1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2003-2008 Joseph Koshy
5 * Copyright (c) 2007 The FreeBSD Foundation
6 * Copyright (c) 2018 Matthew Macy
7 * All rights reserved.
8 *
9 * Portions of this software were developed by A. Joseph Koshy under
10 * sponsorship from the FreeBSD Foundation and Google, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/domainset.h>
41#include <sys/eventhandler.h>
42#include <sys/jail.h>
43#include <sys/kernel.h>
44#include <sys/kthread.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/malloc.h>
48#include <sys/module.h>
49#include <sys/mount.h>
50#include <sys/mutex.h>
51#include <sys/pmc.h>
52#include <sys/pmckern.h>
53#include <sys/pmclog.h>
54#include <sys/priv.h>
55#include <sys/proc.h>
56#include <sys/queue.h>
57#include <sys/resourcevar.h>
58#include <sys/rwlock.h>
59#include <sys/sched.h>
60#include <sys/signalvar.h>
61#include <sys/smp.h>
62#include <sys/sx.h>
63#include <sys/sysctl.h>
64#include <sys/sysent.h>
65#include <sys/syslog.h>
66#include <sys/taskqueue.h>
67#include <sys/vnode.h>
68
69#include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
70
71#include <machine/atomic.h>
72#include <machine/md_var.h>
73
74#include <vm/vm.h>
75#include <vm/vm_extern.h>
76#include <vm/pmap.h>
77#include <vm/vm_map.h>
78#include <vm/vm_object.h>
79
80#include "hwpmc_soft.h"
81
82#define PMC_EPOCH_ENTER() struct epoch_tracker pmc_et; epoch_enter_preempt(global_epoch_preempt, &pmc_et)
83#define PMC_EPOCH_EXIT() epoch_exit_preempt(global_epoch_preempt, &pmc_et)
84
85/*
86 * Types
87 */
88
89enum pmc_flags {
90	PMC_FLAG_NONE	  = 0x00, /* do nothing */
91	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
92	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
93	PMC_FLAG_NOWAIT   = 0x04, /* do not wait for mallocs */
94};
95
96/*
97 * The offset in sysent where the syscall is allocated.
98 */
99
100static int pmc_syscall_num = NO_SYSCALL;
101struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
102pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
103
104#define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
105
106struct mtx_pool		*pmc_mtxpool;
107static int		*pmc_pmcdisp;	 /* PMC row dispositions */
108
109#define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
110#define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
111#define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
112
113#define	PMC_MARK_ROW_FREE(R) do {					  \
114	pmc_pmcdisp[(R)] = 0;						  \
115} while (0)
116
117#define	PMC_MARK_ROW_STANDALONE(R) do {					  \
118	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
119		    __LINE__));						  \
120	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
121	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
122		("[pmc,%d] row disposition error", __LINE__));		  \
123} while (0)
124
125#define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
126	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
127	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
128		    __LINE__));						  \
129} while (0)
130
131#define	PMC_MARK_ROW_THREAD(R) do {					  \
132	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
133		    __LINE__));						  \
134	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
135} while (0)
136
137#define	PMC_UNMARK_ROW_THREAD(R) do {					  \
138	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
139	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
140		    __LINE__));						  \
141} while (0)
142
143
144/* various event handlers */
145static eventhandler_tag	pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
146    pmc_kld_unload_tag;
147
148/* Module statistics */
149struct pmc_driverstats pmc_stats;
150
151
152/* Machine/processor dependent operations */
153static struct pmc_mdep  *md;
154
155/*
156 * Hash tables mapping owner processes and target threads to PMCs.
157 */
158
159struct mtx pmc_processhash_mtx;		/* spin mutex */
160static u_long pmc_processhashmask;
161static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
162
163/*
164 * Hash table of PMC owner descriptors.  This table is protected by
165 * the shared PMC "sx" lock.
166 */
167
168static u_long pmc_ownerhashmask;
169static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
170
171/*
172 * List of PMC owners with system-wide sampling PMCs.
173 */
174
175static CK_LIST_HEAD(, pmc_owner)			pmc_ss_owners;
176
177/*
178 * List of free thread entries. This is protected by the spin
179 * mutex.
180 */
181static struct mtx pmc_threadfreelist_mtx;	/* spin mutex */
182static LIST_HEAD(, pmc_thread)			pmc_threadfreelist;
183static int pmc_threadfreelist_entries=0;
184#define	THREADENTRY_SIZE						\
185(sizeof(struct pmc_thread) + (md->pmd_npmc * sizeof(struct pmc_threadpmcstate)))
186
187/*
188 * Task to free thread descriptors
189 */
190static struct task free_task;
191
192/*
193 * A map of row indices to classdep structures.
194 */
195static struct pmc_classdep **pmc_rowindex_to_classdep;
196
197/*
198 * Prototypes
199 */
200
201#ifdef	HWPMC_DEBUG
202static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
203static int	pmc_debugflags_parse(char *newstr, char *fence);
204#endif
205
206static int	load(struct module *module, int cmd, void *arg);
207static int	pmc_add_sample(ring_type_t ring, struct pmc *pm, struct trapframe *tf);
208static void	pmc_add_thread_descriptors_from_proc(struct proc *p,
209    struct pmc_process *pp);
210static int	pmc_attach_process(struct proc *p, struct pmc *pm);
211static struct pmc *pmc_allocate_pmc_descriptor(void);
212static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
213static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
214static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
215    int cpu);
216static int	pmc_can_attach(struct pmc *pm, struct proc *p);
217static void	pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
218static void	pmc_cleanup(void);
219static int	pmc_detach_process(struct proc *p, struct pmc *pm);
220static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
221    int flags);
222static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
223static void	pmc_destroy_pmc_descriptor(struct pmc *pm);
224static void	pmc_destroy_process_descriptor(struct pmc_process *pp);
225static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
226static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
227static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
228    pmc_id_t pmc);
229static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
230    uint32_t mode);
231static struct pmc_thread *pmc_find_thread_descriptor(struct pmc_process *pp,
232    struct thread *td, uint32_t mode);
233static void	pmc_force_context_switch(void);
234static void	pmc_link_target_process(struct pmc *pm,
235    struct pmc_process *pp);
236static void	pmc_log_all_process_mappings(struct pmc_owner *po);
237static void	pmc_log_kernel_mappings(struct pmc *pm);
238static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
239static void	pmc_maybe_remove_owner(struct pmc_owner *po);
240static void	pmc_process_csw_in(struct thread *td);
241static void	pmc_process_csw_out(struct thread *td);
242static void	pmc_process_exit(void *arg, struct proc *p);
243static void	pmc_process_fork(void *arg, struct proc *p1,
244    struct proc *p2, int n);
245static void	pmc_process_samples(int cpu, ring_type_t soft);
246static void	pmc_release_pmc_descriptor(struct pmc *pmc);
247static void	pmc_process_thread_add(struct thread *td);
248static void	pmc_process_thread_delete(struct thread *td);
249static void	pmc_process_thread_userret(struct thread *td);
250static void	pmc_remove_owner(struct pmc_owner *po);
251static void	pmc_remove_process_descriptor(struct pmc_process *pp);
252static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
253static void	pmc_save_cpu_binding(struct pmc_binding *pb);
254static void	pmc_select_cpu(int cpu);
255static int	pmc_start(struct pmc *pm);
256static int	pmc_stop(struct pmc *pm);
257static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
258static struct pmc_thread *pmc_thread_descriptor_pool_alloc(void);
259static void	pmc_thread_descriptor_pool_drain(void);
260static void	pmc_thread_descriptor_pool_free(struct pmc_thread *pt);
261static void	pmc_unlink_target_process(struct pmc *pmc,
262    struct pmc_process *pp);
263static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
264static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
265static struct pmc_mdep *pmc_generic_cpu_initialize(void);
266static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
267static void pmc_post_callchain_callback(void);
268static void pmc_process_threadcreate(struct thread *td);
269static void pmc_process_threadexit(struct thread *td);
270static void pmc_process_proccreate(struct proc *p);
271static void pmc_process_allproc(struct pmc *pm);
272
273/*
274 * Kernel tunables and sysctl(8) interface.
275 */
276
277SYSCTL_DECL(_kern_hwpmc);
278SYSCTL_NODE(_kern_hwpmc, OID_AUTO, stats, CTLFLAG_RW, 0, "HWPMC stats");
279
280
281/* Stats. */
282SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_ignored, CTLFLAG_RW,
283				   &pmc_stats.pm_intr_ignored, "# of interrupts ignored");
284SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_processed, CTLFLAG_RW,
285				   &pmc_stats.pm_intr_processed, "# of interrupts processed");
286SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_bufferfull, CTLFLAG_RW,
287				   &pmc_stats.pm_intr_bufferfull, "# of interrupts where buffer was full");
288SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscalls, CTLFLAG_RW,
289				   &pmc_stats.pm_syscalls, "# of syscalls");
290SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscall_errors, CTLFLAG_RW,
291				   &pmc_stats.pm_syscall_errors, "# of syscall_errors");
292SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests, CTLFLAG_RW,
293				   &pmc_stats.pm_buffer_requests, "# of buffer requests");
294SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests_failed, CTLFLAG_RW,
295				   &pmc_stats.pm_buffer_requests_failed, "# of buffer requests which failed");
296SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, log_sweeps, CTLFLAG_RW,
297				   &pmc_stats.pm_log_sweeps, "# of ?");
298SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, merges, CTLFLAG_RW,
299				   &pmc_stats.pm_merges, "# of times kernel stack was found for user trace");
300SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, overwrites, CTLFLAG_RW,
301				   &pmc_stats.pm_overwrites, "# of times a sample was overwritten before being logged");
302
303static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
304SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
305    &pmc_callchaindepth, 0, "depth of call chain records");
306
307char pmc_cpuid[PMC_CPUID_LEN];
308SYSCTL_STRING(_kern_hwpmc, OID_AUTO, cpuid, CTLFLAG_RD,
309	pmc_cpuid, 0, "cpu version string");
310#ifdef	HWPMC_DEBUG
311struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
312char	pmc_debugstr[PMC_DEBUG_STRSIZE];
313TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
314    sizeof(pmc_debugstr));
315SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
316    CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
317    0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
318#endif
319
320
321/*
322 * kern.hwpmc.hashrows -- determines the number of rows in the
323 * of the hash table used to look up threads
324 */
325
326static int pmc_hashsize = PMC_HASH_SIZE;
327SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
328    &pmc_hashsize, 0, "rows in hash tables");
329
330/*
331 * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
332 */
333
334static int pmc_nsamples = PMC_NSAMPLES;
335SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
336    &pmc_nsamples, 0, "number of PC samples per CPU");
337
338static uint64_t pmc_sample_mask = PMC_NSAMPLES-1;
339
340/*
341 * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
342 */
343
344static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
345SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
346    &pmc_mtxpool_size, 0, "size of spin mutex pool");
347
348
349/*
350 * kern.hwpmc.threadfreelist_entries -- number of free entries
351 */
352
353SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_entries, CTLFLAG_RD,
354    &pmc_threadfreelist_entries, 0, "number of avalable thread entries");
355
356
357/*
358 * kern.hwpmc.threadfreelist_max -- maximum number of free entries
359 */
360
361static int pmc_threadfreelist_max = PMC_THREADLIST_MAX;
362SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_max, CTLFLAG_RW,
363    &pmc_threadfreelist_max, 0,
364    "maximum number of available thread entries before freeing some");
365
366
367/*
368 * security.bsd.unprivileged_syspmcs -- allow non-root processes to
369 * allocate system-wide PMCs.
370 *
371 * Allowing unprivileged processes to allocate system PMCs is convenient
372 * if system-wide measurements need to be taken concurrently with other
373 * per-process measurements.  This feature is turned off by default.
374 */
375
376static int pmc_unprivileged_syspmcs = 0;
377SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
378    &pmc_unprivileged_syspmcs, 0,
379    "allow unprivileged process to allocate system PMCs");
380
381/*
382 * Hash function.  Discard the lower 2 bits of the pointer since
383 * these are always zero for our uses.  The hash multiplier is
384 * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
385 */
386
387#if	LONG_BIT == 64
388#define	_PMC_HM		11400714819323198486u
389#elif	LONG_BIT == 32
390#define	_PMC_HM		2654435769u
391#else
392#error 	Must know the size of 'long' to compile
393#endif
394
395#define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
396
397/*
398 * Syscall structures
399 */
400
401/* The `sysent' for the new syscall */
402static struct sysent pmc_sysent = {
403	.sy_narg =	2,
404	.sy_call =	pmc_syscall_handler,
405};
406
407static struct syscall_module_data pmc_syscall_mod = {
408	.chainevh =	load,
409	.chainarg =	NULL,
410	.offset =	&pmc_syscall_num,
411	.new_sysent =	&pmc_sysent,
412	.old_sysent =	{ .sy_narg = 0, .sy_call = NULL },
413	.flags =	SY_THR_STATIC_KLD,
414};
415
416static moduledata_t pmc_mod = {
417	.name =		PMC_MODULE_NAME,
418	.evhand =	syscall_module_handler,
419	.priv =		&pmc_syscall_mod,
420};
421
422#ifdef EARLY_AP_STARTUP
423DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SYSCALLS, SI_ORDER_ANY);
424#else
425DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
426#endif
427MODULE_VERSION(pmc, PMC_VERSION);
428
429#ifdef	HWPMC_DEBUG
430enum pmc_dbgparse_state {
431	PMCDS_WS,		/* in whitespace */
432	PMCDS_MAJOR,		/* seen a major keyword */
433	PMCDS_MINOR
434};
435
436static int
437pmc_debugflags_parse(char *newstr, char *fence)
438{
439	char c, *p, *q;
440	struct pmc_debugflags *tmpflags;
441	int error, found, *newbits, tmp;
442	size_t kwlen;
443
444	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
445
446	p = newstr;
447	error = 0;
448
449	for (; p < fence && (c = *p); p++) {
450
451		/* skip white space */
452		if (c == ' ' || c == '\t')
453			continue;
454
455		/* look for a keyword followed by "=" */
456		for (q = p; p < fence && (c = *p) && c != '='; p++)
457			;
458		if (c != '=') {
459			error = EINVAL;
460			goto done;
461		}
462
463		kwlen = p - q;
464		newbits = NULL;
465
466		/* lookup flag group name */
467#define	DBG_SET_FLAG_MAJ(S,F)						\
468		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
469			newbits = &tmpflags->pdb_ ## F;
470
471		DBG_SET_FLAG_MAJ("cpu",		CPU);
472		DBG_SET_FLAG_MAJ("csw",		CSW);
473		DBG_SET_FLAG_MAJ("logging",	LOG);
474		DBG_SET_FLAG_MAJ("module",	MOD);
475		DBG_SET_FLAG_MAJ("md", 		MDP);
476		DBG_SET_FLAG_MAJ("owner",	OWN);
477		DBG_SET_FLAG_MAJ("pmc",		PMC);
478		DBG_SET_FLAG_MAJ("process",	PRC);
479		DBG_SET_FLAG_MAJ("sampling", 	SAM);
480
481		if (newbits == NULL) {
482			error = EINVAL;
483			goto done;
484		}
485
486		p++;		/* skip the '=' */
487
488		/* Now parse the individual flags */
489		tmp = 0;
490	newflag:
491		for (q = p; p < fence && (c = *p); p++)
492			if (c == ' ' || c == '\t' || c == ',')
493				break;
494
495		/* p == fence or c == ws or c == "," or c == 0 */
496
497		if ((kwlen = p - q) == 0) {
498			*newbits = tmp;
499			continue;
500		}
501
502		found = 0;
503#define	DBG_SET_FLAG_MIN(S,F)						\
504		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
505			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
506
507		/* a '*' denotes all possible flags in the group */
508		if (kwlen == 1 && *q == '*')
509			tmp = found = ~0;
510		/* look for individual flag names */
511		DBG_SET_FLAG_MIN("allocaterow", ALR);
512		DBG_SET_FLAG_MIN("allocate",	ALL);
513		DBG_SET_FLAG_MIN("attach",	ATT);
514		DBG_SET_FLAG_MIN("bind",	BND);
515		DBG_SET_FLAG_MIN("config",	CFG);
516		DBG_SET_FLAG_MIN("exec",	EXC);
517		DBG_SET_FLAG_MIN("exit",	EXT);
518		DBG_SET_FLAG_MIN("find",	FND);
519		DBG_SET_FLAG_MIN("flush",	FLS);
520		DBG_SET_FLAG_MIN("fork",	FRK);
521		DBG_SET_FLAG_MIN("getbuf",	GTB);
522		DBG_SET_FLAG_MIN("hook",	PMH);
523		DBG_SET_FLAG_MIN("init",	INI);
524		DBG_SET_FLAG_MIN("intr",	INT);
525		DBG_SET_FLAG_MIN("linktarget",	TLK);
526		DBG_SET_FLAG_MIN("mayberemove", OMR);
527		DBG_SET_FLAG_MIN("ops",		OPS);
528		DBG_SET_FLAG_MIN("read",	REA);
529		DBG_SET_FLAG_MIN("register",	REG);
530		DBG_SET_FLAG_MIN("release",	REL);
531		DBG_SET_FLAG_MIN("remove",	ORM);
532		DBG_SET_FLAG_MIN("sample",	SAM);
533		DBG_SET_FLAG_MIN("scheduleio",	SIO);
534		DBG_SET_FLAG_MIN("select",	SEL);
535		DBG_SET_FLAG_MIN("signal",	SIG);
536		DBG_SET_FLAG_MIN("swi",		SWI);
537		DBG_SET_FLAG_MIN("swo",		SWO);
538		DBG_SET_FLAG_MIN("start",	STA);
539		DBG_SET_FLAG_MIN("stop",	STO);
540		DBG_SET_FLAG_MIN("syscall",	PMS);
541		DBG_SET_FLAG_MIN("unlinktarget", TUL);
542		DBG_SET_FLAG_MIN("write",	WRI);
543		if (found == 0) {
544			/* unrecognized flag name */
545			error = EINVAL;
546			goto done;
547		}
548
549		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
550			*newbits = tmp;
551			continue;
552		}
553
554		p++;
555		goto newflag;
556	}
557
558	/* save the new flag set */
559	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
560
561 done:
562	free(tmpflags, M_PMC);
563	return error;
564}
565
566static int
567pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
568{
569	char *fence, *newstr;
570	int error;
571	unsigned int n;
572
573	(void) arg1; (void) arg2; /* unused parameters */
574
575	n = sizeof(pmc_debugstr);
576	newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
577	(void) strlcpy(newstr, pmc_debugstr, n);
578
579	error = sysctl_handle_string(oidp, newstr, n, req);
580
581	/* if there is a new string, parse and copy it */
582	if (error == 0 && req->newptr != NULL) {
583		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
584		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
585			(void) strlcpy(pmc_debugstr, newstr,
586			    sizeof(pmc_debugstr));
587	}
588
589	free(newstr, M_PMC);
590
591	return error;
592}
593#endif
594
595/*
596 * Map a row index to a classdep structure and return the adjusted row
597 * index for the PMC class index.
598 */
599static struct pmc_classdep *
600pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
601{
602	struct pmc_classdep *pcd;
603
604	(void) md;
605
606	KASSERT(ri >= 0 && ri < md->pmd_npmc,
607	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
608
609	pcd = pmc_rowindex_to_classdep[ri];
610
611	KASSERT(pcd != NULL,
612	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
613
614	*adjri = ri - pcd->pcd_ri;
615
616	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
617	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
618
619	return (pcd);
620}
621
622/*
623 * Concurrency Control
624 *
625 * The driver manages the following data structures:
626 *
627 *   - target process descriptors, one per target process
628 *   - owner process descriptors (and attached lists), one per owner process
629 *   - lookup hash tables for owner and target processes
630 *   - PMC descriptors (and attached lists)
631 *   - per-cpu hardware state
632 *   - the 'hook' variable through which the kernel calls into
633 *     this module
634 *   - the machine hardware state (managed by the MD layer)
635 *
636 * These data structures are accessed from:
637 *
638 * - thread context-switch code
639 * - interrupt handlers (possibly on multiple cpus)
640 * - kernel threads on multiple cpus running on behalf of user
641 *   processes doing system calls
642 * - this driver's private kernel threads
643 *
644 * = Locks and Locking strategy =
645 *
646 * The driver uses four locking strategies for its operation:
647 *
648 * - The global SX lock "pmc_sx" is used to protect internal
649 *   data structures.
650 *
651 *   Calls into the module by syscall() start with this lock being
652 *   held in exclusive mode.  Depending on the requested operation,
653 *   the lock may be downgraded to 'shared' mode to allow more
654 *   concurrent readers into the module.  Calls into the module from
655 *   other parts of the kernel acquire the lock in shared mode.
656 *
657 *   This SX lock is held in exclusive mode for any operations that
658 *   modify the linkages between the driver's internal data structures.
659 *
660 *   The 'pmc_hook' function pointer is also protected by this lock.
661 *   It is only examined with the sx lock held in exclusive mode.  The
662 *   kernel module is allowed to be unloaded only with the sx lock held
663 *   in exclusive mode.  In normal syscall handling, after acquiring the
664 *   pmc_sx lock we first check that 'pmc_hook' is non-null before
665 *   proceeding.  This prevents races between the thread unloading the module
666 *   and other threads seeking to use the module.
667 *
668 * - Lookups of target process structures and owner process structures
669 *   cannot use the global "pmc_sx" SX lock because these lookups need
670 *   to happen during context switches and in other critical sections
671 *   where sleeping is not allowed.  We protect these lookup tables
672 *   with their own private spin-mutexes, "pmc_processhash_mtx" and
673 *   "pmc_ownerhash_mtx".
674 *
675 * - Interrupt handlers work in a lock free manner.  At interrupt
676 *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
677 *   when the PMC was started.  If this pointer is NULL, the interrupt
678 *   is ignored after updating driver statistics.  We ensure that this
679 *   pointer is set (using an atomic operation if necessary) before the
680 *   PMC hardware is started.  Conversely, this pointer is unset atomically
681 *   only after the PMC hardware is stopped.
682 *
683 *   We ensure that everything needed for the operation of an
684 *   interrupt handler is available without it needing to acquire any
685 *   locks.  We also ensure that a PMC's software state is destroyed only
686 *   after the PMC is taken off hardware (on all CPUs).
687 *
688 * - Context-switch handling with process-private PMCs needs more
689 *   care.
690 *
691 *   A given process may be the target of multiple PMCs.  For example,
692 *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
693 *   while the target process is running on another.  A PMC could also
694 *   be getting released because its owner is exiting.  We tackle
695 *   these situations in the following manner:
696 *
697 *   - each target process structure 'pmc_process' has an array
698 *     of 'struct pmc *' pointers, one for each hardware PMC.
699 *
700 *   - At context switch IN time, each "target" PMC in RUNNING state
701 *     gets started on hardware and a pointer to each PMC is copied into
702 *     the per-cpu phw array.  The 'runcount' for the PMC is
703 *     incremented.
