_hw *hw)
1328{
1329	if (hw->pkg_copy) {
1330		ice_free(hw, hw->pkg_copy);
1331		hw->pkg_copy = NULL;
1332		hw->pkg_size = 0;
1333	}
1334	hw->seg = NULL;
1335}
1336
1337/**
1338 * ice_init_pkg_regs - initialize additional package registers
1339 * @hw: pointer to the hardware structure
1340 */
1341static void ice_init_pkg_regs(struct ice_hw *hw)
1342{
1343#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1344#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1345#define ICE_SW_BLK_IDX	0
1346
1347	/* setup Switch block input mask, which is 48-bits in two parts */
1348	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1349	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1350}
1351
1352/**
1353 * ice_chk_pkg_version - check package version for compatibility with driver
1354 * @pkg_ver: pointer to a version structure to check
1355 *
1356 * Check to make sure that the package about to be downloaded is compatible with
1357 * the driver. To be compatible, the major and minor components of the package
1358 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1359 * definitions.
1360 */
1361static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1362{
1363	if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
1364	    pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
1365		return ICE_ERR_NOT_SUPPORTED;
1366
1367	return ICE_SUCCESS;
1368}
1369
1370/**
1371 * ice_chk_pkg_compat
1372 * @hw: pointer to the hardware structure
1373 * @ospkg: pointer to the package hdr
1374 * @seg: pointer to the package segment hdr
1375 *
1376 * This function checks the package version compatibility with driver and NVM
1377 */
1378static enum ice_status
1379ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1380		   struct ice_seg **seg)
1381{
1382	struct ice_aqc_get_pkg_info_resp *pkg;
1383	enum ice_status status;
1384	u16 size;
1385	u32 i;
1386
1387	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1388
1389	/* Check package version compatibility */
1390	status = ice_chk_pkg_version(&hw->pkg_ver);
1391	if (status) {
1392		ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1393		return status;
1394	}
1395
1396	/* find ICE segment in given package */
1397	*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1398						     ospkg);
1399	if (!*seg) {
1400		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1401		return ICE_ERR_CFG;
1402	}
1403
1404	/* Check if FW is compatible with the OS package */
1405	size = ice_struct_size(pkg, pkg_info, ICE_PKG_CNT);
1406	pkg = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1407	if (!pkg)
1408		return ICE_ERR_NO_MEMORY;
1409
1410	status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
1411	if (status)
1412		goto fw_ddp_compat_free_alloc;
1413
1414	for (i = 0; i < LE32_TO_CPU(pkg->count); i++) {
1415		/* loop till we find the NVM package */
1416		if (!pkg->pkg_info[i].is_in_nvm)
1417			continue;
1418		if ((*seg)->hdr.seg_format_ver.major !=
1419			pkg->pkg_info[i].ver.major ||
1420		    (*seg)->hdr.seg_format_ver.minor >
1421			pkg->pkg_info[i].ver.minor) {
1422			status = ICE_ERR_FW_DDP_MISMATCH;
1423			ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
1424		}
1425		/* done processing NVM package so break */
1426		break;
1427	}
1428fw_ddp_compat_free_alloc:
1429	ice_free(hw, pkg);
1430	return status;
1431}
1432
1433/**
1434 * ice_sw_fv_handler
1435 * @sect_type: section type
1436 * @section: pointer to section
1437 * @index: index of the field vector entry to be returned
1438 * @offset: ptr to variable that receives the offset in the field vector table
1439 *
1440 * This is a callback function that can be passed to ice_pkg_enum_entry.
1441 * This function treats the given section as of type ice_sw_fv_section and
1442 * enumerates offset field. "offset" is an index into the field vector table.
1443 */
1444static void *
1445ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
1446{
1447	struct ice_sw_fv_section *fv_section =
1448		(struct ice_sw_fv_section *)section;
1449
1450	if (!section || sect_type != ICE_SID_FLD_VEC_SW)
1451		return NULL;
1452	if (index >= LE16_TO_CPU(fv_section->count))
1453		return NULL;
1454	if (offset)
1455		/* "index" passed in to this function is relative to a given
1456		 * 4k block. To get to the true index into the field vector
1457		 * table need to add the relative index to the base_offset
1458		 * field of this section
1459		 */
1460		*offset = LE16_TO_CPU(fv_section->base_offset) + index;
1461	return fv_section->fv + index;
1462}
1463
1464/**
1465 * ice_get_prof_index_max - get the max profile index for used profile
1466 * @hw: pointer to the HW struct
1467 *
1468 * Calling this function will get the max profile index for used profile
1469 * and store the index number in struct ice_switch_info *switch_info
1470 * in hw for following use.
1471 */
1472static int ice_get_prof_index_max(struct ice_hw *hw)
1473{
1474	u16 prof_index = 0, j, max_prof_index = 0;
1475	struct ice_pkg_enum state;
1476	struct ice_seg *ice_seg;
1477	bool flag = false;
1478	struct ice_fv *fv;
1479	u32 offset;
1480
1481	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1482
1483	if (!hw->seg)
1484		return ICE_ERR_PARAM;
1485
1486	ice_seg = hw->seg;
1487
1488	do {
1489		fv = (struct ice_fv *)
1490			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1491					   &offset, ice_sw_fv_handler);
1492		if (!fv)
1493			break;
1494		ice_seg = NULL;
1495
1496		/* in the profile that not be used, the prot_id is set to 0xff
1497		 * and the off is set to 0x1ff for all the field vectors.
1498		 */
1499		for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1500			if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
1501			    fv->ew[j].off != ICE_FV_OFFSET_INVAL)
1502				flag = true;
1503		if (flag && prof_index > max_prof_index)
1504			max_prof_index = prof_index;
1505
1506		prof_index++;
1507		flag = false;
1508	} while (fv);
1509
1510	hw->switch_info->max_used_prof_index = max_prof_index;
1511
1512	return ICE_SUCCESS;
1513}
1514
1515/**
1516 * ice_init_pkg - initialize/download package
1517 * @hw: pointer to the hardware structure
1518 * @buf: pointer to the package buffer
1519 * @len: size of the package buffer
1520 *
1521 * This function initializes a package. The package contains HW tables
1522 * required to do packet processing. First, the function extracts package
1523 * information such as version. Then it finds the ice configuration segment
1524 * within the package; this function then saves a copy of the segment pointer
1525 * within the supplied package buffer. Next, the function will cache any hints
1526 * from the package, followed by downloading the package itself. Note, that if
1527 * a previous PF driver has already downloaded the package successfully, then
1528 * the current driver will not have to download the package again.
1529 *
1530 * The local package contents will be used to query default behavior and to
1531 * update specific sections of the HW's version of the package (e.g. to update
1532 * the parse graph to understand new protocols).
1533 *
1534 * This function stores a pointer to the package buffer memory, and it is
1535 * expected that the supplied buffer will not be freed immediately. If the
1536 * package buffer needs to be freed, such as when read from a file, use
1537 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1538 * case.
1539 */
1540enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1541{
1542	struct ice_pkg_hdr *pkg;
1543	enum ice_status status;
1544	struct ice_seg *seg;
1545
1546	if (!buf || !len)
1547		return ICE_ERR_PARAM;
1548
1549	pkg = (struct ice_pkg_hdr *)buf;
1550	status = ice_verify_pkg(pkg, len);
1551	if (status) {
1552		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1553			  status);
1554		return status;
1555	}
1556
1557	/* initialize package info */
1558	status = ice_init_pkg_info(hw, pkg);
1559	if (status)
1560		return status;
1561
1562	/* before downloading the package, check package version for
1563	 * compatibility with driver
1564	 */
1565	status = ice_chk_pkg_compat(hw, pkg, &seg);
1566	if (status)
1567		return status;
1568
1569	/* initialize package hints and then download package */
1570	ice_init_pkg_hints(hw, seg);
1571	status = ice_download_pkg(hw, seg);
1572	if (status == ICE_ERR_AQ_NO_WORK) {
1573		ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1574		status = ICE_SUCCESS;
1575	}
1576
1577	/* Get information on the package currently loaded in HW, then make sure
1578	 * the driver is compatible with this version.
1579	 */
1580	if (!status) {
1581		status = ice_get_pkg_info(hw);
1582		if (!status)
1583			status = ice_chk_pkg_version(&hw->active_pkg_ver);
1584	}
1585
1586	if (!status) {
1587		hw->seg = seg;
1588		/* on successful package download update other required
1589		 * registers to support the package and fill HW tables
1590		 * with package content.
1591		 */
1592		ice_init_pkg_regs(hw);
1593		ice_fill_blk_tbls(hw);
1594		ice_get_prof_index_max(hw);
1595	} else {
1596		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1597			  status);
1598	}
1599
1600	return status;
1601}
1602
1603/**
1604 * ice_copy_and_init_pkg - initialize/download a copy of the package
1605 * @hw: pointer to the hardware structure
1606 * @buf: pointer to the package buffer
1607 * @len: size of the package buffer
1608 *
1609 * This function copies the package buffer, and then calls ice_init_pkg() to
1610 * initialize the copied package contents.
1611 *
1612 * The copying is necessary if the package buffer supplied is constant, or if
1613 * the memory may disappear shortly after calling this function.
1614 *
1615 * If the package buffer resides in the data segment and can be modified, the
1616 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1617 *
1618 * However, if the package buffer needs to be copied first, such as when being
1619 * read from a file, the caller should use ice_copy_and_init_pkg().
1620 *
1621 * This function will first copy the package buffer, before calling
1622 * ice_init_pkg(). The caller is free to immediately destroy the original
1623 * package buffer, as the new copy will be managed by this function and
1624 * related routines.
1625 */
1626enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1627{
1628	enum ice_status status;
1629	u8 *buf_copy;
1630
1631	if (!buf || !len)
1632		return ICE_ERR_PARAM;
1633
1634	buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA);
1635
1636	status = ice_init_pkg(hw, buf_copy, len);
1637	if (status) {
1638		/* Free the copy, since we failed to initialize the package */
1639		ice_free(hw, buf_copy);
1640	} else {
1641		/* Track the copied pkg so we can free it later */
1642		hw->pkg_copy = buf_copy;
1643		hw->pkg_size = len;
1644	}
1645
1646	return status;
1647}
1648
1649/**
1650 * ice_pkg_buf_alloc
1651 * @hw: pointer to the HW structure
1652 *
1653 * Allocates a package buffer and returns a pointer to the buffer header.
1654 * Note: all package contents must be in Little Endian form.
1655 */
1656static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1657{
1658	struct ice_buf_build *bld;
1659	struct ice_buf_hdr *buf;
1660
1661	bld = (struct ice_buf_build *)ice_malloc(hw, sizeof(*bld));
1662	if (!bld)
1663		return NULL;
1664
1665	buf = (struct ice_buf_hdr *)bld;
1666	buf->data_end = CPU_TO_LE16(offsetof(struct ice_buf_hdr,
1667					     section_entry));
1668	return bld;
1669}
1670
1671/**
1672 * ice_get_sw_prof_type - determine switch profile type
1673 * @hw: pointer to the HW structure
1674 * @fv: pointer to the switch field vector
1675 */
1676static enum ice_prof_type
1677ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv)
1678{
1679	u16 i;
1680
1681	for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
1682		/* UDP tunnel will have UDP_OF protocol ID and VNI offset */
1683		if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
1684		    fv->ew[i].off == ICE_VNI_OFFSET)
1685			return ICE_PROF_TUN_UDP;
1686
1687		/* GRE tunnel will have GRE protocol */
1688		if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
1689			return ICE_PROF_TUN_GRE;
1690	}
1691
1692	return ICE_PROF_NON_TUN;
1693}
1694
1695/**
1696 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
1697 * @hw: pointer to hardware structure
1698 * @req_profs: type of profiles requested
1699 * @bm: pointer to memory for returning the bitmap of field vectors
1700 */
1701void
1702ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
1703		     ice_bitmap_t *bm)
1704{
1705	struct ice_pkg_enum state;
1706	struct ice_seg *ice_seg;
1707	struct ice_fv *fv;
1708
1709	if (req_profs == ICE_PROF_ALL) {
1710		ice_bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
1711		return;
1712	}
1713
1714	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1715	ice_zero_bitmap(bm, ICE_MAX_NUM_PROFILES);
1716	ice_seg = hw->seg;
1717	do {
1718		enum ice_prof_type prof_type;
1719		u32 offset;
1720
1721		fv = (struct ice_fv *)
1722			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1723					   &offset, ice_sw_fv_handler);
1724		ice_seg = NULL;
1725
1726		if (fv) {
1727			/* Determine field vector type */
1728			prof_type = ice_get_sw_prof_type(hw, fv);
1729
1730			if (req_profs & prof_type)
1731				ice_set_bit((u16)offset, bm);
1732		}
1733	} while (fv);
1734}
1735
1736/**
1737 * ice_get_sw_fv_list
1738 * @hw: pointer to the HW structure
1739 * @prot_ids: field vector to search for with a given protocol ID
1740 * @ids_cnt: lookup/protocol count
1741 * @bm: bitmap of field vectors to consider
1742 * @fv_list: Head of a list
1743 *
1744 * Finds all the field vector entries from switch block that contain
1745 * a given protocol ID and returns a list of structures of type
1746 * "ice_sw_fv_list_entry". Every structure in the list has a field vector
1747 * definition and profile ID information
1748 * NOTE: The caller of the function is responsible for freeing the memory
1749 * allocated for every list entry.
1750 */
1751enum ice_status
1752ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt,
1753		   ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list)
1754{
1755	struct ice_sw_fv_list_entry *fvl;
1756	struct ice_sw_fv_list_entry *tmp;
1757	struct ice_pkg_enum state;
1758	struct ice_seg *ice_seg;
1759	struct ice_fv *fv;
1760	u32 offset;
1761
1762	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1763
1764	if (!ids_cnt || !hw->seg)
1765		return ICE_ERR_PARAM;
1766
1767	ice_seg = hw->seg;
1768	do {
1769		u16 i;
1770
1771		fv = (struct ice_fv *)
1772			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1773					   &offset, ice_sw_fv_handler);
1774		if (!fv)
1775			break;
1776		ice_seg = NULL;
1777
1778		/* If field vector is not in the bitmap list, then skip this
1779		 * profile.
1780		 */
1781		if (!ice_is_bit_set(bm, (u16)offset))
1782			continue;
1783
1784		for (i = 0; i < ids_cnt; i++) {
1785			int j;
1786
1787			/* This code assumes that if a switch field vector line
1788			 * has a matching protocol, then this line will contain
1789			 * the entries necessary to represent every field in
1790			 * that protocol header.
1791			 */
1792			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1793				if (fv->ew[j].prot_id == prot_ids[i])
1794					break;
1795			if (j >= hw->blk[ICE_BLK_SW].es.fvw)
1796				break;
1797			if (i + 1 == ids_cnt) {
1798				fvl = (struct ice_sw_fv_list_entry *)
1799					ice_malloc(hw, sizeof(*fvl));
1800				if (!fvl)
1801					goto err;
1802				fvl->fv_ptr = fv;
1803				fvl->profile_id = offset;
1804				LIST_ADD(&fvl->list_entry, fv_list);
1805				break;
1806			}
1807		}
1808	} while (fv);
1809	if (LIST_EMPTY(fv_list))
1810		return ICE_ERR_CFG;
1811	return ICE_SUCCESS;
1812
1813err:
1814	LIST_FOR_EACH_ENTRY_SAFE(fvl, tmp, fv_list, ice_sw_fv_list_entry,
1815				 list_entry) {
1816		LIST_DEL(&fvl->list_entry);
1817		ice_free(hw, fvl);
1818	}
1819
1820	return ICE_ERR_NO_MEMORY;
1821}
1822
1823/**
1824 * ice_init_prof_result_bm - Initialize the profile result index bitmap
1825 * @hw: pointer to hardware structure
1826 */
1827void ice_init_prof_result_bm(struct ice_hw *hw)
1828{
1829	struct ice_pkg_enum state;
1830	struct ice_seg *ice_seg;
1831	struct ice_fv *fv;
1832
1833	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1834
1835	if (!hw->seg)
1836		return;
1837
1838	ice_seg = hw->seg;
1839	do {
1840		u32 off;
1841		u16 i;
1842
1843		fv = (struct ice_fv *)
1844			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1845					   &off, ice_sw_fv_handler);
1846		ice_seg = NULL;
1847		if (!fv)
1848			break;
1849
1850		ice_zero_bitmap(hw->switch_info->prof_res_bm[off],
1851				ICE_MAX_FV_WORDS);
1852
1853		/* Determine empty field vector indices, these can be
1854		 * used for recipe results. Skip index 0, since it is
1855		 * always used for Switch ID.
