1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2011 Chelsio Communications, Inc.
5 * All rights reserved.
6 * Written by: Navdeep Parhar <np@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35#include "opt_ratelimit.h"
36
37#include <sys/types.h>
38#include <sys/eventhandler.h>
39#include <sys/mbuf.h>
40#include <sys/socket.h>
41#include <sys/kernel.h>
42#include <sys/malloc.h>
43#include <sys/queue.h>
44#include <sys/sbuf.h>
45#include <sys/taskqueue.h>
46#include <sys/time.h>
47#include <sys/sglist.h>
48#include <sys/sysctl.h>
49#include <sys/smp.h>
50#include <sys/counter.h>
51#include <net/bpf.h>
52#include <net/ethernet.h>
53#include <net/if.h>
54#include <net/if_vlan_var.h>
55#include <net/if_vxlan.h>
56#include <netinet/in.h>
57#include <netinet/ip.h>
58#include <netinet/ip6.h>
59#include <netinet/tcp.h>
60#include <netinet/udp.h>
61#include <machine/in_cksum.h>
62#include <machine/md_var.h>
63#include <vm/vm.h>
64#include <vm/pmap.h>
65#ifdef DEV_NETMAP
66#include <machine/bus.h>
67#include <sys/selinfo.h>
68#include <net/if_var.h>
69#include <net/netmap.h>
70#include <dev/netmap/netmap_kern.h>
71#endif
72
73#include "common/common.h"
74#include "common/t4_regs.h"
75#include "common/t4_regs_values.h"
76#include "common/t4_msg.h"
77#include "t4_l2t.h"
78#include "t4_mp_ring.h"
79
80#ifdef T4_PKT_TIMESTAMP
81#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
82#else
83#define RX_COPY_THRESHOLD MINCLSIZE
84#endif
85
86/* Internal mbuf flags stored in PH_loc.eight[1]. */
87#define	MC_NOMAP		0x01
88#define	MC_RAW_WR		0x02
89
90/*
91 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
92 * 0-7 are valid values.
93 */
94static int fl_pktshift = 0;
95SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
96    "payload DMA offset in rx buffer (bytes)");
97
98/*
99 * Pad ethernet payload up to this boundary.
100 * -1: driver should figure out a good value.
101 *  0: disable padding.
102 *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
103 */
104int fl_pad = -1;
105SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
106    "payload pad boundary (bytes)");
107
108/*
109 * Status page length.
110 * -1: driver should figure out a good value.
111 *  64 or 128 are the only other valid values.
112 */
113static int spg_len = -1;
114SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
115    "status page size (bytes)");
116
117/*
118 * Congestion drops.
119 * -1: no congestion feedback (not recommended).
120 *  0: backpressure the channel instead of dropping packets right away.
121 *  1: no backpressure, drop packets for the congested queue immediately.
122 */
123static int cong_drop = 0;
124SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
125    "Congestion control for RX queues (0 = backpressure, 1 = drop");
126
127/*
128 * Deliver multiple frames in the same free list buffer if they fit.
129 * -1: let the driver decide whether to enable buffer packing or not.
130 *  0: disable buffer packing.
131 *  1: enable buffer packing.
132 */
133static int buffer_packing = -1;
134SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
135    0, "Enable buffer packing");
136
137/*
138 * Start next frame in a packed buffer at this boundary.
139 * -1: driver should figure out a good value.
140 * T4: driver will ignore this and use the same value as fl_pad above.
141 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
142 */
143static int fl_pack = -1;
144SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
145    "payload pack boundary (bytes)");
146
147/*
148 * Largest rx cluster size that the driver is allowed to allocate.
149 */
150static int largest_rx_cluster = MJUM16BYTES;
151SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
152    &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
153
154/*
155 * Size of cluster allocation that's most likely to succeed.  The driver will
156 * fall back to this size if it fails to allocate clusters larger than this.
157 */
158static int safest_rx_cluster = PAGE_SIZE;
159SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
160    &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
161
162#ifdef RATELIMIT
163/*
164 * Knob to control TCP timestamp rewriting, and the granularity of the tick used
165 * for rewriting.  -1 and 0-3 are all valid values.
166 * -1: hardware should leave the TCP timestamps alone.
167 * 0: 1ms
168 * 1: 100us
169 * 2: 10us
170 * 3: 1us
171 */
172static int tsclk = -1;
173SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
174    "Control TCP timestamp rewriting when using pacing");
175
176static int eo_max_backlog = 1024 * 1024;
177SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
178    0, "Maximum backlog of ratelimited data per flow");
179#endif
180
181/*
182 * The interrupt holdoff timers are multiplied by this value on T6+.
183 * 1 and 3-17 (both inclusive) are legal values.
184 */
185static int tscale = 1;
186SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
187    "Interrupt holdoff timer scale on T6+");
188
189/*
190 * Number of LRO entries in the lro_ctrl structure per rx queue.
191 */
192static int lro_entries = TCP_LRO_ENTRIES;
193SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
194    "Number of LRO entries per RX queue");
195
196/*
197 * This enables presorting of frames before they're fed into tcp_lro_rx.
198 */
199static int lro_mbufs = 0;
200SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
201    "Enable presorting of LRO frames");
202
203static counter_u64_t pullups;
204SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
205    "Number of mbuf pullups performed");
206
207static counter_u64_t defrags;
208SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
209    "Number of mbuf defrags performed");
210
211static int t4_tx_coalesce = 1;
212SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
213    "tx coalescing allowed");
214
215/*
216 * The driver will make aggressive attempts at tx coalescing if it sees these
217 * many packets eligible for coalescing in quick succession, with no more than
218 * the specified gap in between the eth_tx calls that delivered the packets.
219 */
220static int t4_tx_coalesce_pkts = 32;
221SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
222    &t4_tx_coalesce_pkts, 0,
223    "# of consecutive packets (1 - 255) that will trigger tx coalescing");
224static int t4_tx_coalesce_gap = 5;
225SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
226    &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
227
228static int service_iq(struct sge_iq *, int);
229static int service_iq_fl(struct sge_iq *, int);
230static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
231static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
232    u_int);
233static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
234static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
235static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
236    uint16_t, char *);
237static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
238    bus_addr_t *, void **);
239static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
240    void *);
241static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
242    int, int);
243static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
244static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
245    struct sge_iq *);
246static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
247    struct sysctl_oid *, struct sge_fl *);
248static int alloc_fwq(struct adapter *);
249static int free_fwq(struct adapter *);
250static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int,
251    struct sysctl_oid *);
252static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
253    struct sysctl_oid *);
254static int free_rxq(struct vi_info *, struct sge_rxq *);
255#ifdef TCP_OFFLOAD
256static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
257    struct sysctl_oid *);
258static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
259#endif
260#ifdef DEV_NETMAP
261static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
262    struct sysctl_oid *);
263static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
264static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
265    struct sysctl_oid *);
266static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
267#endif
268static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
269static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
270#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
271static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
272#endif
273static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
274static int free_eq(struct adapter *, struct sge_eq *);
275static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
276    struct sysctl_oid *);
277static int free_wrq(struct adapter *, struct sge_wrq *);
278static int alloc_txq(struct vi_info *, struct sge_txq *, int,
279    struct sysctl_oid *);
280static int free_txq(struct vi_info *, struct sge_txq *);
281static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
282static inline void ring_fl_db(struct adapter *, struct sge_fl *);
283static int refill_fl(struct adapter *, struct sge_fl *, int);
284static void refill_sfl(void *);
285static int alloc_fl_sdesc(struct sge_fl *);
286static void free_fl_sdesc(struct adapter *, struct sge_fl *);
287static int find_refill_source(struct adapter *, int, bool);
288static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
289
290static inline void get_pkt_gl(struct mbuf *, struct sglist *);
291static inline u_int txpkt_len16(u_int, const u_int);
292static inline u_int txpkt_vm_len16(u_int, const u_int);
293static inline void calculate_mbuf_len16(struct mbuf *, bool);
294static inline u_int txpkts0_len16(u_int);
295static inline u_int txpkts1_len16(void);
296static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
297static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
298    u_int);
299static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
300    struct mbuf *);
301static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
302    int, bool *);
303static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
304    int, bool *);
305static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
306static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
307static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
308static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
309static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
310static inline uint16_t read_hw_cidx(struct sge_eq *);
311static inline u_int reclaimable_tx_desc(struct sge_eq *);
312static inline u_int total_available_tx_desc(struct sge_eq *);
313static u_int reclaim_tx_descs(struct sge_txq *, u_int);
314static void tx_reclaim(void *, int);
315static __be64 get_flit(struct sglist_seg *, int, int);
316static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
317    struct mbuf *);
318static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
319    struct mbuf *);
320static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
321static void wrq_tx_drain(void *, int);
322static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
323
324static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
325static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
326#ifdef RATELIMIT
327static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
328static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
329    struct mbuf *);
330#endif
331
332static counter_u64_t extfree_refs;
333static counter_u64_t extfree_rels;
334
335an_handler_t t4_an_handler;
336fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
337cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
338cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
339cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
340cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
341cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
342cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
343
344void
345t4_register_an_handler(an_handler_t h)
346{
347	uintptr_t *loc;
348
349	MPASS(h == NULL || t4_an_handler == NULL);
350
351	loc = (uintptr_t *)&t4_an_handler;
352	atomic_store_rel_ptr(loc, (uintptr_t)h);
353}
354
355void
356t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
357{
358	uintptr_t *loc;
359
360	MPASS(type < nitems(t4_fw_msg_handler));
361	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
362	/*
363	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
364	 * handler dispatch table.  Reject any attempt to install a handler for
365	 * this subtype.
366	 */
367	MPASS(type != FW_TYPE_RSSCPL);
368	MPASS(type != FW6_TYPE_RSSCPL);
369
370	loc = (uintptr_t *)&t4_fw_msg_handler[type];
371	atomic_store_rel_ptr(loc, (uintptr_t)h);
372}
373
374void
375t4_register_cpl_handler(int opcode, cpl_handler_t h)
376{
377	uintptr_t *loc;
378
379	MPASS(opcode < nitems(t4_cpl_handler));
380	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
381
382	loc = (uintptr_t *)&t4_cpl_handler[opcode];
383	atomic_store_rel_ptr(loc, (uintptr_t)h);
384}
385
386static int
387set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
388    struct mbuf *m)
389{
390	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
391	u_int tid;
392	int cookie;
393
394	MPASS(m == NULL);
395
396	tid = GET_TID(cpl);
397	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
398		/*
399		 * The return code for filter-write is put in the CPL cookie so
400		 * we have to rely on the hardware tid (is_ftid) to determine
401		 * that this is a response to a filter.