704 *
705 *   - At context switch OUT time, all process-virtual PMCs are stopped
706 *     on hardware.  The saved value is added to the PMCs value field
707 *     only if the PMC is in a non-deleted state (the PMCs state could
708 *     have changed during the current time slice).
709 *
710 *     Note that since in-between a switch IN on a processor and a switch
711 *     OUT, the PMC could have been released on another CPU.  Therefore
712 *     context switch OUT always looks at the hardware state to turn
713 *     OFF PMCs and will update a PMC's saved value only if reachable
714 *     from the target process record.
715 *
716 *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
717 *     be attached to many processes at the time of the call and could
718 *     be active on multiple CPUs).
719 *
720 *     We prevent further scheduling of the PMC by marking it as in
721 *     state 'DELETED'.  If the runcount of the PMC is non-zero then
722 *     this PMC is currently running on a CPU somewhere.  The thread
723 *     doing the PMCRELEASE operation waits by repeatedly doing a
724 *     pause() till the runcount comes to zero.
725 *
726 * The contents of a PMC descriptor (struct pmc) are protected using
727 * a spin-mutex.  In order to save space, we use a mutex pool.
728 *
729 * In terms of lock types used by witness(4), we use:
730 * - Type "pmc-sx", used by the global SX lock.
731 * - Type "pmc-sleep", for sleep mutexes used by logger threads.
732 * - Type "pmc-per-proc", for protecting PMC owner descriptors.
733 * - Type "pmc-leaf", used for all other spin mutexes.
734 */
735
736/*
737 * save the cpu binding of the current kthread
738 */
739
740static void
741pmc_save_cpu_binding(struct pmc_binding *pb)
742{
743	PMCDBG0(CPU,BND,2, "save-cpu");
744	thread_lock(curthread);
745	pb->pb_bound = sched_is_bound(curthread);
746	pb->pb_cpu   = curthread->td_oncpu;
747	thread_unlock(curthread);
748	PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
749}
750
751/*
752 * restore the cpu binding of the current thread
753 */
754
755static void
756pmc_restore_cpu_binding(struct pmc_binding *pb)
757{
758	PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
759	    curthread->td_oncpu, pb->pb_cpu);
760	thread_lock(curthread);
761	if (pb->pb_bound)
762		sched_bind(curthread, pb->pb_cpu);
763	else
764		sched_unbind(curthread);
765	thread_unlock(curthread);
766	PMCDBG0(CPU,BND,2, "restore-cpu done");
767}
768
769/*
770 * move execution over the specified cpu and bind it there.
771 */
772
773static void
774pmc_select_cpu(int cpu)
775{
776	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
777	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
778
779	/* Never move to an inactive CPU. */
780	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
781	    "CPU %d", __LINE__, cpu));
782
783	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
784	thread_lock(curthread);
785	sched_bind(curthread, cpu);
786	thread_unlock(curthread);
787
788	KASSERT(curthread->td_oncpu == cpu,
789	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
790		cpu, curthread->td_oncpu));
791
792	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
793}
794
795/*
796 * Force a context switch.
797 *
798 * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
799 * guaranteed to force a context switch.
800 */
801
802static void
803pmc_force_context_switch(void)
804{
805
806	pause("pmcctx", 1);
807}
808
809uint64_t
810pmc_rdtsc(void)
811{
812#if defined(__i386__) || defined(__amd64__)
813	if (__predict_true(amd_feature & AMDID_RDTSCP))
814		return rdtscp();
815	else
816		return rdtsc();
817#else
818	return get_cyclecount();
819#endif
820}
821
822/*
823 * Get the file name for an executable.  This is a simple wrapper
824 * around vn_fullpath(9).
825 */
826
827static void
828pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
829{
830
831	*fullpath = "unknown";
832	*freepath = NULL;
833	vn_fullpath(curthread, v, fullpath, freepath);
834}
835
836/*
837 * remove an process owning PMCs
838 */
839
840void
841pmc_remove_owner(struct pmc_owner *po)
842{
843	struct pmc *pm, *tmp;
844
845	sx_assert(&pmc_sx, SX_XLOCKED);
846
847	PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
848
849	/* Remove descriptor from the owner hash table */
850	LIST_REMOVE(po, po_next);
851
852	/* release all owned PMC descriptors */
853	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
854		PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
855		KASSERT(pm->pm_owner == po,
856		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
857
858		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
859		pmc_destroy_pmc_descriptor(pm);
860	}
861
862	KASSERT(po->po_sscount == 0,
863	    ("[pmc,%d] SS count not zero", __LINE__));
864	KASSERT(LIST_EMPTY(&po->po_pmcs),
865	    ("[pmc,%d] PMC list not empty", __LINE__));
866
867	/* de-configure the log file if present */
868	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
869		pmclog_deconfigure_log(po);
870}
871
872/*
873 * remove an owner process record if all conditions are met.
874 */
875
876static void
877pmc_maybe_remove_owner(struct pmc_owner *po)
878{
879
880	PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
881
882	/*
883	 * Remove owner record if
884	 * - this process does not own any PMCs
885	 * - this process has not allocated a system-wide sampling buffer
886	 */
887
888	if (LIST_EMPTY(&po->po_pmcs) &&
889	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
890		pmc_remove_owner(po);
891		pmc_destroy_owner_descriptor(po);
892	}
893}
894
895/*
896 * Add an association between a target process and a PMC.
897 */
898
899static void
900pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
901{
902	int ri;
903	struct pmc_target *pt;
904#ifdef INVARIANTS
905	struct pmc_thread *pt_td;
906#endif
907
908	sx_assert(&pmc_sx, SX_XLOCKED);
909
910	KASSERT(pm != NULL && pp != NULL,
911	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
912	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
913	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
914		__LINE__, pm, pp->pp_proc->p_pid));
915	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
916	    ("[pmc,%d] Illegal reference count %d for process record %p",
917		__LINE__, pp->pp_refcnt, (void *) pp));
918
919	ri = PMC_TO_ROWINDEX(pm);
920
921	PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
922	    pm, ri, pp);
923
924#ifdef	HWPMC_DEBUG
925	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
926	    if (pt->pt_process == pp)
927		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
928				__LINE__, pp, pm));
929#endif
930
931	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
932	pt->pt_process = pp;
933
934	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
935
936	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
937	    (uintptr_t)pm);
938
939	if (pm->pm_owner->po_owner == pp->pp_proc)
940		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
941
942	/*
943	 * Initialize the per-process values at this row index.
944	 */
945	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
946	    pm->pm_sc.pm_reloadcount : 0;
947
948	pp->pp_refcnt++;
949
950#ifdef INVARIANTS
951	/* Confirm that the per-thread values at this row index are cleared. */
952	if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
953		mtx_lock_spin(pp->pp_tdslock);
954		LIST_FOREACH(pt_td, &pp->pp_tds, pt_next) {
955			KASSERT(pt_td->pt_pmcs[ri].pt_pmcval == (pmc_value_t) 0,
956			    ("[pmc,%d] pt_pmcval not cleared for pid=%d at "
957			    "ri=%d", __LINE__, pp->pp_proc->p_pid, ri));
958		}
959		mtx_unlock_spin(pp->pp_tdslock);
960	}
961#endif
962}
963
964/*
965 * Removes the association between a target process and a PMC.
966 */
967
968static void
969pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
970{
971	int ri;
972	struct proc *p;
973	struct pmc_target *ptgt;
974	struct pmc_thread *pt;
975
976	sx_assert(&pmc_sx, SX_XLOCKED);
977
978	KASSERT(pm != NULL && pp != NULL,
979	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
980
981	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
982	    ("[pmc,%d] Illegal ref count %d on process record %p",
983		__LINE__, pp->pp_refcnt, (void *) pp));
984
985	ri = PMC_TO_ROWINDEX(pm);
986
987	PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
988	    pm, ri, pp);
989
990	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
991	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
992		ri, pm, pp->pp_pmcs[ri].pp_pmc));
993
994	pp->pp_pmcs[ri].pp_pmc = NULL;
995	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
996
997	/* Clear the per-thread values at this row index. */
998	if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
999		mtx_lock_spin(pp->pp_tdslock);
1000		LIST_FOREACH(pt, &pp->pp_tds, pt_next)
1001			pt->pt_pmcs[ri].pt_pmcval = (pmc_value_t) 0;
1002		mtx_unlock_spin(pp->pp_tdslock);
1003	}
1004
1005	/* Remove owner-specific flags */
1006	if (pm->pm_owner->po_owner == pp->pp_proc) {
1007		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
1008		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
1009	}
1010
1011	pp->pp_refcnt--;
1012
1013	/* Remove the target process from the PMC structure */
1014	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
1015		if (ptgt->pt_process == pp)
1016			break;
1017
1018	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
1019		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
1020
1021	LIST_REMOVE(ptgt, pt_next);
1022	free(ptgt, M_PMC);
1023
1024	/* if the PMC now lacks targets, send the owner a SIGIO */
1025	if (LIST_EMPTY(&pm->pm_targets)) {
1026		p = pm->pm_owner->po_owner;
1027		PROC_LOCK(p);
1028		kern_psignal(p, SIGIO);
1029		PROC_UNLOCK(p);
1030
1031		PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p,
1032		    SIGIO);
1033	}
1034}
1035
1036/*
1037 * Check if PMC 'pm' may be attached to target process 't'.
1038 */
1039
1040static int
1041pmc_can_attach(struct pmc *pm, struct proc *t)
1042{
1043	struct proc *o;		/* pmc owner */
1044	struct ucred *oc, *tc;	/* owner, target credentials */
1045	int decline_attach, i;
1046
1047	/*
1048	 * A PMC's owner can always attach that PMC to itself.
1049	 */
1050
1051	if ((o = pm->pm_owner->po_owner) == t)
1052		return 0;
1053
1054	PROC_LOCK(o);
1055	oc = o->p_ucred;
1056	crhold(oc);
1057	PROC_UNLOCK(o);
1058
1059	PROC_LOCK(t);
1060	tc = t->p_ucred;
1061	crhold(tc);
1062	PROC_UNLOCK(t);
1063
1064	/*
1065	 * The effective uid of the PMC owner should match at least one
1066	 * of the {effective,real,saved} uids of the target process.
1067	 */
1068
1069	decline_attach = oc->cr_uid != tc->cr_uid &&
1070	    oc->cr_uid != tc->cr_svuid &&
1071	    oc->cr_uid != tc->cr_ruid;
1072
1073	/*
1074	 * Every one of the target's group ids, must be in the owner's
1075	 * group list.
1076	 */
1077	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
1078		decline_attach = !groupmember(tc->cr_groups[i], oc);
1079
1080	/* check the read and saved gids too */
1081	if (decline_attach == 0)
1082		decline_attach = !groupmember(tc->cr_rgid, oc) ||
1083		    !groupmember(tc->cr_svgid, oc);
1084
1085	crfree(tc);
1086	crfree(oc);
1087
1088	return !decline_attach;
1089}
1090
1091/*
1092 * Attach a process to a PMC.
1093 */
1094
1095static int
1096pmc_attach_one_process(struct proc *p, struct pmc *pm)
1097{
1098	int ri, error;
1099	char *fullpath, *freepath;
1100	struct pmc_process	*pp;
1101
1102	sx_assert(&pmc_sx, SX_XLOCKED);
1103
1104	PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
1105	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1106
1107	/*
1108	 * Locate the process descriptor corresponding to process 'p',
1109	 * allocating space as needed.
1110	 *
1111	 * Verify that rowindex 'pm_rowindex' is free in the process
1112	 * descriptor.
1113	 *
1114	 * If not, allocate space for a descriptor and link the
1115	 * process descriptor and PMC.
1116	 */
1117	ri = PMC_TO_ROWINDEX(pm);
1118
1119	/* mark process as using HWPMCs */
1120	PROC_LOCK(p);
1121	p->p_flag |= P_HWPMC;
1122	PROC_UNLOCK(p);
1123
1124	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL) {
1125		error = ENOMEM;
1126		goto fail;
1127	}
1128
1129	if (pp->pp_pmcs[ri].pp_pmc == pm) {/* already present at slot [ri] */
1130		error = EEXIST;
1131		goto fail;
1132	}
1133
1134	if (pp->pp_pmcs[ri].pp_pmc != NULL) {
1135		error = EBUSY;
1136		goto fail;
1137	}
1138
1139	pmc_link_target_process(pm, pp);
1140
1141	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1142	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1143		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1144
1145	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1146
1147	/* issue an attach event to a configured log file */
1148	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1149		if (p->p_flag & P_KPROC) {
1150			fullpath = kernelname;
1151			freepath = NULL;
1152		} else {
1153			pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1154			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1155		}
1156		free(freepath, M_TEMP);
1157		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1158			pmc_log_process_mappings(pm->pm_owner, p);
1159	}
1160
1161	return (0);
1162 fail:
1163	PROC_LOCK(p);
1164	p->p_flag &= ~P_HWPMC;
1165	PROC_UNLOCK(p);
1166	return (error);
1167}
1168
1169/*
1170 * Attach a process and optionally its children
1171 */
1172
1173static int
1174pmc_attach_process(struct proc *p, struct pmc *pm)
1175{
1176	int error;
1177	struct proc *top;
1178
1179	sx_assert(&pmc_sx, SX_XLOCKED);
1180
1181	PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1182	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1183
1184
1185	/*
1186	 * If this PMC successfully allowed a GETMSR operation
1187	 * in the past, disallow further ATTACHes.
1188	 */
1189
1190	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1191		return EPERM;
1192
1193	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1194		return pmc_attach_one_process(p, pm);
1195
1196	/*
1197	 * Traverse all child processes, attaching them to
1198	 * this PMC.
1199	 */
1200
1201	sx_slock(&proctree_lock);
1202
1203	top = p;
1204
1205	for (;;) {
1206		if ((error = pmc_attach_one_process(p, pm)) != 0)
1207			break;
1208		if (!LIST_EMPTY(&p->p_children))
1209			p = LIST_FIRST(&p->p_children);
1210		else for (;;) {
1211			if (p == top)
1212				goto done;
1213			if (LIST_NEXT(p, p_sibling)) {
1214				p = LIST_NEXT(p, p_sibling);
1215				break;
1216			}
1217			p = p->p_pptr;
1218		}
1219	}
1220
1221	if (error)
1222		(void) pmc_detach_process(top, pm);
1223
1224 done:
1225	sx_sunlock(&proctree_lock);
1226	return error;
1227}
1228
1229/*
1230 * Detach a process from a PMC.  If there are no other PMCs tracking
1231 * this process, remove the process structure from its hash table.  If
1232 * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1233 */
1234
1235static int
1236pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1237{
1238	int ri;
1239	struct pmc_process *pp;
1240
1241	sx_assert(&pmc_sx, SX_XLOCKED);
1242
1243	KASSERT(pm != NULL,
1244	    ("[pmc,%d] null pm pointer", __LINE__));
1245
1246	ri = PMC_TO_ROWINDEX(pm);
1247
1248	PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1249	    pm, ri, p, p->p_pid, p->p_comm, flags);
1250
1251	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1252		return ESRCH;
1253
1254	if (pp->pp_pmcs[ri].pp_pmc != pm)
1255		return EINVAL;
1256
1257	pmc_unlink_target_process(pm, pp);
1258
1259	/* Issue a detach entry if a log file is configured */
1260	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1261		pmclog_process_pmcdetach(pm, p->p_pid);
1262
1263	/*
1264	 * If there are no PMCs targeting this process, we remove its
1265	 * descriptor from the target hash table and unset the P_HWPMC
1266	 * flag in the struct proc.
1267	 */
1268	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1269	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
1270		__LINE__, pp->pp_refcnt, pp));
1271
1272	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
1273		return 0;
1274
1275	pmc_remove_process_descriptor(pp);
1276
1277	if (flags & PMC_FLAG_REMOVE)
1278		pmc_destroy_process_descriptor(pp);
1279
1280	PROC_LOCK(p);
1281	p->p_flag &= ~P_HWPMC;
1282	PROC_UNLOCK(p);
1283
1284	return 0;
1285}
1286
1287/*
1288 * Detach a process and optionally its descendants from a PMC.
1289 */
1290
1291static int
1292pmc_detach_process(struct proc *p, struct pmc *pm)
1293{
1294	struct proc *top;
1295
1296	sx_assert(&pmc_sx, SX_XLOCKED);
1297
1298	PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1299	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1300
1301	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1302		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1303
1304	/*
1305	 * Traverse all children, detaching them from this PMC.  We
1306	 * ignore errors since we could be detaching a PMC from a
1307	 * partially attached proc tree.
1308	 */
1309
1310	sx_slock(&proctree_lock);
1311
1312	top = p;
1313
1314	for (;;) {
1315		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1316
1317		if (!LIST_EMPTY(&p->p_children))
1318			p = LIST_FIRST(&p->p_children);
1319		else for (;;) {
1320			if (p == top)
1321				goto done;
1322			if (LIST_NEXT(p, p_sibling)) {
1323				p = LIST_NEXT(p, p_sibling);
1324				break;
1325			}
1326			p = p->p_pptr;
1327		}
1328	}
1329
1330 done:
1331	sx_sunlock(&proctree_lock);
1332
1333	if (LIST_EMPTY(&pm->pm_targets))
1334		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1335
1336	return 0;
1337}
1338
1339
1340/*
1341 * Thread context switch IN
1342 */
1343
1344static void
1345pmc_process_csw_in(struct thread *td)
1346{
1347	int cpu;
1348	unsigned int adjri, ri;
1349	struct pmc *pm;
1350	struct proc *p;
1351	struct pmc_cpu *pc;
1352	struct pmc_hw *phw;
1353	pmc_value_t newvalue;
1354	struct pmc_process *pp;
1355	struct pmc_thread *pt;
1356	struct pmc_classdep *pcd;
1357
1358	p = td->td_proc;
1359	pt = NULL;
1360	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1361		return;
1362
1363	KASSERT(pp->pp_proc == td->td_proc,
1364	    ("[pmc,%d] not my thread state", __LINE__));
1365
1366	critical_enter(); /* no preemption from this point */
1367
1368	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1369
1370	PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1371	    p->p_pid, p->p_comm, pp);
1372
1373	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1374	    ("[pmc,%d] weird CPU id %d", __LINE__, cpu));
1375
1376	pc = pmc_pcpu[cpu];
1377
1378	for (ri = 0; ri < md->pmd_npmc; ri++) {
1379
1380		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1381			continue;
1382
1383		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1384		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1385			__LINE__, PMC_TO_MODE(pm)));
1386
1387		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1388		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1389			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1390
1391		/*
1392		 * Only PMCs that are marked as 'RUNNING' need
1393		 * be placed on hardware.
1394		 */
1395
1396		if (pm->pm_state != PMC_STATE_RUNNING)
1397			continue;
1398
1399		KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
1400	    ("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm,
1401		 (unsigned long)counter_u64_fetch(pm->pm_runcount)));
1402
1403		/* increment PMC runcount */
1404		counter_u64_add(pm->pm_runcount, 1);
1405
1406		/* configure the HWPMC we are going to use. */
1407		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1408		pcd->pcd_config_pmc(cpu, adjri, pm);
1409
1410		phw = pc->pc_hwpmcs[ri];
1411
1412		KASSERT(phw != NULL,
1413		    ("[pmc,%d] null hw pointer", __LINE__));
1414
1415		KASSERT(phw->phw_pmc == pm,
1416		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1417			phw->phw_pmc, pm));
1418
1419		/*
1420		 * Write out saved value and start the PMC.
1421		 *
1422		 * Sampling PMCs use a per-thread value, while
1423		 * counting mode PMCs use a per-pmc value that is
1424		 * inherited across descendants.
1425		 */
1426		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1427			if (pt == NULL)
1428				pt = pmc_find_thread_descriptor(pp, td,
1429				    PMC_FLAG_NONE);
1430
1431			KASSERT(pt != NULL,
1432			    ("[pmc,%d] No thread found for td=%p", __LINE__,
1433			    td));
1434
1435			mtx_pool_lock_spin(pmc_mtxpool, pm);
1436
1437			/*
1438			 * If we have a thread descriptor, use the per-thread
1439			 * counter in the descriptor. If not, we will use
1440			 * a per-process counter.
1441			 *
1442			 * TODO: Remove the per-process "safety net" once
1443			 * we have thoroughly tested that we don't hit the
1444			 * above assert.
1445			 */
1446			if (pt != NULL) {
1447				if (pt->pt_pmcs[ri].pt_pmcval > 0)
1448					newvalue = pt->pt_pmcs[ri].pt_pmcval;
1449				else
1450					newvalue = pm->pm_sc.pm_reloadcount;
1451			} else {
1452				/*
1453				 * Use the saved value calculated after the most
1454				 * recent time a thread using the shared counter
1455				 * switched out. Reset the saved count in case
1456				 * another thread from this process switches in
1457				 * before any threads switch out.
1458				 */
1459
1460				newvalue = pp->pp_pmcs[ri].pp_pmcval;
1461				pp->pp_pmcs[ri].pp_pmcval =
1462				    pm->pm_sc.pm_reloadcount;
1463			}
1464			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1465			KASSERT(newvalue > 0 && newvalue <=
1466			    pm->pm_sc.pm_reloadcount,
1467			    ("[pmc,%d] pmcval outside of expected range cpu=%d "
1468			    "ri=%d pmcval=%jx pm_reloadcount=%jx", __LINE__,
1469			    cpu, ri, newvalue, pm->pm_sc.pm_reloadcount));
1470		} else {
1471			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1472			    ("[pmc,%d] illegal mode=%d", __LINE__,
1473			    PMC_TO_MODE(pm)));
1474			mtx_pool_lock_spin(pmc_mtxpool, pm);
1475			newvalue = PMC_PCPU_SAVED(cpu, ri) =
1476			    pm->pm_gv.pm_savedvalue;
1477			mtx_pool_unlock_spin(pmc_mtxpool, pm);
1478		}
1479
1480		PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1481
1482		pcd->pcd_write_pmc(cpu, adjri, newvalue);
1483
1484		/* If a sampling mode PMC, reset stalled state. */
1485		if (PMC_TO_MODE(pm) == PMC_MODE_TS)
1486			pm->pm_pcpu_state[cpu].pps_stalled = 0;
1487
1488		/* Indicate that we desire this to run. */
1489		pm->pm_pcpu_state[cpu].pps_cpustate = 1;
1490
1491		/* Start the PMC. */
1492		pcd->pcd_start_pmc(cpu, adjri);
1493	}
1494
1495	/*
1496	 * perform any other architecture/cpu dependent thread
1497	 * switch-in actions.
1498	 */
1499
1500	(void) (*md->pmd_switch_in)(pc, pp);
1501
1502	critical_exit();
1503
1504}
1505
1506/*
1507 * Thread context switch OUT.