1856		 */
1857		for (i = 1; i < ICE_MAX_FV_WORDS; i++)
1858			if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
1859			    fv->ew[i].off == ICE_FV_OFFSET_INVAL)
1860				ice_set_bit(i,
1861					    hw->switch_info->prof_res_bm[off]);
1862	} while (fv);
1863}
1864
1865/**
1866 * ice_pkg_buf_free
1867 * @hw: pointer to the HW structure
1868 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1869 *
1870 * Frees a package buffer
1871 */
1872static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1873{
1874	ice_free(hw, bld);
1875}
1876
1877/**
1878 * ice_pkg_buf_reserve_section
1879 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1880 * @count: the number of sections to reserve
1881 *
1882 * Reserves one or more section table entries in a package buffer. This routine
1883 * can be called multiple times as long as they are made before calling
1884 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1885 * is called once, the number of sections that can be allocated will not be able
1886 * to be increased; not using all reserved sections is fine, but this will
1887 * result in some wasted space in the buffer.
1888 * Note: all package contents must be in Little Endian form.
1889 */
1890static enum ice_status
1891ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
1892{
1893	struct ice_buf_hdr *buf;
1894	u16 section_count;
1895	u16 data_end;
1896
1897	if (!bld)
1898		return ICE_ERR_PARAM;
1899
1900	buf = (struct ice_buf_hdr *)&bld->buf;
1901
1902	/* already an active section, can't increase table size */
1903	section_count = LE16_TO_CPU(buf->section_count);
1904	if (section_count > 0)
1905		return ICE_ERR_CFG;
1906
1907	if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
1908		return ICE_ERR_CFG;
1909	bld->reserved_section_table_entries += count;
1910
1911	data_end = LE16_TO_CPU(buf->data_end) +
1912		   (count * sizeof(buf->section_entry[0]));
1913	buf->data_end = CPU_TO_LE16(data_end);
1914
1915	return ICE_SUCCESS;
1916}
1917
1918/**
1919 * ice_pkg_buf_alloc_section
1920 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1921 * @type: the section type value
1922 * @size: the size of the section to reserve (in bytes)
1923 *
1924 * Reserves memory in the buffer for a section's content and updates the
1925 * buffers' status accordingly. This routine returns a pointer to the first
1926 * byte of the section start within the buffer, which is used to fill in the
1927 * section contents.
1928 * Note: all package contents must be in Little Endian form.
1929 */
1930static void *
1931ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
1932{
1933	struct ice_buf_hdr *buf;
1934	u16 sect_count;
1935	u16 data_end;
1936
1937	if (!bld || !type || !size)
1938		return NULL;
1939
1940	buf = (struct ice_buf_hdr *)&bld->buf;
1941
1942	/* check for enough space left in buffer */
1943	data_end = LE16_TO_CPU(buf->data_end);
1944
1945	/* section start must align on 4 byte boundary */
1946	data_end = ICE_ALIGN(data_end, 4);
1947
1948	if ((data_end + size) > ICE_MAX_S_DATA_END)
1949		return NULL;
1950
1951	/* check for more available section table entries */
1952	sect_count = LE16_TO_CPU(buf->section_count);
1953	if (sect_count < bld->reserved_section_table_entries) {
1954		void *section_ptr = ((u8 *)buf) + data_end;
1955
1956		buf->section_entry[sect_count].offset = CPU_TO_LE16(data_end);
1957		buf->section_entry[sect_count].size = CPU_TO_LE16(size);
1958		buf->section_entry[sect_count].type = CPU_TO_LE32(type);
1959
1960		data_end += size;
1961		buf->data_end = CPU_TO_LE16(data_end);
1962
1963		buf->section_count = CPU_TO_LE16(sect_count + 1);
1964		return section_ptr;
1965	}
1966
1967	/* no free section table entries */
1968	return NULL;
1969}
1970
1971/**
1972 * ice_pkg_buf_alloc_single_section
1973 * @hw: pointer to the HW structure
1974 * @type: the section type value
1975 * @size: the size of the section to reserve (in bytes)
1976 * @section: returns pointer to the section
1977 *
1978 * Allocates a package buffer with a single section.
1979 * Note: all package contents must be in Little Endian form.
1980 */
1981static struct ice_buf_build *
1982ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
1983				 void **section)
1984{
1985	struct ice_buf_build *buf;
1986
1987	if (!section)
1988		return NULL;
1989
1990	buf = ice_pkg_buf_alloc(hw);
1991	if (!buf)
1992		return NULL;
1993
1994	if (ice_pkg_buf_reserve_section(buf, 1))
1995		goto ice_pkg_buf_alloc_single_section_err;
1996
1997	*section = ice_pkg_buf_alloc_section(buf, type, size);
1998	if (!*section)
1999		goto ice_pkg_buf_alloc_single_section_err;
2000
2001	return buf;
2002
2003ice_pkg_buf_alloc_single_section_err:
2004	ice_pkg_buf_free(hw, buf);
2005	return NULL;
2006}
2007
2008/**
2009 * ice_pkg_buf_unreserve_section
2010 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2011 * @count: the number of sections to unreserve
2012 *
2013 * Unreserves one or more section table entries in a package buffer, releasing
2014 * space that can be used for section data. This routine can be called
2015 * multiple times as long as they are made before calling
2016 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
2017 * is called once, the number of sections that can be allocated will not be able
2018 * to be increased; not using all reserved sections is fine, but this will
2019 * result in some wasted space in the buffer.
2020 * Note: all package contents must be in Little Endian form.
2021 */
2022enum ice_status
2023ice_pkg_buf_unreserve_section(struct ice_buf_build *bld, u16 count)
2024{
2025	struct ice_buf_hdr *buf;
2026	u16 section_count;
2027	u16 data_end;
2028
2029	if (!bld)
2030		return ICE_ERR_PARAM;
2031
2032	buf = (struct ice_buf_hdr *)&bld->buf;
2033
2034	/* already an active section, can't decrease table size */
2035	section_count = LE16_TO_CPU(buf->section_count);
2036	if (section_count > 0)
2037		return ICE_ERR_CFG;
2038
2039	if (count > bld->reserved_section_table_entries)
2040		return ICE_ERR_CFG;
2041	bld->reserved_section_table_entries -= count;
2042
2043	data_end = LE16_TO_CPU(buf->data_end) -
2044		   (count * sizeof(buf->section_entry[0]));
2045	buf->data_end = CPU_TO_LE16(data_end);
2046
2047	return ICE_SUCCESS;
2048}
2049
2050/**
2051 * ice_pkg_buf_get_free_space
2052 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2053 *
2054 * Returns the number of free bytes remaining in the buffer.
2055 * Note: all package contents must be in Little Endian form.
2056 */
2057u16 ice_pkg_buf_get_free_space(struct ice_buf_build *bld)
2058{
2059	struct ice_buf_hdr *buf;
2060
2061	if (!bld)
2062		return 0;
2063
2064	buf = (struct ice_buf_hdr *)&bld->buf;
2065	return ICE_MAX_S_DATA_END - LE16_TO_CPU(buf->data_end);
2066}
2067
2068/**
2069 * ice_pkg_buf_get_active_sections
2070 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2071 *
2072 * Returns the number of active sections. Before using the package buffer
2073 * in an update package command, the caller should make sure that there is at
2074 * least one active section - otherwise, the buffer is not legal and should
2075 * not be used.
2076 * Note: all package contents must be in Little Endian form.
2077 */
2078static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
2079{
2080	struct ice_buf_hdr *buf;
2081
2082	if (!bld)
2083		return 0;
2084
2085	buf = (struct ice_buf_hdr *)&bld->buf;
2086	return LE16_TO_CPU(buf->section_count);
2087}
2088
2089/**
2090 * ice_pkg_buf
2091 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2092 *
2093 * Return a pointer to the buffer's header
2094 */
2095static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
2096{
2097	if (!bld)
2098		return NULL;
2099
2100	return &bld->buf;
2101}
2102
2103/**
2104 * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage
2105 * @hw: pointer to the HW structure
2106 * @port: port to search for
2107 * @index: optionally returns index
2108 *
2109 * Returns whether a port is already in use as a tunnel, and optionally its
2110 * index
2111 */
2112static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index)
2113{
2114	u16 i;
2115
2116	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2117		if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
2118			if (index)
2119				*index = i;
2120			return true;
2121		}
2122
2123	return false;
2124}
2125
2126/**
2127 * ice_tunnel_port_in_use
2128 * @hw: pointer to the HW structure
2129 * @port: port to search for
2130 * @index: optionally returns index
2131 *
2132 * Returns whether a port is already in use as a tunnel, and optionally its
2133 * index
2134 */
2135bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index)
2136{
2137	bool res;
2138
2139	ice_acquire_lock(&hw->tnl_lock);
2140	res = ice_tunnel_port_in_use_hlpr(hw, port, index);
2141	ice_release_lock(&hw->tnl_lock);
2142
2143	return res;
2144}
2145
2146/**
2147 * ice_tunnel_get_type
2148 * @hw: pointer to the HW structure
2149 * @port: port to search for
2150 * @type: returns tunnel index
2151 *
2152 * For a given port number, will return the type of tunnel.
2153 */
2154bool
2155ice_tunnel_get_type(struct ice_hw *hw, u16 port, enum ice_tunnel_type *type)
2156{
2157	bool res = false;
2158	u16 i;
2159
2160	ice_acquire_lock(&hw->tnl_lock);
2161
2162	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2163		if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
2164			*type = hw->tnl.tbl[i].type;
2165			res = true;
2166			break;
2167		}
2168
2169	ice_release_lock(&hw->tnl_lock);
2170
2171	return res;
2172}
2173
2174/**
2175 * ice_find_free_tunnel_entry
2176 * @hw: pointer to the HW structure
2177 * @type: tunnel type
2178 * @index: optionally returns index
2179 *
2180 * Returns whether there is a free tunnel entry, and optionally its index
2181 */
2182static bool
2183ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type,
2184			   u16 *index)
2185{
2186	u16 i;
2187
2188	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2189		if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use &&
2190		    hw->tnl.tbl[i].type == type) {
2191			if (index)
2192				*index = i;
2193			return true;
2194		}
2195
2196	return false;
2197}
2198
2199/**
2200 * ice_get_open_tunnel_port - retrieve an open tunnel port
2201 * @hw: pointer to the HW structure
2202 * @type: tunnel type (TNL_ALL will return any open port)
2203 * @port: returns open port
2204 */
2205bool
2206ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type,
2207			 u16 *port)
2208{
2209	bool res = false;
2210	u16 i;
2211
2212	ice_acquire_lock(&hw->tnl_lock);
2213
2214	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2215		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2216		    (type == TNL_ALL || hw->tnl.tbl[i].type == type)) {
2217			*port = hw->tnl.tbl[i].port;
2218			res = true;
2219			break;
2220		}
2221
2222	ice_release_lock(&hw->tnl_lock);
2223
2224	return res;
2225}
2226
2227/**
2228 * ice_create_tunnel
2229 * @hw: pointer to the HW structure
2230 * @type: type of tunnel
2231 * @port: port of tunnel to create
2232 *
2233 * Create a tunnel by updating the parse graph in the parser. We do that by
2234 * creating a package buffer with the tunnel info and issuing an update package
2235 * command.
2236 */
2237enum ice_status
2238ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port)
2239{
2240	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2241	enum ice_status status = ICE_ERR_MAX_LIMIT;
2242	struct ice_buf_build *bld;
2243	u16 index;
2244
2245	ice_acquire_lock(&hw->tnl_lock);
2246
2247	if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) {
2248		hw->tnl.tbl[index].ref++;
2249		status = ICE_SUCCESS;
2250		goto ice_create_tunnel_end;
2251	}
2252
2253	if (!ice_find_free_tunnel_entry(hw, type, &index)) {
2254		status = ICE_ERR_OUT_OF_RANGE;
2255		goto ice_create_tunnel_end;
2256	}
2257
2258	bld = ice_pkg_buf_alloc(hw);
2259	if (!bld) {
2260		status = ICE_ERR_NO_MEMORY;
2261		goto ice_create_tunnel_end;
2262	}
2263
2264	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2265	if (ice_pkg_buf_reserve_section(bld, 2))
2266		goto ice_create_tunnel_err;
2267
2268	sect_rx = (struct ice_boost_tcam_section *)
2269		ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2270					  ice_struct_size(sect_rx, tcam, 1));
2271	if (!sect_rx)
2272		goto ice_create_tunnel_err;
2273	sect_rx->count = CPU_TO_LE16(1);
2274
2275	sect_tx = (struct ice_boost_tcam_section *)
2276		ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2277					  ice_struct_size(sect_tx, tcam, 1));
2278	if (!sect_tx)
2279		goto ice_create_tunnel_err;
2280	sect_tx->count = CPU_TO_LE16(1);
2281
2282	/* copy original boost entry to update package buffer */
2283	ice_memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2284		   sizeof(*sect_rx->tcam), ICE_NONDMA_TO_NONDMA);
2285
2286	/* over-write the never-match dest port key bits with the encoded port
2287	 * bits
2288	 */
2289	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2290		    (u8 *)&port, NULL, NULL, NULL,
2291		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
2292		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
2293
2294	/* exact copy of entry to Tx section entry */
2295	ice_memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam),
2296		   ICE_NONDMA_TO_NONDMA);
2297
2298	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2299	if (!status) {
2300		hw->tnl.tbl[index].port = port;
2301		hw->tnl.tbl[index].in_use = true;
2302		hw->tnl.tbl[index].ref = 1;
2303	}
2304
2305ice_create_tunnel_err:
2306	ice_pkg_buf_free(hw, bld);
2307
2308ice_create_tunnel_end:
2309	ice_release_lock(&hw->tnl_lock);
2310
2311	return status;
2312}
2313
2314/**
2315 * ice_destroy_tunnel
2316 * @hw: pointer to the HW structure
2317 * @port: port of tunnel to destroy (ignored if the all parameter is true)
2318 * @all: flag that states to destroy all tunnels
2319 *
2320 * Destroys a tunnel or all tunnels by creating an update package buffer
2321 * targeting the specific updates requested and then performing an update
2322 * package.
2323 */
2324enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all)
2325{
2326	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2327	enum ice_status status = ICE_ERR_MAX_LIMIT;
2328	struct ice_buf_build *bld;
2329	u16 count = 0;
2330	u16 index;
2331	u16 size;
2332	u16 i;
2333
2334	ice_acquire_lock(&hw->tnl_lock);
2335
2336	if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index))
2337		if (hw->tnl.tbl[index].ref > 1) {
2338			hw->tnl.tbl[index].ref--;
2339			status = ICE_SUCCESS;
2340			goto ice_destroy_tunnel_end;
2341		}
2342
2343	/* determine count */
2344	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2345		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2346		    (all || hw->tnl.tbl[i].port == port))
2347			count++;
2348
2349	if (!count) {
2350		status = ICE_ERR_PARAM;
2351		goto ice_destroy_tunnel_end;
2352	}
2353
2354	/* size of section - there is at least one entry */
2355	size = ice_struct_size(sect_rx, tcam, count);
2356
2357	bld = ice_pkg_buf_alloc(hw);
2358	if (!bld) {
2359		status = ICE_ERR_NO_MEMORY;
2360		goto ice_destroy_tunnel_end;
2361	}
2362
2363	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2364	if (ice_pkg_buf_reserve_section(bld, 2))
2365		goto ice_destroy_tunnel_err;
2366
2367	sect_rx = (struct ice_boost_tcam_section *)
2368		ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2369					  size);
2370	if (!sect_rx)
2371		goto ice_destroy_tunnel_err;
2372	sect_rx->count = CPU_TO_LE16(1);
2373
2374	sect_tx = (struct ice_boost_tcam_section *)
2375		ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2376					  size);
2377	if (!sect_tx)
2378		goto ice_destroy_tunnel_err;
2379	sect_tx->count = CPU_TO_LE16(1);
2380
2381	/* copy original boost entry to update package buffer, one copy to Rx
2382	 * section, another copy to the Tx section
2383	 */
2384	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2385		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2386		    (all || hw->tnl.tbl[i].port == port)) {
2387			ice_memcpy(sect_rx->tcam + i,
2388				   hw->tnl.tbl[i].boost_entry,
2389				   sizeof(*sect_rx->tcam),
2390				   ICE_NONDMA_TO_NONDMA);
2391			ice_memcpy(sect_tx->tcam + i,
2392				   hw->tnl.tbl[i].boost_entry,
2393				   sizeof(*sect_tx->tcam),
2394				   ICE_NONDMA_TO_NONDMA);
2395			hw->tnl.tbl[i].marked = true;
2396		}
2397
2398	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2399	if (!status)
2400		for (i = 0; i < hw->tnl.count &&
2401		     i < ICE_TUNNEL_MAX_ENTRIES; i++)
2402			if (hw->tnl.tbl[i].marked) {
2403				hw->tnl.tbl[i].ref = 0;
2404				hw->tnl.tbl[i].port = 0;
2405				hw->tnl.tbl[i].in_use = false;
2406				hw->tnl.tbl[i].marked = false;
2407			}
2408
2409ice_destroy_tunnel_err:
2410	ice_pkg_buf_free(hw, bld);
2411
2412ice_destroy_tunnel_end:
2413	ice_release_lock(&hw->tnl_lock);
2414
2415	return status;
2416}
2417
2418/**
2419 * ice_replay_tunnels
2420 * @hw: pointer to the HW structure
2421 *
2422 * Replays all tunnels
2423 */
2424enum ice_status ice_replay_tunnels(struct ice_hw *hw)
2425{
2426	enum ice_status status = ICE_SUCCESS;
2427	u16 i;
2428
2429	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
2430
2431	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++) {
2432		enum ice_tunnel_type type = hw->tnl.tbl[i].type;
2433		u16 refs = hw->tnl.tbl[i].ref;
2434		u16 port = hw->tnl.tbl[i].port;
2435
2436		if (!hw->tnl.tbl[i].in_use)
2437			continue;
2438
2439		/* Replay tunnels one at a time by destroying them, then
2440		 * recreating them
2441		 */
2442		hw->tnl.tbl[i].ref = 1; /* make sure to destroy in one call */
2443		status = ice_destroy_tunnel(hw, port, false);
2444		if (status) {
2445			ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - destroy tunnel port 0x%x\n",
2446				  status, port);
2447			break;
2448		}
2449
2450		status = ice_create_tunnel(hw, type, port);
2451		if (status) {
2452			ice_debug(hw, ICE_DBG_PKG, "ERR: 0x%x - create tunnel port 0x%x\n",
2453				  status, port);
2454			break;
2455		}
2456
2457		/* reset to original ref count */
2458		hw->tnl.tbl[i].ref = refs;
2459	}
2460
2461	return status;
2462}
2463
2464/**
2465 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
2466 * @hw: pointer to the hardware structure
2467 * @blk: hardware block
2468 * @prof: profile ID
2469 * @fv_idx: field vector word index
2470 * @prot: variable to receive the protocol ID
2471 * @off: variable to receive the protocol offset
2472 */
2473enum ice_status
2474ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
2475		  u8 *prot, u16 *off)
2476{
2477	struct ice_fv_word *fv_ext;
2478
2479	if (prof >= hw->blk[blk].es.count)
2480		return ICE_ERR_PARAM;
2481
2482	if (fv_idx >= hw->blk[blk].es.fvw)
2483		return ICE_ERR_PARAM;
2484
2485	fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
2486
2487	*prot = fv_ext[fv_idx].prot_id;
2488	*off = fv_ext[fv_idx].off;
2489
2490	return ICE_SUCCESS;
2491}
2492
2493/* PTG Management */
2494
2495/**
2496 * ice_ptg_update_xlt1 - Updates packet type groups in HW via XLT1 table
2497 * @hw: pointer to the hardware structure
2498 * @blk: HW block
2499 *
2500 * This function will update the XLT1 hardware table to reflect the new
2501 * packet type group configuration.