402		 */
403		cookie = CPL_COOKIE_FILTER;
404	} else {
405		cookie = G_COOKIE(cpl->cookie);
406	}
407	MPASS(cookie > CPL_COOKIE_RESERVED);
408	MPASS(cookie < nitems(set_tcb_rpl_handlers));
409
410	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
411}
412
413static int
414l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
415    struct mbuf *m)
416{
417	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
418	unsigned int cookie;
419
420	MPASS(m == NULL);
421
422	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
423	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
424}
425
426static int
427act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
428    struct mbuf *m)
429{
430	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
431	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
432
433	MPASS(m == NULL);
434	MPASS(cookie != CPL_COOKIE_RESERVED);
435
436	return (act_open_rpl_handlers[cookie](iq, rss, m));
437}
438
439static int
440abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
441    struct mbuf *m)
442{
443	struct adapter *sc = iq->adapter;
444	u_int cookie;
445
446	MPASS(m == NULL);
447	if (is_hashfilter(sc))
448		cookie = CPL_COOKIE_HASHFILTER;
449	else
450		cookie = CPL_COOKIE_TOM;
451
452	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
453}
454
455static int
456fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
457{
458	struct adapter *sc = iq->adapter;
459	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
460	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
461	u_int cookie;
462
463	MPASS(m == NULL);
464	if (is_etid(sc, tid))
465		cookie = CPL_COOKIE_ETHOFLD;
466	else
467		cookie = CPL_COOKIE_TOM;
468
469	return (fw4_ack_handlers[cookie](iq, rss, m));
470}
471
472static void
473t4_init_shared_cpl_handlers(void)
474{
475
476	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
477	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
478	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
479	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
480	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
481}
482
483void
484t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
485{
486	uintptr_t *loc;
487
488	MPASS(opcode < nitems(t4_cpl_handler));
489	MPASS(cookie > CPL_COOKIE_RESERVED);
490	MPASS(cookie < NUM_CPL_COOKIES);
491	MPASS(t4_cpl_handler[opcode] != NULL);
492
493	switch (opcode) {
494	case CPL_SET_TCB_RPL:
495		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
496		break;
497	case CPL_L2T_WRITE_RPL:
498		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
499		break;
500	case CPL_ACT_OPEN_RPL:
501		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
502		break;
503	case CPL_ABORT_RPL_RSS:
504		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
505		break;
506	case CPL_FW4_ACK:
507		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
508		break;
509	default:
510		MPASS(0);
511		return;
512	}
513	MPASS(h == NULL || *loc == (uintptr_t)NULL);
514	atomic_store_rel_ptr(loc, (uintptr_t)h);
515}
516
517/*
518 * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
519 */
520void
521t4_sge_modload(void)
522{
523
524	if (fl_pktshift < 0 || fl_pktshift > 7) {
525		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
526		    " using 0 instead.\n", fl_pktshift);
527		fl_pktshift = 0;
528	}
529
530	if (spg_len != 64 && spg_len != 128) {
531		int len;
532
533#if defined(__i386__) || defined(__amd64__)
534		len = cpu_clflush_line_size > 64 ? 128 : 64;
535#else
536		len = 64;
537#endif
538		if (spg_len != -1) {
539			printf("Invalid hw.cxgbe.spg_len value (%d),"
540			    " using %d instead.\n", spg_len, len);
541		}
542		spg_len = len;
543	}
544
545	if (cong_drop < -1 || cong_drop > 1) {
546		printf("Invalid hw.cxgbe.cong_drop value (%d),"
547		    " using 0 instead.\n", cong_drop);
548		cong_drop = 0;
549	}
550
551	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
552		printf("Invalid hw.cxgbe.tscale value (%d),"
553		    " using 1 instead.\n", tscale);
554		tscale = 1;
555	}
556
557	if (largest_rx_cluster != MCLBYTES &&
558#if MJUMPAGESIZE != MCLBYTES
559	    largest_rx_cluster != MJUMPAGESIZE &&
560#endif
561	    largest_rx_cluster != MJUM9BYTES &&
562	    largest_rx_cluster != MJUM16BYTES) {
563		printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
564		    " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
565		largest_rx_cluster = MJUM16BYTES;
566	}
567
568	if (safest_rx_cluster != MCLBYTES &&
569#if MJUMPAGESIZE != MCLBYTES
570	    safest_rx_cluster != MJUMPAGESIZE &&
571#endif
572	    safest_rx_cluster != MJUM9BYTES &&
573	    safest_rx_cluster != MJUM16BYTES) {
574		printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
575		    " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
576		safest_rx_cluster = MJUMPAGESIZE;
577	}
578
579	extfree_refs = counter_u64_alloc(M_WAITOK);
580	extfree_rels = counter_u64_alloc(M_WAITOK);
581	pullups = counter_u64_alloc(M_WAITOK);
582	defrags = counter_u64_alloc(M_WAITOK);
583	counter_u64_zero(extfree_refs);
584	counter_u64_zero(extfree_rels);
585	counter_u64_zero(pullups);
586	counter_u64_zero(defrags);
587
588	t4_init_shared_cpl_handlers();
589	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
590	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
591	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
592#ifdef RATELIMIT
593	t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
594	    CPL_COOKIE_ETHOFLD);
595#endif
596	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
597	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
598}
599
600void
601t4_sge_modunload(void)
602{
603
604	counter_u64_free(extfree_refs);
605	counter_u64_free(extfree_rels);
606	counter_u64_free(pullups);
607	counter_u64_free(defrags);
608}
609
610uint64_t
611t4_sge_extfree_refs(void)
612{
613	uint64_t refs, rels;
614
615	rels = counter_u64_fetch(extfree_rels);
616	refs = counter_u64_fetch(extfree_refs);
617
618	return (refs - rels);
619}
620
621/* max 4096 */
622#define MAX_PACK_BOUNDARY 512
623
624static inline void
625setup_pad_and_pack_boundaries(struct adapter *sc)
626{
627	uint32_t v, m;
628	int pad, pack, pad_shift;
629
630	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
631	    X_INGPADBOUNDARY_SHIFT;
632	pad = fl_pad;
633	if (fl_pad < (1 << pad_shift) ||
634	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
635	    !powerof2(fl_pad)) {
636		/*
637		 * If there is any chance that we might use buffer packing and
638		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
639		 * it to the minimum allowed in all other cases.
640		 */
641		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
642
643		/*
644		 * For fl_pad = 0 we'll still write a reasonable value to the
645		 * register but all the freelists will opt out of padding.
646		 * We'll complain here only if the user tried to set it to a
647		 * value greater than 0 that was invalid.
648		 */
649		if (fl_pad > 0) {
650			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
651			    " (%d), using %d instead.\n", fl_pad, pad);
652		}
653	}
654	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
655	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
656	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
657
658	if (is_t4(sc)) {
659		if (fl_pack != -1 && fl_pack != pad) {
660			/* Complain but carry on. */
661			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
662			    " using %d instead.\n", fl_pack, pad);
663		}
664		return;
665	}
666
667	pack = fl_pack;
668	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
669	    !powerof2(fl_pack)) {
670		if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
671			pack = MAX_PACK_BOUNDARY;
672		else
673			pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
674		MPASS(powerof2(pack));
675		if (pack < 16)
676			pack = 16;
677		if (pack == 32)
678			pack = 64;
679		if (pack > 4096)
680			pack = 4096;
681		if (fl_pack != -1) {
682			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
683			    " (%d), using %d instead.\n", fl_pack, pack);
684		}
685	}
686	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
687	if (pack == 16)
688		v = V_INGPACKBOUNDARY(0);
689	else
690		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
691
692	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
693	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
694}
695
696/*
697 * adap->params.vpd.cclk must be set up before this is called.
698 */
699void
700t4_tweak_chip_settings(struct adapter *sc)
701{
702	int i, reg;
703	uint32_t v, m;
704	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
705	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
706	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
707	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
708	static int sw_buf_sizes[] = {
709		MCLBYTES,
710#if MJUMPAGESIZE != MCLBYTES
711		MJUMPAGESIZE,
712#endif
713		MJUM9BYTES,
714		MJUM16BYTES
715	};
716
717	KASSERT(sc->flags & MASTER_PF,
718	    ("%s: trying to change chip settings when not master.", __func__));
719
720	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
721	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
722	    V_EGRSTATUSPAGESIZE(spg_len == 128);
723	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
724
725	setup_pad_and_pack_boundaries(sc);
726
727	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
728	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
729	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
730	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
731	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
732	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
733	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
734	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
735	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
736
737	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
738	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
739	reg = A_SGE_FL_BUFFER_SIZE2;
740	for (i = 0; i < nitems(sw_buf_sizes); i++) {
741		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
742		t4_write_reg(sc, reg, sw_buf_sizes[i]);
743		reg += 4;
744		MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
745		t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
746		reg += 4;
747	}
748
749	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
750	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
751	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
752
753	KASSERT(intr_timer[0] <= timer_max,
754	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
755	    timer_max));
756	for (i = 1; i < nitems(intr_timer); i++) {
757		KASSERT(intr_timer[i] >= intr_timer[i - 1],
758		    ("%s: timers not listed in increasing order (%d)",
759		    __func__, i));
760
761		while (intr_timer[i] > timer_max) {
762			if (i == nitems(intr_timer) - 1) {
763				intr_timer[i] = timer_max;
764				break;
765			}
766			intr_timer[i] += intr_timer[i - 1];
767			intr_timer[i] /= 2;
768		}
769	}
770
771	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
772	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
773	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
774	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
775	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
776	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
777	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
778	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
779	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
780
781	if (chip_id(sc) >= CHELSIO_T6) {
782		m = V_TSCALE(M_TSCALE);
783		if (tscale == 1)
784			v = 0;
785		else
786			v = V_TSCALE(tscale - 2);
787		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
788
789		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
790			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
791			    V_WRTHRTHRESH(M_WRTHRTHRESH);
792			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
793			v &= ~m;
794			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
795			    V_WRTHRTHRESH(16);
796			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
797		}
798	}
799
800	/* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
801	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
802	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
803
804	/*
805	 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
806	 * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
807	 * may have to deal with is MAXPHYS + 1 page.
808	 */
809	v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
810	t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
811
812	/* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
813	m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
814	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
815
816	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
817	    F_RESETDDPOFFSET;
818	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
819	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
820}
821
822/*
823 * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
824 * address mut be 16B aligned.  If padding is in use the buffer's start and end
825 * need to be aligned to the pad boundary as well.  We'll just make sure that
826 * the size is a multiple of the pad boundary here, it is up to the buffer
827 * allocation code to make sure the start of the buffer is aligned.
828 */
829static inline int
830hwsz_ok(struct adapter *sc, int hwsz)
831{
832	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
833
834	return (hwsz >= 64 && (hwsz & mask) == 0);
835}
836
837/*
838 * XXX: driver really should be able to deal with unexpected settings.
839 */
840int
841t4_read_chip_settings(struct adapter *sc)
842{
843	struct sge *s = &sc->sge;
844	struct sge_params *sp = &sc->params.sge;
845	int i, j, n, rc = 0;
846	uint32_t m, v, r;
847	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
848	static int sw_buf_sizes[] = {	/* Sorted by size */
849		MCLBYTES,
850#if MJUMPAGESIZE != MCLBYTES
851		MJUMPAGESIZE,
852#endif
853		MJUM9BYTES,
854		MJUM16BYTES
855	};
856	struct rx_buf_info *rxb;
857
858	m = F_RXPKTCPLMODE;
859	v = F_RXPKTCPLMODE;
860	r = sc->params.sge.sge_control;
861	if ((r & m) != v) {
862		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
863		rc = EINVAL;
864	}
865
866	/*
867	 * If this changes then every single use of PAGE_SHIFT in the driver
868	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
869	 */
870	if (sp->page_shift != PAGE_SHIFT) {
871		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
872		rc = EINVAL;
873	}
874
875	s->safe_zidx = -1;
876	rxb = &s->rx_buf_info[0];
877	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
878		rxb->size1 = sw_buf_sizes[i];
879		rxb->zone = m_getzone(rxb->size1);
880		rxb->type = m_gettype(rxb->size1);
881		rxb->size2 = 0;
882		rxb->hwidx1 = -1;
883		rxb->hwidx2 = -1;
884		for (j = 0; j < SGE_FLBUF_SIZES; j++) {
885			int hwsize = sp->sge_fl_buffer_size[j];
886
887			if (!hwsz_ok(sc, hwsize))
888				continue;
889
890			/* hwidx for size1 */
891			if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
892				rxb->hwidx1 = j;
893
894			/* hwidx for size2 (buffer packing) */
895			if (rxb->size1 - CL_METADATA_SIZE < hwsize)
896				continue;
897			n = rxb->size1 - hwsize - CL_METADATA_SIZE;
898			if (n == 0) {
899				rxb->hwidx2 = j;
900				rxb->size2 = hwsize;
901				break;	/* stop looking */
902			}
903			if (rxb->hwidx2 != -1) {
904				if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
905				    hwsize - CL_METADATA_SIZE) {
906					rxb->hwidx2 = j;
907					rxb->size2 = hwsize;
908				}
909			} else if (n <= 2 * CL_METADATA_SIZE) {
910				rxb->hwidx2 = j;
911				rxb->size2 = hwsize;
912			}
913		}
914		if (rxb->hwidx2 != -1)
915			sc->flags |= BUF_PACKING_OK;
916		if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
917			s->safe_zidx = i;
918	}
919
920	if (sc->flags & IS_VF)
921		return (0);
922
923	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
924	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
925	if (r != v) {
926		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
927		rc = EINVAL;
928	}
929
930	m = v = F_TDDPTAGTCB;
931	r = t4_read_reg(sc, A_ULP_RX_CTL);
932	if ((r & m) != v) {
933		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
934		rc = EINVAL;
935	}
936
937	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
938	    F_RESETDDPOFFSET;
939	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
940	r = t4_read_reg(sc, A_TP_PARA_REG5);
941	if ((r & m) != v) {
942		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
943		rc = EINVAL;
944	}
945
946	t4_init_tp_params(sc, 1);
947
948	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
949	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
950
951	return (rc);
952}
953
954int
955t4_create_dma_tag(struct adapter *sc)
956{
957	int rc;
958
959	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
960	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
961	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
962	    NULL, &sc->dmat);
963	if (rc != 0) {
964		device_printf(sc->dev,
965		    "failed to create main DMA tag: %d\n", rc);
966	}
967
968	return (rc);
969}
970
971void
972t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
973    struct sysctl_oid_list *children)
974{
975	struct sge_params *sp = &sc->params.sge;
976
977	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
978	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_bufsizes, "A",
979	    "freelist buffer sizes");
980
981	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
982	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
983
984	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
985	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
986
987	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
988	    NULL, sp->spg_len, "status page size (bytes)");
989
990	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
991	    NULL, cong_drop, "congestion drop setting");
992
993	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
994	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
995}
996
997int
998t4_destroy_dma_tag(struct adapter *sc)
999{
1000	if (sc->dmat)
1001		bus_dma_tag_destroy(sc->dmat);
1002
1003	return (0);
1004}
1005
1006/*
1007 * Allocate and initialize the firmware event queue, control queues, and special
1008 * purpose rx queues owned by the adapter.