1508 */
1509
1510static void
1511pmc_process_csw_out(struct thread *td)
1512{
1513	int cpu;
1514	int64_t tmp;
1515	struct pmc *pm;
1516	struct proc *p;
1517	enum pmc_mode mode;
1518	struct pmc_cpu *pc;
1519	pmc_value_t newvalue;
1520	unsigned int adjri, ri;
1521	struct pmc_process *pp;
1522	struct pmc_thread *pt = NULL;
1523	struct pmc_classdep *pcd;
1524
1525
1526	/*
1527	 * Locate our process descriptor; this may be NULL if
1528	 * this process is exiting and we have already removed
1529	 * the process from the target process table.
1530	 *
1531	 * Note that due to kernel preemption, multiple
1532	 * context switches may happen while the process is
1533	 * exiting.
1534	 *
1535	 * Note also that if the target process cannot be
1536	 * found we still need to deconfigure any PMCs that
1537	 * are currently running on hardware.
1538	 */
1539
1540	p = td->td_proc;
1541	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1542
1543	/*
1544	 * save PMCs
1545	 */
1546
1547	critical_enter();
1548
1549	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1550
1551	PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1552	    p->p_pid, p->p_comm, pp);
1553
1554	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1555	    ("[pmc,%d weird CPU id %d", __LINE__, cpu));
1556
1557	pc = pmc_pcpu[cpu];
1558
1559	/*
1560	 * When a PMC gets unlinked from a target PMC, it will
1561	 * be removed from the target's pp_pmc[] array.
1562	 *
1563	 * However, on a MP system, the target could have been
1564	 * executing on another CPU at the time of the unlink.
1565	 * So, at context switch OUT time, we need to look at
1566	 * the hardware to determine if a PMC is scheduled on
1567	 * it.
1568	 */
1569
1570	for (ri = 0; ri < md->pmd_npmc; ri++) {
1571
1572		pcd = pmc_ri_to_classdep(md, ri, &adjri);
1573		pm  = NULL;
1574		(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1575
1576		if (pm == NULL)	/* nothing at this row index */
1577			continue;
1578
1579		mode = PMC_TO_MODE(pm);
1580		if (!PMC_IS_VIRTUAL_MODE(mode))
1581			continue; /* not a process virtual PMC */
1582
1583		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1584		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1585			__LINE__, PMC_TO_ROWINDEX(pm), ri));
1586
1587		/*
1588		 * Change desired state, and then stop if not stalled.
1589		 * This two-step dance should avoid race conditions where
1590		 * an interrupt re-enables the PMC after this code has
1591		 * already checked the pm_stalled flag.
1592		 */
1593		pm->pm_pcpu_state[cpu].pps_cpustate = 0;
1594		if (pm->pm_pcpu_state[cpu].pps_stalled == 0)
1595			pcd->pcd_stop_pmc(cpu, adjri);
1596
1597		KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
1598			("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm,
1599			 (unsigned long)counter_u64_fetch(pm->pm_runcount)));
1600
1601		/* reduce this PMC's runcount */
1602		counter_u64_add(pm->pm_runcount, -1);
1603
1604		/*
1605		 * If this PMC is associated with this process,
1606		 * save the reading.
1607		 */
1608
1609		if (pm->pm_state != PMC_STATE_DELETED && pp != NULL &&
1610		    pp->pp_pmcs[ri].pp_pmc != NULL) {
1611			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1612			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1613				pm, ri, pp->pp_pmcs[ri].pp_pmc));
1614
1615			KASSERT(pp->pp_refcnt > 0,
1616			    ("[pmc,%d] pp refcnt = %d", __LINE__,
1617				pp->pp_refcnt));
1618
1619			pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1620
1621			if (mode == PMC_MODE_TS) {
1622				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d val=%jd (samp)",
1623				    cpu, ri, newvalue);
1624
1625				if (pt == NULL)
1626					pt = pmc_find_thread_descriptor(pp, td,
1627					    PMC_FLAG_NONE);
1628
1629				KASSERT(pt != NULL,
1630				    ("[pmc,%d] No thread found for td=%p",
1631				    __LINE__, td));
1632
1633				mtx_pool_lock_spin(pmc_mtxpool, pm);
1634
1635				/*
1636				 * If we have a thread descriptor, save the
1637				 * per-thread counter in the descriptor. If not,
1638				 * we will update the per-process counter.
1639				 *
1640				 * TODO: Remove the per-process "safety net"
1641				 * once we have thoroughly tested that we
1642				 * don't hit the above assert.
1643				 */
1644				if (pt != NULL)
1645					pt->pt_pmcs[ri].pt_pmcval = newvalue;
1646				else {
1647					/*
1648					 * For sampling process-virtual PMCs,
1649					 * newvalue is the number of events to
1650					 * be seen until the next sampling
1651					 * interrupt. We can just add the events
1652					 * left from this invocation to the
1653					 * counter, then adjust in case we
1654					 * overflow our range.
1655					 *
1656					 * (Recall that we reload the counter
1657					 * every time we use it.)
1658					 */
1659					pp->pp_pmcs[ri].pp_pmcval += newvalue;
1660					if (pp->pp_pmcs[ri].pp_pmcval >
1661					    pm->pm_sc.pm_reloadcount)
1662						pp->pp_pmcs[ri].pp_pmcval -=
1663						    pm->pm_sc.pm_reloadcount;
1664				}
1665				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1666			} else {
1667				tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1668
1669				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
1670				    cpu, ri, tmp);
1671
1672				/*
1673				 * For counting process-virtual PMCs,
1674				 * we expect the count to be
1675				 * increasing monotonically, modulo a 64
1676				 * bit wraparound.
1677				 */
1678				KASSERT(tmp >= 0,
1679				    ("[pmc,%d] negative increment cpu=%d "
1680				     "ri=%d newvalue=%jx saved=%jx "
1681				     "incr=%jx", __LINE__, cpu, ri,
1682				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1683
1684				mtx_pool_lock_spin(pmc_mtxpool, pm);
1685				pm->pm_gv.pm_savedvalue += tmp;
1686				pp->pp_pmcs[ri].pp_pmcval += tmp;
1687				mtx_pool_unlock_spin(pmc_mtxpool, pm);
1688
1689				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1690					pmclog_process_proccsw(pm, pp, tmp, td);
1691			}
1692		}
1693
1694		/* mark hardware as free */
1695		pcd->pcd_config_pmc(cpu, adjri, NULL);
1696	}
1697
1698	/*
1699	 * perform any other architecture/cpu dependent thread
1700	 * switch out functions.
1701	 */
1702
1703	(void) (*md->pmd_switch_out)(pc, pp);
1704
1705	critical_exit();
1706}
1707
1708/*
1709 * A new thread for a process.
1710 */
1711static void
1712pmc_process_thread_add(struct thread *td)
1713{
1714	struct pmc_process *pmc;
1715
1716	pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
1717	if (pmc != NULL)
1718		pmc_find_thread_descriptor(pmc, td, PMC_FLAG_ALLOCATE);
1719}
1720
1721/*
1722 * A thread delete for a process.
1723 */
1724static void
1725pmc_process_thread_delete(struct thread *td)
1726{
1727	struct pmc_process *pmc;
1728
1729	pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
1730	if (pmc != NULL)
1731		pmc_thread_descriptor_pool_free(pmc_find_thread_descriptor(pmc,
1732		    td, PMC_FLAG_REMOVE));
1733}
1734
1735/*
1736 * A userret() call for a thread.
1737 */
1738static void
1739pmc_process_thread_userret(struct thread *td)
1740{
1741	sched_pin();
1742	pmc_capture_user_callchain(curcpu, PMC_UR, td->td_frame);
1743	sched_unpin();
1744}
1745
1746/*
1747 * A mapping change for a process.
1748 */
1749
1750static void
1751pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1752{
1753	int ri;
1754	pid_t pid;
1755	char *fullpath, *freepath;
1756	const struct pmc *pm;
1757	struct pmc_owner *po;
1758	const struct pmc_process *pp;
1759
1760	freepath = fullpath = NULL;
1761	MPASS(!in_epoch(global_epoch_preempt));
1762	pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1763
1764	pid = td->td_proc->p_pid;
1765
1766	PMC_EPOCH_ENTER();
1767	/* Inform owners of all system-wide sampling PMCs. */
1768	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1769	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1770			pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1771
1772	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1773		goto done;
1774
1775	/*
1776	 * Inform sampling PMC owners tracking this process.
1777	 */
1778	for (ri = 0; ri < md->pmd_npmc; ri++)
1779		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1780		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1781			pmclog_process_map_in(pm->pm_owner,
1782			    pid, pkm->pm_address, fullpath);
1783
1784  done:
1785	if (freepath)
1786		free(freepath, M_TEMP);
1787	PMC_EPOCH_EXIT();
1788}
1789
1790
1791/*
1792 * Log an munmap request.
1793 */
1794
1795static void
1796pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1797{
1798	int ri;
1799	pid_t pid;
1800	struct pmc_owner *po;
1801	const struct pmc *pm;
1802	const struct pmc_process *pp;
1803
1804	pid = td->td_proc->p_pid;
1805
1806	PMC_EPOCH_ENTER();
1807	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1808	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1809		pmclog_process_map_out(po, pid, pkm->pm_address,
1810		    pkm->pm_address + pkm->pm_size);
1811	PMC_EPOCH_EXIT();
1812
1813	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1814		return;
1815
1816	for (ri = 0; ri < md->pmd_npmc; ri++)
1817		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1818		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1819			pmclog_process_map_out(pm->pm_owner, pid,
1820			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
1821}
1822
1823/*
1824 * Log mapping information about the kernel.
1825 */
1826
1827static void
1828pmc_log_kernel_mappings(struct pmc *pm)
1829{
1830	struct pmc_owner *po;
1831	struct pmckern_map_in *km, *kmbase;
1832
1833	MPASS(in_epoch(global_epoch_preempt) || sx_xlocked(&pmc_sx));
1834	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1835	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1836		__LINE__, (void *) pm));
1837
1838	po = pm->pm_owner;
1839
1840	if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1841		return;
1842	if (PMC_TO_MODE(pm) == PMC_MODE_SS)
1843		pmc_process_allproc(pm);
1844	/*
1845	 * Log the current set of kernel modules.
1846	 */
1847	kmbase = linker_hwpmc_list_objects();
1848	for (km = kmbase; km->pm_file != NULL; km++) {
1849		PMCDBG2(LOG,REG,1,"%s %p", (char *) km->pm_file,
1850		    (void *) km->pm_address);
1851		pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1852		    km->pm_file);
1853	}
1854	free(kmbase, M_LINKER);
1855
1856	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1857}
1858
1859/*
1860 * Log the mappings for a single process.
1861 */
1862
1863static void
1864pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1865{
1866	vm_map_t map;
1867	struct vnode *vp;
1868	struct vmspace *vm;
1869	vm_map_entry_t entry;
1870	vm_offset_t last_end;
1871	u_int last_timestamp;
1872	struct vnode *last_vp;
1873	vm_offset_t start_addr;
1874	vm_object_t obj, lobj, tobj;
1875	char *fullpath, *freepath;
1876
1877	last_vp = NULL;
1878	last_end = (vm_offset_t) 0;
1879	fullpath = freepath = NULL;
1880
1881	if ((vm = vmspace_acquire_ref(p)) == NULL)
1882		return;
1883
1884	map = &vm->vm_map;
1885	vm_map_lock_read(map);
1886
1887	for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1888
1889		if (entry == NULL) {
1890			PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1891			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1892			break;
1893		}
1894
1895		/*
1896		 * We only care about executable map entries.
1897		 */
1898		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1899		    !(entry->protection & VM_PROT_EXECUTE) ||
1900		    (entry->object.vm_object == NULL)) {
1901			continue;
1902		}
1903
1904		obj = entry->object.vm_object;
1905		VM_OBJECT_RLOCK(obj);
1906
1907		/*
1908		 * Walk the backing_object list to find the base
1909		 * (non-shadowed) vm_object.
1910		 */
1911		for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1912			if (tobj != obj)
1913				VM_OBJECT_RLOCK(tobj);
1914			if (lobj != obj)
1915				VM_OBJECT_RUNLOCK(lobj);
1916			lobj = tobj;
1917		}
1918
1919		/*
1920		 * At this point lobj is the base vm_object and it is locked.
1921		 */
1922		if (lobj == NULL) {
1923			PMCDBG3(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1924			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1925			VM_OBJECT_RUNLOCK(obj);
1926			continue;
1927		}
1928
1929		vp = vm_object_vnode(lobj);
1930		if (vp == NULL) {
1931			if (lobj != obj)
1932				VM_OBJECT_RUNLOCK(lobj);
1933			VM_OBJECT_RUNLOCK(obj);
1934			continue;
1935		}
1936
1937		/*
1938		 * Skip contiguous regions that point to the same
1939		 * vnode, so we don't emit redundant MAP-IN
1940		 * directives.
1941		 */
1942		if (entry->start == last_end && vp == last_vp) {
1943			last_end = entry->end;
1944			if (lobj != obj)
1945				VM_OBJECT_RUNLOCK(lobj);
1946			VM_OBJECT_RUNLOCK(obj);
1947			continue;
1948		}
1949
1950		/*
1951		 * We don't want to keep the proc's vm_map or this
1952		 * vm_object locked while we walk the pathname, since
1953		 * vn_fullpath() can sleep.  However, if we drop the
1954		 * lock, it's possible for concurrent activity to
1955		 * modify the vm_map list.  To protect against this,
1956		 * we save the vm_map timestamp before we release the
1957		 * lock, and check it after we reacquire the lock
1958		 * below.
1959		 */
1960		start_addr = entry->start;
1961		last_end = entry->end;
1962		last_timestamp = map->timestamp;
1963		vm_map_unlock_read(map);
1964
1965		vref(vp);
1966		if (lobj != obj)
1967			VM_OBJECT_RUNLOCK(lobj);
1968
1969		VM_OBJECT_RUNLOCK(obj);
1970
1971		freepath = NULL;
1972		pmc_getfilename(vp, &fullpath, &freepath);
1973		last_vp = vp;
1974
1975		vrele(vp);
1976
1977		vp = NULL;
1978		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1979		if (freepath)
1980			free(freepath, M_TEMP);
1981
1982		vm_map_lock_read(map);
1983
1984		/*
1985		 * If our saved timestamp doesn't match, this means
1986		 * that the vm_map was modified out from under us and
1987		 * we can't trust our current "entry" pointer.  Do a
1988		 * new lookup for this entry.  If there is no entry
1989		 * for this address range, vm_map_lookup_entry() will
1990		 * return the previous one, so we always want to go to
1991		 * entry->next on the next loop iteration.
1992		 *
1993		 * There is an edge condition here that can occur if
1994		 * there is no entry at or before this address.  In
1995		 * this situation, vm_map_lookup_entry returns
1996		 * &map->header, which would cause our loop to abort
1997		 * without processing the rest of the map.  However,
1998		 * in practice this will never happen for process
1999		 * vm_map.  This is because the executable's text
2000		 * segment is the first mapping in the proc's address
2001		 * space, and this mapping is never removed until the
2002		 * process exits, so there will always be a non-header
2003		 * entry at or before the requested address for
2004		 * vm_map_lookup_entry to return.
2005		 */
2006		if (map->timestamp != last_timestamp)
2007			vm_map_lookup_entry(map, last_end - 1, &entry);
2008	}
2009
2010	vm_map_unlock_read(map);
2011	vmspace_free(vm);
2012	return;
2013}
2014
2015/*
2016 * Log mappings for all processes in the system.
2017 */
2018
2019static void
2020pmc_log_all_process_mappings(struct pmc_owner *po)
2021{
2022	struct proc *p, *top;
2023
2024	sx_assert(&pmc_sx, SX_XLOCKED);
2025
2026	if ((p = pfind(1)) == NULL)
2027		panic("[pmc,%d] Cannot find init", __LINE__);
2028
2029	PROC_UNLOCK(p);
2030
2031	sx_slock(&proctree_lock);
2032
2033	top = p;
2034
2035	for (;;) {
2036		pmc_log_process_mappings(po, p);
2037		if (!LIST_EMPTY(&p->p_children))
2038			p = LIST_FIRST(&p->p_children);
2039		else for (;;) {
2040			if (p == top)
2041				goto done;
2042			if (LIST_NEXT(p, p_sibling)) {
2043				p = LIST_NEXT(p, p_sibling);
2044				break;
2045			}
2046			p = p->p_pptr;
2047		}
2048	}
2049 done:
2050	sx_sunlock(&proctree_lock);
2051}
2052
2053/*
2054 * The 'hook' invoked from the kernel proper
2055 */
2056
2057
2058#ifdef	HWPMC_DEBUG
2059const char *pmc_hooknames[] = {
2060	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
2061	"",
2062	"EXEC",
2063	"CSW-IN",
2064	"CSW-OUT",
2065	"SAMPLE",
2066	"UNUSED1",
2067	"UNUSED2",
2068	"MMAP",
2069	"MUNMAP",
2070	"CALLCHAIN-NMI",
2071	"CALLCHAIN-SOFT",
2072	"SOFTSAMPLING",
2073	"THR-CREATE",
2074	"THR-EXIT",
2075	"THR-USERRET",
2076	"THR-CREATE-LOG",
2077	"THR-EXIT-LOG",
2078	"PROC-CREATE-LOG"
2079};
2080#endif
2081
2082static int
2083pmc_hook_handler(struct thread *td, int function, void *arg)
2084{
2085	int cpu;
2086
2087	PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
2088	    pmc_hooknames[function], arg);
2089
2090	switch (function)
2091	{
2092
2093	/*
2094	 * Process exec()
2095	 */
2096
2097	case PMC_FN_PROCESS_EXEC:
2098	{
2099		char *fullpath, *freepath;
2100		unsigned int ri;
2101		int is_using_hwpmcs;
2102		struct pmc *pm;
2103		struct proc *p;
2104		struct pmc_owner *po;
2105		struct pmc_process *pp;
2106		struct pmckern_procexec *pk;
2107
2108		sx_assert(&pmc_sx, SX_XLOCKED);
2109
2110		p = td->td_proc;
2111		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
2112
2113		pk = (struct pmckern_procexec *) arg;
2114
2115		PMC_EPOCH_ENTER();
2116		/* Inform owners of SS mode PMCs of the exec event. */
2117		CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
2118		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2119			    pmclog_process_procexec(po, PMC_ID_INVALID,
2120				p->p_pid, pk->pm_entryaddr, fullpath);
2121		PMC_EPOCH_EXIT();
2122
2123		PROC_LOCK(p);
2124		is_using_hwpmcs = p->p_flag & P_HWPMC;
2125		PROC_UNLOCK(p);
2126
2127		if (!is_using_hwpmcs) {
2128			if (freepath)
2129				free(freepath, M_TEMP);
2130			break;
2131		}
2132
2133		/*
2134		 * PMCs are not inherited across an exec():  remove any
2135		 * PMCs that this process is the owner of.
2136		 */
2137
2138		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
2139			pmc_remove_owner(po);
2140			pmc_destroy_owner_descriptor(po);
2141		}
2142
2143		/*
2144		 * If the process being exec'ed is not the target of any
2145		 * PMC, we are done.
2146		 */
2147		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
2148			if (freepath)
2149				free(freepath, M_TEMP);
2150			break;
2151		}
2152
2153		/*
2154		 * Log the exec event to all monitoring owners.  Skip
2155		 * owners who have already received the event because
2156		 * they had system sampling PMCs active.
2157		 */
2158		for (ri = 0; ri < md->pmd_npmc; ri++)
2159			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
2160				po = pm->pm_owner;
2161				if (po->po_sscount == 0 &&
2162				    po->po_flags & PMC_PO_OWNS_LOGFILE)
2163					pmclog_process_procexec(po, pm->pm_id,
2164					    p->p_pid, pk->pm_entryaddr,
2165					    fullpath);
2166			}
2167
2168		if (freepath)
2169			free(freepath, M_TEMP);
2170
2171
2172		PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
2173		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
2174
2175		if (pk->pm_credentialschanged == 0) /* no change */
2176			break;
2177
2178		/*
2179		 * If the newly exec()'ed process has a different credential
2180		 * than before, allow it to be the target of a PMC only if
2181		 * the PMC's owner has sufficient privilege.
2182		 */
2183
2184		for (ri = 0; ri < md->pmd_npmc; ri++)
2185			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
2186				if (pmc_can_attach(pm, td->td_proc) != 0)
2187					pmc_detach_one_process(td->td_proc,
2188					    pm, PMC_FLAG_NONE);
2189
2190		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
2191		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
2192			pp->pp_refcnt, pp));
2193
2194		/*
2195		 * If this process is no longer the target of any
2196		 * PMCs, we can remove the process entry and free
2197		 * up space.
2198		 */
2199
2200		if (pp->pp_refcnt == 0) {
2201			pmc_remove_process_descriptor(pp);
2202			pmc_destroy_process_descriptor(pp);
2203			break;
2204		}
2205
2206	}
2207	break;
2208
2209	case PMC_FN_CSW_IN:
2210		pmc_process_csw_in(td);
2211		break;
2212
2213	case PMC_FN_CSW_OUT:
2214		pmc_process_csw_out(td);
2215		break;
2216
2217	/*
2218	 * Process accumulated PC samples.
2219	 *
2220	 * This function is expected to be called by hardclock() for
2221	 * each CPU that has accumulated PC samples.
2222	 *
2223	 * This function is to be executed on the CPU whose samples
2224	 * are being processed.
2225	 */
2226	case PMC_FN_DO_SAMPLES:
2227
2228		/*
2229		 * Clear the cpu specific bit in the CPU mask before
2230		 * do the rest of the processing.  If the NMI handler
2231		 * gets invoked after the "atomic_clear_int()" call
2232		 * below but before "pmc_process_samples()" gets
2233		 * around to processing the interrupt, then we will
2234		 * come back here at the next hardclock() tick (and
2235		 * may find nothing to do if "pmc_process_samples()"
2236		 * had already processed the interrupt).  We don't
2237		 * lose the interrupt sample.
2238		 */
2239		DPCPU_SET(pmc_sampled, 0);
2240		cpu = PCPU_GET(cpuid);
2241		pmc_process_samples(cpu, PMC_HR);
2242		pmc_process_samples(cpu, PMC_SR);
2243		pmc_process_samples(cpu, PMC_UR);
2244		break;
2245
2246	case PMC_FN_MMAP:
2247		pmc_process_mmap(td, (struct pmckern_map_in *) arg);
2248		break;
2249
2250	case PMC_FN_MUNMAP:
2251		MPASS(in_epoch(global_epoch_preempt) || sx_xlocked(&pmc_sx));
2252		pmc_process_munmap(td, (struct pmckern_map_out *) arg);
2253		break;
2254
2255	case PMC_FN_PROC_CREATE_LOG:
2256		pmc_process_proccreate((struct proc *)arg);
2257		break;
2258
2259	case PMC_FN_USER_CALLCHAIN:
2260		/*
2261		 * Record a call chain.
2262		 */
2263		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2264		    __LINE__));
2265
2266		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
2267		    (struct trapframe *) arg);
2268
2269		KASSERT(td->td_pinned == 1,
2270			("[pmc,%d] invalid td_pinned value", __LINE__));
2271		sched_unpin();  /* Can migrate safely now. */
2272
2273		td->td_pflags &= ~TDP_CALLCHAIN;
2274		break;
2275
2276	case PMC_FN_USER_CALLCHAIN_SOFT:
2277		/*
2278		 * Record a call chain.