2502 */
2503enum ice_status ice_ptg_update_xlt1(struct ice_hw *hw, enum ice_block blk)
2504{
2505	struct ice_xlt1_section *sect;
2506	struct ice_buf_build *bld;
2507	enum ice_status status;
2508	u16 index;
2509
2510	bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT1),
2511					       ice_struct_size(sect, value,
2512							       ICE_XLT1_CNT),
2513					       (void **)&sect);
2514	if (!bld)
2515		return ICE_ERR_NO_MEMORY;
2516
2517	sect->count = CPU_TO_LE16(ICE_XLT1_CNT);
2518	sect->offset = CPU_TO_LE16(0);
2519	for (index = 0; index < ICE_XLT1_CNT; index++)
2520		sect->value[index] = hw->blk[blk].xlt1.ptypes[index].ptg;
2521
2522	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2523
2524	ice_pkg_buf_free(hw, bld);
2525
2526	return status;
2527}
2528
2529/**
2530 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
2531 * @hw: pointer to the hardware structure
2532 * @blk: HW block
2533 * @ptype: the ptype to search for
2534 * @ptg: pointer to variable that receives the PTG
2535 *
2536 * This function will search the PTGs for a particular ptype, returning the
2537 * PTG ID that contains it through the PTG parameter, with the value of
2538 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
2539 */
2540static enum ice_status
2541ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
2542{
2543	if (ptype >= ICE_XLT1_CNT || !ptg)
2544		return ICE_ERR_PARAM;
2545
2546	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
2547	return ICE_SUCCESS;
2548}
2549
2550/**
2551 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
2552 * @hw: pointer to the hardware structure
2553 * @blk: HW block
2554 * @ptg: the PTG to allocate
2555 *
2556 * This function allocates a given packet type group ID specified by the PTG
2557 * parameter.
2558 */
2559static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2560{
2561	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
2562}
2563
2564/**
2565 * ice_ptg_free - Frees a packet type group
2566 * @hw: pointer to the hardware structure
2567 * @blk: HW block
2568 * @ptg: the PTG ID to free
2569 *
2570 * This function frees a packet type group, and returns all the current ptypes
2571 * within it to the default PTG.
2572 */
2573void ice_ptg_free(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2574{
2575	struct ice_ptg_ptype *p, *temp;
2576
2577	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = false;
2578	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2579	while (p) {
2580		p->ptg = ICE_DEFAULT_PTG;
2581		temp = p->next_ptype;
2582		p->next_ptype = NULL;
2583		p = temp;
2584	}
2585
2586	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype = NULL;
2587}
2588
2589/**
2590 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
2591 * @hw: pointer to the hardware structure
2592 * @blk: HW block
2593 * @ptype: the ptype to remove
2594 * @ptg: the PTG to remove the ptype from
2595 *
2596 * This function will remove the ptype from the specific PTG, and move it to
2597 * the default PTG (ICE_DEFAULT_PTG).
2598 */
2599static enum ice_status
2600ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2601{
2602	struct ice_ptg_ptype **ch;
2603	struct ice_ptg_ptype *p;
2604
2605	if (ptype > ICE_XLT1_CNT - 1)
2606		return ICE_ERR_PARAM;
2607
2608	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
2609		return ICE_ERR_DOES_NOT_EXIST;
2610
2611	/* Should not happen if .in_use is set, bad config */
2612	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
2613		return ICE_ERR_CFG;
2614
2615	/* find the ptype within this PTG, and bypass the link over it */
2616	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2617	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2618	while (p) {
2619		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
2620			*ch = p->next_ptype;
2621			break;
2622		}
2623
2624		ch = &p->next_ptype;
2625		p = p->next_ptype;
2626	}
2627
2628	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
2629	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
2630
2631	return ICE_SUCCESS;
2632}
2633
2634/**
2635 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
2636 * @hw: pointer to the hardware structure
2637 * @blk: HW block
2638 * @ptype: the ptype to add or move
2639 * @ptg: the PTG to add or move the ptype to
2640 *
2641 * This function will either add or move a ptype to a particular PTG depending
2642 * on if the ptype is already part of another group. Note that using a
2643 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
2644 * default PTG.
2645 */
2646static enum ice_status
2647ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2648{
2649	enum ice_status status;
2650	u8 original_ptg;
2651
2652	if (ptype > ICE_XLT1_CNT - 1)
2653		return ICE_ERR_PARAM;
2654
2655	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2656		return ICE_ERR_DOES_NOT_EXIST;
2657
2658	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2659	if (status)
2660		return status;
2661
2662	/* Is ptype already in the correct PTG? */
2663	if (original_ptg == ptg)
2664		return ICE_SUCCESS;
2665
2666	/* Remove from original PTG and move back to the default PTG */
2667	if (original_ptg != ICE_DEFAULT_PTG)
2668		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2669
2670	/* Moving to default PTG? Then we're done with this request */
2671	if (ptg == ICE_DEFAULT_PTG)
2672		return ICE_SUCCESS;
2673
2674	/* Add ptype to PTG at beginning of list */
2675	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2676		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2677	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2678		&hw->blk[blk].xlt1.ptypes[ptype];
2679
2680	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2681	hw->blk[blk].xlt1.t[ptype] = ptg;
2682
2683	return ICE_SUCCESS;
2684}
2685
2686/* Block / table size info */
2687struct ice_blk_size_details {
2688	u16 xlt1;			/* # XLT1 entries */
2689	u16 xlt2;			/* # XLT2 entries */
2690	u16 prof_tcam;			/* # profile ID TCAM entries */
2691	u16 prof_id;			/* # profile IDs */
2692	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
2693	u16 prof_redir;			/* # profile redirection entries */
2694	u16 es;				/* # extraction sequence entries */
2695	u16 fvw;			/* # field vector words */
2696	u8 overwrite;			/* overwrite existing entries allowed */
2697	u8 reverse;			/* reverse FV order */
2698};
2699
2700static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2701	/**
2702	 * Table Definitions
2703	 * XLT1 - Number of entries in XLT1 table
2704	 * XLT2 - Number of entries in XLT2 table
2705	 * TCAM - Number of entries Profile ID TCAM table
2706	 * CDID - Control Domain ID of the hardware block
2707	 * PRED - Number of entries in the Profile Redirection Table
2708	 * FV   - Number of entries in the Field Vector
2709	 * FVW  - Width (in WORDs) of the Field Vector
2710	 * OVR  - Overwrite existing table entries
2711	 * REV  - Reverse FV
2712	 */
2713	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
2714	/*          Overwrite   , Reverse FV */
2715	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
2716		    false, false },
2717	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
2718		    false, false },
2719	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2720		    false, true  },
2721	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2722		    true,  true  },
2723	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
2724		    false, false },
2725};
2726
2727enum ice_sid_all {
2728	ICE_SID_XLT1_OFF = 0,
2729	ICE_SID_XLT2_OFF,
2730	ICE_SID_PR_OFF,
2731	ICE_SID_PR_REDIR_OFF,
2732	ICE_SID_ES_OFF,
2733	ICE_SID_OFF_COUNT,
2734};
2735
2736/* Characteristic handling */
2737
2738/**
2739 * ice_match_prop_lst - determine if properties of two lists match
2740 * @list1: first properties list
2741 * @list2: second properties list
2742 *
2743 * Count, cookies and the order must match in order to be considered equivalent.
2744 */
2745static bool
2746ice_match_prop_lst(struct LIST_HEAD_TYPE *list1, struct LIST_HEAD_TYPE *list2)
2747{
2748	struct ice_vsig_prof *tmp1;
2749	struct ice_vsig_prof *tmp2;
2750	u16 chk_count = 0;
2751	u16 count = 0;
2752
2753	/* compare counts */
2754	LIST_FOR_EACH_ENTRY(tmp1, list1, ice_vsig_prof, list)
2755		count++;
2756	LIST_FOR_EACH_ENTRY(tmp2, list2, ice_vsig_prof, list)
2757		chk_count++;
2758	if (!count || count != chk_count)
2759		return false;
2760
2761	tmp1 = LIST_FIRST_ENTRY(list1, struct ice_vsig_prof, list);
2762	tmp2 = LIST_FIRST_ENTRY(list2, struct ice_vsig_prof, list);
2763
2764	/* profile cookies must compare, and in the exact same order to take
2765	 * into account priority
2766	 */
2767	while (count--) {
2768		if (tmp2->profile_cookie != tmp1->profile_cookie)
2769			return false;
2770
2771		tmp1 = LIST_NEXT_ENTRY(tmp1, struct ice_vsig_prof, list);
2772		tmp2 = LIST_NEXT_ENTRY(tmp2, struct ice_vsig_prof, list);
2773	}
2774
2775	return true;
2776}
2777
2778/* VSIG Management */
2779
2780/**
2781 * ice_vsig_update_xlt2_sect - update one section of XLT2 table
2782 * @hw: pointer to the hardware structure
2783 * @blk: HW block
2784 * @vsi: HW VSI number to program
2785 * @vsig: VSIG for the VSI
2786 *
2787 * This function will update the XLT2 hardware table with the input VSI
2788 * group configuration.
2789 */
2790static enum ice_status
2791ice_vsig_update_xlt2_sect(struct ice_hw *hw, enum ice_block blk, u16 vsi,
2792			  u16 vsig)
2793{
2794	struct ice_xlt2_section *sect;
2795	struct ice_buf_build *bld;
2796	enum ice_status status;
2797
2798	bld = ice_pkg_buf_alloc_single_section(hw, ice_sect_id(blk, ICE_XLT2),
2799					       ice_struct_size(sect, value, 1),
2800					       (void **)&sect);
2801	if (!bld)
2802		return ICE_ERR_NO_MEMORY;
2803
2804	sect->count = CPU_TO_LE16(1);
2805	sect->offset = CPU_TO_LE16(vsi);
2806	sect->value[0] = CPU_TO_LE16(vsig);
2807
2808	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2809
2810	ice_pkg_buf_free(hw, bld);
2811
2812	return status;
2813}
2814
2815/**
2816 * ice_vsig_update_xlt2 - update XLT2 table with VSIG configuration
2817 * @hw: pointer to the hardware structure
2818 * @blk: HW block
2819 *
2820 * This function will update the XLT2 hardware table with the input VSI
2821 * group configuration of used vsis.
2822 */
2823enum ice_status ice_vsig_update_xlt2(struct ice_hw *hw, enum ice_block blk)
2824{
2825	u16 vsi;
2826
2827	for (vsi = 0; vsi < ICE_MAX_VSI; vsi++) {
2828		/* update only vsis that have been changed */
2829		if (hw->blk[blk].xlt2.vsis[vsi].changed) {
2830			enum ice_status status;
2831			u16 vsig;
2832
2833			vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2834			status = ice_vsig_update_xlt2_sect(hw, blk, vsi, vsig);
2835			if (status)
2836				return status;
2837
2838			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
2839		}
2840	}
2841
2842	return ICE_SUCCESS;
2843}
2844
2845/**
2846 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2847 * @hw: pointer to the hardware structure
2848 * @blk: HW block
2849 * @vsi: VSI of interest
2850 * @vsig: pointer to receive the VSI group
2851 *
2852 * This function will lookup the VSI entry in the XLT2 list and return
2853 * the VSI group its associated with.
2854 */
2855enum ice_status
2856ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2857{
2858	if (!vsig || vsi >= ICE_MAX_VSI)
2859		return ICE_ERR_PARAM;
2860
2861	/* As long as there's a default or valid VSIG associated with the input
2862	 * VSI, the functions returns a success. Any handling of VSIG will be
2863	 * done by the following add, update or remove functions.
2864	 */
2865	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2866
2867	return ICE_SUCCESS;
2868}
2869
2870/**
2871 * ice_vsig_alloc_val - allocate a new VSIG by value
2872 * @hw: pointer to the hardware structure
2873 * @blk: HW block
2874 * @vsig: the VSIG to allocate
2875 *
2876 * This function will allocate a given VSIG specified by the VSIG parameter.
2877 */
2878static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2879{
2880	u16 idx = vsig & ICE_VSIG_IDX_M;
2881
2882	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2883		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2884		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2885	}
2886
2887	return ICE_VSIG_VALUE(idx, hw->pf_id);
2888}
2889
2890/**
2891 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2892 * @hw: pointer to the hardware structure
2893 * @blk: HW block
2894 *
2895 * This function will iterate through the VSIG list and mark the first
2896 * unused entry for the new VSIG entry as used and return that value.
2897 */
2898static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2899{
2900	u16 i;
2901
2902	for (i = 1; i < ICE_MAX_VSIGS; i++)
2903		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2904			return ice_vsig_alloc_val(hw, blk, i);
2905
2906	return ICE_DEFAULT_VSIG;
2907}
2908
2909/**
2910 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2911 * @hw: pointer to the hardware structure
2912 * @blk: HW block
2913 * @chs: characteristic list
2914 * @vsig: returns the VSIG with the matching profiles, if found
2915 *
2916 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2917 * a group have the same characteristic set. To check if there exists a VSIG
2918 * which has the same characteristics as the input characteristics; this
2919 * function will iterate through the XLT2 list and return the VSIG that has a
2920 * matching configuration. In order to make sure that priorities are accounted
2921 * for, the list must match exactly, including the order in which the
2922 * characteristics are listed.
2923 */
2924static enum ice_status
2925ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2926			struct LIST_HEAD_TYPE *chs, u16 *vsig)
2927{
2928	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2929	u16 i;
2930
2931	for (i = 0; i < xlt2->count; i++)
2932		if (xlt2->vsig_tbl[i].in_use &&
2933		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2934			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2935			return ICE_SUCCESS;
2936		}
2937
2938	return ICE_ERR_DOES_NOT_EXIST;
2939}
2940
2941/**
2942 * ice_vsig_free - free VSI group
2943 * @hw: pointer to the hardware structure
2944 * @blk: HW block
2945 * @vsig: VSIG to remove
2946 *
2947 * The function will remove all VSIs associated with the input VSIG and move
2948 * them to the DEFAULT_VSIG and mark the VSIG available.
2949 */
2950static enum ice_status
2951ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2952{
2953	struct ice_vsig_prof *dtmp, *del;
2954	struct ice_vsig_vsi *vsi_cur;
2955	u16 idx;
2956
2957	idx = vsig & ICE_VSIG_IDX_M;
2958	if (idx >= ICE_MAX_VSIGS)
2959		return ICE_ERR_PARAM;
2960
2961	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2962		return ICE_ERR_DOES_NOT_EXIST;
2963
2964	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2965
2966	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2967	/* If the VSIG has at least 1 VSI then iterate through the
2968	 * list and remove the VSIs before deleting the group.