1009 *
1010 * Returns errno on failure.  Resources allocated up to that point may still be
1011 * allocated.  Caller is responsible for cleanup in case this function fails.
1012 */
1013int
1014t4_setup_adapter_queues(struct adapter *sc)
1015{
1016	struct sysctl_oid *oid;
1017	struct sysctl_oid_list *children;
1018	int rc, i;
1019
1020	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1021
1022	sysctl_ctx_init(&sc->ctx);
1023	sc->flags |= ADAP_SYSCTL_CTX;
1024
1025	/*
1026	 * Firmware event queue
1027	 */
1028	rc = alloc_fwq(sc);
1029	if (rc != 0)
1030		return (rc);
1031
1032	/*
1033	 * That's all for the VF driver.
1034	 */
1035	if (sc->flags & IS_VF)
1036		return (rc);
1037
1038	oid = device_get_sysctl_tree(sc->dev);
1039	children = SYSCTL_CHILDREN(oid);
1040
1041	/*
1042	 * XXX: General purpose rx queues, one per port.
1043	 */
1044
1045	/*
1046	 * Control queues, one per port.
1047	 */
1048	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq",
1049	    CTLFLAG_RD, NULL, "control queues");
1050	for_each_port(sc, i) {
1051		struct sge_wrq *ctrlq = &sc->sge.ctrlq[i];
1052
1053		rc = alloc_ctrlq(sc, ctrlq, i, oid);
1054		if (rc != 0)
1055			return (rc);
1056	}
1057
1058	return (rc);
1059}
1060
1061/*
1062 * Idempotent
1063 */
1064int
1065t4_teardown_adapter_queues(struct adapter *sc)
1066{
1067	int i;
1068
1069	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1070
1071	/* Do this before freeing the queue */
1072	if (sc->flags & ADAP_SYSCTL_CTX) {
1073		sysctl_ctx_free(&sc->ctx);
1074		sc->flags &= ~ADAP_SYSCTL_CTX;
1075	}
1076
1077	if (!(sc->flags & IS_VF)) {
1078		for_each_port(sc, i)
1079			free_wrq(sc, &sc->sge.ctrlq[i]);
1080	}
1081	free_fwq(sc);
1082
1083	return (0);
1084}
1085
1086/* Maximum payload that could arrive with a single iq descriptor. */
1087static inline int
1088max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
1089{
1090	int maxp;
1091
1092	/* large enough even when hw VLAN extraction is disabled */
1093	maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1094	    ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
1095	if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1096	    maxp < sc->params.tp.max_rx_pdu)
1097		maxp = sc->params.tp.max_rx_pdu;
1098	return (maxp);
1099}
1100
1101int
1102t4_setup_vi_queues(struct vi_info *vi)
1103{
1104	int rc = 0, i, intr_idx, iqidx;
1105	struct sge_rxq *rxq;
1106	struct sge_txq *txq;
1107#ifdef TCP_OFFLOAD
1108	struct sge_ofld_rxq *ofld_rxq;
1109#endif
1110#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1111	struct sge_wrq *ofld_txq;
1112#endif
1113#ifdef DEV_NETMAP
1114	int saved_idx;
1115	struct sge_nm_rxq *nm_rxq;
1116	struct sge_nm_txq *nm_txq;
1117#endif
1118	char name[16];
1119	struct port_info *pi = vi->pi;
1120	struct adapter *sc = pi->adapter;
1121	struct ifnet *ifp = vi->ifp;
1122	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1123	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1124	int maxp;
1125
1126	/* Interrupt vector to start from (when using multiple vectors) */
1127	intr_idx = vi->first_intr;
1128
1129#ifdef DEV_NETMAP
1130	saved_idx = intr_idx;
1131	if (ifp->if_capabilities & IFCAP_NETMAP) {
1132
1133		/* netmap is supported with direct interrupts only. */
1134		MPASS(!forwarding_intr_to_fwq(sc));
1135
1136		/*
1137		 * We don't have buffers to back the netmap rx queues
1138		 * right now so we create the queues in a way that
1139		 * doesn't set off any congestion signal in the chip.
1140		 */
1141		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1142		    CTLFLAG_RD, NULL, "rx queues");
1143		for_each_nm_rxq(vi, i, nm_rxq) {
1144			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1145			if (rc != 0)
1146				goto done;
1147			intr_idx++;
1148		}
1149
1150		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1151		    CTLFLAG_RD, NULL, "tx queues");
1152		for_each_nm_txq(vi, i, nm_txq) {
1153			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1154			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1155			if (rc != 0)
1156				goto done;
1157		}
1158	}
1159
1160	/* Normal rx queues and netmap rx queues share the same interrupts. */
1161	intr_idx = saved_idx;
1162#endif
1163
1164	/*
1165	 * Allocate rx queues first because a default iqid is required when
1166	 * creating a tx queue.
1167	 */
1168	maxp = max_rx_payload(sc, ifp, false);
1169	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1170	    CTLFLAG_RD, NULL, "rx queues");
1171	for_each_rxq(vi, i, rxq) {
1172
1173		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1174
1175		snprintf(name, sizeof(name), "%s rxq%d-fl",
1176		    device_get_nameunit(vi->dev), i);
1177		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1178
1179		rc = alloc_rxq(vi, rxq,
1180		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1181		if (rc != 0)
1182			goto done;
1183		intr_idx++;
1184	}
1185#ifdef DEV_NETMAP
1186	if (ifp->if_capabilities & IFCAP_NETMAP)
1187		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1188#endif
1189#ifdef TCP_OFFLOAD
1190	maxp = max_rx_payload(sc, ifp, true);
1191	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1192	    CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections");
1193	for_each_ofld_rxq(vi, i, ofld_rxq) {
1194
1195		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1196		    vi->qsize_rxq);
1197
1198		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1199		    device_get_nameunit(vi->dev), i);
1200		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1201
1202		rc = alloc_ofld_rxq(vi, ofld_rxq,
1203		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1204		if (rc != 0)
1205			goto done;
1206		intr_idx++;
1207	}
1208#endif
1209
1210	/*
1211	 * Now the tx queues.
1212	 */
1213	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1214	    NULL, "tx queues");
1215	for_each_txq(vi, i, txq) {
1216		iqidx = vi->first_rxq + (i % vi->nrxq);
1217		snprintf(name, sizeof(name), "%s txq%d",
1218		    device_get_nameunit(vi->dev), i);
1219		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1220		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1221
1222		rc = alloc_txq(vi, txq, i, oid);
1223		if (rc != 0)
1224			goto done;
1225	}
1226#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1227	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1228	    CTLFLAG_RD, NULL, "tx queues for TOE/ETHOFLD");
1229	for_each_ofld_txq(vi, i, ofld_txq) {
1230		struct sysctl_oid *oid2;
1231
1232		snprintf(name, sizeof(name), "%s ofld_txq%d",
1233		    device_get_nameunit(vi->dev), i);
1234		if (vi->nofldrxq > 0) {
1235			iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1236			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1237			    pi->tx_chan, sc->sge.ofld_rxq[iqidx].iq.cntxt_id,
1238			    name);
1239		} else {
1240			iqidx = vi->first_rxq + (i % vi->nrxq);
1241			init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq,
1242			    pi->tx_chan, sc->sge.rxq[iqidx].iq.cntxt_id, name);
1243		}
1244
1245		snprintf(name, sizeof(name), "%d", i);
1246		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1247		    name, CTLFLAG_RD, NULL, "offload tx queue");
1248
1249		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1250		if (rc != 0)
1251			goto done;
1252	}
1253#endif
1254done:
1255	if (rc)
1256		t4_teardown_vi_queues(vi);
1257
1258	return (rc);
1259}
1260
1261/*
1262 * Idempotent
1263 */
1264int
1265t4_teardown_vi_queues(struct vi_info *vi)
1266{
1267	int i;
1268	struct sge_rxq *rxq;
1269	struct sge_txq *txq;
1270#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1271	struct port_info *pi = vi->pi;
1272	struct adapter *sc = pi->adapter;
1273	struct sge_wrq *ofld_txq;
1274#endif
1275#ifdef TCP_OFFLOAD
1276	struct sge_ofld_rxq *ofld_rxq;
1277#endif
1278#ifdef DEV_NETMAP
1279	struct sge_nm_rxq *nm_rxq;
1280	struct sge_nm_txq *nm_txq;
1281#endif
1282
1283	/* Do this before freeing the queues */
1284	if (vi->flags & VI_SYSCTL_CTX) {
1285		sysctl_ctx_free(&vi->ctx);
1286		vi->flags &= ~VI_SYSCTL_CTX;
1287	}
1288
1289#ifdef DEV_NETMAP
1290	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1291		for_each_nm_txq(vi, i, nm_txq) {
1292			free_nm_txq(vi, nm_txq);
1293		}
1294
1295		for_each_nm_rxq(vi, i, nm_rxq) {
1296			free_nm_rxq(vi, nm_rxq);
1297		}
1298	}
1299#endif
1300
1301	/*
1302	 * Take down all the tx queues first, as they reference the rx queues
1303	 * (for egress updates, etc.).
1304	 */
1305
1306	for_each_txq(vi, i, txq) {
1307		free_txq(vi, txq);
1308	}
1309#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1310	for_each_ofld_txq(vi, i, ofld_txq) {
1311		free_wrq(sc, ofld_txq);
1312	}
1313#endif
1314
1315	/*
1316	 * Then take down the rx queues.
1317	 */
1318
1319	for_each_rxq(vi, i, rxq) {
1320		free_rxq(vi, rxq);
1321	}
1322#ifdef TCP_OFFLOAD
1323	for_each_ofld_rxq(vi, i, ofld_rxq) {
1324		free_ofld_rxq(vi, ofld_rxq);
1325	}
1326#endif
1327
1328	return (0);
1329}
1330
1331/*
1332 * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1333 * unusual scenario.
1334 *
1335 * a) Deals with errors, if any.