2279		 */
2280		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2281		    __LINE__));
2282
2283		cpu = PCPU_GET(cpuid);
2284		pmc_capture_user_callchain(cpu, PMC_SR,
2285		    (struct trapframe *) arg);
2286
2287		KASSERT(td->td_pinned == 1,
2288		    ("[pmc,%d] invalid td_pinned value", __LINE__));
2289
2290		sched_unpin();  /* Can migrate safely now. */
2291
2292		td->td_pflags &= ~TDP_CALLCHAIN;
2293		break;
2294
2295	case PMC_FN_SOFT_SAMPLING:
2296		/*
2297		 * Call soft PMC sampling intr.
2298		 */
2299		pmc_soft_intr((struct pmckern_soft *) arg);
2300		break;
2301
2302	case PMC_FN_THR_CREATE:
2303		pmc_process_thread_add(td);
2304		pmc_process_threadcreate(td);
2305		break;
2306
2307	case PMC_FN_THR_CREATE_LOG:
2308		pmc_process_threadcreate(td);
2309		break;
2310
2311	case PMC_FN_THR_EXIT:
2312		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2313		    __LINE__));
2314		pmc_process_thread_delete(td);
2315		pmc_process_threadexit(td);
2316		break;
2317	case PMC_FN_THR_EXIT_LOG:
2318		pmc_process_threadexit(td);
2319		break;
2320	case PMC_FN_THR_USERRET:
2321		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2322		    __LINE__));
2323		pmc_process_thread_userret(td);
2324		break;
2325
2326	default:
2327#ifdef	HWPMC_DEBUG
2328		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2329#endif
2330		break;
2331
2332	}
2333
2334	return 0;
2335}
2336
2337/*
2338 * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2339 */
2340
2341static struct pmc_owner *
2342pmc_allocate_owner_descriptor(struct proc *p)
2343{
2344	uint32_t hindex;
2345	struct pmc_owner *po;
2346	struct pmc_ownerhash *poh;
2347
2348	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2349	poh = &pmc_ownerhash[hindex];
2350
2351	/* allocate space for N pointers and one descriptor struct */
2352	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2353	po->po_owner = p;
2354	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2355
2356	TAILQ_INIT(&po->po_logbuffers);
2357	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2358
2359	PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2360	    p, p->p_pid, p->p_comm, po);
2361
2362	return po;
2363}
2364
2365static void
2366pmc_destroy_owner_descriptor(struct pmc_owner *po)
2367{
2368
2369	PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2370	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2371
2372	mtx_destroy(&po->po_mtx);
2373	free(po, M_PMC);
2374}
2375
2376/*
2377 * Allocate a thread descriptor from the free pool.
2378 *
2379 * NOTE: This *can* return NULL.
2380 */
2381static struct pmc_thread *
2382pmc_thread_descriptor_pool_alloc(void)
2383{
2384	struct pmc_thread *pt;
2385
2386	mtx_lock_spin(&pmc_threadfreelist_mtx);
2387	if ((pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
2388		LIST_REMOVE(pt, pt_next);
2389		pmc_threadfreelist_entries--;
2390	}
2391	mtx_unlock_spin(&pmc_threadfreelist_mtx);
2392
2393	return (pt);
2394}
2395
2396/*
2397 * Add a thread descriptor to the free pool. We use this instead of free()
2398 * to maintain a cache of free entries. Additionally, we can safely call
2399 * this function when we cannot call free(), such as in a critical section.
2400 *
2401 */
2402static void
2403pmc_thread_descriptor_pool_free(struct pmc_thread *pt)
2404{
2405
2406	if (pt == NULL)
2407		return;
2408
2409	memset(pt, 0, THREADENTRY_SIZE);
2410	mtx_lock_spin(&pmc_threadfreelist_mtx);
2411	LIST_INSERT_HEAD(&pmc_threadfreelist, pt, pt_next);
2412	pmc_threadfreelist_entries++;
2413	if (pmc_threadfreelist_entries > pmc_threadfreelist_max)
2414		taskqueue_enqueue(taskqueue_fast, &free_task);
2415	mtx_unlock_spin(&pmc_threadfreelist_mtx);
2416}
2417
2418/*
2419 * An asynchronous task to manage the free list.
2420 */
2421static void
2422pmc_thread_descriptor_pool_free_task(void *arg __unused, int pending __unused)
2423{
2424	struct pmc_thread *pt;
2425	LIST_HEAD(, pmc_thread) tmplist;
2426	int delta;
2427
2428	LIST_INIT(&tmplist);
2429
2430	/* Determine what changes, if any, we need to make. */
2431	mtx_lock_spin(&pmc_threadfreelist_mtx);
2432	delta = pmc_threadfreelist_entries - pmc_threadfreelist_max;
2433	while (delta > 0 && (pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
2434		delta--;
2435		pmc_threadfreelist_entries--;
2436		LIST_REMOVE(pt, pt_next);
2437		LIST_INSERT_HEAD(&tmplist, pt, pt_next);
2438	}
2439	mtx_unlock_spin(&pmc_threadfreelist_mtx);
2440
2441	/* If there are entries to free, free them. */
2442	while (!LIST_EMPTY(&tmplist)) {
2443		pt = LIST_FIRST(&tmplist);
2444		LIST_REMOVE(pt, pt_next);
2445		free(pt, M_PMC);
2446	}
2447}
2448
2449/*
2450 * Drain the thread free pool, freeing all allocations.
2451 */
2452static void
2453pmc_thread_descriptor_pool_drain()
2454{
2455	struct pmc_thread *pt, *next;
2456
2457	LIST_FOREACH_SAFE(pt, &pmc_threadfreelist, pt_next, next) {
2458		LIST_REMOVE(pt, pt_next);
2459		free(pt, M_PMC);
2460	}
2461}
2462
2463/*
2464 * find the descriptor corresponding to thread 'td', adding or removing it
2465 * as specified by 'mode'.
2466 *
2467 * Note that this supports additional mode flags in addition to those
2468 * supported by pmc_find_process_descriptor():
2469 * PMC_FLAG_NOWAIT: Causes the function to not wait for mallocs.
2470 *     This makes it safe to call while holding certain other locks.
2471 */
2472
2473static struct pmc_thread *
2474pmc_find_thread_descriptor(struct pmc_process *pp, struct thread *td,
2475    uint32_t mode)
2476{
2477	struct pmc_thread *pt = NULL, *ptnew = NULL;
2478	int wait_flag;
2479
2480	KASSERT(td != NULL, ("[pmc,%d] called to add NULL td", __LINE__));
2481
2482	/*
2483	 * Pre-allocate memory in the PMC_FLAG_ALLOCATE case prior to
2484	 * acquiring the lock.
2485	 */
2486	if (mode & PMC_FLAG_ALLOCATE) {
2487		if ((ptnew = pmc_thread_descriptor_pool_alloc()) == NULL) {
2488			wait_flag = M_WAITOK;
2489			if ((mode & PMC_FLAG_NOWAIT) || in_epoch(global_epoch_preempt))
2490				wait_flag = M_NOWAIT;
2491
2492			ptnew = malloc(THREADENTRY_SIZE, M_PMC,
2493			    wait_flag|M_ZERO);
2494		}
2495	}
2496
2497	mtx_lock_spin(pp->pp_tdslock);
2498
2499	LIST_FOREACH(pt, &pp->pp_tds, pt_next)
2500		if (pt->pt_td == td)
2501			break;
2502
2503	if ((mode & PMC_FLAG_REMOVE) && pt != NULL)
2504		LIST_REMOVE(pt, pt_next);
2505
2506	if ((mode & PMC_FLAG_ALLOCATE) && pt == NULL && ptnew != NULL) {
2507		pt = ptnew;
2508		ptnew = NULL;
2509		pt->pt_td = td;
2510		LIST_INSERT_HEAD(&pp->pp_tds, pt, pt_next);
2511	}
2512
2513	mtx_unlock_spin(pp->pp_tdslock);
2514
2515	if (ptnew != NULL) {
2516		free(ptnew, M_PMC);
2517	}
2518
2519	return pt;
2520}
2521
2522/*
2523 * Try to add thread descriptors for each thread in a process.
2524 */
2525
2526static void
2527pmc_add_thread_descriptors_from_proc(struct proc *p, struct pmc_process *pp)
2528{
2529	struct thread *curtd;
2530	struct pmc_thread **tdlist;
2531	int i, tdcnt, tdlistsz;
2532
2533	KASSERT(!PROC_LOCKED(p), ("[pmc,%d] proc unexpectedly locked",
2534	    __LINE__));
2535	tdcnt = 32;
2536 restart:
2537	tdlistsz = roundup2(tdcnt, 32);
2538
2539	tdcnt = 0;
2540	tdlist = malloc(sizeof(struct pmc_thread*) * tdlistsz, M_TEMP, M_WAITOK);
2541
2542	PROC_LOCK(p);
2543	FOREACH_THREAD_IN_PROC(p, curtd)
2544		tdcnt++;
2545	if (tdcnt >= tdlistsz) {
2546		PROC_UNLOCK(p);
2547		free(tdlist, M_TEMP);
2548		goto restart;
2549	}
2550	/*
2551	 * Try to add each thread to the list without sleeping. If unable,
2552	 * add to a queue to retry after dropping the process lock.
2553	 */
2554	tdcnt = 0;
2555	FOREACH_THREAD_IN_PROC(p, curtd) {
2556		tdlist[tdcnt] = pmc_find_thread_descriptor(pp, curtd,
2557						   PMC_FLAG_ALLOCATE|PMC_FLAG_NOWAIT);
2558		if (tdlist[tdcnt] == NULL) {
2559			PROC_UNLOCK(p);
2560			for (i = 0; i <= tdcnt; i++)
2561				pmc_thread_descriptor_pool_free(tdlist[i]);
2562			free(tdlist, M_TEMP);
2563			goto restart;
2564		}
2565		tdcnt++;
2566	}
2567	PROC_UNLOCK(p);
2568	free(tdlist, M_TEMP);
2569}
2570
2571/*
2572 * find the descriptor corresponding to process 'p', adding or removing it
2573 * as specified by 'mode'.
2574 */
2575
2576static struct pmc_process *
2577pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2578{
2579	uint32_t hindex;
2580	struct pmc_process *pp, *ppnew;
2581	struct pmc_processhash *pph;
2582
2583	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2584	pph = &pmc_processhash[hindex];
2585
2586	ppnew = NULL;
2587
2588	/*
2589	 * Pre-allocate memory in the PMC_FLAG_ALLOCATE case since we
2590	 * cannot call malloc(9) once we hold a spin lock.
2591	 */
2592	if (mode & PMC_FLAG_ALLOCATE)
2593		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2594		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2595
2596	mtx_lock_spin(&pmc_processhash_mtx);
2597	LIST_FOREACH(pp, pph, pp_next)
2598	    if (pp->pp_proc == p)
2599		    break;
2600
2601	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2602		LIST_REMOVE(pp, pp_next);
2603
2604	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2605	    ppnew != NULL) {
2606		ppnew->pp_proc = p;
2607		LIST_INIT(&ppnew->pp_tds);
2608		ppnew->pp_tdslock = mtx_pool_find(pmc_mtxpool, ppnew);
2609		LIST_INSERT_HEAD(pph, ppnew, pp_next);
2610		mtx_unlock_spin(&pmc_processhash_mtx);
2611		pp = ppnew;
2612		ppnew = NULL;
2613
2614		/* Add thread descriptors for this process' current threads. */
2615		pmc_add_thread_descriptors_from_proc(p, pp);
2616	}
2617	else
2618		mtx_unlock_spin(&pmc_processhash_mtx);
2619
2620	if (ppnew != NULL)
2621		free(ppnew, M_PMC);
2622
2623	return pp;
2624}
2625
2626/*
2627 * remove a process descriptor from the process hash table.
2628 */
2629
2630static void
2631pmc_remove_process_descriptor(struct pmc_process *pp)
2632{
2633	KASSERT(pp->pp_refcnt == 0,
2634	    ("[pmc,%d] Removing process descriptor %p with count %d",
2635		__LINE__, pp, pp->pp_refcnt));
2636
2637	mtx_lock_spin(&pmc_processhash_mtx);
2638	LIST_REMOVE(pp, pp_next);
2639	mtx_unlock_spin(&pmc_processhash_mtx);
2640}
2641
2642/*
2643 * destroy a process descriptor.
2644 */
2645
2646static void
2647pmc_destroy_process_descriptor(struct pmc_process *pp)
2648{
2649	struct pmc_thread *pmc_td;
2650
2651	while ((pmc_td = LIST_FIRST(&pp->pp_tds)) != NULL) {
2652		LIST_REMOVE(pmc_td, pt_next);
2653		pmc_thread_descriptor_pool_free(pmc_td);
2654	}
2655	free(pp, M_PMC);
2656}
2657
2658
2659/*
2660 * find an owner descriptor corresponding to proc 'p'
2661 */
2662
2663static struct pmc_owner *
2664pmc_find_owner_descriptor(struct proc *p)
2665{
2666	uint32_t hindex;
2667	struct pmc_owner *po;
2668	struct pmc_ownerhash *poh;
2669
2670	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2671	poh = &pmc_ownerhash[hindex];
2672
2673	po = NULL;
2674	LIST_FOREACH(po, poh, po_next)
2675	    if (po->po_owner == p)
2676		    break;
2677
2678	PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2679	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2680
2681	return po;
2682}
2683
2684/*
2685 * pmc_allocate_pmc_descriptor
2686 *
2687 * Allocate a pmc descriptor and initialize its
2688 * fields.
2689 */
2690
2691static struct pmc *
2692pmc_allocate_pmc_descriptor(void)
2693{
2694	struct pmc *pmc;
2695
2696	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2697	pmc->pm_runcount = counter_u64_alloc(M_WAITOK);
2698	pmc->pm_pcpu_state = malloc(sizeof(struct pmc_pcpu_state)*mp_ncpus, M_PMC, M_WAITOK|M_ZERO);
2699	PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2700
2701	return pmc;
2702}
2703
2704/*
2705 * Destroy a pmc descriptor.
2706 */
2707
2708static void
2709pmc_destroy_pmc_descriptor(struct pmc *pm)
2710{
2711
2712	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2713	    pm->pm_state == PMC_STATE_FREE,
2714	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2715	KASSERT(LIST_EMPTY(&pm->pm_targets),
2716	    ("[pmc,%d] destroying pmc with targets", __LINE__));
2717	KASSERT(pm->pm_owner == NULL,
2718	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2719	KASSERT(counter_u64_fetch(pm->pm_runcount) == 0,
2720	    ("[pmc,%d] pmc has non-zero run count %ld", __LINE__,
2721		 (unsigned long)counter_u64_fetch(pm->pm_runcount)));
2722
2723	counter_u64_free(pm->pm_runcount);
2724	free(pm->pm_pcpu_state, M_PMC);
2725	free(pm, M_PMC);
2726}
2727
2728static void
2729pmc_wait_for_pmc_idle(struct pmc *pm)
2730{
2731#ifdef INVARIANTS
2732	volatile int maxloop;
2733
2734	maxloop = 100 * pmc_cpu_max();
2735#endif
2736	/*
2737	 * Loop (with a forced context switch) till the PMC's runcount
2738	 * comes down to zero.
2739	 */
2740	pmclog_flush(pm->pm_owner, 1);
2741	while (counter_u64_fetch(pm->pm_runcount) > 0) {
2742		pmclog_flush(pm->pm_owner, 1);
2743#ifdef INVARIANTS
2744		maxloop--;
2745		KASSERT(maxloop > 0,
2746		    ("[pmc,%d] (ri%d, rc%ld) waiting too long for "
2747			"pmc to be free", __LINE__,
2748			 PMC_TO_ROWINDEX(pm), (unsigned long)counter_u64_fetch(pm->pm_runcount)));
2749#endif
2750		pmc_force_context_switch();
2751	}
2752}
2753
2754/*
2755 * This function does the following things:
2756 *
2757 *  - detaches the PMC from hardware
2758 *  - unlinks all target threads that were attached to it
2759 *  - removes the PMC from its owner's list
2760 *  - destroys the PMC private mutex
2761 *
2762 * Once this function completes, the given pmc pointer can be freed by
2763 * calling pmc_destroy_pmc_descriptor().
2764 */
2765
2766static void
2767pmc_release_pmc_descriptor(struct pmc *pm)
2768{
2769	enum pmc_mode mode;
2770	struct pmc_hw *phw;
2771	u_int adjri, ri, cpu;
2772	struct pmc_owner *po;
2773	struct pmc_binding pb;
2774	struct pmc_process *pp;
2775	struct pmc_classdep *pcd;
2776	struct pmc_target *ptgt, *tmp;
2777
2778	sx_assert(&pmc_sx, SX_XLOCKED);
2779
2780	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2781
2782	ri   = PMC_TO_ROWINDEX(pm);
2783	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2784	mode = PMC_TO_MODE(pm);
2785
2786	PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2787	    mode);
2788
2789	/*
2790	 * First, we take the PMC off hardware.
2791	 */
2792	cpu = 0;
2793	if (PMC_IS_SYSTEM_MODE(mode)) {
2794
2795		/*
2796		 * A system mode PMC runs on a specific CPU.  Switch
2797		 * to this CPU and turn hardware off.
2798		 */
2799		pmc_save_cpu_binding(&pb);
2800
2801		cpu = PMC_TO_CPU(pm);
2802
2803		pmc_select_cpu(cpu);
2804
2805		/* switch off non-stalled CPUs */
2806		pm->pm_pcpu_state[cpu].pps_cpustate = 0;
2807		if (pm->pm_state == PMC_STATE_RUNNING &&
2808			pm->pm_pcpu_state[cpu].pps_stalled == 0) {
2809
2810			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2811
2812			KASSERT(phw->phw_pmc == pm,
2813			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2814				__LINE__, ri, phw->phw_pmc, pm));
2815			PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2816
2817			critical_enter();
2818			pcd->pcd_stop_pmc(cpu, adjri);
2819			critical_exit();
2820		}
2821
2822		PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2823
2824		critical_enter();
2825		pcd->pcd_config_pmc(cpu, adjri, NULL);
2826		critical_exit();
2827
2828		/* adjust the global and process count of SS mode PMCs */
2829		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2830			po = pm->pm_owner;
2831			po->po_sscount--;
2832			if (po->po_sscount == 0) {
2833				atomic_subtract_rel_int(&pmc_ss_count, 1);
2834				CK_LIST_REMOVE(po, po_ssnext);
2835				epoch_wait_preempt(global_epoch_preempt);
2836			}
2837		}
2838
2839		pm->pm_state = PMC_STATE_DELETED;
2840
2841		pmc_restore_cpu_binding(&pb);
2842
2843		/*
2844		 * We could have references to this PMC structure in
2845		 * the per-cpu sample queues.  Wait for the queue to
2846		 * drain.
2847		 */
2848		pmc_wait_for_pmc_idle(pm);
2849
2850	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
2851
2852		/*
2853		 * A virtual PMC could be running on multiple CPUs at
2854		 * a given instant.
2855		 *
2856		 * By marking its state as DELETED, we ensure that
2857		 * this PMC is never further scheduled on hardware.
2858		 *
2859		 * Then we wait till all CPUs are done with this PMC.
2860		 */
2861		pm->pm_state = PMC_STATE_DELETED;
2862
2863
2864		/* Wait for the PMCs runcount to come to zero. */
2865		pmc_wait_for_pmc_idle(pm);
2866
2867		/*
2868		 * At this point the PMC is off all CPUs and cannot be
2869		 * freshly scheduled onto a CPU.  It is now safe to
2870		 * unlink all targets from this PMC.  If a
2871		 * process-record's refcount falls to zero, we remove
2872		 * it from the hash table.  The module-wide SX lock
2873		 * protects us from races.
2874		 */
2875		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2876			pp = ptgt->pt_process;
2877			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2878
2879			PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2880
2881			/*
2882			 * If the target process record shows that no
2883			 * PMCs are attached to it, reclaim its space.
2884			 */
2885
2886			if (pp->pp_refcnt == 0) {
2887				pmc_remove_process_descriptor(pp);
2888				pmc_destroy_process_descriptor(pp);
2889			}
2890		}
2891
2892		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2893
2894	}
2895
2896	/*
2897	 * Release any MD resources
2898	 */
2899	(void) pcd->pcd_release_pmc(cpu, adjri, pm);
2900
2901	/*
2902	 * Update row disposition
2903	 */
2904
2905	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2906		PMC_UNMARK_ROW_STANDALONE(ri);
2907	else
2908		PMC_UNMARK_ROW_THREAD(ri);
2909
2910	/* unlink from the owner's list */
2911	if (pm->pm_owner) {
2912		LIST_REMOVE(pm, pm_next);
2913		pm->pm_owner = NULL;
2914	}
2915}
2916
2917/*
2918 * Register an owner and a pmc.
2919 */
2920
2921static int
2922pmc_register_owner(struct proc *p, struct pmc *pmc)
2923{
2924	struct pmc_owner *po;
2925
2926	sx_assert(&pmc_sx, SX_XLOCKED);
2927
2928	if ((po = pmc_find_owner_descriptor(p)) == NULL)
2929		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2930			return ENOMEM;
2931
2932	KASSERT(pmc->pm_owner == NULL,
2933	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2934	pmc->pm_owner  = po;
2935
2936	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2937
2938	PROC_LOCK(p);
2939	p->p_flag |= P_HWPMC;
2940	PROC_UNLOCK(p);
2941
2942	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2943		pmclog_process_pmcallocate(pmc);
2944
2945	PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2946	    po, pmc);
2947
2948	return 0;
2949}
2950
2951/*
2952 * Return the current row disposition:
2953 * == 0 => FREE
2954 *  > 0 => PROCESS MODE
2955 *  < 0 => SYSTEM MODE
2956 */
2957
2958int
2959pmc_getrowdisp(int ri)
2960{
2961	return pmc_pmcdisp[ri];
2962}
2963
2964/*
2965 * Check if a PMC at row index 'ri' can be allocated to the current
2966 * process.
2967 *
2968 * Allocation can fail if:
2969 *   - the current process is already being profiled by a PMC at index 'ri',
2970 *     attached to it via OP_PMCATTACH.
2971 *   - the current process has already allocated a PMC at index 'ri'
2972 *     via OP_ALLOCATE.
2973 */
2974
2975static int
2976pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2977{
2978	enum pmc_mode mode;
2979	struct pmc *pm;
2980	struct pmc_owner *po;
2981	struct pmc_process *pp;
2982
2983	PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2984	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2985
2986	/*
2987	 * We shouldn't have already allocated a process-mode PMC at
2988	 * row index 'ri'.
2989	 *
2990	 * We shouldn't have allocated a system-wide PMC on the same
2991	 * CPU and same RI.