2969	 */
2970	if (vsi_cur) {
2971		/* remove all vsis associated with this VSIG XLT2 entry */
2972		do {
2973			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2974
2975			vsi_cur->vsig = ICE_DEFAULT_VSIG;
2976			vsi_cur->changed = 1;
2977			vsi_cur->next_vsi = NULL;
2978			vsi_cur = tmp;
2979		} while (vsi_cur);
2980
2981		/* NULL terminate head of VSI list */
2982		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2983	}
2984
2985	/* free characteristic list */
2986	LIST_FOR_EACH_ENTRY_SAFE(del, dtmp,
2987				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2988				 ice_vsig_prof, list) {
2989		LIST_DEL(&del->list);
2990		ice_free(hw, del);
2991	}
2992
2993	/* if VSIG characteristic list was cleared for reset
2994	 * re-initialize the list head
2995	 */
2996	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2997
2998	return ICE_SUCCESS;
2999}
3000
3001/**
3002 * ice_vsig_remove_vsi - remove VSI from VSIG
3003 * @hw: pointer to the hardware structure
3004 * @blk: HW block
3005 * @vsi: VSI to remove
3006 * @vsig: VSI group to remove from
3007 *
3008 * The function will remove the input VSI from its VSI group and move it
3009 * to the DEFAULT_VSIG.
3010 */
3011static enum ice_status
3012ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3013{
3014	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
3015	u16 idx;
3016
3017	idx = vsig & ICE_VSIG_IDX_M;
3018
3019	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3020		return ICE_ERR_PARAM;
3021
3022	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3023		return ICE_ERR_DOES_NOT_EXIST;
3024
3025	/* entry already in default VSIG, don't have to remove */
3026	if (idx == ICE_DEFAULT_VSIG)
3027		return ICE_SUCCESS;
3028
3029	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3030	if (!(*vsi_head))
3031		return ICE_ERR_CFG;
3032
3033	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
3034	vsi_cur = (*vsi_head);
3035
3036	/* iterate the VSI list, skip over the entry to be removed */
3037	while (vsi_cur) {
3038		if (vsi_tgt == vsi_cur) {
3039			(*vsi_head) = vsi_cur->next_vsi;
3040			break;
3041		}
3042		vsi_head = &vsi_cur->next_vsi;
3043		vsi_cur = vsi_cur->next_vsi;
3044	}
3045
3046	/* verify if VSI was removed from group list */
3047	if (!vsi_cur)
3048		return ICE_ERR_DOES_NOT_EXIST;
3049
3050	vsi_cur->vsig = ICE_DEFAULT_VSIG;
3051	vsi_cur->changed = 1;
3052	vsi_cur->next_vsi = NULL;
3053
3054	return ICE_SUCCESS;
3055}
3056
3057/**
3058 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
3059 * @hw: pointer to the hardware structure
3060 * @blk: HW block
3061 * @vsi: VSI to move
3062 * @vsig: destination VSI group
3063 *
3064 * This function will move or add the input VSI to the target VSIG.
3065 * The function will find the original VSIG the VSI belongs to and
3066 * move the entry to the DEFAULT_VSIG, update the original VSIG and
3067 * then move entry to the new VSIG.
3068 */
3069static enum ice_status
3070ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3071{
3072	struct ice_vsig_vsi *tmp;
3073	enum ice_status status;
3074	u16 orig_vsig, idx;
3075
3076	idx = vsig & ICE_VSIG_IDX_M;
3077
3078	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3079		return ICE_ERR_PARAM;
3080
3081	/* if VSIG not in use and VSIG is not default type this VSIG
3082	 * doesn't exist.
3083	 */
3084	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
3085	    vsig != ICE_DEFAULT_VSIG)
3086		return ICE_ERR_DOES_NOT_EXIST;
3087
3088	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3089	if (status)
3090		return status;
3091
3092	/* no update required if vsigs match */
3093	if (orig_vsig == vsig)
3094		return ICE_SUCCESS;
3095
3096	if (orig_vsig != ICE_DEFAULT_VSIG) {
3097		/* remove entry from orig_vsig and add to default VSIG */
3098		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
3099		if (status)
3100			return status;
3101	}
3102
3103	if (idx == ICE_DEFAULT_VSIG)
3104		return ICE_SUCCESS;
3105
3106	/* Create VSI entry and add VSIG and prop_mask values */
3107	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
3108	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
3109
3110	/* Add new entry to the head of the VSIG list */
3111	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3112	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
3113		&hw->blk[blk].xlt2.vsis[vsi];
3114	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
3115	hw->blk[blk].xlt2.t[vsi] = vsig;
3116
3117	return ICE_SUCCESS;
3118}
3119
3120/**
3121 * ice_find_prof_id - find profile ID for a given field vector
3122 * @hw: pointer to the hardware structure
3123 * @blk: HW block
3124 * @fv: field vector to search for
3125 * @prof_id: receives the profile ID
3126 */
3127static enum ice_status
3128ice_find_prof_id(struct ice_hw *hw, enum ice_block blk,
3129		 struct ice_fv_word *fv, u8 *prof_id)
3130{
3131	struct ice_es *es = &hw->blk[blk].es;
3132	u16 off;
3133	u8 i;
3134
3135	for (i = 0; i < (u8)es->count; i++) {
3136		off = i * es->fvw;
3137
3138		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
3139			continue;
3140
3141		*prof_id = i;
3142		return ICE_SUCCESS;
3143	}
3144
3145	return ICE_ERR_DOES_NOT_EXIST;
3146}
3147
3148/**
3149 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
3150 * @blk: the block type
3151 * @rsrc_type: pointer to variable to receive the resource type
3152 */
3153static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3154{
3155	switch (blk) {
3156	case ICE_BLK_RSS:
3157		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
3158		break;
3159	case ICE_BLK_PE:
3160		*rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_PROFID;
3161		break;
3162	default:
3163		return false;
3164	}
3165	return true;
3166}
3167
3168/**
3169 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
3170 * @blk: the block type
3171 * @rsrc_type: pointer to variable to receive the resource type
3172 */
3173static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3174{
3175	switch (blk) {
3176	case ICE_BLK_RSS:
3177		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
3178		break;
3179	case ICE_BLK_PE:
3180		*rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_TCAM;
3181		break;
3182	default:
3183		return false;
3184	}
3185	return true;
3186}
3187
3188/**
3189 * ice_alloc_tcam_ent - allocate hardware TCAM entry
3190 * @hw: pointer to the HW struct
3191 * @blk: the block to allocate the TCAM for
3192 * @btm: true to allocate from bottom of table, false to allocate from top
3193 * @tcam_idx: pointer to variable to receive the TCAM entry
3194 *
3195 * This function allocates a new entry in a Profile ID TCAM for a specific
3196 * block.
3197 */
3198static enum ice_status
3199ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
3200		   u16 *tcam_idx)
3201{
3202	u16 res_type;
3203
3204	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3205		return ICE_ERR_PARAM;
3206
3207	return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
3208}
3209
3210/**
3211 * ice_free_tcam_ent - free hardware TCAM entry
3212 * @hw: pointer to the HW struct
3213 * @blk: the block from which to free the TCAM entry
3214 * @tcam_idx: the TCAM entry to free
3215 *
3216 * This function frees an entry in a Profile ID TCAM for a specific block.
3217 */
3218static enum ice_status
3219ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
3220{
3221	u16 res_type;
3222
3223	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3224		return ICE_ERR_PARAM;
3225
3226	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
3227}
3228
3229/**
3230 * ice_alloc_prof_id - allocate profile ID
3231 * @hw: pointer to the HW struct
3232 * @blk: the block to allocate the profile ID for
3233 * @prof_id: pointer to variable to receive the profile ID
3234 *
3235 * This function allocates a new profile ID, which also corresponds to a Field
3236 * Vector (Extraction Sequence) entry.
3237 */
3238static enum ice_status
3239ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
3240{
3241	enum ice_status status;
3242	u16 res_type;
3243	u16 get_prof;
3244
3245	if (!ice_prof_id_rsrc_type(blk, &res_type))
3246		return ICE_ERR_PARAM;
3247
3248	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
3249	if (!status)
3250		*prof_id = (u8)get_prof;
3251
3252	return status;
3253}
3254
3255/**
3256 * ice_free_prof_id - free profile ID
3257 * @hw: pointer to the HW struct
3258 * @blk: the block from which to free the profile ID
3259 * @prof_id: the profile ID to free
3260 *
3261 * This function frees a profile ID, which also corresponds to a Field Vector.
3262 */
3263static enum ice_status
3264ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3265{
3266	u16 tmp_prof_id = (u16)prof_id;
3267	u16 res_type;
3268
3269	if (!ice_prof_id_rsrc_type(blk, &res_type))
3270		return ICE_ERR_PARAM;
3271
3272	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
3273}
3274
3275/**
3276 * ice_prof_inc_ref - increment reference count for profile
3277 * @hw: pointer to the HW struct
3278 * @blk: the block from which to free the profile ID
3279 * @prof_id: the profile ID for which to increment the reference count
3280 */
3281static enum ice_status
3282ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3283{
3284	if (prof_id > hw->blk[blk].es.count)
3285		return ICE_ERR_PARAM;
3286
3287	hw->blk[blk].es.ref_count[prof_id]++;
3288
3289	return ICE_SUCCESS;
3290}
3291
3292/**
3293 * ice_write_es - write an extraction sequence to hardware
3294 * @hw: pointer to the HW struct
3295 * @blk: the block in which to write the extraction sequence
3296 * @prof_id: the profile ID to write
3297 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
3298 */
3299static void
3300ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
3301	     struct ice_fv_word *fv)
3302{
3303	u16 off;
3304
3305	off = prof_id * hw->blk[blk].es.fvw;
3306	if (!fv) {
3307		ice_memset(&hw->blk[blk].es.t[off], 0, hw->blk[blk].es.fvw *
3308			   sizeof(*fv), ICE_NONDMA_MEM);
3309		hw->blk[blk].es.written[prof_id] = false;
3310	} else {
3311		ice_memcpy(&hw->blk[blk].es.t[off], fv, hw->blk[blk].es.fvw *
3312			   sizeof(*fv), ICE_NONDMA_TO_NONDMA);
3313	}
3314}
3315
3316/**
3317 * ice_prof_dec_ref - decrement reference count for profile
3318 * @hw: pointer to the HW struct
3319 * @blk: the block from which to free the profile ID
3320 * @prof_id: the profile ID for which to decrement the reference count
3321 */
3322static enum ice_status
3323ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3324{
3325	if (prof_id > hw->blk[blk].es.count)
3326		return ICE_ERR_PARAM;
3327
3328	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
3329		if (!--hw->blk[blk].es.ref_count[prof_id]) {
3330			ice_write_es(hw, blk, prof_id, NULL);
3331			return ice_free_prof_id(hw, blk, prof_id);
3332		}
3333	}
3334
3335	return ICE_SUCCESS;
3336}
3337
3338/* Block / table section IDs */
3339static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
3340	/* SWITCH */
3341	{	ICE_SID_XLT1_SW,
3342		ICE_SID_XLT2_SW,
3343		ICE_SID_PROFID_TCAM_SW,
3344		ICE_SID_PROFID_REDIR_SW,
3345		ICE_SID_FLD_VEC_SW
3346	},
3347
3348	/* ACL */
3349	{	ICE_SID_XLT1_ACL,
3350		ICE_SID_XLT2_ACL,
3351		ICE_SID_PROFID_TCAM_ACL,
3352		ICE_SID_PROFID_REDIR_ACL,
3353		ICE_SID_FLD_VEC_ACL
3354	},
3355
3356	/* FD */
3357	{	ICE_SID_XLT1_FD,
3358		ICE_SID_XLT2_FD,
3359		ICE_SID_PROFID_TCAM_FD,
3360		ICE_SID_PROFID_REDIR_FD,
3361		ICE_SID_FLD_VEC_FD
3362	},
3363
3364	/* RSS */
3365	{	ICE_SID_XLT1_RSS,
3366		ICE_SID_XLT2_RSS,
3367		ICE_SID_PROFID_TCAM_RSS,
3368		ICE_SID_PROFID_REDIR_RSS,
3369		ICE_SID_FLD_VEC_RSS
3370	},
3371
3372	/* PE */
3373	{	ICE_SID_XLT1_PE,
3374		ICE_SID_XLT2_PE,
3375		ICE_SID_PROFID_TCAM_PE,
3376		ICE_SID_PROFID_REDIR_PE,
3377		ICE_SID_FLD_VEC_PE
3378	}
3379};
3380
3381/**
3382 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3383 * @hw: pointer to the hardware structure
3384 * @blk: the HW block to initialize
3385 */
3386static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3387{
3388	u16 pt;
3389
3390	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3391		u8 ptg;
3392
3393		ptg = hw->blk[blk].xlt1.t[pt];
3394		if (ptg != ICE_DEFAULT_PTG) {
3395			ice_ptg_alloc_val(hw, blk, ptg);
3396			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3397		}
3398	}
3399}
3400
3401/**
3402 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3403 * @hw: pointer to the hardware structure
3404 * @blk: the HW block to initialize
3405 */
3406static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3407{
3408	u16 vsi;
3409
3410	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3411		u16 vsig;
3412
3413		vsig = hw->blk[blk].xlt2.t[vsi];
3414		if (vsig) {
3415			ice_vsig_alloc_val(hw, blk, vsig);
3416			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3417			/* no changes at this time, since this has been
3418			 * initialized from the original package
3419			 */
3420			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3421		}
3422	}
3423}
3424
3425/**
3426 * ice_init_sw_db - init software database from HW tables
3427 * @hw: pointer to the hardware structure
3428 */
3429static void ice_init_sw_db(struct ice_hw *hw)
3430{
3431	u16 i;
3432
3433	for (i = 0; i < ICE_BLK_COUNT; i++) {
3434		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3435		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3436	}
3437}
3438
3439/**
3440 * ice_fill_tbl - Reads content of a single table type into database
3441 * @hw: pointer to the hardware structure
3442 * @block_id: Block ID of the table to copy
3443 * @sid: Section ID of the table to copy
3444 *
3445 * Will attempt to read the entire content of a given table of a single block
3446 * into the driver database. We assume that the buffer will always
3447 * be as large or larger than the data contained in the package. If
3448 * this condition is not met, there is most likely an error in the package
3449 * contents.
3450 */
3451static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3452{
3453	u32 dst_len, sect_len, offset = 0;
3454	struct ice_prof_redir_section *pr;
3455	struct ice_prof_id_section *pid;
3456	struct ice_xlt1_section *xlt1;
3457	struct ice_xlt2_section *xlt2;
3458	struct ice_sw_fv_section *es;
3459	struct ice_pkg_enum state;
3460	u8 *src, *dst;
3461	void *sect;
3462
3463	/* if the HW segment pointer is null then the first iteration of
3464	 * ice_pkg_enum_section() will fail. In this case the HW tables will
3465	 * not be filled and return success.