1336 * b) Services firmware event queue, which is taking interrupts for all other
1337 *    queues.
1338 */
1339void
1340t4_intr_all(void *arg)
1341{
1342	struct adapter *sc = arg;
1343	struct sge_iq *fwq = &sc->sge.fwq;
1344
1345	MPASS(sc->intr_count == 1);
1346
1347	if (sc->intr_type == INTR_INTX)
1348		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1349
1350	t4_intr_err(arg);
1351	t4_intr_evt(fwq);
1352}
1353
1354/*
1355 * Interrupt handler for errors (installed directly when multiple interrupts are
1356 * being used, or called by t4_intr_all).
1357 */
1358void
1359t4_intr_err(void *arg)
1360{
1361	struct adapter *sc = arg;
1362	uint32_t v;
1363	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1364
1365	if (sc->flags & ADAP_ERR)
1366		return;
1367
1368	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1369	if (v & F_PFSW) {
1370		sc->swintr++;
1371		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1372	}
1373
1374	t4_slow_intr_handler(sc, verbose);
1375}
1376
1377/*
1378 * Interrupt handler for iq-only queues.  The firmware event queue is the only
1379 * such queue right now.
1380 */
1381void
1382t4_intr_evt(void *arg)
1383{
1384	struct sge_iq *iq = arg;
1385
1386	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1387		service_iq(iq, 0);
1388		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1389	}
1390}
1391
1392/*
1393 * Interrupt handler for iq+fl queues.
1394 */
1395void
1396t4_intr(void *arg)
1397{
1398	struct sge_iq *iq = arg;
1399
1400	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1401		service_iq_fl(iq, 0);
1402		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1403	}
1404}
1405
1406#ifdef DEV_NETMAP
1407/*
1408 * Interrupt handler for netmap rx queues.
1409 */
1410void
1411t4_nm_intr(void *arg)
1412{
1413	struct sge_nm_rxq *nm_rxq = arg;
1414
1415	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1416		service_nm_rxq(nm_rxq);
1417		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1418	}
1419}
1420
1421/*
1422 * Interrupt handler for vectors shared between NIC and netmap rx queues.
1423 */
1424void
1425t4_vi_intr(void *arg)
1426{
1427	struct irq *irq = arg;
1428
1429	MPASS(irq->nm_rxq != NULL);
1430	t4_nm_intr(irq->nm_rxq);
1431
1432	MPASS(irq->rxq != NULL);
1433	t4_intr(irq->rxq);
1434}
1435#endif
1436
1437/*
1438 * Deals with interrupts on an iq-only (no freelist) queue.
1439 */
1440static int
1441service_iq(struct sge_iq *iq, int budget)
1442{
1443	struct sge_iq *q;
1444	struct adapter *sc = iq->adapter;
1445	struct iq_desc *d = &iq->desc[iq->cidx];
1446	int ndescs = 0, limit;
1447	int rsp_type;
1448	uint32_t lq;
1449	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1450
1451	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1452	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1453	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1454	    iq->flags));
1455	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1456	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1457
1458	limit = budget ? budget : iq->qsize / 16;
1459
1460	/*
1461	 * We always come back and check the descriptor ring for new indirect
1462	 * interrupts and other responses after running a single handler.
1463	 */
1464	for (;;) {
1465		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1466
1467			rmb();
1468
1469			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1470			lq = be32toh(d->rsp.pldbuflen_qid);
1471
1472			switch (rsp_type) {
1473			case X_RSPD_TYPE_FLBUF:
1474				panic("%s: data for an iq (%p) with no freelist",
1475				    __func__, iq);
1476
1477				/* NOTREACHED */
1478
1479			case X_RSPD_TYPE_CPL:
1480				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1481				    ("%s: bad opcode %02x.", __func__,
1482				    d->rss.opcode));
1483				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1484				break;
1485
1486			case X_RSPD_TYPE_INTR:
1487				/*
1488				 * There are 1K interrupt-capable queues (qids 0
1489				 * through 1023).  A response type indicating a
1490				 * forwarded interrupt with a qid >= 1K is an
1491				 * iWARP async notification.
1492				 */
1493				if (__predict_true(lq >= 1024)) {
1494					t4_an_handler(iq, &d->rsp);
1495					break;
1496				}
1497
1498				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1499				    sc->sge.iq_base];
1500				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1501				    IQS_BUSY)) {
1502					if (service_iq_fl(q, q->qsize / 16) == 0) {
1503						(void) atomic_cmpset_int(&q->state,
1504						    IQS_BUSY, IQS_IDLE);
1505					} else {
1506						STAILQ_INSERT_TAIL(&iql, q,
1507						    link);
1508					}
1509				}
1510				break;
1511
1512			default:
1513				KASSERT(0,
1514				    ("%s: illegal response type %d on iq %p",
1515				    __func__, rsp_type, iq));
1516				log(LOG_ERR,
1517				    "%s: illegal response type %d on iq %p",
1518				    device_get_nameunit(sc->dev), rsp_type, iq);
1519				break;
1520			}
1521
1522			d++;
1523			if (__predict_false(++iq->cidx == iq->sidx)) {
1524				iq->cidx = 0;
1525				iq->gen ^= F_RSPD_GEN;
1526				d = &iq->desc[0];
1527			}
1528			if (__predict_false(++ndescs == limit)) {
1529				t4_write_reg(sc, sc->sge_gts_reg,
1530				    V_CIDXINC(ndescs) |
1531				    V_INGRESSQID(iq->cntxt_id) |
1532				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1533				ndescs = 0;
1534
1535				if (budget) {
1536					return (EINPROGRESS);
1537				}
1538			}
1539		}
1540
1541		if (STAILQ_EMPTY(&iql))
1542			break;
1543
1544		/*
1545		 * Process the head only, and send it to the back of the list if
1546		 * it's still not done.
1547		 */
1548		q = STAILQ_FIRST(&iql);
1549		STAILQ_REMOVE_HEAD(&iql, link);
1550		if (service_iq_fl(q, q->qsize / 8) == 0)
1551			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1552		else
1553			STAILQ_INSERT_TAIL(&iql, q, link);
1554	}
1555
1556	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1557	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1558
1559	return (0);
1560}
1561
1562static inline int
1563sort_before_lro(struct lro_ctrl *lro)
1564{
1565
1566	return (lro->lro_mbuf_max != 0);
1567}
1568
1569static inline uint64_t
1570last_flit_to_ns(struct adapter *sc, uint64_t lf)
1571{
1572	uint64_t n = be64toh(lf) & 0xfffffffffffffff;	/* 60b, not 64b. */
1573
1574	if (n > UINT64_MAX / 1000000)
1575		return (n / sc->params.vpd.cclk * 1000000);
1576	else
1577		return (n * 1000000 / sc->params.vpd.cclk);
1578}
1579
1580static inline void
1581move_to_next_rxbuf(struct sge_fl *fl)
1582{
1583
1584	fl->rx_offset = 0;
1585	if (__predict_false((++fl->cidx & 7) == 0)) {
1586		uint16_t cidx = fl->cidx >> 3;
1587
1588		if (__predict_false(cidx == fl->sidx))
1589			fl->cidx = cidx = 0;
1590		fl->hw_cidx = cidx;
1591	}
1592}
1593
1594/*
1595 * Deals with interrupts on an iq+fl queue.
1596 */
1597static int
1598service_iq_fl(struct sge_iq *iq, int budget)
1599{
1600	struct sge_rxq *rxq = iq_to_rxq(iq);
1601	struct sge_fl *fl;
1602	struct adapter *sc = iq->adapter;
1603	struct iq_desc *d = &iq->desc[iq->cidx];
1604	int ndescs, limit;
1605	int rsp_type, starved;
1606	uint32_t lq;
1607	uint16_t fl_hw_cidx;
1608	struct mbuf *m0;
1609#if defined(INET) || defined(INET6)
1610	const struct timeval lro_timeout = {0, sc->lro_timeout};
1611	struct lro_ctrl *lro = &rxq->lro;
1612#endif
1613
1614	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1615	MPASS(iq->flags & IQ_HAS_FL);
1616
1617	ndescs = 0;
1618#if defined(INET) || defined(INET6)
1619	if (iq->flags & IQ_ADJ_CREDIT) {
1620		MPASS(sort_before_lro(lro));
1621		iq->flags &= ~IQ_ADJ_CREDIT;
1622		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1623			tcp_lro_flush_all(lro);
1624			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1625			    V_INGRESSQID((u32)iq->cntxt_id) |
1626			    V_SEINTARM(iq->intr_params));
1627			return (0);
1628		}
1629		ndescs = 1;
1630	}
1631#else
1632	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1633#endif
1634
1635	limit = budget ? budget : iq->qsize / 16;
1636	fl = &rxq->fl;
1637	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1638	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1639
1640		rmb();
1641
1642		m0 = NULL;
1643		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1644		lq = be32toh(d->rsp.pldbuflen_qid);
1645
1646		switch (rsp_type) {
1647		case X_RSPD_TYPE_FLBUF:
1648			if (lq & F_RSPD_NEWBUF) {
1649				if (fl->rx_offset > 0)
1650					move_to_next_rxbuf(fl);
1651				lq = G_RSPD_LEN(lq);
1652			}
1653			if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1654				FL_LOCK(fl);
1655				refill_fl(sc, fl, 64);
1656				FL_UNLOCK(fl);
1657				fl_hw_cidx = fl->hw_cidx;
1658			}
1659
1660			if (d->rss.opcode == CPL_RX_PKT) {
1661				if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1662					break;
1663				goto out;
1664			}
1665			m0 = get_fl_payload(sc, fl, lq);
1666			if (__predict_false(m0 == NULL))
1667				goto out;
1668
1669			/* fall through */
1670
1671		case X_RSPD_TYPE_CPL:
1672			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1673			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1674			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1675			break;
1676
1677		case X_RSPD_TYPE_INTR:
1678
1679			/*
1680			 * There are 1K interrupt-capable queues (qids 0
1681			 * through 1023).  A response type indicating a
1682			 * forwarded interrupt with a qid >= 1K is an
1683			 * iWARP async notification.  That is the only
1684			 * acceptable indirect interrupt on this queue.