2992	 */
2993	if ((po = pmc_find_owner_descriptor(p)) != NULL)
2994		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2995		    if (PMC_TO_ROWINDEX(pm) == ri) {
2996			    mode = PMC_TO_MODE(pm);
2997			    if (PMC_IS_VIRTUAL_MODE(mode))
2998				    return EEXIST;
2999			    if (PMC_IS_SYSTEM_MODE(mode) &&
3000				(int) PMC_TO_CPU(pm) == cpu)
3001				    return EEXIST;
3002		    }
3003	        }
3004
3005	/*
3006	 * We also shouldn't be the target of any PMC at this index
3007	 * since otherwise a PMC_ATTACH to ourselves will fail.
3008	 */
3009	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
3010		if (pp->pp_pmcs[ri].pp_pmc)
3011			return EEXIST;
3012
3013	PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
3014	    p, p->p_pid, p->p_comm, ri);
3015
3016	return 0;
3017}
3018
3019/*
3020 * Check if a given PMC at row index 'ri' can be currently used in
3021 * mode 'mode'.
3022 */
3023
3024static int
3025pmc_can_allocate_row(int ri, enum pmc_mode mode)
3026{
3027	enum pmc_disp	disp;
3028
3029	sx_assert(&pmc_sx, SX_XLOCKED);
3030
3031	PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
3032
3033	if (PMC_IS_SYSTEM_MODE(mode))
3034		disp = PMC_DISP_STANDALONE;
3035	else
3036		disp = PMC_DISP_THREAD;
3037
3038	/*
3039	 * check disposition for PMC row 'ri':
3040	 *
3041	 * Expected disposition		Row-disposition		Result
3042	 *
3043	 * STANDALONE			STANDALONE or FREE	proceed
3044	 * STANDALONE			THREAD			fail
3045	 * THREAD			THREAD or FREE		proceed
3046	 * THREAD			STANDALONE		fail
3047	 */
3048
3049	if (!PMC_ROW_DISP_IS_FREE(ri) &&
3050	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
3051	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
3052		return EBUSY;
3053
3054	/*
3055	 * All OK
3056	 */
3057
3058	PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
3059
3060	return 0;
3061
3062}
3063
3064/*
3065 * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
3066 */
3067
3068static struct pmc *
3069pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
3070{
3071	struct pmc *pm;
3072
3073	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
3074	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
3075		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
3076
3077	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
3078	    if (pm->pm_id == pmcid)
3079		    return pm;
3080
3081	return NULL;
3082}
3083
3084static int
3085pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
3086{
3087
3088	struct pmc *pm, *opm;
3089	struct pmc_owner *po;
3090	struct pmc_process *pp;
3091
3092	PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
3093	if (PMC_ID_TO_ROWINDEX(pmcid) >= md->pmd_npmc)
3094		return (EINVAL);
3095
3096	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) {
3097		/*
3098		 * In case of PMC_F_DESCENDANTS child processes we will not find
3099		 * the current process in the owners hash list.  Find the owner
3100		 * process first and from there lookup the po.
3101		 */
3102		if ((pp = pmc_find_process_descriptor(curthread->td_proc,
3103		    PMC_FLAG_NONE)) == NULL) {
3104			return ESRCH;
3105		} else {
3106			opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc;
3107			if (opm == NULL)
3108				return ESRCH;
3109			if ((opm->pm_flags & (PMC_F_ATTACHED_TO_OWNER|
3110			    PMC_F_DESCENDANTS)) != (PMC_F_ATTACHED_TO_OWNER|
3111			    PMC_F_DESCENDANTS))
3112				return ESRCH;
3113			po = opm->pm_owner;
3114		}
3115	}
3116
3117	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
3118		return EINVAL;
3119
3120	PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
3121
3122	*pmc = pm;
3123	return 0;
3124}
3125
3126/*
3127 * Start a PMC.
3128 */
3129
3130static int
3131pmc_start(struct pmc *pm)
3132{
3133	enum pmc_mode mode;
3134	struct pmc_owner *po;
3135	struct pmc_binding pb;
3136	struct pmc_classdep *pcd;
3137	int adjri, error, cpu, ri;
3138
3139	KASSERT(pm != NULL,
3140	    ("[pmc,%d] null pm", __LINE__));
3141
3142	mode = PMC_TO_MODE(pm);
3143	ri   = PMC_TO_ROWINDEX(pm);
3144	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
3145
3146	error = 0;
3147
3148	PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
3149
3150	po = pm->pm_owner;
3151
3152	/*
3153	 * Disallow PMCSTART if a logfile is required but has not been
3154	 * configured yet.
3155	 */
3156	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
3157	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
3158		return (EDOOFUS);	/* programming error */
3159
3160	/*
3161	 * If this is a sampling mode PMC, log mapping information for
3162	 * the kernel modules that are currently loaded.
3163	 */
3164	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3165	    pmc_log_kernel_mappings(pm);
3166
3167	if (PMC_IS_VIRTUAL_MODE(mode)) {
3168
3169		/*
3170		 * If a PMCATTACH has never been done on this PMC,
3171		 * attach it to its owner process.
3172		 */
3173
3174		if (LIST_EMPTY(&pm->pm_targets))
3175			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
3176			    pmc_attach_process(po->po_owner, pm);
3177
3178		/*
3179		 * If the PMC is attached to its owner, then force a context
3180		 * switch to ensure that the MD state gets set correctly.
3181		 */
3182
3183		if (error == 0) {
3184			pm->pm_state = PMC_STATE_RUNNING;
3185			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
3186				pmc_force_context_switch();
3187		}
3188
3189		return (error);
3190	}
3191
3192
3193	/*
3194	 * A system-wide PMC.
3195	 *
3196	 * Add the owner to the global list if this is a system-wide
3197	 * sampling PMC.
3198	 */
3199
3200	if (mode == PMC_MODE_SS) {
3201		/*
3202		 * Log mapping information for all existing processes in the
3203		 * system.  Subsequent mappings are logged as they happen;
3204		 * see pmc_process_mmap().
3205		 */
3206		if (po->po_logprocmaps == 0) {
3207			pmc_log_all_process_mappings(po);
3208			po->po_logprocmaps = 1;
3209		}
3210		po->po_sscount++;
3211		if (po->po_sscount == 1) {
3212			atomic_add_rel_int(&pmc_ss_count, 1);
3213			CK_LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
3214			PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
3215		}
3216	}
3217
3218	/*
3219	 * Move to the CPU associated with this
3220	 * PMC, and start the hardware.
3221	 */
3222
3223	pmc_save_cpu_binding(&pb);
3224
3225	cpu = PMC_TO_CPU(pm);
3226
3227	if (!pmc_cpu_is_active(cpu))
3228		return (ENXIO);
3229
3230	pmc_select_cpu(cpu);
3231
3232	/*
3233	 * global PMCs are configured at allocation time
3234	 * so write out the initial value and start the PMC.
3235	 */
3236
3237	pm->pm_state = PMC_STATE_RUNNING;
3238
3239	critical_enter();
3240	if ((error = pcd->pcd_write_pmc(cpu, adjri,
3241		 PMC_IS_SAMPLING_MODE(mode) ?
3242		 pm->pm_sc.pm_reloadcount :
3243		 pm->pm_sc.pm_initial)) == 0) {
3244		/* If a sampling mode PMC, reset stalled state. */
3245		if (PMC_IS_SAMPLING_MODE(mode))
3246			pm->pm_pcpu_state[cpu].pps_stalled = 0;
3247
3248		/* Indicate that we desire this to run. Start it. */
3249		pm->pm_pcpu_state[cpu].pps_cpustate = 1;
3250		error = pcd->pcd_start_pmc(cpu, adjri);
3251	}
3252	critical_exit();
3253
3254	pmc_restore_cpu_binding(&pb);
3255
3256	return (error);
3257}
3258
3259/*
3260 * Stop a PMC.
3261 */
3262
3263static int
3264pmc_stop(struct pmc *pm)
3265{
3266	struct pmc_owner *po;
3267	struct pmc_binding pb;
3268	struct pmc_classdep *pcd;
3269	int adjri, cpu, error, ri;
3270
3271	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
3272
3273	PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
3274	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
3275
3276	pm->pm_state = PMC_STATE_STOPPED;
3277
3278	/*
3279	 * If the PMC is a virtual mode one, changing the state to
3280	 * non-RUNNING is enough to ensure that the PMC never gets
3281	 * scheduled.
3282	 *
3283	 * If this PMC is current running on a CPU, then it will
3284	 * handled correctly at the time its target process is context
3285	 * switched out.
3286	 */
3287
3288	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
3289		return 0;
3290
3291	/*
3292	 * A system-mode PMC.  Move to the CPU associated with
3293	 * this PMC, and stop the hardware.  We update the
3294	 * 'initial count' so that a subsequent PMCSTART will
3295	 * resume counting from the current hardware count.
3296	 */
3297
3298	pmc_save_cpu_binding(&pb);
3299
3300	cpu = PMC_TO_CPU(pm);
3301
3302	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
3303	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
3304
3305	if (!pmc_cpu_is_active(cpu))
3306		return ENXIO;
3307
3308	pmc_select_cpu(cpu);
3309
3310	ri = PMC_TO_ROWINDEX(pm);
3311	pcd = pmc_ri_to_classdep(md, ri, &adjri);
3312
3313	pm->pm_pcpu_state[cpu].pps_cpustate = 0;
3314	critical_enter();
3315	if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
3316		error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
3317	critical_exit();
3318
3319	pmc_restore_cpu_binding(&pb);
3320
3321	po = pm->pm_owner;
3322
3323	/* remove this owner from the global list of SS PMC owners */
3324	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
3325		po->po_sscount--;
3326		if (po->po_sscount == 0) {
3327			atomic_subtract_rel_int(&pmc_ss_count, 1);
3328			CK_LIST_REMOVE(po, po_ssnext);
3329			epoch_wait_preempt(global_epoch_preempt);
3330			PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
3331		}
3332	}
3333
3334	return (error);
3335}
3336
3337static struct pmc_classdep *
3338pmc_class_to_classdep(enum pmc_class class)
3339{
3340	int n;
3341
3342	for (n = 0; n < md->pmd_nclass; n++)
3343		if (md->pmd_classdep[n].pcd_class == class)
3344			return (&md->pmd_classdep[n]);
3345	return (NULL);
3346}
3347
3348#if defined(HWPMC_DEBUG) && defined(KTR)
3349static const char *pmc_op_to_name[] = {
3350#undef	__PMC_OP
3351#define	__PMC_OP(N, D)	#N ,
3352	__PMC_OPS()
3353	NULL
3354};
3355#endif
3356
3357/*
3358 * The syscall interface
3359 */
3360
3361#define	PMC_GET_SX_XLOCK(...) do {		\
3362	sx_xlock(&pmc_sx);			\
3363	if (pmc_hook == NULL) {			\
3364		sx_xunlock(&pmc_sx);		\
3365		return __VA_ARGS__;		\
3366	}					\
3367} while (0)
3368
3369#define	PMC_DOWNGRADE_SX() do {			\
3370	sx_downgrade(&pmc_sx);			\
3371	is_sx_downgraded = 1;			\
3372} while (0)
3373
3374static int
3375pmc_syscall_handler(struct thread *td, void *syscall_args)
3376{
3377	int error, is_sx_downgraded, op;
3378	struct pmc_syscall_args *c;
3379	void *pmclog_proc_handle;
3380	void *arg;
3381
3382	c = (struct pmc_syscall_args *)syscall_args;
3383	op = c->pmop_code;
3384	arg = c->pmop_data;
3385	/* PMC isn't set up yet */
3386	if (pmc_hook == NULL)
3387		return (EINVAL);
3388	if (op == PMC_OP_CONFIGURELOG) {
3389		/*
3390		 * We cannot create the logging process inside
3391		 * pmclog_configure_log() because there is a LOR
3392		 * between pmc_sx and process structure locks.
3393		 * Instead, pre-create the process and ignite the loop
3394		 * if everything is fine, otherwise direct the process
3395		 * to exit.
3396		 */
3397		error = pmclog_proc_create(td, &pmclog_proc_handle);
3398		if (error != 0)
3399			goto done_syscall;
3400	}
3401
3402	PMC_GET_SX_XLOCK(ENOSYS);
3403	is_sx_downgraded = 0;
3404	PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
3405	    pmc_op_to_name[op], arg);
3406
3407	error = 0;
3408	counter_u64_add(pmc_stats.pm_syscalls, 1);
3409
3410	switch (op) {
3411
3412
3413	/*
3414	 * Configure a log file.
3415	 *
3416	 * XXX This OP will be reworked.
3417	 */
3418
3419	case PMC_OP_CONFIGURELOG:
3420	{
3421		struct proc *p;
3422		struct pmc *pm;
3423		struct pmc_owner *po;
3424		struct pmc_op_configurelog cl;
3425
3426		if ((error = copyin(arg, &cl, sizeof(cl))) != 0) {
3427			pmclog_proc_ignite(pmclog_proc_handle, NULL);
3428			break;
3429		}
3430
3431		/* mark this process as owning a log file */
3432		p = td->td_proc;
3433		if ((po = pmc_find_owner_descriptor(p)) == NULL)
3434			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
3435				pmclog_proc_ignite(pmclog_proc_handle, NULL);
3436				error = ENOMEM;
3437				break;
3438			}
3439
3440		/*
3441		 * If a valid fd was passed in, try to configure that,
3442		 * otherwise if 'fd' was less than zero and there was
3443		 * a log file configured, flush its buffers and
3444		 * de-configure it.
3445		 */
3446		if (cl.pm_logfd >= 0) {
3447			error = pmclog_configure_log(md, po, cl.pm_logfd);
3448			pmclog_proc_ignite(pmclog_proc_handle, error == 0 ?
3449			    po : NULL);
3450		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
3451			pmclog_proc_ignite(pmclog_proc_handle, NULL);
3452			error = pmclog_close(po);
3453			if (error == 0) {
3454				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
3455				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
3456					pm->pm_state == PMC_STATE_RUNNING)
3457					    pmc_stop(pm);
3458				error = pmclog_deconfigure_log(po);
3459			}
3460		} else {
3461			pmclog_proc_ignite(pmclog_proc_handle, NULL);
3462			error = EINVAL;
3463		}
3464	}
3465	break;
3466
3467	/*
3468	 * Flush a log file.
3469	 */
3470
3471	case PMC_OP_FLUSHLOG:
3472	{
3473		struct pmc_owner *po;
3474
3475		sx_assert(&pmc_sx, SX_XLOCKED);
3476
3477		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3478			error = EINVAL;
3479			break;
3480		}
3481
3482		error = pmclog_flush(po, 0);
3483	}
3484	break;
3485
3486	/*
3487	 * Close a log file.
3488	 */
3489
3490	case PMC_OP_CLOSELOG:
3491	{
3492		struct pmc_owner *po;
3493
3494		sx_assert(&pmc_sx, SX_XLOCKED);
3495
3496		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3497			error = EINVAL;
3498			break;
3499		}
3500
3501		error = pmclog_close(po);
3502	}
3503	break;
3504
3505	/*
3506	 * Retrieve hardware configuration.
3507	 */
3508
3509	case PMC_OP_GETCPUINFO:	/* CPU information */
3510	{
3511		struct pmc_op_getcpuinfo gci;
3512		struct pmc_classinfo *pci;
3513		struct pmc_classdep *pcd;
3514		int cl;
3515
3516		memset(&gci, 0, sizeof(gci));
3517		gci.pm_cputype = md->pmd_cputype;
3518		gci.pm_ncpu    = pmc_cpu_max();
3519		gci.pm_npmc    = md->pmd_npmc;
3520		gci.pm_nclass  = md->pmd_nclass;
3521		pci = gci.pm_classes;
3522		pcd = md->pmd_classdep;
3523		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
3524			pci->pm_caps  = pcd->pcd_caps;
3525			pci->pm_class = pcd->pcd_class;
3526			pci->pm_width = pcd->pcd_width;
3527			pci->pm_num   = pcd->pcd_num;
3528		}
3529		error = copyout(&gci, arg, sizeof(gci));
3530	}
3531	break;
3532
3533	/*
3534	 * Retrieve soft events list.
3535	 */
3536	case PMC_OP_GETDYNEVENTINFO:
3537	{
3538		enum pmc_class			cl;
3539		enum pmc_event			ev;
3540		struct pmc_op_getdyneventinfo	*gei;
3541		struct pmc_dyn_event_descr	dev;
3542		struct pmc_soft			*ps;
3543		uint32_t			nevent;
3544
3545		sx_assert(&pmc_sx, SX_LOCKED);
3546
3547		gei = (struct pmc_op_getdyneventinfo *) arg;
3548
3549		if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
3550			break;
3551
3552		/* Only SOFT class is dynamic. */
3553		if (cl != PMC_CLASS_SOFT) {
3554			error = EINVAL;
3555			break;
3556		}
3557
3558		nevent = 0;
3559		for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
3560			ps = pmc_soft_ev_acquire(ev);
3561			if (ps == NULL)
3562				continue;
3563			bcopy(&ps->ps_ev, &dev, sizeof(dev));
3564			pmc_soft_ev_release(ps);
3565
3566			error = copyout(&dev,
3567			    &gei->pm_events[nevent],
3568			    sizeof(struct pmc_dyn_event_descr));
3569			if (error != 0)
3570				break;
3571			nevent++;
3572		}
3573		if (error != 0)
3574			break;
3575
3576		error = copyout(&nevent, &gei->pm_nevent,
3577		    sizeof(nevent));
3578	}
3579	break;
3580
3581	/*
3582	 * Get module statistics
3583	 */
3584
3585	case PMC_OP_GETDRIVERSTATS:
3586	{
3587		struct pmc_op_getdriverstats gms;
3588#define CFETCH(a, b, field) a.field = counter_u64_fetch(b.field)
3589		CFETCH(gms, pmc_stats, pm_intr_ignored);
3590		CFETCH(gms, pmc_stats, pm_intr_processed);
3591		CFETCH(gms, pmc_stats, pm_intr_bufferfull);
3592		CFETCH(gms, pmc_stats, pm_syscalls);
3593		CFETCH(gms, pmc_stats, pm_syscall_errors);
3594		CFETCH(gms, pmc_stats, pm_buffer_requests);
3595		CFETCH(gms, pmc_stats, pm_buffer_requests_failed);
3596		CFETCH(gms, pmc_stats, pm_log_sweeps);
3597#undef CFETCH
3598		error = copyout(&gms, arg, sizeof(gms));
3599	}
3600	break;
3601
3602
3603	/*
3604	 * Retrieve module version number
3605	 */
3606
3607	case PMC_OP_GETMODULEVERSION:
3608	{
3609		uint32_t cv, modv;
3610
3611		/* retrieve the client's idea of the ABI version */
3612		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3613			break;
3614		/* don't service clients newer than our driver */
3615		modv = PMC_VERSION;
3616		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3617			error = EPROGMISMATCH;
3618			break;
3619		}
3620		error = copyout(&modv, arg, sizeof(int));
3621	}
3622	break;
3623
3624
3625	/*
3626	 * Retrieve the state of all the PMCs on a given
3627	 * CPU.
3628	 */
3629
3630	case PMC_OP_GETPMCINFO:
3631	{
3632		int ari;
3633		struct pmc *pm;
3634		size_t pmcinfo_size;
3635		uint32_t cpu, n, npmc;
3636		struct pmc_owner *po;
3637		struct pmc_binding pb;
3638		struct pmc_classdep *pcd;
3639		struct pmc_info *p, *pmcinfo;
3640		struct pmc_op_getpmcinfo *gpi;
3641
3642		PMC_DOWNGRADE_SX();
3643
3644		gpi = (struct pmc_op_getpmcinfo *) arg;
3645
3646		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3647			break;
3648
3649		if (cpu >= pmc_cpu_max()) {
3650			error = EINVAL;
3651			break;
3652		}
3653
3654		if (!pmc_cpu_is_active(cpu)) {
3655			error = ENXIO;
3656			break;
3657		}
3658
3659		/* switch to CPU 'cpu' */
3660		pmc_save_cpu_binding(&pb);
3661		pmc_select_cpu(cpu);
3662
3663		npmc = md->pmd_npmc;
3664
3665		pmcinfo_size = npmc * sizeof(struct pmc_info);
3666		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK | M_ZERO);
3667
3668		p = pmcinfo;
3669
3670		for (n = 0; n < md->pmd_npmc; n++, p++) {
3671
3672			pcd = pmc_ri_to_classdep(md, n, &ari);
3673
3674			KASSERT(pcd != NULL,
3675			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3676
3677			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3678				break;
3679
3680			if (PMC_ROW_DISP_IS_STANDALONE(n))
3681				p->pm_rowdisp = PMC_DISP_STANDALONE;
3682			else if (PMC_ROW_DISP_IS_THREAD(n))
3683				p->pm_rowdisp = PMC_DISP_THREAD;
3684			else
3685				p->pm_rowdisp = PMC_DISP_FREE;
3686
3687			p->pm_ownerpid = -1;
3688
3689			if (pm == NULL)	/* no PMC associated */
3690				continue;
3691
3692			po = pm->pm_owner;
3693
3694			KASSERT(po->po_owner != NULL,
3695			    ("[pmc,%d] pmc_owner had a null proc pointer",
3696				__LINE__));
3697
3698			p->pm_ownerpid = po->po_owner->p_pid;
3699			p->pm_mode     = PMC_TO_MODE(pm);
3700			p->pm_event    = pm->pm_event;
3701			p->pm_flags    = pm->pm_flags;
3702
3703			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3704				p->pm_reloadcount =
3705				    pm->pm_sc.pm_reloadcount;
3706		}
3707
3708		pmc_restore_cpu_binding(&pb);
3709
3710		/* now copy out the PMC info collected */
3711		if (error == 0)
3712			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3713
3714		free(pmcinfo, M_PMC);
3715	}
3716	break;
3717
3718
3719	/*
3720	 * Set the administrative state of a PMC.  I.e. whether
3721	 * the PMC is to be used or not.
3722	 */
3723
3724	case PMC_OP_PMCADMIN:
3725	{
3726		int cpu, ri;
3727		enum pmc_state request;
3728		struct pmc_cpu *pc;
3729		struct pmc_hw *phw;
3730		struct pmc_op_pmcadmin pma;
3731		struct pmc_binding pb;
3732
3733		sx_assert(&pmc_sx, SX_XLOCKED);
3734
3735		KASSERT(td == curthread,
3736		    ("[pmc,%d] td != curthread", __LINE__));
3737
3738		error = priv_check(td, PRIV_PMC_MANAGE);
3739		if (error)
3740			break;
3741
3742		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3743			break;
3744
3745		cpu = pma.pm_cpu;
3746
3747		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3748			error = EINVAL;
3749			break;
3750		}
3751
3752		if (!pmc_cpu_is_active(cpu)) {
3753			error = ENXIO;
3754			break;
3755		}
3756
3757		request = pma.pm_state;
3758
3759		if (request != PMC_STATE_DISABLED &&
3760		    request != PMC_STATE_FREE) {
3761			error = EINVAL;
3762			break;
3763		}
3764
3765		ri = pma.pm_pmc; /* pmc id == row index */
3766		if (ri < 0 || ri >= (int) md->pmd_npmc) {
3767			error = EINVAL;
3768			break;
3769		}
3770
3771		/*
3772		 * We can't disable a PMC with a row-index allocated
3773		 * for process virtual PMCs.