3466	 */
3467	if (!hw->seg) {
3468		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3469		return;
3470	}
3471
3472	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
3473
3474	sect = ice_pkg_enum_section(hw->seg, &state, sid);
3475
3476	while (sect) {
3477		switch (sid) {
3478		case ICE_SID_XLT1_SW:
3479		case ICE_SID_XLT1_FD:
3480		case ICE_SID_XLT1_RSS:
3481		case ICE_SID_XLT1_ACL:
3482		case ICE_SID_XLT1_PE:
3483			xlt1 = (struct ice_xlt1_section *)sect;
3484			src = xlt1->value;
3485			sect_len = LE16_TO_CPU(xlt1->count) *
3486				sizeof(*hw->blk[block_id].xlt1.t);
3487			dst = hw->blk[block_id].xlt1.t;
3488			dst_len = hw->blk[block_id].xlt1.count *
3489				sizeof(*hw->blk[block_id].xlt1.t);
3490			break;
3491		case ICE_SID_XLT2_SW:
3492		case ICE_SID_XLT2_FD:
3493		case ICE_SID_XLT2_RSS:
3494		case ICE_SID_XLT2_ACL:
3495		case ICE_SID_XLT2_PE:
3496			xlt2 = (struct ice_xlt2_section *)sect;
3497			src = (_FORCE_ u8 *)xlt2->value;
3498			sect_len = LE16_TO_CPU(xlt2->count) *
3499				sizeof(*hw->blk[block_id].xlt2.t);
3500			dst = (u8 *)hw->blk[block_id].xlt2.t;
3501			dst_len = hw->blk[block_id].xlt2.count *
3502				sizeof(*hw->blk[block_id].xlt2.t);
3503			break;
3504		case ICE_SID_PROFID_TCAM_SW:
3505		case ICE_SID_PROFID_TCAM_FD:
3506		case ICE_SID_PROFID_TCAM_RSS:
3507		case ICE_SID_PROFID_TCAM_ACL:
3508		case ICE_SID_PROFID_TCAM_PE:
3509			pid = (struct ice_prof_id_section *)sect;
3510			src = (u8 *)pid->entry;
3511			sect_len = LE16_TO_CPU(pid->count) *
3512				sizeof(*hw->blk[block_id].prof.t);
3513			dst = (u8 *)hw->blk[block_id].prof.t;
3514			dst_len = hw->blk[block_id].prof.count *
3515				sizeof(*hw->blk[block_id].prof.t);
3516			break;
3517		case ICE_SID_PROFID_REDIR_SW:
3518		case ICE_SID_PROFID_REDIR_FD:
3519		case ICE_SID_PROFID_REDIR_RSS:
3520		case ICE_SID_PROFID_REDIR_ACL:
3521		case ICE_SID_PROFID_REDIR_PE:
3522			pr = (struct ice_prof_redir_section *)sect;
3523			src = pr->redir_value;
3524			sect_len = LE16_TO_CPU(pr->count) *
3525				sizeof(*hw->blk[block_id].prof_redir.t);
3526			dst = hw->blk[block_id].prof_redir.t;
3527			dst_len = hw->blk[block_id].prof_redir.count *
3528				sizeof(*hw->blk[block_id].prof_redir.t);
3529			break;
3530		case ICE_SID_FLD_VEC_SW:
3531		case ICE_SID_FLD_VEC_FD:
3532		case ICE_SID_FLD_VEC_RSS:
3533		case ICE_SID_FLD_VEC_ACL:
3534		case ICE_SID_FLD_VEC_PE:
3535			es = (struct ice_sw_fv_section *)sect;
3536			src = (u8 *)es->fv;
3537			sect_len = (u32)(LE16_TO_CPU(es->count) *
3538					 hw->blk[block_id].es.fvw) *
3539				sizeof(*hw->blk[block_id].es.t);
3540			dst = (u8 *)hw->blk[block_id].es.t;
3541			dst_len = (u32)(hw->blk[block_id].es.count *
3542					hw->blk[block_id].es.fvw) *
3543				sizeof(*hw->blk[block_id].es.t);
3544			break;
3545		default:
3546			return;
3547		}
3548
3549		/* if the section offset exceeds destination length, terminate
3550		 * table fill.
3551		 */
3552		if (offset > dst_len)
3553			return;
3554
3555		/* if the sum of section size and offset exceed destination size
3556		 * then we are out of bounds of the HW table size for that PF.
3557		 * Changing section length to fill the remaining table space
3558		 * of that PF.
3559		 */
3560		if ((offset + sect_len) > dst_len)
3561			sect_len = dst_len - offset;
3562
3563		ice_memcpy(dst + offset, src, sect_len, ICE_NONDMA_TO_NONDMA);
3564		offset += sect_len;
3565		sect = ice_pkg_enum_section(NULL, &state, sid);
3566	}
3567}
3568
3569/**
3570 * ice_fill_blk_tbls - Read package context for tables
3571 * @hw: pointer to the hardware structure
3572 *
3573 * Reads the current package contents and populates the driver
3574 * database with the data iteratively for all advanced feature
3575 * blocks. Assume that the HW tables have been allocated.
3576 */
3577void ice_fill_blk_tbls(struct ice_hw *hw)
3578{
3579	u8 i;
3580
3581	for (i = 0; i < ICE_BLK_COUNT; i++) {
3582		enum ice_block blk_id = (enum ice_block)i;
3583
3584		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3585		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3586		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3587		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3588		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3589	}
3590
3591	ice_init_sw_db(hw);
3592}
3593
3594/**
3595 * ice_free_prof_map - free profile map
3596 * @hw: pointer to the hardware structure
3597 * @blk_idx: HW block index
3598 */
3599static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3600{
3601	struct ice_es *es = &hw->blk[blk_idx].es;
3602	struct ice_prof_map *del, *tmp;
3603
3604	ice_acquire_lock(&es->prof_map_lock);
3605	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &es->prof_map,
3606				 ice_prof_map, list) {
3607		LIST_DEL(&del->list);
3608		ice_free(hw, del);
3609	}
3610	INIT_LIST_HEAD(&es->prof_map);
3611	ice_release_lock(&es->prof_map_lock);
3612}
3613
3614/**
3615 * ice_free_flow_profs - free flow profile entries
3616 * @hw: pointer to the hardware structure
3617 * @blk_idx: HW block index
3618 */
3619static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
3620{
3621	struct ice_flow_prof *p, *tmp;
3622
3623	ice_acquire_lock(&hw->fl_profs_locks[blk_idx]);
3624	LIST_FOR_EACH_ENTRY_SAFE(p, tmp, &hw->fl_profs[blk_idx],
3625				 ice_flow_prof, l_entry) {
3626		LIST_DEL(&p->l_entry);
3627
3628		ice_free(hw, p);
3629	}
3630	ice_release_lock(&hw->fl_profs_locks[blk_idx]);
3631
3632	/* if driver is in reset and tables are being cleared
3633	 * re-initialize the flow profile list heads
3634	 */
3635	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3636}
3637
3638/**
3639 * ice_free_vsig_tbl - free complete VSIG table entries
3640 * @hw: pointer to the hardware structure
3641 * @blk: the HW block on which to free the VSIG table entries
3642 */
3643static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
3644{
3645	u16 i;
3646
3647	if (!hw->blk[blk].xlt2.vsig_tbl)
3648		return;
3649
3650	for (i = 1; i < ICE_MAX_VSIGS; i++)
3651		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
3652			ice_vsig_free(hw, blk, i);
3653}
3654
3655/**
3656 * ice_free_hw_tbls - free hardware table memory
3657 * @hw: pointer to the hardware structure
3658 */
3659void ice_free_hw_tbls(struct ice_hw *hw)
3660{
3661	struct ice_rss_cfg *r, *rt;
3662	u8 i;
3663
3664	for (i = 0; i < ICE_BLK_COUNT; i++) {
3665		if (hw->blk[i].is_list_init) {
3666			struct ice_es *es = &hw->blk[i].es;
3667
3668			ice_free_prof_map(hw, i);
3669			ice_destroy_lock(&es->prof_map_lock);
3670
3671			ice_free_flow_profs(hw, i);
3672			ice_destroy_lock(&hw->fl_profs_locks[i]);
3673
3674			hw->blk[i].is_list_init = false;
3675		}
3676		ice_free_vsig_tbl(hw, (enum ice_block)i);
3677		ice_free(hw, hw->blk[i].xlt1.ptypes);
3678		ice_free(hw, hw->blk[i].xlt1.ptg_tbl);
3679		ice_free(hw, hw->blk[i].xlt1.t);
3680		ice_free(hw, hw->blk[i].xlt2.t);
3681		ice_free(hw, hw->blk[i].xlt2.vsig_tbl);
3682		ice_free(hw, hw->blk[i].xlt2.vsis);
3683		ice_free(hw, hw->blk[i].prof.t);
3684		ice_free(hw, hw->blk[i].prof_redir.t);
3685		ice_free(hw, hw->blk[i].es.t);
3686		ice_free(hw, hw->blk[i].es.ref_count);
3687		ice_free(hw, hw->blk[i].es.written);
3688	}
3689
3690	LIST_FOR_EACH_ENTRY_SAFE(r, rt, &hw->rss_list_head,
3691				 ice_rss_cfg, l_entry) {
3692		LIST_DEL(&r->l_entry);
3693		ice_free(hw, r);
3694	}
3695	ice_destroy_lock(&hw->rss_locks);
3696	ice_memset(hw->blk, 0, sizeof(hw->blk), ICE_NONDMA_MEM);
3697}
3698
3699/**
3700 * ice_init_flow_profs - init flow profile locks and list heads
3701 * @hw: pointer to the hardware structure
3702 * @blk_idx: HW block index
3703 */
3704static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
3705{
3706	ice_init_lock(&hw->fl_profs_locks[blk_idx]);
3707	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3708}
3709
3710/**
3711 * ice_clear_hw_tbls - clear HW tables and flow profiles
3712 * @hw: pointer to the hardware structure
3713 */
3714void ice_clear_hw_tbls(struct ice_hw *hw)
3715{
3716	u8 i;
3717
3718	for (i = 0; i < ICE_BLK_COUNT; i++) {
3719		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3720		struct ice_prof_tcam *prof = &hw->blk[i].prof;
3721		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3722		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3723		struct ice_es *es = &hw->blk[i].es;
3724
3725		if (hw->blk[i].is_list_init) {
3726			ice_free_prof_map(hw, i);
3727			ice_free_flow_profs(hw, i);
3728		}
3729
3730		ice_free_vsig_tbl(hw, (enum ice_block)i);
3731
3732		ice_memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes),
3733			   ICE_NONDMA_MEM);
3734		ice_memset(xlt1->ptg_tbl, 0,
3735			   ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl),
3736			   ICE_NONDMA_MEM);
3737		ice_memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t),
3738			   ICE_NONDMA_MEM);
3739
3740		ice_memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis),
3741			   ICE_NONDMA_MEM);
3742		ice_memset(xlt2->vsig_tbl, 0,
3743			   xlt2->count * sizeof(*xlt2->vsig_tbl),
3744			   ICE_NONDMA_MEM);
3745		ice_memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t),
3746			   ICE_NONDMA_MEM);
3747
3748		ice_memset(prof->t, 0, prof->count * sizeof(*prof->t),
3749			   ICE_NONDMA_MEM);
3750		ice_memset(prof_redir->t, 0,
3751			   prof_redir->count * sizeof(*prof_redir->t),
3752			   ICE_NONDMA_MEM);
3753
3754		ice_memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw,
3755			   ICE_NONDMA_MEM);
3756		ice_memset(es->ref_count, 0, es->count * sizeof(*es->ref_count),
3757			   ICE_NONDMA_MEM);
3758		ice_memset(es->written, 0, es->count * sizeof(*es->written),
3759			   ICE_NONDMA_MEM);
3760	}
3761}
3762
3763/**
3764 * ice_init_hw_tbls - init hardware table memory
3765 * @hw: pointer to the hardware structure
3766 */
3767enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
3768{
3769	u8 i;
3770
3771	ice_init_lock(&hw->rss_locks);
3772	INIT_LIST_HEAD(&hw->rss_list_head);
3773	for (i = 0; i < ICE_BLK_COUNT; i++) {
3774		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3775		struct ice_prof_tcam *prof = &hw->blk[i].prof;
3776		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3777		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3778		struct ice_es *es = &hw->blk[i].es;
3779		u16 j;
3780
3781		if (hw->blk[i].is_list_init)
3782			continue;
3783
3784		ice_init_flow_profs(hw, i);
3785		ice_init_lock(&es->prof_map_lock);
3786		INIT_LIST_HEAD(&es->prof_map);
3787		hw->blk[i].is_list_init = true;
3788
3789		hw->blk[i].overwrite = blk_sizes[i].overwrite;
3790		es->reverse = blk_sizes[i].reverse;
3791
3792		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
3793		xlt1->count = blk_sizes[i].xlt1;
3794
3795		xlt1->ptypes = (struct ice_ptg_ptype *)
3796			ice_calloc(hw, xlt1->count, sizeof(*xlt1->ptypes));
3797
3798		if (!xlt1->ptypes)
3799			goto err;
3800
3801		xlt1->ptg_tbl = (struct ice_ptg_entry *)
3802			ice_calloc(hw, ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl));
3803
3804		if (!xlt1->ptg_tbl)
3805			goto err;
3806
3807		xlt1->t = (u8 *)ice_calloc(hw, xlt1->count, sizeof(*xlt1->t));
3808		if (!xlt1->t)
3809			goto err;
3810
3811		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
3812		xlt2->count = blk_sizes[i].xlt2;
3813
3814		xlt2->vsis = (struct ice_vsig_vsi *)
3815			ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsis));
3816
3817		if (!xlt2->vsis)
3818			goto err;
3819
3820		xlt2->vsig_tbl = (struct ice_vsig_entry *)
3821			ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsig_tbl));
3822		if (!xlt2->vsig_tbl)
3823			goto err;
3824
3825		for (j = 0; j < xlt2->count; j++)
3826			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
3827
3828		xlt2->t = (u16 *)ice_calloc(hw, xlt2->count, sizeof(*xlt2->t));
3829		if (!xlt2->t)
3830			goto err;
3831
3832		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
3833		prof->count = blk_sizes[i].prof_tcam;
3834		prof->max_prof_id = blk_sizes[i].prof_id;
3835		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
3836		prof->t = (struct ice_prof_tcam_entry *)
3837			ice_calloc(hw, prof->count, sizeof(*prof->t));
3838
3839		if (!prof->t)
3840			goto err;
3841
3842		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
3843		prof_redir->count = blk_sizes[i].prof_redir;
3844		prof_redir->t = (u8 *)ice_calloc(hw, prof_redir->count,
3845						 sizeof(*prof_redir->t));
3846
3847		if (!prof_redir->t)
3848			goto err;
3849
3850		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
3851		es->count = blk_sizes[i].es;
3852		es->fvw = blk_sizes[i].fvw;
3853		es->t = (struct ice_fv_word *)
3854			ice_calloc(hw, (u32)(es->count * es->fvw),
3855				   sizeof(*es->t));
3856		if (!es->t)
3857			goto err;
3858
3859		es->ref_count = (u16 *)
3860			ice_calloc(hw, es->count, sizeof(*es->ref_count));
3861
3862		if (!es->ref_count)
3863			goto err;
3864
3865		es->written = (u8 *)
3866			ice_calloc(hw, es->count, sizeof(*es->written));
3867
3868		if (!es->written)
3869			goto err;
3870
3871	}
3872	return ICE_SUCCESS;
3873
3874err:
3875	ice_free_hw_tbls(hw);
3876	return ICE_ERR_NO_MEMORY;
3877}
3878
3879/**
3880 * ice_prof_gen_key - generate profile ID key
3881 * @hw: pointer to the HW struct
3882 * @blk: the block in which to write profile ID to
3883 * @ptg: packet type group (PTG) portion of key
3884 * @vsig: VSIG portion of key
3885 * @cdid: CDID portion of key
3886 * @flags: flag portion of key
3887 * @vl_msk: valid mask
3888 * @dc_msk: don't care mask
3889 * @nm_msk: never match mask
3890 * @key: output of profile ID key
3891 */
3892static enum ice_status
3893ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
3894		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3895		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
3896		 u8 key[ICE_TCAM_KEY_SZ])
3897{
3898	struct ice_prof_id_key inkey;
3899
3900	inkey.xlt1 = ptg;
3901	inkey.xlt2_cdid = CPU_TO_LE16(vsig);
3902	inkey.flags = CPU_TO_LE16(flags);
3903
3904	switch (hw->blk[blk].prof.cdid_bits) {
3905	case 0:
3906		break;
3907	case 2:
3908#define ICE_CD_2_M 0xC000U
3909#define ICE_CD_2_S 14
3910		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_2_M);
3911		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_2_S);
3912		break;
3913	case 4:
3914#define ICE_CD_4_M 0xF000U
3915#define ICE_CD_4_S 12
3916		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_4_M);
3917		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_4_S);
3918		break;
3919	case 8:
3920#define ICE_CD_8_M 0xFF00U
3921#define ICE_CD_8_S 16
3922		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_8_M);
3923		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_8_S);
3924		break;
3925	default:
3926		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
3927		break;
3928	}
3929
3930	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
3931			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
3932}
3933
3934/**
3935 * ice_tcam_write_entry - write TCAM entry
3936 * @hw: pointer to the HW struct
3937 * @blk: the block in which to write profile ID to
3938 * @idx: the entry index to write to
3939 * @prof_id: profile ID
3940 * @ptg: packet type group (PTG) portion of key
3941 * @vsig: VSIG portion of key
3942 * @cdid: CDID portion of key
3943 * @flags: flag portion of key
3944 * @vl_msk: valid mask
3945 * @dc_msk: don't care mask
3946 * @nm_msk: never match mask
3947 */
3948static enum ice_status
3949ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
3950		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
3951		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3952		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
3953		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
3954{
3955	struct ice_prof_tcam_entry;
3956	enum ice_status status;
3957
3958	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
3959				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
3960	if (!status) {
3961		hw->blk[blk].prof.t[idx].addr = CPU_TO_LE16(idx);
3962		hw->blk[blk].prof.t[idx].prof_id = prof_id;
3963	}
3964
3965	return status;
3966}
3967
3968/**
3969 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
3970 * @hw: pointer to the hardware structure