1685			 */
1686			if (__predict_false(lq < 1024)) {
1687				panic("%s: indirect interrupt on iq_fl %p "
1688				    "with qid %u", __func__, iq, lq);
1689			}
1690
1691			t4_an_handler(iq, &d->rsp);
1692			break;
1693
1694		default:
1695			KASSERT(0, ("%s: illegal response type %d on iq %p",
1696			    __func__, rsp_type, iq));
1697			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1698			    device_get_nameunit(sc->dev), rsp_type, iq);
1699			break;
1700		}
1701
1702		d++;
1703		if (__predict_false(++iq->cidx == iq->sidx)) {
1704			iq->cidx = 0;
1705			iq->gen ^= F_RSPD_GEN;
1706			d = &iq->desc[0];
1707		}
1708		if (__predict_false(++ndescs == limit)) {
1709			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1710			    V_INGRESSQID(iq->cntxt_id) |
1711			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1712
1713#if defined(INET) || defined(INET6)
1714			if (iq->flags & IQ_LRO_ENABLED &&
1715			    !sort_before_lro(lro) &&
1716			    sc->lro_timeout != 0) {
1717				tcp_lro_flush_inactive(lro, &lro_timeout);
1718			}
1719#endif
1720			if (budget)
1721				return (EINPROGRESS);
1722			ndescs = 0;
1723		}
1724	}
1725out:
1726#if defined(INET) || defined(INET6)
1727	if (iq->flags & IQ_LRO_ENABLED) {
1728		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1729			MPASS(sort_before_lro(lro));
1730			/* hold back one credit and don't flush LRO state */
1731			iq->flags |= IQ_ADJ_CREDIT;
1732			ndescs--;
1733		} else {
1734			tcp_lro_flush_all(lro);
1735		}
1736	}
1737#endif
1738
1739	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1740	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1741
1742	FL_LOCK(fl);
1743	starved = refill_fl(sc, fl, 64);
1744	FL_UNLOCK(fl);
1745	if (__predict_false(starved != 0))
1746		add_fl_to_sfl(sc, fl);
1747
1748	return (0);
1749}
1750
1751static inline struct cluster_metadata *
1752cl_metadata(struct fl_sdesc *sd)
1753{
1754
1755	return ((void *)(sd->cl + sd->moff));
1756}
1757
1758static void
1759rxb_free(struct mbuf *m)
1760{
1761	struct cluster_metadata *clm = m->m_ext.ext_arg1;
1762
1763	uma_zfree(clm->zone, clm->cl);
1764	counter_u64_add(extfree_rels, 1);
1765}
1766
1767/*
1768 * The mbuf returned comes from zone_muf and carries the payload in one of these
1769 * ways
1770 * a) complete frame inside the mbuf
1771 * b) m_cljset (for clusters without metadata)
1772 * d) m_extaddref (cluster with metadata)
1773 */
1774static struct mbuf *
1775get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1776    int remaining)
1777{
1778	struct mbuf *m;
1779	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1780	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1781	struct cluster_metadata *clm;
1782	int len, blen;
1783	caddr_t payload;
1784
1785	if (fl->flags & FL_BUF_PACKING) {
1786		u_int l, pad;
1787
1788		blen = rxb->size2 - fl->rx_offset;	/* max possible in this buf */
1789		len = min(remaining, blen);
1790		payload = sd->cl + fl->rx_offset;
1791
1792		l = fr_offset + len;
1793		pad = roundup2(l, fl->buf_boundary) - l;
1794		if (fl->rx_offset + len + pad < rxb->size2)
1795			blen = len + pad;
1796		MPASS(fl->rx_offset + blen <= rxb->size2);
1797	} else {
1798		MPASS(fl->rx_offset == 0);	/* not packing */
1799		blen = rxb->size1;
1800		len = min(remaining, blen);
1801		payload = sd->cl;
1802	}
1803
1804	if (fr_offset == 0) {
1805		m = m_gethdr(M_NOWAIT, MT_DATA);
1806		if (__predict_false(m == NULL))
1807			return (NULL);
1808		m->m_pkthdr.len = remaining;
1809	} else {
1810		m = m_get(M_NOWAIT, MT_DATA);
1811		if (__predict_false(m == NULL))
1812			return (NULL);
1813	}
1814	m->m_len = len;
1815
1816	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1817		/* copy data to mbuf */
1818		bcopy(payload, mtod(m, caddr_t), len);
1819		if (fl->flags & FL_BUF_PACKING) {
1820			fl->rx_offset += blen;
1821			MPASS(fl->rx_offset <= rxb->size2);
1822			if (fl->rx_offset < rxb->size2)
1823				return (m);	/* without advancing the cidx */
1824		}
1825	} else if (fl->flags & FL_BUF_PACKING) {
1826		clm = cl_metadata(sd);
1827		if (sd->nmbuf++ == 0) {
1828			clm->refcount = 1;
1829			clm->zone = rxb->zone;
1830			clm->cl = sd->cl;
1831			counter_u64_add(extfree_refs, 1);
1832		}
1833		m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1834		    NULL);
1835
1836		fl->rx_offset += blen;
1837		MPASS(fl->rx_offset <= rxb->size2);
1838		if (fl->rx_offset < rxb->size2)
1839			return (m);	/* without advancing the cidx */
1840	} else {
1841		m_cljset(m, sd->cl, rxb->type);
1842		sd->cl = NULL;	/* consumed, not a recycle candidate */
1843	}
1844
1845	move_to_next_rxbuf(fl);
1846
1847	return (m);
1848}
1849
1850static struct mbuf *
1851get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1852{
1853	struct mbuf *m0, *m, **pnext;
1854	u_int remaining;
1855
1856	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1857		M_ASSERTPKTHDR(fl->m0);
1858		MPASS(fl->m0->m_pkthdr.len == plen);
1859		MPASS(fl->remaining < plen);
1860
1861		m0 = fl->m0;
1862		pnext = fl->pnext;
1863		remaining = fl->remaining;
1864		fl->flags &= ~FL_BUF_RESUME;
1865		goto get_segment;
1866	}
1867
1868	/*
1869	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1870	 * 'len' and it may span multiple hw buffers.
1871	 */
1872
1873	m0 = get_scatter_segment(sc, fl, 0, plen);
1874	if (m0 == NULL)
1875		return (NULL);
1876	remaining = plen - m0->m_len;
1877	pnext = &m0->m_next;
1878	while (remaining > 0) {
1879get_segment:
1880		MPASS(fl->rx_offset == 0);
1881		m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1882		if (__predict_false(m == NULL)) {
1883			fl->m0 = m0;
1884			fl->pnext = pnext;
1885			fl->remaining = remaining;
1886			fl->flags |= FL_BUF_RESUME;
1887			return (NULL);
1888		}
1889		*pnext = m;
1890		pnext = &m->m_next;
1891		remaining -= m->m_len;
1892	}
1893	*pnext = NULL;
1894
1895	M_ASSERTPKTHDR(m0);
1896	return (m0);
1897}
1898
1899static int
1900eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1901    u_int plen)
1902{
1903	struct mbuf *m0;
1904	struct ifnet *ifp = rxq->ifp;
1905	struct sge_fl *fl = &rxq->fl;
1906	const struct cpl_rx_pkt *cpl;
1907#if defined(INET) || defined(INET6)
1908	struct lro_ctrl *lro = &rxq->lro;
1909#endif
1910	uint16_t err_vec, tnl_type, tnlhdr_len;
1911	static const int sw_hashtype[4][2] = {
1912		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1913		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1914		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1915		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1916	};
1917	static const int sw_csum_flags[2][2] = {
1918		{
1919			/* IP, inner IP */
1920			CSUM_ENCAP_VXLAN |
1921			    CSUM_L3_CALC | CSUM_L3_VALID |
1922			    CSUM_L4_CALC | CSUM_L4_VALID |
1923			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1924			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1925
1926			/* IP, inner IP6 */
1927			CSUM_ENCAP_VXLAN |
1928			    CSUM_L3_CALC | CSUM_L3_VALID |
1929			    CSUM_L4_CALC | CSUM_L4_VALID |
1930			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1931		},
1932		{
1933			/* IP6, inner IP */
1934			CSUM_ENCAP_VXLAN |
1935			    CSUM_L4_CALC | CSUM_L4_VALID |
1936			    CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1937			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1938
1939			/* IP6, inner IP6 */
1940			CSUM_ENCAP_VXLAN |
1941			    CSUM_L4_CALC | CSUM_L4_VALID |
1942			    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1943		},
1944	};
1945
1946	MPASS(plen > sc->params.sge.fl_pktshift);
1947	m0 = get_fl_payload(sc, fl, plen);
1948	if (__predict_false(m0 == NULL))
1949		return (ENOMEM);
1950
1951	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1952	m0->m_len -= sc->params.sge.fl_pktshift;
1953	m0->m_data += sc->params.sge.fl_pktshift;
1954
1955	m0->m_pkthdr.rcvif = ifp;
1956	M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
1957	m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
1958
1959	cpl = (const void *)(&d->rss + 1);
1960	if (sc->params.tp.rx_pkt_encap) {
1961		const uint16_t ev = be16toh(cpl->err_vec);
1962
1963		err_vec = G_T6_COMPR_RXERR_VEC(ev);
1964		tnl_type = G_T6_RX_TNL_TYPE(ev);
1965		tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
1966	} else {
1967		err_vec = be16toh(cpl->err_vec);
1968		tnl_type = 0;
1969		tnlhdr_len = 0;
1970	}
1971	if (cpl->csum_calc && err_vec == 0) {
1972		int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
1973
1974		/* checksum(s) calculated and found to be correct. */
1975
1976		MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
1977		    (cpl->l2info & htobe32(F_RXF_IP6)));
1978		m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1979		if (tnl_type == 0) {
1980	    		if (!ipv6 && ifp->if_capenable & IFCAP_RXCSUM) {
1981				m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
1982				    CSUM_L3_VALID | CSUM_L4_CALC |
1983				    CSUM_L4_VALID;
1984			} else if (ipv6 && ifp->if_capenable & IFCAP_RXCSUM_IPV6) {
1985				m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
1986				    CSUM_L4_VALID;
1987			}
1988			rxq->rxcsum++;
1989		} else {
1990			MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
1991			if (__predict_false(cpl->ip_frag)) {
1992				/*
1993				 * csum_data is for the inner frame (which is an
1994				 * IP fragment) and is not 0xffff.  There is no
1995				 * way to pass the inner csum_data to the stack.
1996				 * We don't want the stack to use the inner
1997				 * csum_data to validate the outer frame or it
1998				 * will get rejected.  So we fix csum_data here
1999				 * and let sw do the checksum of inner IP
2000				 * fragments.
2001				 *
2002				 * XXX: Need 32b for csum_data2 in an rx mbuf.
2003				 * Maybe stuff it into rcv_tstmp?
2004				 */
2005				m0->m_pkthdr.csum_data = 0xffff;
2006				if (ipv6) {
2007					m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2008					    CSUM_L4_VALID;
2009				} else {
2010					m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2011					    CSUM_L3_VALID | CSUM_L4_CALC |
2012					    CSUM_L4_VALID;
2013				}
2014			} else {
2015				int outer_ipv6;
2016
2017				MPASS(m0->m_pkthdr.csum_data == 0xffff);
2018
2019				outer_ipv6 = tnlhdr_len >=
2020				    sizeof(struct ether_header) +
2021				    sizeof(struct ip6_hdr);
2022				m0->m_pkthdr.csum_flags =
2023				    sw_csum_flags[outer_ipv6][ipv6];
2024			}
2025			rxq->vxlan_rxcsum++;
2026		}
2027	}
2028
2029	if (cpl->vlan_ex) {
2030		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2031		m0->m_flags |= M_VLANTAG;
2032		rxq->vlan_extraction++;
2033	}
2034
2035	if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2036		/*
2037		 * Fill up rcv_tstmp but do not set M_TSTMP.
2038		 * rcv_tstmp is not in the format that the
2039		 * kernel expects and we don't want to mislead
2040		 * it.  For now this is only for custom code
2041		 * that knows how to interpret cxgbe's stamp.
2042		 */
2043		m0->m_pkthdr.rcv_tstmp =
2044		    last_flit_to_ns(sc, d->rsp.u.last_flit);
2045#ifdef notyet
2046		m0->m_flags |= M_TSTMP;
2047#endif
2048	}
2049
2050#if defined(INET) || defined(INET6)
2051	if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2052	    (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2053	    M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2054		if (sort_before_lro(lro)) {
2055			tcp_lro_queue_mbuf(lro, m0);
2056			return (0); /* queued for sort, then LRO */
2057		}
2058		if (tcp_lro_rx(lro, m0, 0) == 0)
2059			return (0); /* queued for LRO */
2060	}
2061#endif
2062	ifp->if_input(ifp, m0);
2063
2064	return (0);
2065}
2066
2067/*
2068 * Must drain the wrq or make sure that someone else will.