3774		 */
3775
3776		if (PMC_ROW_DISP_IS_THREAD(ri) &&
3777		    request == PMC_STATE_DISABLED) {
3778			error = EBUSY;
3779			break;
3780		}
3781
3782		/*
3783		 * otherwise, this PMC on this CPU is either free or
3784		 * in system-wide mode.
3785		 */
3786
3787		pmc_save_cpu_binding(&pb);
3788		pmc_select_cpu(cpu);
3789
3790		pc  = pmc_pcpu[cpu];
3791		phw = pc->pc_hwpmcs[ri];
3792
3793		/*
3794		 * XXX do we need some kind of 'forced' disable?
3795		 */
3796
3797		if (phw->phw_pmc == NULL) {
3798			if (request == PMC_STATE_DISABLED &&
3799			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3800				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3801				PMC_MARK_ROW_STANDALONE(ri);
3802			} else if (request == PMC_STATE_FREE &&
3803			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3804				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3805				PMC_UNMARK_ROW_STANDALONE(ri);
3806			}
3807			/* other cases are a no-op */
3808		} else
3809			error = EBUSY;
3810
3811		pmc_restore_cpu_binding(&pb);
3812	}
3813	break;
3814
3815
3816	/*
3817	 * Allocate a PMC.
3818	 */
3819
3820	case PMC_OP_PMCALLOCATE:
3821	{
3822		int adjri, n;
3823		u_int cpu;
3824		uint32_t caps;
3825		struct pmc *pmc;
3826		enum pmc_mode mode;
3827		struct pmc_hw *phw;
3828		struct pmc_binding pb;
3829		struct pmc_classdep *pcd;
3830		struct pmc_op_pmcallocate pa;
3831
3832		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3833			break;
3834
3835		caps = pa.pm_caps;
3836		mode = pa.pm_mode;
3837		cpu  = pa.pm_cpu;
3838
3839		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3840		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3841		    (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3842			error = EINVAL;
3843			break;
3844		}
3845
3846		/*
3847		 * Virtual PMCs should only ask for a default CPU.
3848		 * System mode PMCs need to specify a non-default CPU.
3849		 */
3850
3851		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3852		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3853			error = EINVAL;
3854			break;
3855		}
3856
3857		/*
3858		 * Check that an inactive CPU is not being asked for.
3859		 */
3860
3861		if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3862			error = ENXIO;
3863			break;
3864		}
3865
3866		/*
3867		 * Refuse an allocation for a system-wide PMC if this
3868		 * process has been jailed, or if this process lacks
3869		 * super-user credentials and the sysctl tunable
3870		 * 'security.bsd.unprivileged_syspmcs' is zero.
3871		 */
3872
3873		if (PMC_IS_SYSTEM_MODE(mode)) {
3874			if (jailed(curthread->td_ucred)) {
3875				error = EPERM;
3876				break;
3877			}
3878			if (!pmc_unprivileged_syspmcs) {
3879				error = priv_check(curthread,
3880				    PRIV_PMC_SYSTEM);
3881				if (error)
3882					break;
3883			}
3884		}
3885
3886		/*
3887		 * Look for valid values for 'pm_flags'
3888		 */
3889
3890		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3891		    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN |
3892		    PMC_F_USERCALLCHAIN)) != 0) {
3893			error = EINVAL;
3894			break;
3895		}
3896
3897		/* PMC_F_USERCALLCHAIN is only valid with PMC_F_CALLCHAIN */
3898		if ((pa.pm_flags & (PMC_F_CALLCHAIN | PMC_F_USERCALLCHAIN)) ==
3899		    PMC_F_USERCALLCHAIN) {
3900			error = EINVAL;
3901			break;
3902		}
3903
3904		/* PMC_F_USERCALLCHAIN is only valid for sampling mode */
3905		if (pa.pm_flags & PMC_F_USERCALLCHAIN &&
3906			mode != PMC_MODE_TS && mode != PMC_MODE_SS) {
3907			error = EINVAL;
3908			break;
3909		}
3910
3911		/* process logging options are not allowed for system PMCs */
3912		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3913		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3914			error = EINVAL;
3915			break;
3916		}
3917
3918		/*
3919		 * All sampling mode PMCs need to be able to interrupt the
3920		 * CPU.
3921		 */
3922		if (PMC_IS_SAMPLING_MODE(mode))
3923			caps |= PMC_CAP_INTERRUPT;
3924
3925		/* A valid class specifier should have been passed in. */
3926		pcd = pmc_class_to_classdep(pa.pm_class);
3927		if (pcd == NULL) {
3928			error = EINVAL;
3929			break;
3930		}
3931
3932		/* The requested PMC capabilities should be feasible. */
3933		if ((pcd->pcd_caps & caps) != caps) {
3934			error = EOPNOTSUPP;
3935			break;
3936		}
3937
3938		PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3939		    pa.pm_ev, caps, mode, cpu);
3940
3941		pmc = pmc_allocate_pmc_descriptor();
3942		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3943		    PMC_ID_INVALID);
3944		pmc->pm_event = pa.pm_ev;
3945		pmc->pm_state = PMC_STATE_FREE;
3946		pmc->pm_caps  = caps;
3947		pmc->pm_flags = pa.pm_flags;
3948
3949		/* XXX set lower bound on sampling for process counters */
3950		if (PMC_IS_SAMPLING_MODE(mode)) {
3951			/*
3952			 * Don't permit requested sample rate to be less than 1000
3953			 */
3954			if (pa.pm_count < 1000)
3955				log(LOG_WARNING,
3956					"pmcallocate: passed sample rate %ju - setting to 1000\n",
3957					(uintmax_t)pa.pm_count);
3958			pmc->pm_sc.pm_reloadcount = MAX(1000, pa.pm_count);
3959		} else
3960			pmc->pm_sc.pm_initial = pa.pm_count;
3961
3962		/* switch thread to CPU 'cpu' */
3963		pmc_save_cpu_binding(&pb);
3964
3965#define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
3966	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
3967	 PMC_PHW_FLAG_IS_SHAREABLE)
3968#define	PMC_IS_UNALLOCATED(cpu, n)				\
3969	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3970
3971		if (PMC_IS_SYSTEM_MODE(mode)) {
3972			pmc_select_cpu(cpu);
3973			for (n = pcd->pcd_ri; n < (int) md->pmd_npmc; n++) {
3974				pcd = pmc_ri_to_classdep(md, n, &adjri);
3975				if (pmc_can_allocate_row(n, mode) == 0 &&
3976				    pmc_can_allocate_rowindex(
3977					    curthread->td_proc, n, cpu) == 0 &&
3978				    (PMC_IS_UNALLOCATED(cpu, n) ||
3979				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3980				    pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3981					&pa) == 0)
3982					break;
3983			}
3984		} else {
3985			/* Process virtual mode */
3986			for (n = pcd->pcd_ri; n < (int) md->pmd_npmc; n++) {
3987				pcd = pmc_ri_to_classdep(md, n, &adjri);
3988				if (pmc_can_allocate_row(n, mode) == 0 &&
3989				    pmc_can_allocate_rowindex(
3990					    curthread->td_proc, n,
3991					    PMC_CPU_ANY) == 0 &&
3992				    pcd->pcd_allocate_pmc(curthread->td_oncpu,
3993					adjri, pmc, &pa) == 0)
3994					break;
3995			}
3996		}
3997
3998#undef	PMC_IS_UNALLOCATED
3999#undef	PMC_IS_SHAREABLE_PMC
4000
4001		pmc_restore_cpu_binding(&pb);
4002
4003		if (n == (int) md->pmd_npmc) {
4004			pmc_destroy_pmc_descriptor(pmc);
4005			pmc = NULL;
4006			error = EINVAL;
4007			break;
4008		}
4009
4010		/* Fill in the correct value in the ID field */
4011		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
4012
4013		PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
4014		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
4015
4016		/* Process mode PMCs with logging enabled need log files */
4017		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
4018			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
4019
4020		/* All system mode sampling PMCs require a log file */
4021		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
4022			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
4023
4024		/*
4025		 * Configure global pmc's immediately
4026		 */
4027
4028		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
4029
4030			pmc_save_cpu_binding(&pb);
4031			pmc_select_cpu(cpu);
4032
4033			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
4034			pcd = pmc_ri_to_classdep(md, n, &adjri);
4035
4036			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
4037			    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
4038				(void) pcd->pcd_release_pmc(cpu, adjri, pmc);
4039				pmc_destroy_pmc_descriptor(pmc);
4040				pmc = NULL;
4041				pmc_restore_cpu_binding(&pb);
4042				error = EPERM;
4043				break;
4044			}
4045
4046			pmc_restore_cpu_binding(&pb);
4047		}
4048
4049		pmc->pm_state    = PMC_STATE_ALLOCATED;
4050		pmc->pm_class	= pa.pm_class;
4051
4052		/*
4053		 * mark row disposition
4054		 */
4055
4056		if (PMC_IS_SYSTEM_MODE(mode))
4057			PMC_MARK_ROW_STANDALONE(n);
4058		else
4059			PMC_MARK_ROW_THREAD(n);
4060
4061		/*
4062		 * Register this PMC with the current thread as its owner.
4063		 */
4064
4065		if ((error =
4066		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
4067			pmc_release_pmc_descriptor(pmc);
4068			pmc_destroy_pmc_descriptor(pmc);
4069			pmc = NULL;
4070			break;
4071		}
4072
4073
4074		/*
4075		 * Return the allocated index.
4076		 */
4077
4078		pa.pm_pmcid = pmc->pm_id;
4079
4080		error = copyout(&pa, arg, sizeof(pa));
4081	}
4082	break;
4083
4084
4085	/*
4086	 * Attach a PMC to a process.
4087	 */
4088
4089	case PMC_OP_PMCATTACH:
4090	{
4091		struct pmc *pm;
4092		struct proc *p;
4093		struct pmc_op_pmcattach a;
4094
4095		sx_assert(&pmc_sx, SX_XLOCKED);
4096
4097		if ((error = copyin(arg, &a, sizeof(a))) != 0)
4098			break;
4099
4100		if (a.pm_pid < 0) {
4101			error = EINVAL;
4102			break;
4103		} else if (a.pm_pid == 0)
4104			a.pm_pid = td->td_proc->p_pid;
4105
4106		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
4107			break;
4108
4109		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
4110			error = EINVAL;
4111			break;
4112		}
4113
4114		/* PMCs may be (re)attached only when allocated or stopped */
4115		if (pm->pm_state == PMC_STATE_RUNNING) {
4116			error = EBUSY;
4117			break;
4118		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
4119		    pm->pm_state != PMC_STATE_STOPPED) {
4120			error = EINVAL;
4121			break;
4122		}
4123
4124		/* lookup pid */
4125		if ((p = pfind(a.pm_pid)) == NULL) {
4126			error = ESRCH;
4127			break;
4128		}
4129
4130		/*
4131		 * Ignore processes that are working on exiting.
4132		 */
4133		if (p->p_flag & P_WEXIT) {
4134			error = ESRCH;
4135			PROC_UNLOCK(p);	/* pfind() returns a locked process */
4136			break;
4137		}
4138
4139		/*
4140		 * we are allowed to attach a PMC to a process if
4141		 * we can debug it.
4142		 */
4143		error = p_candebug(curthread, p);
4144
4145		PROC_UNLOCK(p);
4146
4147		if (error == 0)
4148			error = pmc_attach_process(p, pm);
4149	}
4150	break;
4151
4152
4153	/*
4154	 * Detach an attached PMC from a process.
4155	 */
4156
4157	case PMC_OP_PMCDETACH:
4158	{
4159		struct pmc *pm;
4160		struct proc *p;
4161		struct pmc_op_pmcattach a;
4162
4163		if ((error = copyin(arg, &a, sizeof(a))) != 0)
4164			break;
4165
4166		if (a.pm_pid < 0) {
4167			error = EINVAL;
4168			break;
4169		} else if (a.pm_pid == 0)
4170			a.pm_pid = td->td_proc->p_pid;
4171
4172		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
4173			break;
4174
4175		if ((p = pfind(a.pm_pid)) == NULL) {
4176			error = ESRCH;
4177			break;
4178		}
4179
4180		/*
4181		 * Treat processes that are in the process of exiting
4182		 * as if they were not present.
4183		 */
4184
4185		if (p->p_flag & P_WEXIT)
4186			error = ESRCH;
4187
4188		PROC_UNLOCK(p);	/* pfind() returns a locked process */
4189
4190		if (error == 0)
4191			error = pmc_detach_process(p, pm);
4192	}
4193	break;
4194
4195
4196	/*
4197	 * Retrieve the MSR number associated with the counter
4198	 * 'pmc_id'.  This allows processes to directly use RDPMC
4199	 * instructions to read their PMCs, without the overhead of a
4200	 * system call.
4201	 */
4202
4203	case PMC_OP_PMCGETMSR:
4204	{
4205		int adjri, ri;
4206		struct pmc *pm;
4207		struct pmc_target *pt;
4208		struct pmc_op_getmsr gm;
4209		struct pmc_classdep *pcd;
4210
4211		PMC_DOWNGRADE_SX();
4212
4213		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
4214			break;
4215
4216		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
4217			break;
4218
4219		/*
4220		 * The allocated PMC has to be a process virtual PMC,
4221		 * i.e., of type MODE_T[CS].  Global PMCs can only be
4222		 * read using the PMCREAD operation since they may be
4223		 * allocated on a different CPU than the one we could
4224		 * be running on at the time of the RDPMC instruction.
4225		 *
4226		 * The GETMSR operation is not allowed for PMCs that
4227		 * are inherited across processes.
4228		 */
4229
4230		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
4231		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
4232			error = EINVAL;
4233			break;
4234		}
4235
4236		/*
4237		 * It only makes sense to use a RDPMC (or its
4238		 * equivalent instruction on non-x86 architectures) on
4239		 * a process that has allocated and attached a PMC to
4240		 * itself.  Conversely the PMC is only allowed to have
4241		 * one process attached to it -- its owner.
4242		 */
4243
4244		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
4245		    LIST_NEXT(pt, pt_next) != NULL ||
4246		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
4247			error = EINVAL;
4248			break;
4249		}
4250
4251		ri = PMC_TO_ROWINDEX(pm);
4252		pcd = pmc_ri_to_classdep(md, ri, &adjri);
4253
4254		/* PMC class has no 'GETMSR' support */
4255		if (pcd->pcd_get_msr == NULL) {
4256			error = ENOSYS;
4257			break;
4258		}
4259
4260		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
4261			break;
4262
4263		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
4264			break;
4265
4266		/*
4267		 * Mark our process as using MSRs.  Update machine
4268		 * state using a forced context switch.
4269		 */
4270
4271		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
4272		pmc_force_context_switch();
4273
4274	}
4275	break;
4276
4277	/*
4278	 * Release an allocated PMC
4279	 */
4280
4281	case PMC_OP_PMCRELEASE:
4282	{
4283		pmc_id_t pmcid;
4284		struct pmc *pm;
4285		struct pmc_owner *po;
4286		struct pmc_op_simple sp;
4287
4288		/*
4289		 * Find PMC pointer for the named PMC.
4290		 *
4291		 * Use pmc_release_pmc_descriptor() to switch off the
4292		 * PMC, remove all its target threads, and remove the
4293		 * PMC from its owner's list.
4294		 *
4295		 * Remove the owner record if this is the last PMC
4296		 * owned.
4297		 *
4298		 * Free up space.
4299		 */
4300
4301		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4302			break;
4303
4304		pmcid = sp.pm_pmcid;
4305
4306		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4307			break;
4308
4309		po = pm->pm_owner;
4310		pmc_release_pmc_descriptor(pm);
4311		pmc_maybe_remove_owner(po);
4312		pmc_destroy_pmc_descriptor(pm);
4313	}
4314	break;
4315
4316
4317	/*
4318	 * Read and/or write a PMC.
4319	 */
4320
4321	case PMC_OP_PMCRW:
4322	{
4323		int adjri;
4324		struct pmc *pm;
4325		uint32_t cpu, ri;
4326		pmc_value_t oldvalue;
4327		struct pmc_binding pb;
4328		struct pmc_op_pmcrw prw;
4329		struct pmc_classdep *pcd;
4330		struct pmc_op_pmcrw *pprw;
4331
4332		PMC_DOWNGRADE_SX();
4333
4334		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
4335			break;
4336
4337		ri = 0;
4338		PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
4339		    prw.pm_flags);
4340
4341		/* must have at least one flag set */
4342		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
4343			error = EINVAL;
4344			break;
4345		}
4346
4347		/* locate pmc descriptor */
4348		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
4349			break;
4350
4351		/* Can't read a PMC that hasn't been started. */
4352		if (pm->pm_state != PMC_STATE_ALLOCATED &&
4353		    pm->pm_state != PMC_STATE_STOPPED &&
4354		    pm->pm_state != PMC_STATE_RUNNING) {
4355			error = EINVAL;
4356			break;
4357		}
4358
4359		/* writing a new value is allowed only for 'STOPPED' pmcs */
4360		if (pm->pm_state == PMC_STATE_RUNNING &&
4361		    (prw.pm_flags & PMC_F_NEWVALUE)) {
4362			error = EBUSY;
4363			break;
4364		}
4365
4366		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
4367
4368			/*
4369			 * If this PMC is attached to its owner (i.e.,
4370			 * the process requesting this operation) and
4371			 * is running, then attempt to get an
4372			 * upto-date reading from hardware for a READ.
4373			 * Writes are only allowed when the PMC is
4374			 * stopped, so only update the saved value
4375			 * field.
4376			 *
4377			 * If the PMC is not running, or is not
4378			 * attached to its owner, read/write to the
4379			 * savedvalue field.
4380			 */
4381
4382			ri = PMC_TO_ROWINDEX(pm);
4383			pcd = pmc_ri_to_classdep(md, ri, &adjri);
4384
4385			mtx_pool_lock_spin(pmc_mtxpool, pm);
4386			cpu = curthread->td_oncpu;
4387
4388			if (prw.pm_flags & PMC_F_OLDVALUE) {
4389				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
4390				    (pm->pm_state == PMC_STATE_RUNNING))
4391					error = (*pcd->pcd_read_pmc)(cpu, adjri,
4392					    &oldvalue);
4393				else
4394					oldvalue = pm->pm_gv.pm_savedvalue;
4395			}
4396			if (prw.pm_flags & PMC_F_NEWVALUE)
4397				pm->pm_gv.pm_savedvalue = prw.pm_value;
4398
4399			mtx_pool_unlock_spin(pmc_mtxpool, pm);
4400
4401		} else { /* System mode PMCs */
4402			cpu = PMC_TO_CPU(pm);
4403			ri  = PMC_TO_ROWINDEX(pm);
4404			pcd = pmc_ri_to_classdep(md, ri, &adjri);
4405
4406			if (!pmc_cpu_is_active(cpu)) {
4407				error = ENXIO;
4408				break;
4409			}
4410
4411			/* move this thread to CPU 'cpu' */
4412			pmc_save_cpu_binding(&pb);
4413			pmc_select_cpu(cpu);
4414
4415			critical_enter();
4416			/* save old value */
4417			if (prw.pm_flags & PMC_F_OLDVALUE)
4418				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
4419					 &oldvalue)))
4420					goto error;
4421			/* write out new value */
4422			if (prw.pm_flags & PMC_F_NEWVALUE)
4423				error = (*pcd->pcd_write_pmc)(cpu, adjri,
4424				    prw.pm_value);
4425		error:
4426			critical_exit();
4427			pmc_restore_cpu_binding(&pb);
4428			if (error)
4429				break;
4430		}
4431
4432		pprw = (struct pmc_op_pmcrw *) arg;
4433
4434#ifdef	HWPMC_DEBUG
4435		if (prw.pm_flags & PMC_F_NEWVALUE)
4436			PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
4437			    ri, prw.pm_value, oldvalue);
4438		else if (prw.pm_flags & PMC_F_OLDVALUE)
4439			PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
4440#endif
4441
4442		/* return old value if requested */
4443		if (prw.pm_flags & PMC_F_OLDVALUE)
4444			if ((error = copyout(&oldvalue, &pprw->pm_value,
4445				 sizeof(prw.pm_value))))
4446				break;
4447
4448	}
4449	break;
4450
4451
4452	/*
4453	 * Set the sampling rate for a sampling mode PMC and the
4454	 * initial count for a counting mode PMC.
4455	 */
4456
4457	case PMC_OP_PMCSETCOUNT:
4458	{
4459		struct pmc *pm;
4460		struct pmc_op_pmcsetcount sc;
4461
4462		PMC_DOWNGRADE_SX();
4463
4464		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
4465			break;
4466
4467		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
4468			break;
4469
4470		if (pm->pm_state == PMC_STATE_RUNNING) {
4471			error = EBUSY;
4472			break;
4473		}
4474
4475		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
4476			/*
4477			 * Don't permit requested sample rate to be less than 1000
4478			 */
4479			if (sc.pm_count < 1000)
4480				log(LOG_WARNING,
4481					"pmcsetcount: passed sample rate %ju - setting to 1000\n",
4482					(uintmax_t)sc.pm_count);
4483			pm->pm_sc.pm_reloadcount = MAX(1000, sc.pm_count);
4484		} else
4485			pm->pm_sc.pm_initial = sc.pm_count;
4486	}
4487	break;
4488
4489
4490	/*
4491	 * Start a PMC.
4492	 */
4493
4494	case PMC_OP_PMCSTART:
4495	{
4496		pmc_id_t pmcid;
4497		struct pmc *pm;
4498		struct pmc_op_simple sp;
4499
4500		sx_assert(&pmc_sx, SX_XLOCKED);
4501
4502		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4503			break;
4504
4505		pmcid = sp.pm_pmcid;
4506
4507		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4508			break;
4509
4510		KASSERT(pmcid == pm->pm_id,
4511		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
4512			pm->pm_id, pmcid));
4513
4514		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
4515			break;
4516		else if (pm->pm_state != PMC_STATE_STOPPED &&
4517		    pm->pm_state != PMC_STATE_ALLOCATED) {
4518			error = EINVAL;
4519			break;
4520		}
4521
4522		error = pmc_start(pm);
4523	}
4524	break;
4525
4526
4527	/*
4528	 * Stop a PMC.
4529	 */
4530
4531	case PMC_OP_PMCSTOP:
4532	{
4533		pmc_id_t pmcid;
4534		struct pmc *pm;
4535		struct pmc_op_simple sp;
4536
4537		PMC_DOWNGRADE_SX();
4538
4539		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4540			break;
4541
4542		pmcid = sp.pm_pmcid;
4543
4544		/*
4545		 * Mark the PMC as inactive and invoke the MD stop
4546		 * routines if needed.