3971 * @blk: HW block
3972 * @vsig: VSIG to query
3973 * @refs: pointer to variable to receive the reference count
3974 */
3975static enum ice_status
3976ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
3977{
3978	u16 idx = vsig & ICE_VSIG_IDX_M;
3979	struct ice_vsig_vsi *ptr;
3980
3981	*refs = 0;
3982
3983	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3984		return ICE_ERR_DOES_NOT_EXIST;
3985
3986	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3987	while (ptr) {
3988		(*refs)++;
3989		ptr = ptr->next_vsi;
3990	}
3991
3992	return ICE_SUCCESS;
3993}
3994
3995/**
3996 * ice_has_prof_vsig - check to see if VSIG has a specific profile
3997 * @hw: pointer to the hardware structure
3998 * @blk: HW block
3999 * @vsig: VSIG to check against
4000 * @hdl: profile handle
4001 */
4002static bool
4003ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
4004{
4005	u16 idx = vsig & ICE_VSIG_IDX_M;
4006	struct ice_vsig_prof *ent;
4007
4008	LIST_FOR_EACH_ENTRY(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4009			    ice_vsig_prof, list)
4010		if (ent->profile_cookie == hdl)
4011			return true;
4012
4013	ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
4014		  vsig);
4015	return false;
4016}
4017
4018/**
4019 * ice_prof_bld_es - build profile ID extraction sequence changes
4020 * @hw: pointer to the HW struct
4021 * @blk: hardware block
4022 * @bld: the update package buffer build to add to
4023 * @chgs: the list of changes to make in hardware
4024 */
4025static enum ice_status
4026ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
4027		struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
4028{
4029	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
4030	struct ice_chs_chg *tmp;
4031
4032	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4033		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
4034			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
4035			struct ice_pkg_es *p;
4036			u32 id;
4037
4038			id = ice_sect_id(blk, ICE_VEC_TBL);
4039			p = (struct ice_pkg_es *)
4040				ice_pkg_buf_alloc_section(bld, id,
4041							  ice_struct_size(p, es,
4042									  1) +
4043							  vec_size -
4044							  sizeof(p->es[0]));
4045
4046			if (!p)
4047				return ICE_ERR_MAX_LIMIT;
4048
4049			p->count = CPU_TO_LE16(1);
4050			p->offset = CPU_TO_LE16(tmp->prof_id);
4051
4052			ice_memcpy(p->es, &hw->blk[blk].es.t[off], vec_size,
4053				   ICE_NONDMA_TO_NONDMA);
4054		}
4055
4056	return ICE_SUCCESS;
4057}
4058
4059/**
4060 * ice_prof_bld_tcam - build profile ID TCAM changes
4061 * @hw: pointer to the HW struct
4062 * @blk: hardware block
4063 * @bld: the update package buffer build to add to
4064 * @chgs: the list of changes to make in hardware
4065 */
4066static enum ice_status
4067ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
4068		  struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
4069{
4070	struct ice_chs_chg *tmp;
4071
4072	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4073		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
4074			struct ice_prof_id_section *p;
4075			u32 id;
4076
4077			id = ice_sect_id(blk, ICE_PROF_TCAM);
4078			p = (struct ice_prof_id_section *)
4079				ice_pkg_buf_alloc_section(bld, id,
4080							  ice_struct_size(p,
4081									  entry,
4082									  1));
4083
4084			if (!p)
4085				return ICE_ERR_MAX_LIMIT;
4086
4087			p->count = CPU_TO_LE16(1);
4088			p->entry[0].addr = CPU_TO_LE16(tmp->tcam_idx);
4089			p->entry[0].prof_id = tmp->prof_id;
4090
4091			ice_memcpy(p->entry[0].key,
4092				   &hw->blk[blk].prof.t[tmp->tcam_idx].key,
4093				   sizeof(hw->blk[blk].prof.t->key),
4094				   ICE_NONDMA_TO_NONDMA);
4095		}
4096
4097	return ICE_SUCCESS;
4098}
4099
4100/**
4101 * ice_prof_bld_xlt1 - build XLT1 changes
4102 * @blk: hardware block
4103 * @bld: the update package buffer build to add to
4104 * @chgs: the list of changes to make in hardware
4105 */
4106static enum ice_status
4107ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
4108		  struct LIST_HEAD_TYPE *chgs)
4109{
4110	struct ice_chs_chg *tmp;
4111
4112	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4113		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
4114			struct ice_xlt1_section *p;
4115			u32 id;
4116
4117			id = ice_sect_id(blk, ICE_XLT1);
4118			p = (struct ice_xlt1_section *)
4119				ice_pkg_buf_alloc_section(bld, id,
4120							  ice_struct_size(p,
4121									  value,
4122									  1));
4123
4124			if (!p)
4125				return ICE_ERR_MAX_LIMIT;
4126
4127			p->count = CPU_TO_LE16(1);
4128			p->offset = CPU_TO_LE16(tmp->ptype);
4129			p->value[0] = tmp->ptg;
4130		}
4131
4132	return ICE_SUCCESS;
4133}
4134
4135/**
4136 * ice_prof_bld_xlt2 - build XLT2 changes
4137 * @blk: hardware block
4138 * @bld: the update package buffer build to add to
4139 * @chgs: the list of changes to make in hardware
4140 */
4141static enum ice_status
4142ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
4143		  struct LIST_HEAD_TYPE *chgs)
4144{
4145	struct ice_chs_chg *tmp;
4146
4147	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
4148		struct ice_xlt2_section *p;
4149		u32 id;
4150
4151		switch (tmp->type) {
4152		case ICE_VSIG_ADD:
4153		case ICE_VSI_MOVE:
4154		case ICE_VSIG_REM:
4155			id = ice_sect_id(blk, ICE_XLT2);
4156			p = (struct ice_xlt2_section *)
4157				ice_pkg_buf_alloc_section(bld, id,
4158							  ice_struct_size(p,
4159									  value,
4160									  1));
4161
4162			if (!p)
4163				return ICE_ERR_MAX_LIMIT;
4164
4165			p->count = CPU_TO_LE16(1);
4166			p->offset = CPU_TO_LE16(tmp->vsi);
4167			p->value[0] = CPU_TO_LE16(tmp->vsig);
4168			break;
4169		default:
4170			break;
4171		}
4172	}
4173
4174	return ICE_SUCCESS;
4175}
4176
4177/**
4178 * ice_upd_prof_hw - update hardware using the change list
4179 * @hw: pointer to the HW struct
4180 * @blk: hardware block
4181 * @chgs: the list of changes to make in hardware
4182 */
4183static enum ice_status
4184ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
4185		struct LIST_HEAD_TYPE *chgs)
4186{
4187	struct ice_buf_build *b;
4188	struct ice_chs_chg *tmp;
4189	enum ice_status status;
4190	u16 pkg_sects;
4191	u16 xlt1 = 0;
4192	u16 xlt2 = 0;
4193	u16 tcam = 0;
4194	u16 es = 0;
4195	u16 sects;
4196
4197	/* count number of sections we need */
4198	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
4199		switch (tmp->type) {
4200		case ICE_PTG_ES_ADD:
4201			if (tmp->add_ptg)
4202				xlt1++;
4203			if (tmp->add_prof)
4204				es++;
4205			break;
4206		case ICE_TCAM_ADD:
4207			tcam++;
4208			break;
4209		case ICE_VSIG_ADD:
4210		case ICE_VSI_MOVE:
4211		case ICE_VSIG_REM:
4212			xlt2++;
4213			break;
4214		default:
4215			break;
4216		}
4217	}
4218	sects = xlt1 + xlt2 + tcam + es;
4219
4220	if (!sects)
4221		return ICE_SUCCESS;
4222
4223	/* Build update package buffer */
4224	b = ice_pkg_buf_alloc(hw);
4225	if (!b)
4226		return ICE_ERR_NO_MEMORY;
4227
4228	status = ice_pkg_buf_reserve_section(b, sects);
4229	if (status)
4230		goto error_tmp;
4231
4232	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
4233	if (es) {
4234		status = ice_prof_bld_es(hw, blk, b, chgs);
4235		if (status)
4236			goto error_tmp;
4237	}
4238
4239	if (tcam) {
4240		status = ice_prof_bld_tcam(hw, blk, b, chgs);
4241		if (status)
4242			goto error_tmp;
4243	}
4244
4245	if (xlt1) {
4246		status = ice_prof_bld_xlt1(blk, b, chgs);
4247		if (status)
4248			goto error_tmp;
4249	}
4250
4251	if (xlt2) {
4252		status = ice_prof_bld_xlt2(blk, b, chgs);
4253		if (status)
4254			goto error_tmp;
4255	}
4256
4257	/* After package buffer build check if the section count in buffer is
4258	 * non-zero and matches the number of sections detected for package
4259	 * update.
4260	 */
4261	pkg_sects = ice_pkg_buf_get_active_sections(b);
4262	if (!pkg_sects || pkg_sects != sects) {
4263		status = ICE_ERR_INVAL_SIZE;
4264		goto error_tmp;
4265	}
4266
4267	/* update package */
4268	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
4269	if (status == ICE_ERR_AQ_ERROR)
4270		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
4271
4272error_tmp:
4273	ice_pkg_buf_free(hw, b);
4274	return status;
4275}
4276
4277/**
4278 * ice_add_prof - add profile
4279 * @hw: pointer to the HW struct
4280 * @blk: hardware block
4281 * @id: profile tracking ID
4282 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
4283 * @es: extraction sequence (length of array is determined by the block)
4284 *
4285 * This function registers a profile, which matches a set of PTGs with a
4286 * particular extraction sequence. While the hardware profile is allocated
4287 * it will not be written until the first call to ice_add_flow that specifies
4288 * the ID value used here.
4289 */
4290enum ice_status
4291ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
4292	     struct ice_fv_word *es)
4293{
4294	u32 bytes = DIVIDE_AND_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
4295	ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
4296	struct ice_prof_map *prof;
4297	enum ice_status status;
4298	u8 byte = 0;
4299	u8 prof_id;
4300
4301	ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
4302
4303	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4304
4305	/* search for existing profile */
4306	status = ice_find_prof_id(hw, blk, es, &prof_id);
4307	if (status) {
4308		/* allocate profile ID */
4309		status = ice_alloc_prof_id(hw, blk, &prof_id);
4310		if (status)
4311			goto err_ice_add_prof;
4312
4313		/* and write new es */
4314		ice_write_es(hw, blk, prof_id, es);
4315	}
4316
4317	ice_prof_inc_ref(hw, blk, prof_id);
4318
4319	/* add profile info */
4320
4321	prof = (struct ice_prof_map *)ice_malloc(hw, sizeof(*prof));
4322	if (!prof)
4323		goto err_ice_add_prof;
4324
4325	prof->profile_cookie = id;
4326	prof->prof_id = prof_id;
4327	prof->ptg_cnt = 0;
4328	prof->context = 0;
4329
4330	/* build list of ptgs */
4331	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
4332		u8 bit;
4333
4334		if (!ptypes[byte]) {
4335			bytes--;
4336			byte++;
4337			continue;
4338		}
4339
4340		/* Examine 8 bits per byte */
4341		ice_for_each_set_bit(bit, (ice_bitmap_t *)&ptypes[byte],
4342				     BITS_PER_BYTE) {
4343			u16 ptype;
4344			u8 ptg;
4345
4346			ptype = byte * BITS_PER_BYTE + bit;
4347
4348			/* The package should place all ptypes in a non-zero
4349			 * PTG, so the following call should never fail.
4350			 */
4351			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
4352				continue;
4353
4354			/* If PTG is already added, skip and continue */
4355			if (ice_is_bit_set(ptgs_used, ptg))
4356				continue;
4357
4358			ice_set_bit(ptg, ptgs_used);
4359			prof->ptg[prof->ptg_cnt] = ptg;
4360
4361			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4362				break;
4363		}
4364
4365		bytes--;
4366		byte++;
4367	}
4368
4369	LIST_ADD(&prof->list, &hw->blk[blk].es.prof_map);
4370	status = ICE_SUCCESS;
4371
4372err_ice_add_prof:
4373	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4374	return status;
4375}
4376
4377/**
4378 * ice_search_prof_id - Search for a profile tracking ID
4379 * @hw: pointer to the HW struct
4380 * @blk: hardware block
4381 * @id: profile tracking ID
4382 *
4383 * This will search for a profile tracking ID which was previously added.
4384 * The profile map lock should be held before calling this function.
4385 */
4386struct ice_prof_map *
4387ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
4388{
4389	struct ice_prof_map *entry = NULL;
4390	struct ice_prof_map *map;
4391
4392	LIST_FOR_EACH_ENTRY(map, &hw->blk[blk].es.prof_map, ice_prof_map, list)
4393		if (map->profile_cookie == id) {
4394			entry = map;
4395			break;
4396		}
4397
4398	return entry;
4399}
4400
4401/**
4402 * ice_set_prof_context - Set context for a given profile
4403 * @hw: pointer to the HW struct
4404 * @blk: hardware block
4405 * @id: profile tracking ID
4406 * @cntxt: context
4407 */
4408enum ice_status
4409ice_set_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 cntxt)
4410{
4411	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4412	struct ice_prof_map *entry;
4413
4414	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4415	entry = ice_search_prof_id(hw, blk, id);
4416	if (entry) {
4417		entry->context = cntxt;
4418		status = ICE_SUCCESS;
4419	}
4420	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4421	return status;
4422}
4423
4424/**
4425 * ice_get_prof_context - Get context for a given profile
4426 * @hw: pointer to the HW struct
4427 * @blk: hardware block
4428 * @id: profile tracking ID
4429 * @cntxt: pointer to variable to receive the context
4430 */
4431enum ice_status
4432ice_get_prof_context(struct ice_hw *hw, enum ice_block blk, u64 id, u64 *cntxt)
4433{
4434	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4435	struct ice_prof_map *entry;
4436
4437	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4438	entry = ice_search_prof_id(hw, blk, id);
4439	if (entry) {
4440		*cntxt = entry->context;
4441		status = ICE_SUCCESS;
4442	}
4443	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4444	return status;
4445}
4446
4447/**
4448 * ice_vsig_prof_id_count - count profiles in a VSIG
4449 * @hw: pointer to the HW struct
4450 * @blk: hardware block
4451 * @vsig: VSIG to remove the profile from
4452 */
4453static u16
4454ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
4455{
4456	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
4457	struct ice_vsig_prof *p;
4458
4459	LIST_FOR_EACH_ENTRY(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4460			    ice_vsig_prof, list)
4461		count++;
4462
4463	return count;
4464}
4465
4466/**
4467 * ice_rel_tcam_idx - release a TCAM index
4468 * @hw: pointer to the HW struct
4469 * @blk: hardware block
4470 * @idx: the index to release
4471 */
4472static enum ice_status
4473ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
4474{
4475	/* Masks to invoke a never match entry */
4476	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4477	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
4478	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
4479	enum ice_status status;
4480
4481	/* write the TCAM entry */
4482	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
4483				      dc_msk, nm_msk);
4484	if (status)
4485		return status;
4486
4487	/* release the TCAM entry */
4488	status = ice_free_tcam_ent(hw, blk, idx);
4489
4490	return status;
4491}
4492
4493/**
4494 * ice_rem_prof_id - remove one profile from a VSIG
4495 * @hw: pointer to the HW struct
4496 * @blk: hardware block
4497 * @prof: pointer to profile structure to remove
4498 */
4499static enum ice_status
4500ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
4501		struct ice_vsig_prof *prof)
4502{
4503	enum ice_status status;
4504	u16 i;
4505
4506	for (i = 0; i < prof->tcam_count; i++)
4507		if (prof->tcam[i].in_use) {
4508			prof->tcam[i].in_use = false;
4509			status = ice_rel_tcam_idx(hw, blk,
4510						  prof->tcam[i].tcam_idx);
4511			if (status)
4512				return ICE_ERR_HW_TABLE;
4513		}
4514
4515	return ICE_SUCCESS;
4516}
4517
4518/**
4519 * ice_rem_vsig - remove VSIG
4520 * @hw: pointer to the HW struct
4521 * @blk: hardware block
4522 * @vsig: the VSIG to remove
4523 * @chg: the change list
4524 */
4525static enum ice_status
4526ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4527	     struct LIST_HEAD_TYPE *chg)
4528{
4529	u16 idx = vsig & ICE_VSIG_IDX_M;
4530	struct ice_vsig_vsi *vsi_cur;
4531	struct ice_vsig_prof *d, *t;
4532	enum ice_status status;
4533
4534	/* remove TCAM entries */
4535	LIST_FOR_EACH_ENTRY_SAFE(d, t,
4536				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4537				 ice_vsig_prof, list) {
4538		status = ice_rem_prof_id(hw, blk, d);
4539		if (status)
4540			return status;
4541
4542		LIST_DEL(&d->list);
4543		ice_free(hw, d);
4544	}
4545
4546	/* Move all VSIS associated with this VSIG to the default VSIG */
4547	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4548	/* If the VSIG has at least 1 VSI then iterate through the list
4549	 * and remove the VSIs before deleting the group.