2069 */
2070static void
2071wrq_tx_drain(void *arg, int n)
2072{
2073	struct sge_wrq *wrq = arg;
2074	struct sge_eq *eq = &wrq->eq;
2075
2076	EQ_LOCK(eq);
2077	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2078		drain_wrq_wr_list(wrq->adapter, wrq);
2079	EQ_UNLOCK(eq);
2080}
2081
2082static void
2083drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2084{
2085	struct sge_eq *eq = &wrq->eq;
2086	u_int available, dbdiff;	/* # of hardware descriptors */
2087	u_int n;
2088	struct wrqe *wr;
2089	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2090
2091	EQ_LOCK_ASSERT_OWNED(eq);
2092	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2093	wr = STAILQ_FIRST(&wrq->wr_list);
2094	MPASS(wr != NULL);	/* Must be called with something useful to do */
2095	MPASS(eq->pidx == eq->dbidx);
2096	dbdiff = 0;
2097
2098	do {
2099		eq->cidx = read_hw_cidx(eq);
2100		if (eq->pidx == eq->cidx)
2101			available = eq->sidx - 1;
2102		else
2103			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2104
2105		MPASS(wr->wrq == wrq);
2106		n = howmany(wr->wr_len, EQ_ESIZE);
2107		if (available < n)
2108			break;
2109
2110		dst = (void *)&eq->desc[eq->pidx];
2111		if (__predict_true(eq->sidx - eq->pidx > n)) {
2112			/* Won't wrap, won't end exactly at the status page. */
2113			bcopy(&wr->wr[0], dst, wr->wr_len);
2114			eq->pidx += n;
2115		} else {
2116			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2117
2118			bcopy(&wr->wr[0], dst, first_portion);
2119			if (wr->wr_len > first_portion) {
2120				bcopy(&wr->wr[first_portion], &eq->desc[0],
2121				    wr->wr_len - first_portion);
2122			}
2123			eq->pidx = n - (eq->sidx - eq->pidx);
2124		}
2125		wrq->tx_wrs_copied++;
2126
2127		if (available < eq->sidx / 4 &&
2128		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2129				/*
2130				 * XXX: This is not 100% reliable with some
2131				 * types of WRs.  But this is a very unusual
2132				 * situation for an ofld/ctrl queue anyway.
2133				 */
2134			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2135			    F_FW_WR_EQUEQ);
2136		}
2137
2138		dbdiff += n;
2139		if (dbdiff >= 16) {
2140			ring_eq_db(sc, eq, dbdiff);
2141			dbdiff = 0;
2142		}
2143
2144		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2145		free_wrqe(wr);
2146		MPASS(wrq->nwr_pending > 0);
2147		wrq->nwr_pending--;
2148		MPASS(wrq->ndesc_needed >= n);
2149		wrq->ndesc_needed -= n;
2150	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2151
2152	if (dbdiff)
2153		ring_eq_db(sc, eq, dbdiff);
2154}
2155
2156/*
2157 * Doesn't fail.  Holds on to work requests it can't send right away.
2158 */
2159void
2160t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2161{
2162#ifdef INVARIANTS
2163	struct sge_eq *eq = &wrq->eq;
2164#endif
2165
2166	EQ_LOCK_ASSERT_OWNED(eq);
2167	MPASS(wr != NULL);
2168	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2169	MPASS((wr->wr_len & 0x7) == 0);
2170
2171	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2172	wrq->nwr_pending++;
2173	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2174
2175	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2176		return;	/* commit_wrq_wr will drain wr_list as well. */
2177
2178	drain_wrq_wr_list(sc, wrq);
2179
2180	/* Doorbell must have caught up to the pidx. */
2181	MPASS(eq->pidx == eq->dbidx);
2182}
2183
2184void
2185t4_update_fl_bufsize(struct ifnet *ifp)
2186{
2187	struct vi_info *vi = ifp->if_softc;
2188	struct adapter *sc = vi->adapter;
2189	struct sge_rxq *rxq;
2190#ifdef TCP_OFFLOAD
2191	struct sge_ofld_rxq *ofld_rxq;
2192#endif
2193	struct sge_fl *fl;
2194	int i, maxp;
2195
2196	maxp = max_rx_payload(sc, ifp, false);
2197	for_each_rxq(vi, i, rxq) {
2198		fl = &rxq->fl;
2199
2200		FL_LOCK(fl);
2201		fl->zidx = find_refill_source(sc, maxp,
2202		    fl->flags & FL_BUF_PACKING);
2203		FL_UNLOCK(fl);
2204	}
2205#ifdef TCP_OFFLOAD
2206	maxp = max_rx_payload(sc, ifp, true);
2207	for_each_ofld_rxq(vi, i, ofld_rxq) {
2208		fl = &ofld_rxq->fl;
2209
2210		FL_LOCK(fl);
2211		fl->zidx = find_refill_source(sc, maxp,
2212		    fl->flags & FL_BUF_PACKING);
2213		FL_UNLOCK(fl);
2214	}
2215#endif
2216}
2217
2218static inline int
2219mbuf_nsegs(struct mbuf *m)
2220{
2221
2222	M_ASSERTPKTHDR(m);
2223	KASSERT(m->m_pkthdr.inner_l5hlen > 0,
2224	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2225
2226	return (m->m_pkthdr.inner_l5hlen);
2227}
2228
2229static inline void
2230set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2231{
2232
2233	M_ASSERTPKTHDR(m);
2234	m->m_pkthdr.inner_l5hlen = nsegs;
2235}
2236
2237static inline int
2238mbuf_cflags(struct mbuf *m)
2239{
2240
2241	M_ASSERTPKTHDR(m);
2242	return (m->m_pkthdr.PH_loc.eight[4]);
2243}
2244
2245static inline void
2246set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2247{
2248
2249	M_ASSERTPKTHDR(m);
2250	m->m_pkthdr.PH_loc.eight[4] = flags;
2251}
2252
2253static inline int
2254mbuf_len16(struct mbuf *m)
2255{
2256	int n;
2257
2258	M_ASSERTPKTHDR(m);
2259	n = m->m_pkthdr.PH_loc.eight[0];
2260	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2261
2262	return (n);
2263}
2264
2265static inline void
2266set_mbuf_len16(struct mbuf *m, uint8_t len16)
2267{
2268
2269	M_ASSERTPKTHDR(m);
2270	MPASS(len16 > 0 && len16 <= SGE_MAX_WR_LEN / 16);
2271	m->m_pkthdr.PH_loc.eight[0] = len16;
2272}
2273
2274#ifdef RATELIMIT
2275static inline int
2276mbuf_eo_nsegs(struct mbuf *m)
2277{
2278
2279	M_ASSERTPKTHDR(m);
2280	return (m->m_pkthdr.PH_loc.eight[1]);
2281}
2282
2283static inline void
2284set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2285{
2286
2287	M_ASSERTPKTHDR(m);
2288	m->m_pkthdr.PH_loc.eight[1] = nsegs;
2289}
2290
2291static inline int
2292mbuf_eo_len16(struct mbuf *m)
2293{
2294	int n;
2295
2296	M_ASSERTPKTHDR(m);
2297	n = m->m_pkthdr.PH_loc.eight[2];
2298	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2299
2300	return (n);
2301}
2302
2303static inline void
2304set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2305{
2306
2307	M_ASSERTPKTHDR(m);
2308	m->m_pkthdr.PH_loc.eight[2] = len16;
2309}
2310
2311static inline int
2312mbuf_eo_tsclk_tsoff(struct mbuf *m)
2313{
2314
2315	M_ASSERTPKTHDR(m);
2316	return (m->m_pkthdr.PH_loc.eight[3]);
2317}
2318
2319static inline void
2320set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2321{
2322
2323	M_ASSERTPKTHDR(m);
2324	m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2325}
2326
2327static inline int
2328needs_eo(struct mbuf *m)
2329{
2330
2331	return (m->m_pkthdr.snd_tag != NULL);
2332}
2333#endif
2334
2335/*
2336 * Try to allocate an mbuf to contain a raw work request.  To make it
2337 * easy to construct the work request, don't allocate a chain but a
2338 * single mbuf.
2339 */
2340struct mbuf *
2341alloc_wr_mbuf(int len, int how)
2342{
2343	struct mbuf *m;
2344
2345	if (len <= MHLEN)
2346		m = m_gethdr(how, MT_DATA);
2347	else if (len <= MCLBYTES)
2348		m = m_getcl(how, MT_DATA, M_PKTHDR);
2349	else
2350		m = NULL;
2351	if (m == NULL)
2352		return (NULL);
2353	m->m_pkthdr.len = len;
2354	m->m_len = len;
2355	set_mbuf_cflags(m, MC_RAW_WR);
2356	set_mbuf_len16(m, howmany(len, 16));
2357	return (m);
2358}
2359
2360static inline bool
2361needs_hwcsum(struct mbuf *m)
2362{
2363	const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2364	    CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2365	    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2366	    CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2367	    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2368
2369	M_ASSERTPKTHDR(m);
2370
2371	return (m->m_pkthdr.csum_flags & csum_flags);
2372}
2373
2374static inline bool
2375needs_tso(struct mbuf *m)
2376{
2377	const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2378	    CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2379
2380	M_ASSERTPKTHDR(m);
2381
2382	return (m->m_pkthdr.csum_flags & csum_flags);
2383}
2384
2385static inline bool
2386needs_vxlan_csum(struct mbuf *m)
2387{
2388
2389	M_ASSERTPKTHDR(m);
2390
2391	return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2392}
2393
2394static inline bool
2395needs_vxlan_tso(struct mbuf *m)
2396{
2397	const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2398	    CSUM_INNER_IP6_TSO;
2399
2400	M_ASSERTPKTHDR(m);
2401
2402	return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2403	    (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2404}
2405
2406static inline bool
2407needs_inner_tcp_csum(struct mbuf *m)
2408{
2409	const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2410
2411	M_ASSERTPKTHDR(m);
2412
2413	return (m->m_pkthdr.csum_flags & csum_flags);
2414}
2415
2416static inline bool
2417needs_l3_csum(struct mbuf *m)
2418{
2419	const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2420	    CSUM_INNER_IP_TSO;
2421
2422	M_ASSERTPKTHDR(m);
2423
2424	return (m->m_pkthdr.csum_flags & csum_flags);
2425}
2426
2427static inline bool
2428needs_outer_tcp_csum(struct mbuf *m)
2429{
2430	const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2431	    CSUM_IP6_TSO;
2432
2433	M_ASSERTPKTHDR(m);
2434
2435	return (m->m_pkthdr.csum_flags & csum_flags);
2436}
2437
2438#ifdef RATELIMIT
2439static inline bool
2440needs_outer_l4_csum(struct mbuf *m)
2441{
2442	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2443	    CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2444
2445	M_ASSERTPKTHDR(m);
2446
2447	return (m->m_pkthdr.csum_flags & csum_flags);
2448}
2449
2450static inline bool
2451needs_outer_udp_csum(struct mbuf *m)
2452{
2453	const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2454
2455	M_ASSERTPKTHDR(m);
2456
2457	return (m->m_pkthdr.csum_flags & csum_flags);
2458}
2459#endif
2460
2461static inline bool
2462needs_vlan_insertion(struct mbuf *m)
2463{
2464
2465	M_ASSERTPKTHDR(m);
2466
2467	return (m->m_flags & M_VLANTAG);
2468}
2469
2470static void *
2471m_advance(struct mbuf **pm, int *poffset, int len)
2472{
2473	struct mbuf *m = *pm;
2474	int offset = *poffset;
2475	uintptr_t p = 0;
2476
2477	MPASS(len > 0);
2478
2479	for (;;) {
2480		if (offset + len < m->m_len) {
2481			offset += len;
2482			p = mtod(m, uintptr_t) + offset;
2483			break;
2484		}
2485		len -= m->m_len - offset;
2486		m = m->m_next;
2487		offset = 0;
2488		MPASS(m != NULL);
2489	}
2490	*poffset = offset;
2491	*pm = m;
2492	return ((void *)p);
2493}
2494
2495#if IFCAP_NOMAP != 0
2496static inline int
2497count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2498{
2499	struct mbuf_ext_pgs *ext_pgs;
2500	vm_paddr_t paddr;
2501	int i, len, off, pglen, pgoff, seglen, segoff;
2502	int nsegs = 0;
2503
2504	MBUF_EXT_PGS_ASSERT(m);
2505	ext_pgs = m->m_ext.ext_pgs;
2506	off = mtod(m, vm_offset_t);
2507	len = m->m_len;
2508	off += skip;
2509	len -= skip;
2510
2511	if (ext_pgs->hdr_len != 0) {
2512		if (off >= ext_pgs->hdr_len) {
2513			off -= ext_pgs->hdr_len;
2514		} else {
2515			seglen = ext_pgs->hdr_len - off;
2516			segoff = off;
2517			seglen = min(seglen, len);
2518			off = 0;
2519			len -= seglen;
2520			paddr = pmap_kextract(
2521			    (vm_offset_t)&ext_pgs->hdr[segoff]);
2522			if (*nextaddr != paddr)
2523				nsegs++;
2524			*nextaddr = paddr + seglen;
2525		}
2526	}
2527	pgoff = ext_pgs->first_pg_off;
2528	for (i = 0; i < ext_pgs->npgs && len > 0; i++) {
2529		pglen = mbuf_ext_pg_len(ext_pgs, i, pgoff);
2530		if (off >= pglen) {
2531			off -= pglen;
2532			pgoff = 0;
2533			continue;
2534		}
2535		seglen = pglen - off;
2536		segoff = pgoff + off;
2537		off = 0;
2538		seglen = min(seglen, len);
2539		len -= seglen;
2540		paddr = ext_pgs->pa[i] + segoff;
2541		if (*nextaddr != paddr)
2542			nsegs++;
2543		*nextaddr = paddr + seglen;
2544		pgoff = 0;
2545	};
2546	if (len != 0) {
2547		seglen = min(len, ext_pgs->trail_len - off);
2548		len -= seglen;
2549		paddr = pmap_kextract((vm_offset_t)&ext_pgs->trail[off]);
2550		if (*nextaddr != paddr)
2551			nsegs++;
2552		*nextaddr = paddr + seglen;
2553	}
2554
2555	return (nsegs);
2556}
2557#endif
2558
2559
2560/*
2561 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2562 * must have at least one mbuf that's not empty.  It is possible for this
2563 * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2564 */
2565static inline int
2566count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2567{
2568	vm_paddr_t nextaddr, paddr;
2569	vm_offset_t va;
2570	int len, nsegs;
2571
2572	M_ASSERTPKTHDR(m);
2573	MPASS(m->m_pkthdr.len > 0);
2574	MPASS(m->m_pkthdr.len >= skip);
2575
2576	nsegs = 0;
2577	nextaddr = 0;
2578	for (; m; m = m->m_next) {
2579		len = m->m_len;
2580		if (__predict_false(len == 0))
2581			continue;
2582		if (skip >= len) {
2583			skip -= len;
2584			continue;
2585		}
2586#if IFCAP_NOMAP != 0
2587		if ((m->m_flags & M_NOMAP) != 0) {
2588			*cflags |= MC_NOMAP;
2589			nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2590			skip = 0;
2591			continue;
2592		}
2593#endif
2594		va = mtod(m, vm_offset_t) + skip;
2595		len -= skip;
2596		skip = 0;
2597		paddr = pmap_kextract(va);
2598		nsegs += sglist_count((void *)(uintptr_t)va, len);
2599		if (paddr == nextaddr)
2600			nsegs--;
2601		nextaddr = pmap_kextract(va + len - 1) + 1;
2602	}
2603
2604	return (nsegs);
2605}
2606
2607/*
2608 * The maximum number of segments that can fit in a WR.