4547		 */
4548
4549		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4550			break;
4551
4552		KASSERT(pmcid == pm->pm_id,
4553		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
4554			pm->pm_id, pmcid));
4555
4556		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
4557			break;
4558		else if (pm->pm_state != PMC_STATE_RUNNING) {
4559			error = EINVAL;
4560			break;
4561		}
4562
4563		error = pmc_stop(pm);
4564	}
4565	break;
4566
4567
4568	/*
4569	 * Write a user supplied value to the log file.
4570	 */
4571
4572	case PMC_OP_WRITELOG:
4573	{
4574		struct pmc_op_writelog wl;
4575		struct pmc_owner *po;
4576
4577		PMC_DOWNGRADE_SX();
4578
4579		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
4580			break;
4581
4582		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
4583			error = EINVAL;
4584			break;
4585		}
4586
4587		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
4588			error = EINVAL;
4589			break;
4590		}
4591
4592		error = pmclog_process_userlog(po, &wl);
4593	}
4594	break;
4595
4596
4597	default:
4598		error = EINVAL;
4599		break;
4600	}
4601
4602	if (is_sx_downgraded)
4603		sx_sunlock(&pmc_sx);
4604	else
4605		sx_xunlock(&pmc_sx);
4606done_syscall:
4607	if (error)
4608		counter_u64_add(pmc_stats.pm_syscall_errors, 1);
4609
4610	return (error);
4611}
4612
4613/*
4614 * Helper functions
4615 */
4616
4617
4618/*
4619 * Mark the thread as needing callchain capture and post an AST.  The
4620 * actual callchain capture will be done in a context where it is safe
4621 * to take page faults.
4622 */
4623
4624static void
4625pmc_post_callchain_callback(void)
4626{
4627	struct thread *td;
4628
4629	td = curthread;
4630
4631	/*
4632	 * If there is multiple PMCs for the same interrupt ignore new post
4633	 */
4634	if (td->td_pflags & TDP_CALLCHAIN)
4635		return;
4636
4637	/*
4638	 * Mark this thread as needing callchain capture.
4639	 * `td->td_pflags' will be safe to touch because this thread
4640	 * was in user space when it was interrupted.
4641	 */
4642	td->td_pflags |= TDP_CALLCHAIN;
4643
4644	/*
4645	 * Don't let this thread migrate between CPUs until callchain
4646	 * capture completes.
4647	 */
4648	sched_pin();
4649
4650	return;
4651}
4652
4653/*
4654 * Find a free slot in the per-cpu array of samples and capture the
4655 * current callchain there.  If a sample was successfully added, a bit
4656 * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4657 * needs to be invoked from the clock handler.
4658 *
4659 * This function is meant to be called from an NMI handler.  It cannot
4660 * use any of the locking primitives supplied by the OS.
4661 */
4662
4663static int
4664pmc_add_sample(ring_type_t ring, struct pmc *pm, struct trapframe *tf)
4665{
4666	int error, cpu, callchaindepth, inuserspace;
4667	struct thread *td;
4668	struct pmc_sample *ps;
4669	struct pmc_samplebuffer *psb;
4670
4671	error = 0;
4672
4673	/*
4674	 * Allocate space for a sample buffer.
4675	 */
4676	cpu = curcpu;
4677	psb = pmc_pcpu[cpu]->pc_sb[ring];
4678	inuserspace = TRAPF_USERMODE(tf);
4679	ps = PMC_PROD_SAMPLE(psb);
4680	if (psb->ps_considx != psb->ps_prodidx &&
4681		ps->ps_nsamples) {	/* in use, reader hasn't caught up */
4682		pm->pm_pcpu_state[cpu].pps_stalled = 1;
4683		counter_u64_add(pmc_stats.pm_intr_bufferfull, 1);
4684		PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4685		    cpu, pm, (void *) tf, inuserspace,
4686		    (int) (psb->ps_prodidx & pmc_sample_mask),
4687		    (int) (psb->ps_considx & pmc_sample_mask));
4688		callchaindepth = 1;
4689		error = ENOMEM;
4690		goto done;
4691	}
4692
4693	/* Fill in entry. */
4694	PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4695	    (void *) tf, inuserspace,
4696	    (int) (psb->ps_prodidx & pmc_sample_mask),
4697	    (int) (psb->ps_considx & pmc_sample_mask));
4698
4699	td = curthread;
4700	ps->ps_pmc = pm;
4701	ps->ps_td = td;
4702	ps->ps_pid = td->td_proc->p_pid;
4703	ps->ps_tid = td->td_tid;
4704	ps->ps_tsc = pmc_rdtsc();
4705	ps->ps_ticks = ticks;
4706	ps->ps_cpu = cpu;
4707	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4708
4709	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4710	    pmc_callchaindepth : 1;
4711
4712	MPASS(ps->ps_pc != NULL);
4713	if (callchaindepth == 1)
4714		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4715	else {
4716		/*
4717		 * Kernel stack traversals can be done immediately,
4718		 * while we defer to an AST for user space traversals.
4719		 */
4720		if (!inuserspace) {
4721			callchaindepth =
4722			    pmc_save_kernel_callchain(ps->ps_pc,
4723				callchaindepth, tf);
4724		} else {
4725			pmc_post_callchain_callback();
4726			callchaindepth = PMC_USER_CALLCHAIN_PENDING;
4727		}
4728	}
4729
4730	ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
4731	if (ring == PMC_UR) {
4732		ps->ps_nsamples_actual = callchaindepth;	/* mark entry as in use */
4733		ps->ps_nsamples = PMC_USER_CALLCHAIN_PENDING;
4734	} else
4735		ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
4736
4737	KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
4738	    ("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm,
4739		 (unsigned long)counter_u64_fetch(pm->pm_runcount)));
4740
4741	counter_u64_add(pm->pm_runcount, 1);	/* hold onto PMC */
4742	/* increment write pointer */
4743	psb->ps_prodidx++;
4744 done:
4745	/* mark CPU as needing processing */
4746	if (callchaindepth != PMC_USER_CALLCHAIN_PENDING)
4747		DPCPU_SET(pmc_sampled, 1);
4748
4749	return (error);
4750}
4751
4752/*
4753 * Interrupt processing.
4754 *
4755 * This function is meant to be called from an NMI handler.  It cannot
4756 * use any of the locking primitives supplied by the OS.
4757 */
4758
4759int
4760pmc_process_interrupt(int ring, struct pmc *pm, struct trapframe *tf)
4761{
4762	struct thread *td;
4763
4764	td = curthread;
4765	if ((pm->pm_flags & PMC_F_USERCALLCHAIN) &&
4766	    (td->td_proc->p_flag & P_KPROC) == 0 &&
4767	    !TRAPF_USERMODE(tf)) {
4768		atomic_add_int(&td->td_pmcpend, 1);
4769		return (pmc_add_sample(PMC_UR, pm, tf));
4770	}
4771	return (pmc_add_sample(ring, pm, tf));
4772}
4773
4774/*
4775 * Capture a user call chain.  This function will be called from ast()
4776 * before control returns to userland and before the process gets
4777 * rescheduled.
4778 */
4779
4780static void
4781pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4782{
4783	struct pmc *pm;
4784	struct thread *td;
4785	struct pmc_sample *ps;
4786	struct pmc_samplebuffer *psb;
4787	uint64_t considx, prodidx;
4788	int nsamples, nrecords, pass, iter;
4789#ifdef	INVARIANTS
4790	int ncallchains;
4791	int nfree;
4792	int start_ticks = ticks;
4793#endif
4794	psb = pmc_pcpu[cpu]->pc_sb[ring];
4795	td = curthread;
4796
4797	KASSERT(td->td_pflags & TDP_CALLCHAIN,
4798	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4799		__LINE__));
4800
4801#ifdef	INVARIANTS
4802	ncallchains = 0;
4803	nfree = 0;
4804#endif
4805	nrecords = INT_MAX;
4806	pass = 0;
4807 restart:
4808	if (ring == PMC_UR)
4809		nrecords = atomic_readandclear_32(&td->td_pmcpend);
4810
4811	for (iter = 0, considx = psb->ps_considx, prodidx = psb->ps_prodidx;
4812	    considx < prodidx && iter < pmc_nsamples; considx++, iter++) {
4813		ps = PMC_CONS_SAMPLE_OFF(psb, considx);
4814
4815	/*
4816	 * Iterate through all deferred callchain requests.
4817	 * Walk from the current read pointer to the current
4818	 * write pointer.
4819	 */
4820
4821#ifdef	INVARIANTS
4822		if (ps->ps_nsamples == PMC_SAMPLE_FREE) {
4823			nfree++;
4824			continue;
4825		}
4826
4827		if ((ps->ps_pmc == NULL) ||
4828		    (ps->ps_pmc->pm_state != PMC_STATE_RUNNING))
4829			nfree++;
4830#endif
4831		if (ps->ps_td != td ||
4832		   ps->ps_nsamples != PMC_USER_CALLCHAIN_PENDING ||
4833		   ps->ps_pmc->pm_state != PMC_STATE_RUNNING)
4834			continue;
4835
4836		KASSERT(ps->ps_cpu == cpu,
4837		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4838			ps->ps_cpu, PCPU_GET(cpuid)));
4839
4840		pm = ps->ps_pmc;
4841
4842		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4843		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4844			"want it", __LINE__));
4845
4846		KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4847		    ("[pmc,%d] runcount %ld", __LINE__, (unsigned long)counter_u64_fetch(pm->pm_runcount)));
4848
4849		if (ring == PMC_UR) {
4850			nsamples = ps->ps_nsamples_actual;
4851			counter_u64_add(pmc_stats.pm_merges, 1);
4852		} else
4853			nsamples = 0;
4854
4855		/*
4856		 * Retrieve the callchain and mark the sample buffer
4857		 * as 'processable' by the timer tick sweep code.
4858		 */
4859
4860#ifdef INVARIANTS
4861		ncallchains++;
4862#endif
4863
4864		if (__predict_true(nsamples < pmc_callchaindepth - 1))
4865			nsamples += pmc_save_user_callchain(ps->ps_pc + nsamples,
4866		       pmc_callchaindepth - nsamples - 1, tf);
4867
4868		/*
4869		 * We have to prevent hardclock from potentially overwriting
4870		 * this sample between when we read the value and when we set
4871		 * it
4872		 */
4873		spinlock_enter();
4874		/*
4875		 * Verify that the sample hasn't been dropped in the meantime
4876		 */
4877		if (ps->ps_nsamples == PMC_USER_CALLCHAIN_PENDING) {
4878			ps->ps_nsamples = nsamples;
4879			/*
4880			 * If we couldn't get a sample, simply drop the reference
4881			 */
4882			if (nsamples == 0)
4883				counter_u64_add(pm->pm_runcount, -1);
4884		}
4885		spinlock_exit();
4886		if (nrecords-- == 1)
4887			break;
4888	}
4889	if (__predict_false(ring == PMC_UR && td->td_pmcpend)) {
4890		if (pass == 0) {
4891			pass = 1;
4892			goto restart;
4893		}
4894		/* only collect samples for this part once */
4895		td->td_pmcpend = 0;
4896	}
4897
4898#ifdef INVARIANTS
4899	if ((ticks - start_ticks) > hz)
4900		log(LOG_ERR, "%s took %d ticks\n", __func__, (ticks - start_ticks));
4901#endif
4902
4903	/* mark CPU as needing processing */
4904	DPCPU_SET(pmc_sampled, 1);
4905}
4906
4907/*
4908 * Process saved PC samples.
4909 */
4910
4911static void
4912pmc_process_samples(int cpu, ring_type_t ring)
4913{
4914	struct pmc *pm;
4915	int adjri, n;
4916	struct thread *td;
4917	struct pmc_owner *po;
4918	struct pmc_sample *ps;
4919	struct pmc_classdep *pcd;
4920	struct pmc_samplebuffer *psb;
4921	uint64_t delta;
4922
4923	KASSERT(PCPU_GET(cpuid) == cpu,
4924	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4925		PCPU_GET(cpuid), cpu));
4926
4927	psb = pmc_pcpu[cpu]->pc_sb[ring];
4928	delta = psb->ps_prodidx - psb->ps_considx;
4929	MPASS(delta <= pmc_nsamples);
4930	MPASS(psb->ps_considx <= psb->ps_prodidx);
4931	for (n = 0; psb->ps_considx < psb->ps_prodidx; psb->ps_considx++, n++) {
4932		ps = PMC_CONS_SAMPLE(psb);
4933
4934		if (__predict_false(ps->ps_nsamples == PMC_SAMPLE_FREE))
4935			continue;
4936		pm = ps->ps_pmc;
4937		/* skip non-running samples */
4938		if (pm->pm_state != PMC_STATE_RUNNING)
4939			goto entrydone;
4940
4941		KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4942		    ("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm,
4943			 (unsigned long)counter_u64_fetch(pm->pm_runcount)));
4944
4945		po = pm->pm_owner;
4946
4947		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4948		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4949			pm, PMC_TO_MODE(pm)));
4950
4951
4952		/* If there is a pending AST wait for completion */
4953		if (ps->ps_nsamples == PMC_USER_CALLCHAIN_PENDING) {
4954			/* if we've been waiting more than 1 tick to
4955			 * collect a callchain for this record then
4956			 * drop it and move on.
4957			 */
4958			if (ticks - ps->ps_ticks > 1) {
4959				/*
4960				 * track how often we hit this as it will
4961				 * preferentially lose user samples
4962				 * for long running system calls
4963				 */
4964				counter_u64_add(pmc_stats.pm_overwrites, 1);
4965				goto entrydone;
4966			}
4967			/* Need a rescan at a later time. */
4968			DPCPU_SET(pmc_sampled, 1);
4969			break;
4970		}
4971
4972		PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4973		    pm, ps->ps_nsamples, ps->ps_flags,
4974		    (int) (psb->ps_prodidx & pmc_sample_mask),
4975		    (int) (psb->ps_considx & pmc_sample_mask));
4976
4977		/*
4978		 * If this is a process-mode PMC that is attached to
4979		 * its owner, and if the PC is in user mode, update
4980		 * profiling statistics like timer-based profiling
4981		 * would have done.
4982		 *
4983		 * Otherwise, this is either a sampling-mode PMC that
4984		 * is attached to a different process than its owner,
4985		 * or a system-wide sampling PMC. Dispatch a log
4986		 * entry to the PMC's owner process.
4987		 */
4988		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4989			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4990				td = FIRST_THREAD_IN_PROC(po->po_owner);
4991				addupc_intr(td, ps->ps_pc[0], 1);
4992			}
4993		} else
4994			pmclog_process_callchain(pm, ps);
4995
4996	entrydone:
4997		ps->ps_nsamples = 0; /* mark entry as free */
4998		KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4999				("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm,
5000				 (unsigned long)counter_u64_fetch(pm->pm_runcount)));
5001
5002		counter_u64_add(pm->pm_runcount, -1);
5003	}
5004
5005	counter_u64_add(pmc_stats.pm_log_sweeps, 1);
5006
5007	/* Do not re-enable stalled PMCs if we failed to process any samples */
5008	if (n == 0)
5009		return;
5010
5011	/*
5012	 * Restart any stalled sampling PMCs on this CPU.
5013	 *
5014	 * If the NMI handler sets the pm_stalled field of a PMC after
5015	 * the check below, we'll end up processing the stalled PMC at
5016	 * the next hardclock tick.
5017	 */
5018	for (n = 0; n < md->pmd_npmc; n++) {
5019		pcd = pmc_ri_to_classdep(md, n, &adjri);
5020		KASSERT(pcd != NULL,
5021		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
5022		(void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
5023
5024		if (pm == NULL ||			 /* !cfg'ed */
5025		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
5026		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
5027			!pm->pm_pcpu_state[cpu].pps_cpustate  || /* !desired */
5028		    !pm->pm_pcpu_state[cpu].pps_stalled) /* !stalled */
5029			continue;
5030
5031		pm->pm_pcpu_state[cpu].pps_stalled = 0;
5032		(*pcd->pcd_start_pmc)(cpu, adjri);
5033	}
5034}
5035
5036/*
5037 * Event handlers.
5038 */
5039
5040/*
5041 * Handle a process exit.
5042 *
5043 * Remove this process from all hash tables.  If this process
5044 * owned any PMCs, turn off those PMCs and deallocate them,
5045 * removing any associations with target processes.
5046 *
5047 * This function will be called by the last 'thread' of a
5048 * process.
5049 *
5050 * XXX This eventhandler gets called early in the exit process.
5051 * Consider using a 'hook' invocation from thread_exit() or equivalent
5052 * spot.  Another negative is that kse_exit doesn't seem to call
5053 * exit1() [??].
5054 *
5055 */
5056
5057static void
5058pmc_process_exit(void *arg __unused, struct proc *p)
5059{
5060	struct pmc *pm;
5061	int adjri, cpu;
5062	unsigned int ri;
5063	int is_using_hwpmcs;
5064	struct pmc_owner *po;
5065	struct pmc_process *pp;
5066	struct pmc_classdep *pcd;
5067	pmc_value_t newvalue, tmp;
5068
5069	PROC_LOCK(p);
5070	is_using_hwpmcs = p->p_flag & P_HWPMC;
5071	PROC_UNLOCK(p);
5072
5073	/*
5074	 * Log a sysexit event to all SS PMC owners.
5075	 */
5076	PMC_EPOCH_ENTER();
5077	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5078	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5079		    pmclog_process_sysexit(po, p->p_pid);
5080	PMC_EPOCH_EXIT();
5081
5082	if (!is_using_hwpmcs)
5083		return;
5084
5085	PMC_GET_SX_XLOCK();
5086	PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
5087	    p->p_comm);
5088
5089	/*
5090	 * Since this code is invoked by the last thread in an exiting
5091	 * process, we would have context switched IN at some prior
5092	 * point.  However, with PREEMPTION, kernel mode context
5093	 * switches may happen any time, so we want to disable a
5094	 * context switch OUT till we get any PMCs targeting this
5095	 * process off the hardware.
5096	 *
5097	 * We also need to atomically remove this process'
5098	 * entry from our target process hash table, using
5099	 * PMC_FLAG_REMOVE.
5100	 */
5101	PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
5102	    p->p_comm);
5103
5104	critical_enter(); /* no preemption */
5105
5106	cpu = curthread->td_oncpu;
5107
5108	if ((pp = pmc_find_process_descriptor(p,
5109		 PMC_FLAG_REMOVE)) != NULL) {
5110
5111		PMCDBG2(PRC,EXT,2,
5112		    "process-exit proc=%p pmc-process=%p", p, pp);
5113
5114		/*
5115		 * The exiting process could the target of
5116		 * some PMCs which will be running on
5117		 * currently executing CPU.
5118		 *
5119		 * We need to turn these PMCs off like we
5120		 * would do at context switch OUT time.
5121		 */
5122		for (ri = 0; ri < md->pmd_npmc; ri++) {
5123
5124			/*
5125			 * Pick up the pmc pointer from hardware
5126			 * state similar to the CSW_OUT code.
5127			 */
5128			pm = NULL;
5129
5130			pcd = pmc_ri_to_classdep(md, ri, &adjri);
5131
5132			(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
5133
5134			PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
5135
5136			if (pm == NULL ||
5137			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
5138				continue;
5139
5140			PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
5141			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
5142			    pm, pm->pm_state);
5143
5144			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
5145			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
5146				__LINE__, PMC_TO_ROWINDEX(pm), ri));
5147
5148			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
5149			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
5150				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
5151
5152			KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
5153			    ("[pmc,%d] bad runcount ri %d rc %ld",
5154				 __LINE__, ri, (unsigned long)counter_u64_fetch(pm->pm_runcount)));
5155
5156			/*
5157			 * Change desired state, and then stop if not
5158			 * stalled. This two-step dance should avoid
5159			 * race conditions where an interrupt re-enables
5160			 * the PMC after this code has already checked
5161			 * the pm_stalled flag.
5162			 */
5163			if (pm->pm_pcpu_state[cpu].pps_cpustate) {
5164				pm->pm_pcpu_state[cpu].pps_cpustate = 0;
5165				if (!pm->pm_pcpu_state[cpu].pps_stalled) {
5166					(void) pcd->pcd_stop_pmc(cpu, adjri);
5167
5168					if (PMC_TO_MODE(pm) == PMC_MODE_TC) {
5169						pcd->pcd_read_pmc(cpu, adjri,
5170						    &newvalue);
5171						tmp = newvalue -
5172						    PMC_PCPU_SAVED(cpu,ri);
5173
5174						mtx_pool_lock_spin(pmc_mtxpool,
5175						    pm);
5176						pm->pm_gv.pm_savedvalue += tmp;
5177						pp->pp_pmcs[ri].pp_pmcval +=
5178						    tmp;
5179						mtx_pool_unlock_spin(
5180						    pmc_mtxpool, pm);
5181					}
5182				}
5183			}
5184
5185			KASSERT((int64_t) counter_u64_fetch(pm->pm_runcount) > 0,
5186			    ("[pmc,%d] runcount is %d", __LINE__, ri));
5187
5188			counter_u64_add(pm->pm_runcount, -1);
5189
5190			(void) pcd->pcd_config_pmc(cpu, adjri, NULL);
5191		}
5192
5193		/*
5194		 * Inform the MD layer of this pseudo "context switch
5195		 * out"
5196		 */
5197		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
5198
5199		critical_exit(); /* ok to be pre-empted now */
5200
5201		/*
5202		 * Unlink this process from the PMCs that are
5203		 * targeting it.  This will send a signal to
5204		 * all PMC owner's whose PMCs are orphaned.
5205		 *
5206		 * Log PMC value at exit time if requested.
5207		 */
5208		for (ri = 0; ri < md->pmd_npmc; ri++)
5209			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
5210				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
5211				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
5212					pmclog_process_procexit(pm, pp);
5213				pmc_unlink_target_process(pm, pp);
5214			}
5215		free(pp, M_PMC);
5216
5217	} else
5218		critical_exit(); /* pp == NULL */
5219
5220
5221	/*
5222	 * If the process owned PMCs, free them up and free up
5223	 * memory.
5224	 */
5225	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
5226		pmc_remove_owner(po);
5227		pmc_destroy_owner_descriptor(po);
5228	}
5229
5230	sx_xunlock(&pmc_sx);
5231}
5232
5233/*
5234 * Handle a process fork.
5235 *
5236 * If the parent process 'p1' is under HWPMC monitoring, then copy
5237 * over any attached PMCs that have 'do_descendants' semantics.
5238 */
5239
5240static void
5241pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
5242    int flags)
5243{
5244	int is_using_hwpmcs;
5245	unsigned int ri;
5246	uint32_t do_descendants;
5247	struct pmc *pm;
5248	struct pmc_owner *po;
5249	struct pmc_process *ppnew, *ppold;
5250
5251	(void) flags;		/* unused parameter */
5252
5253	PROC_LOCK(p1);
5254	is_using_hwpmcs = p1->p_flag & P_HWPMC;
5255	PROC_UNLOCK(p1);
5256
5257	/*
5258	 * If there are system-wide sampling PMCs active, we need to
5259	 * log all fork events to their owner's logs.