4550	 */
4551	if (vsi_cur)
4552		do {
4553			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
4554			struct ice_chs_chg *p;
4555
4556			p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4557			if (!p)
4558				return ICE_ERR_NO_MEMORY;
4559
4560			p->type = ICE_VSIG_REM;
4561			p->orig_vsig = vsig;
4562			p->vsig = ICE_DEFAULT_VSIG;
4563			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
4564
4565			LIST_ADD(&p->list_entry, chg);
4566
4567			vsi_cur = tmp;
4568		} while (vsi_cur);
4569
4570	return ice_vsig_free(hw, blk, vsig);
4571}
4572
4573/**
4574 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
4575 * @hw: pointer to the HW struct
4576 * @blk: hardware block
4577 * @vsig: VSIG to remove the profile from
4578 * @hdl: profile handle indicating which profile to remove
4579 * @chg: list to receive a record of changes
4580 */
4581static enum ice_status
4582ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4583		     struct LIST_HEAD_TYPE *chg)
4584{
4585	u16 idx = vsig & ICE_VSIG_IDX_M;
4586	struct ice_vsig_prof *p, *t;
4587	enum ice_status status;
4588
4589	LIST_FOR_EACH_ENTRY_SAFE(p, t,
4590				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4591				 ice_vsig_prof, list)
4592		if (p->profile_cookie == hdl) {
4593			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
4594				/* this is the last profile, remove the VSIG */
4595				return ice_rem_vsig(hw, blk, vsig, chg);
4596
4597			status = ice_rem_prof_id(hw, blk, p);
4598			if (!status) {
4599				LIST_DEL(&p->list);
4600				ice_free(hw, p);
4601			}
4602			return status;
4603		}
4604
4605	return ICE_ERR_DOES_NOT_EXIST;
4606}
4607
4608/**
4609 * ice_rem_flow_all - remove all flows with a particular profile
4610 * @hw: pointer to the HW struct
4611 * @blk: hardware block
4612 * @id: profile tracking ID
4613 */
4614static enum ice_status
4615ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
4616{
4617	struct ice_chs_chg *del, *tmp;
4618	enum ice_status status;
4619	struct LIST_HEAD_TYPE chg;
4620	u16 i;
4621
4622	INIT_LIST_HEAD(&chg);
4623
4624	for (i = 1; i < ICE_MAX_VSIGS; i++)
4625		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
4626			if (ice_has_prof_vsig(hw, blk, i, id)) {
4627				status = ice_rem_prof_id_vsig(hw, blk, i, id,
4628							      &chg);
4629				if (status)
4630					goto err_ice_rem_flow_all;
4631			}
4632		}
4633
4634	status = ice_upd_prof_hw(hw, blk, &chg);
4635
4636err_ice_rem_flow_all:
4637	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
4638		LIST_DEL(&del->list_entry);
4639		ice_free(hw, del);
4640	}
4641
4642	return status;
4643}
4644
4645/**
4646 * ice_rem_prof - remove profile
4647 * @hw: pointer to the HW struct
4648 * @blk: hardware block
4649 * @id: profile tracking ID
4650 *
4651 * This will remove the profile specified by the ID parameter, which was
4652 * previously created through ice_add_prof. If any existing entries
4653 * are associated with this profile, they will be removed as well.
4654 */
4655enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
4656{
4657	struct ice_prof_map *pmap;
4658	enum ice_status status;
4659
4660	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4661
4662	pmap = ice_search_prof_id(hw, blk, id);
4663	if (!pmap) {
4664		status = ICE_ERR_DOES_NOT_EXIST;
4665		goto err_ice_rem_prof;
4666	}
4667
4668	/* remove all flows with this profile */
4669	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
4670	if (status)
4671		goto err_ice_rem_prof;
4672
4673	/* dereference profile, and possibly remove */
4674	ice_prof_dec_ref(hw, blk, pmap->prof_id);
4675
4676	LIST_DEL(&pmap->list);
4677	ice_free(hw, pmap);
4678
4679err_ice_rem_prof:
4680	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4681	return status;
4682}
4683
4684/**
4685 * ice_get_prof - get profile
4686 * @hw: pointer to the HW struct
4687 * @blk: hardware block
4688 * @hdl: profile handle
4689 * @chg: change list
4690 */
4691static enum ice_status
4692ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
4693	     struct LIST_HEAD_TYPE *chg)
4694{
4695	enum ice_status status = ICE_SUCCESS;
4696	struct ice_prof_map *map;
4697	struct ice_chs_chg *p;
4698	u16 i;
4699
4700	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4701	/* Get the details on the profile specified by the handle ID */
4702	map = ice_search_prof_id(hw, blk, hdl);
4703	if (!map) {
4704		status = ICE_ERR_DOES_NOT_EXIST;
4705		goto err_ice_get_prof;
4706	}
4707
4708	for (i = 0; i < map->ptg_cnt; i++)
4709		if (!hw->blk[blk].es.written[map->prof_id]) {
4710			/* add ES to change list */
4711			p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4712			if (!p) {
4713				status = ICE_ERR_NO_MEMORY;
4714				goto err_ice_get_prof;
4715			}
4716
4717			p->type = ICE_PTG_ES_ADD;
4718			p->ptype = 0;
4719			p->ptg = map->ptg[i];
4720			p->add_ptg = 0;
4721
4722			p->add_prof = 1;
4723			p->prof_id = map->prof_id;
4724
4725			hw->blk[blk].es.written[map->prof_id] = true;
4726
4727			LIST_ADD(&p->list_entry, chg);
4728		}
4729
4730err_ice_get_prof:
4731	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4732	/* let caller clean up the change list */
4733	return status;
4734}
4735
4736/**
4737 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
4738 * @hw: pointer to the HW struct
4739 * @blk: hardware block
4740 * @vsig: VSIG from which to copy the list
4741 * @lst: output list
4742 *
4743 * This routine makes a copy of the list of profiles in the specified VSIG.
4744 */
4745static enum ice_status
4746ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4747		   struct LIST_HEAD_TYPE *lst)
4748{
4749	struct ice_vsig_prof *ent1, *ent2;
4750	u16 idx = vsig & ICE_VSIG_IDX_M;
4751
4752	LIST_FOR_EACH_ENTRY(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4753			    ice_vsig_prof, list) {
4754		struct ice_vsig_prof *p;
4755
4756		/* copy to the input list */
4757		p = (struct ice_vsig_prof *)ice_memdup(hw, ent1, sizeof(*p),
4758						       ICE_NONDMA_TO_NONDMA);
4759		if (!p)
4760			goto err_ice_get_profs_vsig;
4761
4762		LIST_ADD_TAIL(&p->list, lst);
4763	}
4764
4765	return ICE_SUCCESS;
4766
4767err_ice_get_profs_vsig:
4768	LIST_FOR_EACH_ENTRY_SAFE(ent1, ent2, lst, ice_vsig_prof, list) {
4769		LIST_DEL(&ent1->list);
4770		ice_free(hw, ent1);
4771	}
4772
4773	return ICE_ERR_NO_MEMORY;
4774}
4775
4776/**
4777 * ice_add_prof_to_lst - add profile entry to a list
4778 * @hw: pointer to the HW struct
4779 * @blk: hardware block
4780 * @lst: the list to be added to
4781 * @hdl: profile handle of entry to add
4782 */
4783static enum ice_status
4784ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
4785		    struct LIST_HEAD_TYPE *lst, u64 hdl)
4786{
4787	enum ice_status status = ICE_SUCCESS;
4788	struct ice_prof_map *map;
4789	struct ice_vsig_prof *p;
4790	u16 i;
4791
4792	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4793	map = ice_search_prof_id(hw, blk, hdl);
4794	if (!map) {
4795		status = ICE_ERR_DOES_NOT_EXIST;
4796		goto err_ice_add_prof_to_lst;
4797	}
4798
4799	p = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*p));
4800	if (!p) {
4801		status = ICE_ERR_NO_MEMORY;
4802		goto err_ice_add_prof_to_lst;
4803	}
4804
4805	p->profile_cookie = map->profile_cookie;
4806	p->prof_id = map->prof_id;
4807	p->tcam_count = map->ptg_cnt;
4808
4809	for (i = 0; i < map->ptg_cnt; i++) {
4810		p->tcam[i].prof_id = map->prof_id;
4811		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
4812		p->tcam[i].ptg = map->ptg[i];
4813	}
4814
4815	LIST_ADD(&p->list, lst);
4816
4817err_ice_add_prof_to_lst:
4818	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4819	return status;
4820}
4821
4822/**
4823 * ice_move_vsi - move VSI to another VSIG
4824 * @hw: pointer to the HW struct
4825 * @blk: hardware block
4826 * @vsi: the VSI to move
4827 * @vsig: the VSIG to move the VSI to
4828 * @chg: the change list
4829 */
4830static enum ice_status
4831ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
4832	     struct LIST_HEAD_TYPE *chg)
4833{
4834	enum ice_status status;
4835	struct ice_chs_chg *p;
4836	u16 orig_vsig;
4837
4838	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4839	if (!p)
4840		return ICE_ERR_NO_MEMORY;
4841
4842	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
4843	if (!status)
4844		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
4845
4846	if (status) {
4847		ice_free(hw, p);
4848		return status;
4849	}
4850
4851	p->type = ICE_VSI_MOVE;
4852	p->vsi = vsi;
4853	p->orig_vsig = orig_vsig;
4854	p->vsig = vsig;
4855
4856	LIST_ADD(&p->list_entry, chg);
4857
4858	return ICE_SUCCESS;
4859}
4860
4861/**
4862 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
4863 * @hw: pointer to the HW struct
4864 * @idx: the index of the TCAM entry to remove
4865 * @chg: the list of change structures to search
4866 */
4867static void
4868ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct LIST_HEAD_TYPE *chg)
4869{
4870	struct ice_chs_chg *pos, *tmp;
4871
4872	LIST_FOR_EACH_ENTRY_SAFE(tmp, pos, chg, ice_chs_chg, list_entry)
4873		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
4874			LIST_DEL(&tmp->list_entry);
4875			ice_free(hw, tmp);
4876		}
4877}
4878
4879/**
4880 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
4881 * @hw: pointer to the HW struct
4882 * @blk: hardware block
4883 * @enable: true to enable, false to disable
4884 * @vsig: the VSIG of the TCAM entry
4885 * @tcam: pointer the TCAM info structure of the TCAM to disable
4886 * @chg: the change list
4887 *
4888 * This function appends an enable or disable TCAM entry in the change log
4889 */
4890static enum ice_status
4891ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
4892		      u16 vsig, struct ice_tcam_inf *tcam,
4893		      struct LIST_HEAD_TYPE *chg)
4894{
4895	enum ice_status status;
4896	struct ice_chs_chg *p;
4897
4898	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4899	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4900	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4901
4902	/* if disabling, free the TCAM */
4903	if (!enable) {
4904		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
4905
4906		/* if we have already created a change for this TCAM entry, then
4907		 * we need to remove that entry, in order to prevent writing to
4908		 * a TCAM entry we no longer will have ownership of.
4909		 */
4910		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
4911		tcam->tcam_idx = 0;
4912		tcam->in_use = 0;
4913		return status;
4914	}
4915
4916	/* for re-enabling, reallocate a TCAM */
4917	status = ice_alloc_tcam_ent(hw, blk, true, &tcam->tcam_idx);
4918	if (status)
4919		return status;
4920
4921	/* add TCAM to change list */
4922	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4923	if (!p)
4924		return ICE_ERR_NO_MEMORY;
4925
4926	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
4927				      tcam->ptg, vsig, 0, 0, vl_msk, dc_msk,
4928				      nm_msk);
4929	if (status)
4930		goto err_ice_prof_tcam_ena_dis;
4931
4932	tcam->in_use = 1;
4933
4934	p->type = ICE_TCAM_ADD;
4935	p->add_tcam_idx = true;
4936	p->prof_id = tcam->prof_id;
4937	p->ptg = tcam->ptg;
4938	p->vsig = 0;
4939	p->tcam_idx = tcam->tcam_idx;
4940
4941	/* log change */
4942	LIST_ADD(&p->list_entry, chg);
4943
4944	return ICE_SUCCESS;
4945
4946err_ice_prof_tcam_ena_dis:
4947	ice_free(hw, p);
4948	return status;
4949}
4950
4951/**
4952 * ice_adj_prof_priorities - adjust profile based on priorities
4953 * @hw: pointer to the HW struct
4954 * @blk: hardware block
4955 * @vsig: the VSIG for which to adjust profile priorities
4956 * @chg: the change list
4957 */
4958static enum ice_status
4959ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4960			struct LIST_HEAD_TYPE *chg)
4961{
4962	ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
4963	enum ice_status status = ICE_SUCCESS;
4964	struct ice_vsig_prof *t;
4965	u16 idx;
4966
4967	ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
4968	idx = vsig & ICE_VSIG_IDX_M;
4969
4970	/* Priority is based on the order in which the profiles are added. The
4971	 * newest added profile has highest priority and the oldest added
4972	 * profile has the lowest priority. Since the profile property list for
4973	 * a VSIG is sorted from newest to oldest, this code traverses the list
4974	 * in order and enables the first of each PTG that it finds (that is not
4975	 * already enabled); it also disables any duplicate PTGs that it finds
4976	 * in the older profiles (that are currently enabled).
4977	 */
4978
4979	LIST_FOR_EACH_ENTRY(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4980			    ice_vsig_prof, list) {
4981		u16 i;
4982
4983		for (i = 0; i < t->tcam_count; i++) {
4984			bool used;
4985
4986			/* Scan the priorities from newest to oldest.
4987			 * Make sure that the newest profiles take priority.