2609 */
2610static int
2611max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2612{
2613
2614	if (vm_wr) {
2615		if (needs_tso(m))
2616			return (TX_SGL_SEGS_VM_TSO);
2617		return (TX_SGL_SEGS_VM);
2618	}
2619
2620	if (needs_tso(m)) {
2621		if (needs_vxlan_tso(m))
2622			return (TX_SGL_SEGS_VXLAN_TSO);
2623		else
2624			return (TX_SGL_SEGS_TSO);
2625	}
2626
2627	return (TX_SGL_SEGS);
2628}
2629
2630/*
2631 * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2632 * a) caller can assume it's been freed if this function returns with an error.
2633 * b) it may get defragged up if the gather list is too long for the hardware.
2634 */
2635int
2636parse_pkt(struct mbuf **mp, bool vm_wr)
2637{
2638	struct mbuf *m0 = *mp, *m;
2639	int rc, nsegs, defragged = 0, offset;
2640	struct ether_header *eh;
2641	void *l3hdr;
2642#if defined(INET) || defined(INET6)
2643	struct tcphdr *tcp;
2644#endif
2645	uint16_t eh_type;
2646	uint8_t cflags;
2647
2648	cflags = 0;
2649	M_ASSERTPKTHDR(m0);
2650	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2651		rc = EINVAL;
2652fail:
2653		m_freem(m0);
2654		*mp = NULL;
2655		return (rc);
2656	}
2657restart:
2658	/*
2659	 * First count the number of gather list segments in the payload.
2660	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2661	 */
2662	M_ASSERTPKTHDR(m0);
2663	MPASS(m0->m_pkthdr.len > 0);
2664	nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2665	if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2666		if (defragged++ > 0) {
2667			rc = EFBIG;
2668			goto fail;
2669		}
2670		counter_u64_add(defrags, 1);
2671		if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2672			rc = ENOMEM;
2673			goto fail;
2674		}
2675		*mp = m0 = m;	/* update caller's copy after defrag */
2676		goto restart;
2677	}
2678
2679	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2680	    !(cflags & MC_NOMAP))) {
2681		counter_u64_add(pullups, 1);
2682		m0 = m_pullup(m0, m0->m_pkthdr.len);
2683		if (m0 == NULL) {
2684			/* Should have left well enough alone. */
2685			rc = EFBIG;
2686			goto fail;
2687		}
2688		*mp = m0;	/* update caller's copy after pullup */
2689		goto restart;
2690	}
2691	set_mbuf_nsegs(m0, nsegs);
2692	set_mbuf_cflags(m0, cflags);
2693	calculate_mbuf_len16(m0, vm_wr);
2694
2695#ifdef RATELIMIT
2696	/*
2697	 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2698	 * checksumming is enabled.  needs_outer_l4_csum happens to check for
2699	 * all the right things.
2700	 */
2701	if (__predict_false(needs_eo(m0) && !needs_outer_l4_csum(m0)))
2702		m0->m_pkthdr.snd_tag = NULL;
2703#endif
2704
2705	if (!needs_hwcsum(m0)
2706#ifdef RATELIMIT
2707   		 && !needs_eo(m0)
2708#endif
2709	)
2710		return (0);
2711
2712	m = m0;
2713	eh = mtod(m, struct ether_header *);
2714	eh_type = ntohs(eh->ether_type);
2715	if (eh_type == ETHERTYPE_VLAN) {
2716		struct ether_vlan_header *evh = (void *)eh;
2717
2718		eh_type = ntohs(evh->evl_proto);
2719		m0->m_pkthdr.l2hlen = sizeof(*evh);
2720	} else
2721		m0->m_pkthdr.l2hlen = sizeof(*eh);
2722
2723	offset = 0;
2724	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2725
2726	switch (eh_type) {
2727#ifdef INET6
2728	case ETHERTYPE_IPV6:
2729		m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2730		break;
2731#endif
2732#ifdef INET
2733	case ETHERTYPE_IP:
2734	{
2735		struct ip *ip = l3hdr;
2736
2737		if (needs_vxlan_csum(m0)) {
2738			/* Driver will do the outer IP hdr checksum. */
2739			ip->ip_sum = 0;
2740			if (needs_vxlan_tso(m0)) {
2741				const uint16_t ipl = ip->ip_len;
2742
2743				ip->ip_len = 0;
2744				ip->ip_sum = ~in_cksum_hdr(ip);
2745				ip->ip_len = ipl;
2746			} else
2747				ip->ip_sum = in_cksum_hdr(ip);
2748		}
2749		m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2750		break;
2751	}
2752#endif
2753	default:
2754		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2755		    " with the same INET/INET6 options as the kernel.",
2756		    __func__, eh_type);
2757	}
2758
2759	if (needs_vxlan_csum(m0)) {
2760		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2761		m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2762
2763		/* Inner headers. */
2764		eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2765		    sizeof(struct udphdr) + sizeof(struct vxlan_header));
2766		eh_type = ntohs(eh->ether_type);
2767		if (eh_type == ETHERTYPE_VLAN) {
2768			struct ether_vlan_header *evh = (void *)eh;
2769
2770			eh_type = ntohs(evh->evl_proto);
2771			m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2772		} else
2773			m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2774		l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2775
2776		switch (eh_type) {
2777#ifdef INET6
2778		case ETHERTYPE_IPV6:
2779			m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2780			break;
2781#endif
2782#ifdef INET
2783		case ETHERTYPE_IP:
2784		{
2785			struct ip *ip = l3hdr;
2786
2787			m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2788			break;
2789		}
2790#endif
2791		default:
2792			panic("%s: VXLAN hw offload requested with unknown "
2793			    "ethertype 0x%04x.  if_cxgbe must be compiled"
2794			    " with the same INET/INET6 options as the kernel.",
2795			    __func__, eh_type);
2796		}
2797#if defined(INET) || defined(INET6)
2798		if (needs_inner_tcp_csum(m0)) {
2799			tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2800			m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2801		}
2802#endif
2803		MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2804		m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2805		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2806		    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2807		    CSUM_ENCAP_VXLAN;
2808	}
2809
2810#if defined(INET) || defined(INET6)
2811	if (needs_outer_tcp_csum(m0)) {
2812		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2813		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2814#ifdef RATELIMIT
2815		if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2816			set_mbuf_eo_tsclk_tsoff(m0,
2817			    V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2818			    V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2819		} else
2820			set_mbuf_eo_tsclk_tsoff(m0, 0);
2821	} else if (needs_outer_udp_csum(m0)) {
2822		m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2823#endif
2824	}
2825#ifdef RATELIMIT
2826	if (needs_eo(m0)) {
2827		u_int immhdrs;
2828
2829		/* EO WRs have the headers in the WR and not the GL. */
2830		immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2831		    m0->m_pkthdr.l4hlen;
2832		cflags = 0;
2833		nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2834		MPASS(cflags == mbuf_cflags(m0));
2835		set_mbuf_eo_nsegs(m0, nsegs);
2836		set_mbuf_eo_len16(m0,
2837		    txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2838	}
2839#endif
2840#endif
2841	MPASS(m0 == *mp);
2842	return (0);
2843}
2844
2845void *
2846start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2847{
2848	struct sge_eq *eq = &wrq->eq;
2849	struct adapter *sc = wrq->adapter;
2850	int ndesc, available;
2851	struct wrqe *wr;
2852	void *w;
2853
2854	MPASS(len16 > 0);
2855	ndesc = tx_len16_to_desc(len16);
2856	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2857
2858	EQ_LOCK(eq);
2859
2860	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2861		drain_wrq_wr_list(sc, wrq);
2862
2863	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2864slowpath:
2865		EQ_UNLOCK(eq);
2866		wr = alloc_wrqe(len16 * 16, wrq);
2867		if (__predict_false(wr == NULL))
2868			return (NULL);
2869		cookie->pidx = -1;
2870		cookie->ndesc = ndesc;
2871		return (&wr->wr);
2872	}
2873
2874	eq->cidx = read_hw_cidx(eq);
2875	if (eq->pidx == eq->cidx)
2876		available = eq->sidx - 1;
2877	else
2878		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2879	if (available < ndesc)
2880		goto slowpath;
2881
2882	cookie->pidx = eq->pidx;
2883	cookie->ndesc = ndesc;
2884	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2885
2886	w = &eq->desc[eq->pidx];
2887	IDXINCR(eq->pidx, ndesc, eq->sidx);
2888	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2889		w = &wrq->ss[0];
2890		wrq->ss_pidx = cookie->pidx;
2891		wrq->ss_len = len16 * 16;
2892	}
2893
2894	EQ_UNLOCK(eq);
2895
2896	return (w);
2897}
2898
2899void
2900commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2901{
2902	struct sge_eq *eq = &wrq->eq;
2903	struct adapter *sc = wrq->adapter;
2904	int ndesc, pidx;
2905	struct wrq_cookie *prev, *next;
2906
2907	if (cookie->pidx == -1) {
2908		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2909
2910		t4_wrq_tx(sc, wr);
2911		return;
2912	}
2913
2914	if (__predict_false(w == &wrq->ss[0])) {
2915		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2916
2917		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2918		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2919		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2920		wrq->tx_wrs_ss++;
2921	} else
2922		wrq->tx_wrs_direct++;
2923
2924	EQ_LOCK(eq);
2925	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2926	pidx = cookie->pidx;
2927	MPASS(pidx >= 0 && pidx < eq->sidx);
2928	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2929	next = TAILQ_NEXT(cookie, link);
2930	if (prev == NULL) {
2931		MPASS(pidx == eq->dbidx);
2932		if (next == NULL || ndesc >= 16) {
2933			int available;
2934			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2935
2936			/*
2937			 * Note that the WR via which we'll request tx updates
2938			 * is at pidx and not eq->pidx, which has moved on
2939			 * already.