5260	 */
5261	PMC_EPOCH_ENTER();
5262	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5263	    if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
5264		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
5265			pmclog_process_proccreate(po, newproc, 1);
5266		}
5267	PMC_EPOCH_EXIT();
5268
5269	if (!is_using_hwpmcs)
5270		return;
5271
5272	PMC_GET_SX_XLOCK();
5273	PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
5274	    p1->p_pid, p1->p_comm, newproc);
5275
5276	/*
5277	 * If the parent process (curthread->td_proc) is a
5278	 * target of any PMCs, look for PMCs that are to be
5279	 * inherited, and link these into the new process
5280	 * descriptor.
5281	 */
5282	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
5283		 PMC_FLAG_NONE)) == NULL)
5284		goto done;		/* nothing to do */
5285
5286	do_descendants = 0;
5287	for (ri = 0; ri < md->pmd_npmc; ri++)
5288		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
5289			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
5290	if (do_descendants == 0) /* nothing to do */
5291		goto done;
5292
5293	/*
5294	 * Now mark the new process as being tracked by this driver.
5295	 */
5296	PROC_LOCK(newproc);
5297	newproc->p_flag |= P_HWPMC;
5298	PROC_UNLOCK(newproc);
5299
5300	/* allocate a descriptor for the new process  */
5301	if ((ppnew = pmc_find_process_descriptor(newproc,
5302		 PMC_FLAG_ALLOCATE)) == NULL)
5303		goto done;
5304
5305	/*
5306	 * Run through all PMCs that were targeting the old process
5307	 * and which specified F_DESCENDANTS and attach them to the
5308	 * new process.
5309	 *
5310	 * Log the fork event to all owners of PMCs attached to this
5311	 * process, if not already logged.
5312	 */
5313	for (ri = 0; ri < md->pmd_npmc; ri++)
5314		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
5315		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
5316			pmc_link_target_process(pm, ppnew);
5317			po = pm->pm_owner;
5318			if (po->po_sscount == 0 &&
5319			    po->po_flags & PMC_PO_OWNS_LOGFILE)
5320				pmclog_process_procfork(po, p1->p_pid,
5321				    newproc->p_pid);
5322		}
5323
5324 done:
5325	sx_xunlock(&pmc_sx);
5326}
5327
5328static void
5329pmc_process_threadcreate(struct thread *td)
5330{
5331	struct pmc_owner *po;
5332
5333	PMC_EPOCH_ENTER();
5334	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5335	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5336			pmclog_process_threadcreate(po, td, 1);
5337	PMC_EPOCH_EXIT();
5338}
5339
5340static void
5341pmc_process_threadexit(struct thread *td)
5342{
5343	struct pmc_owner *po;
5344
5345	PMC_EPOCH_ENTER();
5346	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5347	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5348			pmclog_process_threadexit(po, td);
5349	PMC_EPOCH_EXIT();
5350}
5351
5352static void
5353pmc_process_proccreate(struct proc *p)
5354{
5355	struct pmc_owner *po;
5356
5357	PMC_EPOCH_ENTER();
5358	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5359	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5360			pmclog_process_proccreate(po, p, 1 /* sync */);
5361	PMC_EPOCH_EXIT();
5362}
5363
5364static void
5365pmc_process_allproc(struct pmc *pm)
5366{
5367	struct pmc_owner *po;
5368	struct thread *td;
5369	struct proc *p;
5370
5371	po = pm->pm_owner;
5372	if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
5373		return;
5374	sx_slock(&allproc_lock);
5375	FOREACH_PROC_IN_SYSTEM(p) {
5376		pmclog_process_proccreate(po, p, 0 /* sync */);
5377		PROC_LOCK(p);
5378		FOREACH_THREAD_IN_PROC(p, td)
5379			pmclog_process_threadcreate(po, td, 0 /* sync */);
5380		PROC_UNLOCK(p);
5381	}
5382	sx_sunlock(&allproc_lock);
5383	pmclog_flush(po, 0);
5384}
5385
5386static void
5387pmc_kld_load(void *arg __unused, linker_file_t lf)
5388{
5389	struct pmc_owner *po;
5390
5391	/*
5392	 * Notify owners of system sampling PMCs about KLD operations.
5393	 */
5394	PMC_EPOCH_ENTER();
5395	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5396		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5397			pmclog_process_map_in(po, (pid_t) -1,
5398			    (uintfptr_t) lf->address, lf->filename);
5399	PMC_EPOCH_EXIT();
5400
5401	/*
5402	 * TODO: Notify owners of (all) process-sampling PMCs too.
5403	 */
5404}
5405
5406static void
5407pmc_kld_unload(void *arg __unused, const char *filename __unused,
5408    caddr_t address, size_t size)
5409{
5410	struct pmc_owner *po;
5411
5412	PMC_EPOCH_ENTER();
5413	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5414		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5415			pmclog_process_map_out(po, (pid_t) -1,
5416			    (uintfptr_t) address, (uintfptr_t) address + size);
5417	PMC_EPOCH_EXIT();
5418
5419	/*
5420	 * TODO: Notify owners of process-sampling PMCs.
5421	 */
5422}
5423
5424/*
5425 * initialization
5426 */
5427static const char *
5428pmc_name_of_pmcclass(enum pmc_class class)
5429{
5430
5431	switch (class) {
5432#undef	__PMC_CLASS
5433#define	__PMC_CLASS(S,V,D)						\
5434	case PMC_CLASS_##S:						\
5435		return #S;
5436	__PMC_CLASSES();
5437	default:
5438		return ("<unknown>");
5439	}
5440}
5441
5442/*
5443 * Base class initializer: allocate structure and set default classes.
5444 */
5445struct pmc_mdep *
5446pmc_mdep_alloc(int nclasses)
5447{
5448	struct pmc_mdep *md;
5449	int	n;
5450
5451	/* SOFT + md classes */
5452	n = 1 + nclasses;
5453	md = malloc(sizeof(struct pmc_mdep) + n *
5454	    sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
5455	md->pmd_nclass = n;
5456
5457	/* Add base class. */
5458	pmc_soft_initialize(md);
5459	return md;
5460}
5461
5462void
5463pmc_mdep_free(struct pmc_mdep *md)
5464{
5465	pmc_soft_finalize(md);
5466	free(md, M_PMC);
5467}
5468
5469static int
5470generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
5471{
5472	(void) pc; (void) pp;
5473
5474	return (0);
5475}
5476
5477static int
5478generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
5479{
5480	(void) pc; (void) pp;
5481
5482	return (0);
5483}
5484
5485static struct pmc_mdep *
5486pmc_generic_cpu_initialize(void)
5487{
5488	struct pmc_mdep *md;
5489
5490	md = pmc_mdep_alloc(0);
5491
5492	md->pmd_cputype    = PMC_CPU_GENERIC;
5493
5494	md->pmd_pcpu_init  = NULL;
5495	md->pmd_pcpu_fini  = NULL;
5496	md->pmd_switch_in  = generic_switch_in;
5497	md->pmd_switch_out = generic_switch_out;
5498
5499	return (md);
5500}
5501
5502static void
5503pmc_generic_cpu_finalize(struct pmc_mdep *md)
5504{
5505	(void) md;
5506}
5507
5508
5509static int
5510pmc_initialize(void)
5511{
5512	int c, cpu, error, n, ri;
5513	unsigned int maxcpu, domain;
5514	struct pcpu *pc;
5515	struct pmc_binding pb;
5516	struct pmc_sample *ps;
5517	struct pmc_classdep *pcd;
5518	struct pmc_samplebuffer *sb;
5519
5520	md = NULL;
5521	error = 0;
5522
5523	pmc_stats.pm_intr_ignored = counter_u64_alloc(M_WAITOK);
5524	pmc_stats.pm_intr_processed = counter_u64_alloc(M_WAITOK);
5525	pmc_stats.pm_intr_bufferfull = counter_u64_alloc(M_WAITOK);
5526	pmc_stats.pm_syscalls = counter_u64_alloc(M_WAITOK);
5527	pmc_stats.pm_syscall_errors = counter_u64_alloc(M_WAITOK);
5528	pmc_stats.pm_buffer_requests = counter_u64_alloc(M_WAITOK);
5529	pmc_stats.pm_buffer_requests_failed = counter_u64_alloc(M_WAITOK);
5530	pmc_stats.pm_log_sweeps = counter_u64_alloc(M_WAITOK);
5531	pmc_stats.pm_merges = counter_u64_alloc(M_WAITOK);
5532	pmc_stats.pm_overwrites = counter_u64_alloc(M_WAITOK);
5533
5534#ifdef	HWPMC_DEBUG
5535	/* parse debug flags first */
5536	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
5537		pmc_debugstr, sizeof(pmc_debugstr)))
5538		pmc_debugflags_parse(pmc_debugstr,
5539		    pmc_debugstr+strlen(pmc_debugstr));
5540#endif
5541
5542	PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
5543
5544	/* check kernel version */
5545	if (pmc_kernel_version != PMC_VERSION) {
5546		if (pmc_kernel_version == 0)
5547			printf("hwpmc: this kernel has not been compiled with "
5548			    "'options HWPMC_HOOKS'.\n");
5549		else
5550			printf("hwpmc: kernel version (0x%x) does not match "
5551			    "module version (0x%x).\n", pmc_kernel_version,
5552			    PMC_VERSION);
5553		return EPROGMISMATCH;
5554	}
5555
5556	/*
5557	 * check sysctl parameters
5558	 */
5559
5560	if (pmc_hashsize <= 0) {
5561		(void) printf("hwpmc: tunable \"hashsize\"=%d must be "
5562		    "greater than zero.\n", pmc_hashsize);
5563		pmc_hashsize = PMC_HASH_SIZE;
5564	}
5565
5566	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
5567		(void) printf("hwpmc: tunable \"nsamples\"=%d out of "
5568		    "range.\n", pmc_nsamples);
5569		pmc_nsamples = PMC_NSAMPLES;
5570	}
5571	pmc_sample_mask = pmc_nsamples-1;
5572
5573	if (pmc_callchaindepth <= 0 ||
5574	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
5575		(void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
5576		    "range - using %d.\n", pmc_callchaindepth,
5577		    PMC_CALLCHAIN_DEPTH_MAX);
5578		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
5579	}
5580
5581	md = pmc_md_initialize();
5582	if (md == NULL) {
5583		/* Default to generic CPU. */
5584		md = pmc_generic_cpu_initialize();
5585		if (md == NULL)
5586			return (ENOSYS);
5587        }
5588
5589	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
5590	    ("[pmc,%d] no classes or pmcs", __LINE__));
5591
5592	/* Compute the map from row-indices to classdep pointers. */
5593	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
5594	    md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
5595
5596	for (n = 0; n < md->pmd_npmc; n++)
5597		pmc_rowindex_to_classdep[n] = NULL;
5598	for (ri = c = 0; c < md->pmd_nclass; c++) {
5599		pcd = &md->pmd_classdep[c];
5600		for (n = 0; n < pcd->pcd_num; n++, ri++)
5601			pmc_rowindex_to_classdep[ri] = pcd;
5602	}
5603
5604	KASSERT(ri == md->pmd_npmc,
5605	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
5606	    ri, md->pmd_npmc));
5607
5608	maxcpu = pmc_cpu_max();
5609
5610	/* allocate space for the per-cpu array */
5611	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
5612	    M_WAITOK|M_ZERO);
5613
5614	/* per-cpu 'saved values' for managing process-mode PMCs */
5615	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
5616	    M_PMC, M_WAITOK);
5617
5618	/* Perform CPU-dependent initialization. */
5619	pmc_save_cpu_binding(&pb);
5620	error = 0;
5621	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
5622		if (!pmc_cpu_is_active(cpu))
5623			continue;
5624		pmc_select_cpu(cpu);
5625		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
5626		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
5627		    M_WAITOK|M_ZERO);
5628		if (md->pmd_pcpu_init)
5629			error = md->pmd_pcpu_init(md, cpu);
5630		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
5631			error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
5632	}
5633	pmc_restore_cpu_binding(&pb);
5634
5635	if (error)
5636		return (error);
5637
5638	/* allocate space for the sample array */
5639	for (cpu = 0; cpu < maxcpu; cpu++) {
5640		if (!pmc_cpu_is_active(cpu))
5641			continue;
5642		pc = pcpu_find(cpu);
5643		domain = pc->pc_domain;
5644		sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
5645		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
5646		    DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5647
5648		KASSERT(pmc_pcpu[cpu] != NULL,
5649		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
5650
5651		sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
5652		    pmc_nsamples * sizeof(uintptr_t), M_PMC,
5653		    DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5654
5655		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5656			ps->ps_pc = sb->ps_callchains +
5657			    (n * pmc_callchaindepth);
5658
5659		pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
5660
5661		sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
5662		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
5663		    DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5664
5665		sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
5666		    pmc_nsamples * sizeof(uintptr_t), M_PMC,
5667		    DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5668		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5669			ps->ps_pc = sb->ps_callchains +
5670			    (n * pmc_callchaindepth);
5671
5672		pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
5673
5674		sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
5675		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
5676		    DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5677		sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
5678		    pmc_nsamples * sizeof(uintptr_t), M_PMC,
5679		    DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
5680		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5681			ps->ps_pc = sb->ps_callchains + n * pmc_callchaindepth;
5682
5683		pmc_pcpu[cpu]->pc_sb[PMC_UR] = sb;
5684	}
5685
5686	/* allocate space for the row disposition array */
5687	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
5688	    M_PMC, M_WAITOK|M_ZERO);
5689
5690	/* mark all PMCs as available */
5691	for (n = 0; n < (int) md->pmd_npmc; n++)
5692		PMC_MARK_ROW_FREE(n);
5693
5694	/* allocate thread hash tables */
5695	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
5696	    &pmc_ownerhashmask);
5697
5698	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
5699	    &pmc_processhashmask);
5700	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
5701	    MTX_SPIN);
5702
5703	CK_LIST_INIT(&pmc_ss_owners);
5704	pmc_ss_count = 0;
5705
5706	/* allocate a pool of spin mutexes */
5707	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
5708	    MTX_SPIN);
5709
5710	PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
5711	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
5712	    pmc_processhash, pmc_processhashmask);
5713
5714	/* Initialize a spin mutex for the thread free list. */
5715	mtx_init(&pmc_threadfreelist_mtx, "pmc-threadfreelist", "pmc-leaf",
5716	    MTX_SPIN);
5717
5718	/* Initialize the task to prune the thread free list. */
5719	TASK_INIT(&free_task, 0, pmc_thread_descriptor_pool_free_task, NULL);
5720
5721	/* register process {exit,fork,exec} handlers */
5722	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
5723	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
5724	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
5725	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
5726
5727	/* register kld event handlers */
5728	pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
5729	    NULL, EVENTHANDLER_PRI_ANY);
5730	pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
5731	    NULL, EVENTHANDLER_PRI_ANY);
5732
5733	/* initialize logging */
5734	pmclog_initialize();
5735
5736	/* set hook functions */
5737	pmc_intr = md->pmd_intr;
5738	wmb();
5739	pmc_hook = pmc_hook_handler;
5740
5741	if (error == 0) {
5742		printf(PMC_MODULE_NAME ":");
5743		for (n = 0; n < (int) md->pmd_nclass; n++) {
5744			pcd = &md->pmd_classdep[n];
5745			printf(" %s/%d/%d/0x%b",
5746			    pmc_name_of_pmcclass(pcd->pcd_class),
5747			    pcd->pcd_num,
5748			    pcd->pcd_width,
5749			    pcd->pcd_caps,
5750			    "\20"
5751			    "\1INT\2USR\3SYS\4EDG\5THR"
5752			    "\6REA\7WRI\10INV\11QUA\12PRC"
5753			    "\13TAG\14CSC");
5754		}
5755		printf("\n");
5756	}
5757
5758	return (error);
5759}
5760
5761/* prepare to be unloaded */
5762static void
5763pmc_cleanup(void)
5764{
5765	int c, cpu;
5766	unsigned int maxcpu;
5767	struct pmc_ownerhash *ph;
5768	struct pmc_owner *po, *tmp;
5769	struct pmc_binding pb;
5770#ifdef	HWPMC_DEBUG
5771	struct pmc_processhash *prh;
5772#endif
5773
5774	PMCDBG0(MOD,INI,0, "cleanup");
5775
5776	/* switch off sampling */
5777	CPU_FOREACH(cpu)
5778		DPCPU_ID_SET(cpu, pmc_sampled, 0);
5779	pmc_intr = NULL;
5780
5781	sx_xlock(&pmc_sx);
5782	if (pmc_hook == NULL) {	/* being unloaded already */
5783		sx_xunlock(&pmc_sx);
5784		return;
5785	}
5786
5787	pmc_hook = NULL; /* prevent new threads from entering module */
5788
5789	/* deregister event handlers */
5790	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
5791	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
5792	EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
5793	EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
5794
5795	/* send SIGBUS to all owner threads, free up allocations */
5796	if (pmc_ownerhash)
5797		for (ph = pmc_ownerhash;
5798		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
5799		     ph++) {
5800			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
5801				pmc_remove_owner(po);
5802
5803				/* send SIGBUS to owner processes */
5804				PMCDBG3(MOD,INI,2, "cleanup signal proc=%p "
5805				    "(%d, %s)", po->po_owner,
5806				    po->po_owner->p_pid,
5807				    po->po_owner->p_comm);
5808
5809				PROC_LOCK(po->po_owner);
5810				kern_psignal(po->po_owner, SIGBUS);
5811				PROC_UNLOCK(po->po_owner);
5812
5813				pmc_destroy_owner_descriptor(po);
5814			}
5815		}
5816
5817	/* reclaim allocated data structures */
5818	taskqueue_drain(taskqueue_fast, &free_task);
5819	mtx_destroy(&pmc_threadfreelist_mtx);
5820	pmc_thread_descriptor_pool_drain();
5821
5822	if (pmc_mtxpool)
5823		mtx_pool_destroy(&pmc_mtxpool);
5824
5825	mtx_destroy(&pmc_processhash_mtx);
5826	if (pmc_processhash) {
5827#ifdef	HWPMC_DEBUG
5828		struct pmc_process *pp;
5829
5830		PMCDBG0(MOD,INI,3, "destroy process hash");
5831		for (prh = pmc_processhash;
5832		     prh <= &pmc_processhash[pmc_processhashmask];
5833		     prh++)
5834			LIST_FOREACH(pp, prh, pp_next)
5835			    PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5836#endif
5837
5838		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5839		pmc_processhash = NULL;
5840	}
5841
5842	if (pmc_ownerhash) {
5843		PMCDBG0(MOD,INI,3, "destroy owner hash");
5844		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5845		pmc_ownerhash = NULL;
5846	}
5847
5848	KASSERT(CK_LIST_EMPTY(&pmc_ss_owners),
5849	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
5850	KASSERT(pmc_ss_count == 0,
5851	    ("[pmc,%d] Global SS count not empty", __LINE__));
5852
5853 	/* do processor and pmc-class dependent cleanup */
5854	maxcpu = pmc_cpu_max();
5855
5856	PMCDBG0(MOD,INI,3, "md cleanup");
5857	if (md) {
5858		pmc_save_cpu_binding(&pb);
5859		for (cpu = 0; cpu < maxcpu; cpu++) {
5860			PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5861			    cpu, pmc_pcpu[cpu]);
5862			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5863				continue;
5864			pmc_select_cpu(cpu);
5865			for (c = 0; c < md->pmd_nclass; c++)
5866				md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
5867			if (md->pmd_pcpu_fini)
5868				md->pmd_pcpu_fini(md, cpu);
5869		}
5870
5871		if (md->pmd_cputype == PMC_CPU_GENERIC)
5872			pmc_generic_cpu_finalize(md);
5873		else
5874			pmc_md_finalize(md);
5875
5876		pmc_mdep_free(md);
5877		md = NULL;
5878		pmc_restore_cpu_binding(&pb);
5879	}
5880
5881	/* Free per-cpu descriptors. */
5882	for (cpu = 0; cpu < maxcpu; cpu++) {
5883		if (!pmc_cpu_is_active(cpu))
5884			continue;
5885		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5886		    ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5887			cpu));
5888		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5889		    ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5890			cpu));
5891		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_UR] != NULL,
5892		    ("[pmc,%d] Null userret cpu sample buffer cpu=%d", __LINE__,
5893			cpu));
5894		free_domain(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5895		free_domain(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5896		free_domain(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5897		free_domain(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5898		free_domain(pmc_pcpu[cpu]->pc_sb[PMC_UR]->ps_callchains, M_PMC);
5899		free_domain(pmc_pcpu[cpu]->pc_sb[PMC_UR], M_PMC);
5900		free_domain(pmc_pcpu[cpu], M_PMC);
5901	}
5902
5903	free(pmc_pcpu, M_PMC);
5904	pmc_pcpu = NULL;
5905
5906	free(pmc_pcpu_saved, M_PMC);
5907	pmc_pcpu_saved = NULL;
5908
5909	if (pmc_pmcdisp) {
5910		free(pmc_pmcdisp, M_PMC);
5911		pmc_pmcdisp = NULL;
5912	}
5913
5914	if (pmc_rowindex_to_classdep) {
5915		free(pmc_rowindex_to_classdep, M_PMC);
5916		pmc_rowindex_to_classdep = NULL;
5917	}
5918
5919	pmclog_shutdown();
5920	counter_u64_free(pmc_stats.pm_intr_ignored);
5921	counter_u64_free(pmc_stats.pm_intr_processed);
5922	counter_u64_free(pmc_stats.pm_intr_bufferfull);
5923	counter_u64_free(pmc_stats.pm_syscalls);
5924	counter_u64_free(pmc_stats.pm_syscall_errors);
5925	counter_u64_free(pmc_stats.pm_buffer_requests);
5926	counter_u64_free(pmc_stats.pm_buffer_requests_failed);
5927	counter_u64_free(pmc_stats.pm_log_sweeps);
5928	counter_u64_free(pmc_stats.pm_merges);
5929	counter_u64_free(pmc_stats.pm_overwrites);
5930	sx_xunlock(&pmc_sx); 	/* we are done */
5931}
5932
5933/*
5934 * The function called at load/unload.
5935 */
5936
5937static int
5938load (struct module *module __unused, int cmd, void *arg __unused)
5939{
5940	int error;
5941
5942	error = 0;
5943
5944	switch (cmd) {
5945	case MOD_LOAD :
5946		/* initialize the subsystem */
5947		error = pmc_initialize();
5948		if (error != 0)
5949			break;
5950		PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d",
5951		    pmc_syscall_num, pmc_cpu_max());
5952		break;
5953
5954
5955	case MOD_UNLOAD :
5956	case MOD_SHUTDOWN:
5957		pmc_cleanup();
5958		PMCDBG0(MOD,INI,1, "unloaded");
5959		break;
5960
5961	default :
5962		error = EINVAL;	/* XXX should panic(9) */
5963		break;
5964	}
5965
5966	return error;
5967}
5968