4988			 */
4989			used = ice_is_bit_set(ptgs_used, t->tcam[i].ptg);
4990
4991			if (used && t->tcam[i].in_use) {
4992				/* need to mark this PTG as never match, as it
4993				 * was already in use and therefore duplicate
4994				 * (and lower priority)
4995				 */
4996				status = ice_prof_tcam_ena_dis(hw, blk, false,
4997							       vsig,
4998							       &t->tcam[i],
4999							       chg);
5000				if (status)
5001					return status;
5002			} else if (!used && !t->tcam[i].in_use) {
5003				/* need to enable this PTG, as it in not in use
5004				 * and not enabled (highest priority)
5005				 */
5006				status = ice_prof_tcam_ena_dis(hw, blk, true,
5007							       vsig,
5008							       &t->tcam[i],
5009							       chg);
5010				if (status)
5011					return status;
5012			}
5013
5014			/* keep track of used ptgs */
5015			ice_set_bit(t->tcam[i].ptg, ptgs_used);
5016		}
5017	}
5018
5019	return status;
5020}
5021
5022/**
5023 * ice_add_prof_id_vsig - add profile to VSIG
5024 * @hw: pointer to the HW struct
5025 * @blk: hardware block
5026 * @vsig: the VSIG to which this profile is to be added
5027 * @hdl: the profile handle indicating the profile to add
5028 * @rev: true to add entries to the end of the list
5029 * @chg: the change list
5030 */
5031static enum ice_status
5032ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5033		     bool rev, struct LIST_HEAD_TYPE *chg)
5034{
5035	/* Masks that ignore flags */
5036	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5037	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5038	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5039	enum ice_status status = ICE_SUCCESS;
5040	struct ice_prof_map *map;
5041	struct ice_vsig_prof *t;
5042	struct ice_chs_chg *p;
5043	u16 vsig_idx, i;
5044
5045	/* Error, if this VSIG already has this profile */
5046	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
5047		return ICE_ERR_ALREADY_EXISTS;
5048
5049	/* new VSIG profile structure */
5050	t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
5051	if (!t)
5052		return ICE_ERR_NO_MEMORY;
5053
5054	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
5055	/* Get the details on the profile specified by the handle ID */
5056	map = ice_search_prof_id(hw, blk, hdl);
5057	if (!map) {
5058		status = ICE_ERR_DOES_NOT_EXIST;
5059		goto err_ice_add_prof_id_vsig;
5060	}
5061
5062	t->profile_cookie = map->profile_cookie;
5063	t->prof_id = map->prof_id;
5064	t->tcam_count = map->ptg_cnt;
5065
5066	/* create TCAM entries */
5067	for (i = 0; i < map->ptg_cnt; i++) {
5068		u16 tcam_idx;
5069
5070		/* add TCAM to change list */
5071		p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5072		if (!p) {
5073			status = ICE_ERR_NO_MEMORY;
5074			goto err_ice_add_prof_id_vsig;
5075		}
5076
5077		/* allocate the TCAM entry index */
5078		status = ice_alloc_tcam_ent(hw, blk, true, &tcam_idx);
5079		if (status) {
5080			ice_free(hw, p);
5081			goto err_ice_add_prof_id_vsig;
5082		}
5083
5084		t->tcam[i].ptg = map->ptg[i];
5085		t->tcam[i].prof_id = map->prof_id;
5086		t->tcam[i].tcam_idx = tcam_idx;
5087		t->tcam[i].in_use = true;
5088
5089		p->type = ICE_TCAM_ADD;
5090		p->add_tcam_idx = true;
5091		p->prof_id = t->tcam[i].prof_id;
5092		p->ptg = t->tcam[i].ptg;
5093		p->vsig = vsig;
5094		p->tcam_idx = t->tcam[i].tcam_idx;
5095
5096		/* write the TCAM entry */
5097		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
5098					      t->tcam[i].prof_id,
5099					      t->tcam[i].ptg, vsig, 0, 0,
5100					      vl_msk, dc_msk, nm_msk);
5101		if (status) {
5102			ice_free(hw, p);
5103			goto err_ice_add_prof_id_vsig;
5104		}
5105
5106		/* log change */
5107		LIST_ADD(&p->list_entry, chg);
5108	}
5109
5110	/* add profile to VSIG */
5111	vsig_idx = vsig & ICE_VSIG_IDX_M;
5112	if (rev)
5113		LIST_ADD_TAIL(&t->list,
5114			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5115	else
5116		LIST_ADD(&t->list,
5117			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5118
5119	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5120	return status;
5121
5122err_ice_add_prof_id_vsig:
5123	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5124	/* let caller clean up the change list */
5125	ice_free(hw, t);
5126	return status;
5127}
5128
5129/**
5130 * ice_create_prof_id_vsig - add a new VSIG with a single profile
5131 * @hw: pointer to the HW struct
5132 * @blk: hardware block
5133 * @vsi: the initial VSI that will be in VSIG
5134 * @hdl: the profile handle of the profile that will be added to the VSIG
5135 * @chg: the change list
5136 */
5137static enum ice_status
5138ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
5139			struct LIST_HEAD_TYPE *chg)
5140{
5141	enum ice_status status;
5142	struct ice_chs_chg *p;
5143	u16 new_vsig;
5144
5145	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5146	if (!p)
5147		return ICE_ERR_NO_MEMORY;
5148
5149	new_vsig = ice_vsig_alloc(hw, blk);
5150	if (!new_vsig) {
5151		status = ICE_ERR_HW_TABLE;
5152		goto err_ice_create_prof_id_vsig;
5153	}
5154
5155	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
5156	if (status)
5157		goto err_ice_create_prof_id_vsig;
5158
5159	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
5160	if (status)
5161		goto err_ice_create_prof_id_vsig;
5162
5163	p->type = ICE_VSIG_ADD;
5164	p->vsi = vsi;
5165	p->orig_vsig = ICE_DEFAULT_VSIG;
5166	p->vsig = new_vsig;
5167
5168	LIST_ADD(&p->list_entry, chg);
5169
5170	return ICE_SUCCESS;
5171
5172err_ice_create_prof_id_vsig:
5173	/* let caller clean up the change list */
5174	ice_free(hw, p);
5175	return status;
5176}
5177
5178/**
5179 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
5180 * @hw: pointer to the HW struct
5181 * @blk: hardware block
5182 * @vsi: the initial VSI that will be in VSIG
5183 * @lst: the list of profile that will be added to the VSIG
5184 * @new_vsig: return of new VSIG
5185 * @chg: the change list
5186 */
5187static enum ice_status
5188ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
5189			 struct LIST_HEAD_TYPE *lst, u16 *new_vsig,
5190			 struct LIST_HEAD_TYPE *chg)
5191{
5192	struct ice_vsig_prof *t;
5193	enum ice_status status;
5194	u16 vsig;
5195
5196	vsig = ice_vsig_alloc(hw, blk);
5197	if (!vsig)
5198		return ICE_ERR_HW_TABLE;
5199
5200	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
5201	if (status)
5202		return status;
5203
5204	LIST_FOR_EACH_ENTRY(t, lst, ice_vsig_prof, list) {
5205		/* Reverse the order here since we are copying the list */
5206		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
5207					      true, chg);
5208		if (status)
5209			return status;
5210	}
5211
5212	*new_vsig = vsig;
5213
5214	return ICE_SUCCESS;
5215}
5216
5217/**
5218 * ice_find_prof_vsig - find a VSIG with a specific profile handle
5219 * @hw: pointer to the HW struct
5220 * @blk: hardware block
5221 * @hdl: the profile handle of the profile to search for
5222 * @vsig: returns the VSIG with the matching profile
5223 */
5224static bool
5225ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
5226{
5227	struct ice_vsig_prof *t;
5228	enum ice_status status;
5229	struct LIST_HEAD_TYPE lst;
5230
5231	INIT_LIST_HEAD(&lst);
5232
5233	t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
5234	if (!t)
5235		return false;
5236
5237	t->profile_cookie = hdl;
5238	LIST_ADD(&t->list, &lst);
5239
5240	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
5241
5242	LIST_DEL(&t->list);
5243	ice_free(hw, t);
5244
5245	return status == ICE_SUCCESS;
5246}
5247
5248/**
5249 * ice_add_vsi_flow - add VSI flow
5250 * @hw: pointer to the HW struct
5251 * @blk: hardware block
5252 * @vsi: input VSI
5253 * @vsig: target VSIG to include the input VSI
5254 *
5255 * Calling this function will add the VSI to a given VSIG and
5256 * update the HW tables accordingly. This call can be used to
5257 * add multiple VSIs to a VSIG if we know beforehand that those
5258 * VSIs have the same characteristics of the VSIG. This will
5259 * save time in generating a new VSIG and TCAMs till a match is
5260 * found and subsequent rollback when a matching VSIG is found.
5261 */
5262enum ice_status
5263ice_add_vsi_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
5264{
5265	struct ice_chs_chg *tmp, *del;
5266	struct LIST_HEAD_TYPE chg;
5267	enum ice_status status;
5268
5269	/* if target VSIG is default the move is invalid */
5270	if ((vsig & ICE_VSIG_IDX_M) == ICE_DEFAULT_VSIG)
5271		return ICE_ERR_PARAM;
5272
5273	INIT_LIST_HEAD(&chg);
5274
5275	/* move VSI to the VSIG that matches */
5276	status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5277	/* update hardware if success */
5278	if (!status)
5279		status = ice_upd_prof_hw(hw, blk, &chg);
5280
5281	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5282		LIST_DEL(&del->list_entry);
5283		ice_free(hw, del);
5284	}
5285
5286	return status;
5287}
5288
5289/**
5290 * ice_add_prof_id_flow - add profile flow
5291 * @hw: pointer to the HW struct
5292 * @blk: hardware block
5293 * @vsi: the VSI to enable with the profile specified by ID
5294 * @hdl: profile handle
5295 *
5296 * Calling this function will update the hardware tables to enable the
5297 * profile indicated by the ID parameter for the VSIs specified in the VSI
5298 * array. Once successfully called, the flow will be enabled.
5299 */
5300enum ice_status
5301ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5302{
5303	struct ice_vsig_prof *tmp1, *del1;
5304	struct ice_chs_chg *tmp, *del;
5305	struct LIST_HEAD_TYPE union_lst;
5306	enum ice_status status;
5307	struct LIST_HEAD_TYPE chg;
5308	u16 vsig;
5309
5310	INIT_LIST_HEAD(&union_lst);
5311	INIT_LIST_HEAD(&chg);
5312
5313	/* Get profile */
5314	status = ice_get_prof(hw, blk, hdl, &chg);
5315	if (status)
5316		return status;
5317
5318	/* determine if VSI is already part of a VSIG */
5319	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5320	if (!status && vsig) {
5321		bool only_vsi;
5322		u16 or_vsig;
5323		u16 ref;
5324
5325		/* found in VSIG */
5326		or_vsig = vsig;
5327
5328		/* make sure that there is no overlap/conflict between the new
5329		 * characteristics and the existing ones; we don't support that
5330		 * scenario
5331		 */
5332		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
5333			status = ICE_ERR_ALREADY_EXISTS;
5334			goto err_ice_add_prof_id_flow;
5335		}
5336
5337		/* last VSI in the VSIG? */
5338		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5339		if (status)
5340			goto err_ice_add_prof_id_flow;
5341		only_vsi = (ref == 1);
5342
5343		/* create a union of the current profiles and the one being
5344		 * added
5345		 */
5346		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
5347		if (status)
5348			goto err_ice_add_prof_id_flow;
5349
5350		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
5351		if (status)
5352			goto err_ice_add_prof_id_flow;
5353
5354		/* search for an existing VSIG with an exact charc match */
5355		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
5356		if (!status) {
5357			/* move VSI to the VSIG that matches */
5358			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5359			if (status)
5360				goto err_ice_add_prof_id_flow;
5361
5362			/* VSI has been moved out of or_vsig. If the or_vsig had
5363			 * only that VSI it is now empty and can be removed.
5364			 */
5365			if (only_vsi) {
5366				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
5367				if (status)
5368					goto err_ice_add_prof_id_flow;
5369			}
5370		} else if (only_vsi) {
5371			/* If the original VSIG only contains one VSI, then it
5372			 * will be the requesting VSI. In this case the VSI is
5373			 * not sharing entries and we can simply add the new
5374			 * profile to the VSIG.
5375			 */
5376			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
5377						      &chg);
5378			if (status)
5379				goto err_ice_add_prof_id_flow;
5380
5381			/* Adjust priorities */
5382			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5383			if (status)
5384				goto err_ice_add_prof_id_flow;
5385		} else {
5386			/* No match, so we need a new VSIG */
5387			status = ice_create_vsig_from_lst(hw, blk, vsi,
5388							  &union_lst, &vsig,
5389							  &chg);
5390			if (status)
5391				goto err_ice_add_prof_id_flow;
5392
5393			/* Adjust priorities */
5394			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5395			if (status)
5396				goto err_ice_add_prof_id_flow;
5397		}
5398	} else {
5399		/* need to find or add a VSIG */
5400		/* search for an existing VSIG with an exact charc match */
5401		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
5402			/* found an exact match */
5403			/* add or move VSI to the VSIG that matches */
5404			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5405			if (status)
5406				goto err_ice_add_prof_id_flow;
5407		} else {
5408			/* we did not find an exact match */
5409			/* we need to add a VSIG */
5410			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
5411							 &chg);
5412			if (status)
5413				goto err_ice_add_prof_id_flow;
5414		}
5415	}
5416
5417	/* update hardware */
5418	if (!status)
5419		status = ice_upd_prof_hw(hw, blk, &chg);
5420
5421err_ice_add_prof_id_flow:
5422	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5423		LIST_DEL(&del->list_entry);
5424		ice_free(hw, del);
5425	}
5426
5427	LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &union_lst, ice_vsig_prof, list) {
5428		LIST_DEL(&del1->list);
5429		ice_free(hw, del1);
5430	}
5431
5432	return status;
5433}
5434
5435/**
5436 * ice_add_flow - add flow
5437 * @hw: pointer to the HW struct
5438 * @blk: hardware block
5439 * @vsi: array of VSIs to enable with the profile specified by ID
5440 * @count: number of elements in the VSI array
5441 * @id: profile tracking ID
5442 *
5443 * Calling this function will update the hardware tables to enable the
5444 * profile indicated by the ID parameter for the VSIs specified in the VSI
5445 * array. Once successfully called, the flow will be enabled.
5446 */
5447enum ice_status
5448ice_add_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count,
5449	     u64 id)
5450{
5451	enum ice_status status;
5452	u16 i;
5453
5454	for (i = 0; i < count; i++) {
5455		status = ice_add_prof_id_flow(hw, blk, vsi[i], id);
5456		if (status)
5457			return status;
5458	}
5459
5460	return ICE_SUCCESS;
5461}
5462
5463/**
5464 * ice_rem_prof_from_list - remove a profile from list
5465 * @hw: pointer to the HW struct
5466 * @lst: list to remove the profile from
5467 * @hdl: the profile handle indicating the profile to remove
5468 */
5469static enum ice_status
5470ice_rem_prof_from_list(struct ice_hw *hw, struct LIST_HEAD_TYPE *lst, u64 hdl)
5471{
5472	struct ice_vsig_prof *ent, *tmp;
5473
5474	LIST_FOR_EACH_ENTRY_SAFE(ent, tmp, lst, ice_vsig_prof, list)
5475		if (ent->profile_cookie == hdl) {
5476			LIST_DEL(&ent->list);
5477			ice_free(hw, ent);
5478			return ICE_SUCCESS;
5479		}
5480
5481	return ICE_ERR_DOES_NOT_EXIST;
5482}
5483
5484/**
5485 * ice_rem_prof_id_flow - remove flow
5486 * @hw: pointer to the HW struct
5487 * @blk: hardware block
5488 * @vsi: the VSI from which to remove the profile specified by ID
5489 * @hdl: profile tracking handle
5490 *
5491 * Calling this function will update the hardware tables to remove the
5492 * profile indicated by the ID parameter for the VSIs specified in the VSI
5493 * array. Once successfully called, the flow will be disabled.
5494 */
5495enum ice_status
5496ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5497{
5498	struct ice_vsig_prof *tmp1, *del1;
5499	struct ice_chs_chg *tmp, *del;
5500	struct LIST_HEAD_TYPE chg, copy;
5501	enum ice_status status;
5502	u16 vsig;
5503
5504	INIT_LIST_HEAD(&copy);
5505	INIT_LIST_HEAD(&chg);
5506
5507	/* determine if VSI is already part of a VSIG */
5508	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5509	if (!status && vsig) {
5510		bool last_profile;
5511		bool only_vsi;
5512		u16 ref;
5513
5514		/* found in VSIG */
5515		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
5516		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5517		if (status)
5518			goto err_ice_rem_prof_id_flow;
5519		only_vsi = (ref == 1);
5520
5521		if (only_vsi) {
5522			/* If the original VSIG only contains one reference,
5523			 * which will be the requesting VSI, then the VSI is not
5524			 * sharing entries and we can simply remove the specific
5525			 * characteristics from the VSIG.
5526			 */
5527
5528			if (last_profile) {
5529				/* If there are no profiles left for this VSIG,
5530				 * then simply remove the VSIG.
5531				 */
5532				status = ice_rem_vsig(hw, blk, vsig, &chg);
5533				if (status)
5534					goto err_ice_rem_prof_id_flow;
5535			} else {
5536				status = ice_rem_prof_id_vsig(hw, blk, vsig,
5537							      hdl, &chg);
5538				if (status)
5539					goto err_ice_rem_prof_id_flow;
5540
5541				/* Adjust priorities */
5542				status = ice_adj_prof_priorities(hw, blk, vsig,
5543								 &chg);
5544				if (status)
5545					goto err_ice_rem_prof_id_flow;
5546			}
5547
5548		} else {
5549			/* Make a copy of the VSIG's list of Profiles */
5550			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
5551			if (status)
5552				goto err_ice_rem_prof_id_flow;
5553
5554			/* Remove specified profile entry from the list */
5555			status = ice_rem_prof_from_list(hw, &copy, hdl);
5556			if (status)
5557				goto err_ice_rem_prof_id_flow;
5558
5559			if (LIST_EMPTY(&copy)) {
5560				status = ice_move_vsi(hw, blk, vsi,
5561						      ICE_DEFAULT_VSIG, &chg);
5562				if (status)
5563					goto err_ice_rem_prof_id_flow;
5564
5565			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
5566							    &vsig)) {
5567				/* found an exact match */
5568				/* add or move VSI to the VSIG that matches */
5569				/* Search for a VSIG with a matching profile
5570				 * list
5571				 */
5572
5573				/* Found match, move VSI to the matching VSIG */
5574				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5575				if (status)
5576					goto err_ice_rem_prof_id_flow;
5577			} else {
5578				/* since no existing VSIG supports this
5579				 * characteristic pattern, we need to create a
5580				 * new VSIG and TCAM entries
5581				 */
5582				status = ice_create_vsig_from_lst(hw, blk, vsi,
5583								  &copy, &vsig,
5584								  &chg);
5585				if (status)
5586					goto err_ice_rem_prof_id_flow;
5587
5588				/* Adjust priorities */
5589				status = ice_adj_prof_priorities(hw, blk, vsig,
5590								 &chg);
5591				if (status)
5592					goto err_ice_rem_prof_id_flow;
5593			}
5594		}
5595	} else {
5596		status = ICE_ERR_DOES_NOT_EXIST;
5597	}
5598
5599	/* update hardware tables */
5600	if (!status)
5601		status = ice_upd_prof_hw(hw, blk, &chg);
5602
5603err_ice_rem_prof_id_flow:
5604	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5605		LIST_DEL(&del->list_entry);
5606		ice_free(hw, del);
5607	}
5608
5609	LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &copy, ice_vsig_prof, list) {
5610		LIST_DEL(&del1->list);
5611		ice_free(hw, del1);
5612	}
5613
5614	return status;
5615}
5616
5617/**
5618 * ice_rem_flow - remove flow
5619 * @hw: pointer to the HW struct
5620 * @blk: hardware block
5621 * @vsi: array of VSIs from which to remove the profile specified by ID
5622 * @count: number of elements in the VSI array
5623 * @id: profile tracking ID
5624 *
5625 * The function will remove flows from the specified VSIs that were enabled
5626 * using ice_add_flow. The ID value will indicated which profile will be
5627 * removed. Once successfully called, the flow will be disabled.
5628 */
5629enum ice_status
5630ice_rem_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi[], u8 count,
5631	     u64 id)
5632{
5633	enum ice_status status;
5634	u16 i;
5635
5636	for (i = 0; i < count; i++) {
5637		status = ice_rem_prof_id_flow(hw, blk, vsi[i], id);
5638		if (status)
5639			return status;
5640	}
5641
5642	return ICE_SUCCESS;
5643}
5644