2940			 */
2941			dst = (void *)&eq->desc[pidx];
2942			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2943			if (available < eq->sidx / 4 &&
2944			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2945				/*
2946				 * XXX: This is not 100% reliable with some
2947				 * types of WRs.  But this is a very unusual
2948				 * situation for an ofld/ctrl queue anyway.
2949				 */
2950				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2951				    F_FW_WR_EQUEQ);
2952			}
2953
2954			ring_eq_db(wrq->adapter, eq, ndesc);
2955		} else {
2956			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2957			next->pidx = pidx;
2958			next->ndesc += ndesc;
2959		}
2960	} else {
2961		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2962		prev->ndesc += ndesc;
2963	}
2964	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2965
2966	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2967		drain_wrq_wr_list(sc, wrq);
2968
2969#ifdef INVARIANTS
2970	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2971		/* Doorbell must have caught up to the pidx. */
2972		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2973	}
2974#endif
2975	EQ_UNLOCK(eq);
2976}
2977
2978static u_int
2979can_resume_eth_tx(struct mp_ring *r)
2980{
2981	struct sge_eq *eq = r->cookie;
2982
2983	return (total_available_tx_desc(eq) > eq->sidx / 8);
2984}
2985
2986static inline bool
2987cannot_use_txpkts(struct mbuf *m)
2988{
2989	/* maybe put a GL limit too, to avoid silliness? */
2990
2991	return (needs_tso(m) || (mbuf_cflags(m) & MC_RAW_WR) != 0);
2992}
2993
2994static inline int
2995discard_tx(struct sge_eq *eq)
2996{
2997
2998	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
2999}
3000
3001static inline int
3002wr_can_update_eq(void *p)
3003{
3004	struct fw_eth_tx_pkts_wr *wr = p;
3005
3006	switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3007	case FW_ULPTX_WR:
3008	case FW_ETH_TX_PKT_WR:
3009	case FW_ETH_TX_PKTS_WR:
3010	case FW_ETH_TX_PKTS2_WR:
3011	case FW_ETH_TX_PKT_VM_WR:
3012	case FW_ETH_TX_PKTS_VM_WR:
3013		return (1);
3014	default:
3015		return (0);
3016	}
3017}
3018
3019static inline void
3020set_txupdate_flags(struct sge_txq *txq, u_int avail,
3021    struct fw_eth_tx_pkt_wr *wr)
3022{
3023	struct sge_eq *eq = &txq->eq;
3024	struct txpkts *txp = &txq->txp;
3025
3026	if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3027	    atomic_cmpset_int(&eq->equiq, 0, 1)) {
3028		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3029		eq->equeqidx = eq->pidx;
3030	} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3031		wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3032		eq->equeqidx = eq->pidx;
3033	}
3034}
3035
3036#if defined(__i386__) || defined(__amd64__)
3037extern uint64_t tsc_freq;
3038#endif
3039
3040static inline bool
3041record_eth_tx_time(struct sge_txq *txq)
3042{
3043	const uint64_t cycles = get_cyclecount();
3044	const uint64_t last_tx = txq->last_tx;
3045#if defined(__i386__) || defined(__amd64__)
3046	const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3047#else
3048	const uint64_t itg = 0;
3049#endif
3050
3051	MPASS(cycles >= last_tx);
3052	txq->last_tx = cycles;
3053	return (cycles - last_tx < itg);
3054}
3055
3056/*
3057 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3058 * be consumed.  Return the actual number consumed.  0 indicates a stall.
3059 */
3060static u_int
3061eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3062{
3063	struct sge_txq *txq = r->cookie;
3064	struct ifnet *ifp = txq->ifp;
3065	struct sge_eq *eq = &txq->eq;
3066	struct txpkts *txp = &txq->txp;
3067	struct vi_info *vi = ifp->if_softc;
3068	struct adapter *sc = vi->adapter;
3069	u_int total, remaining;		/* # of packets */
3070	u_int n, avail, dbdiff;		/* # of hardware descriptors */
3071	int i, rc;
3072	struct mbuf *m0;
3073	bool snd, recent_tx;
3074	void *wr;	/* start of the last WR written to the ring */
3075
3076	TXQ_LOCK_ASSERT_OWNED(txq);
3077	recent_tx = record_eth_tx_time(txq);
3078
3079	remaining = IDXDIFF(pidx, cidx, r->size);
3080	if (__predict_false(discard_tx(eq))) {
3081		for (i = 0; i < txp->npkt; i++)
3082			m_freem(txp->mb[i]);
3083		txp->npkt = 0;
3084		while (cidx != pidx) {
3085			m0 = r->items[cidx];
3086			m_freem(m0);
3087			if (++cidx == r->size)
3088				cidx = 0;
3089		}
3090		reclaim_tx_descs(txq, eq->sidx);
3091		*coalescing = false;
3092		return (remaining);	/* emptied */
3093	}
3094
3095	/* How many hardware descriptors do we have readily available. */
3096	if (eq->pidx == eq->cidx)
3097		avail = eq->sidx - 1;
3098	else
3099		avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3100
3101	total = 0;
3102	if (remaining == 0) {
3103		txp->score = 0;
3104		txq->txpkts_flush++;
3105		goto send_txpkts;
3106	}
3107
3108	dbdiff = 0;
3109	MPASS(remaining > 0);
3110	while (remaining > 0) {
3111		m0 = r->items[cidx];
3112		M_ASSERTPKTHDR(m0);
3113		MPASS(m0->m_nextpkt == NULL);
3114
3115		if (avail < 2 * SGE_MAX_WR_NDESC)
3116			avail += reclaim_tx_descs(txq, 64);
3117
3118		if (t4_tx_coalesce == 0 && txp->npkt == 0)
3119			goto skip_coalescing;
3120		if (cannot_use_txpkts(m0))
3121			txp->score = 0;
3122		else if (recent_tx) {
3123			if (++txp->score == 0)
3124				txp->score = UINT8_MAX;
3125		} else
3126			txp->score = 1;
3127		if (txp->npkt > 0 || remaining > 1 ||
3128		    txp->score >= t4_tx_coalesce_pkts ||
3129		    atomic_load_int(&txq->eq.equiq) != 0) {
3130			if (vi->flags & TX_USES_VM_WR)
3131				rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3132			else
3133				rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3134		} else {
3135			snd = false;
3136			rc = EINVAL;
3137		}
3138		if (snd) {
3139			MPASS(txp->npkt > 0);
3140			for (i = 0; i < txp->npkt; i++)
3141				ETHER_BPF_MTAP(ifp, txp->mb[i]);
3142			if (txp->npkt > 1) {
3143				MPASS(avail >= tx_len16_to_desc(txp->len16));
3144				if (vi->flags & TX_USES_VM_WR)
3145					n = write_txpkts_vm_wr(sc, txq);
3146				else
3147					n = write_txpkts_wr(sc, txq);
3148			} else {
3149				MPASS(avail >=
3150				    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3151				if (vi->flags & TX_USES_VM_WR)
3152					n = write_txpkt_vm_wr(sc, txq,
3153					    txp->mb[0]);
3154				else
3155					n = write_txpkt_wr(sc, txq, txp->mb[0],
3156					    avail);
3157			}
3158			MPASS(n <= SGE_MAX_WR_NDESC);
3159			avail -= n;
3160			dbdiff += n;
3161			wr = &eq->desc[eq->pidx];
3162			IDXINCR(eq->pidx, n, eq->sidx);
3163			txp->npkt = 0;	/* emptied */
3164		}
3165		if (rc == 0) {
3166			/* m0 was coalesced into txq->txpkts. */
3167			goto next_mbuf;
3168		}
3169		if (rc == EAGAIN) {
3170			/*
3171			 * m0 is suitable for tx coalescing but could not be
3172			 * combined with the existing txq->txpkts, which has now
3173			 * been transmitted.  Start a new txpkts with m0.
3174			 */
3175			MPASS(snd);
3176			MPASS(txp->npkt == 0);
3177			continue;
3178		}
3179
3180		MPASS(rc != 0 && rc != EAGAIN);
3181		MPASS(txp->npkt == 0);
3182skip_coalescing:
3183		n = tx_len16_to_desc(mbuf_len16(m0));
3184		if (__predict_false(avail < n)) {
3185			avail += reclaim_tx_descs(txq, min(n, 32));
3186			if (avail < n)
3187				break;	/* out of descriptors */
3188		}
3189
3190		wr = &eq->desc[eq->pidx];
3191		if (mbuf_cflags(m0) & MC_RAW_WR) {
3192			n = write_raw_wr(txq, wr, m0, avail);
3193		} else {
3194			ETHER_BPF_MTAP(ifp, m0);
3195			if (vi->flags & TX_USES_VM_WR)
3196				n = write_txpkt_vm_wr(sc, txq, m0);
3197			else
3198				n = write_txpkt_wr(sc, txq, m0, avail);
3199		}
3200		MPASS(n >= 1 && n <= avail);
3201		MPASS(n <= SGE_MAX_WR_NDESC);
3202
3203		avail -= n;
3204		dbdiff += n;
3205		IDXINCR(eq->pidx, n, eq->sidx);
3206
3207		if (dbdiff >= 512 / EQ_ESIZE) {	/* X_FETCHBURSTMAX_512B */
3208			if (wr_can_update_eq(wr))
3209				set_txupdate_flags(txq, avail, wr);
3210			ring_eq_db(sc, eq, dbdiff);
3211			avail += reclaim_tx_descs(txq, 32);
3212			dbdiff = 0;
3213		}
3214next_mbuf:
3215		total++;
3216		remaining--;
3217		if (__predict_false(++cidx == r->size))
3218			cidx = 0;
3219	}
3220	if (dbdiff != 0) {
3221		if (wr_can_update_eq(wr))
3222			set_txupdate_flags(txq, avail, wr);
3223		ring_eq_db(sc, eq, dbdiff);
3224		reclaim_tx_descs(txq, 32);
3225	} else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3226	    atomic_load_int(&txq->eq.equiq) == 0) {
3227		/*
3228		 * If nothing was submitted to the chip for tx (it was coalesced
3229		 * into txpkts instead) and there is no tx update outstanding
3230		 * then we need to send txpkts now.
3231		 */
3232send_txpkts:
3233		MPASS(txp->npkt > 0);
3234		for (i = 0; i < txp->npkt; i++)
3235			ETHER_BPF_MTAP(ifp, txp->mb[i]);
3236		if (txp->npkt > 1) {
3237			MPASS(avail >= tx_len16_to_desc(txp->len16));
3238			if (vi->flags & TX_USES_VM_WR)
3239				n = write_txpkts_vm_wr(sc, txq);
3240			else
3241				n = write_txpkts_wr(sc, txq);
3242		} else {
3243			MPASS(avail >=
3244			    tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3245			if (vi->flags & TX_USES_VM_WR)
3246				n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3247			else
3248				n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3249		}
3250		MPASS(n <= SGE_MAX_WR_NDESC);
3251		wr = &eq->desc[eq->pidx];
3252		IDXINCR(eq->pidx, n, eq->sidx);
3253		txp->npkt = 0;	/* emptied */
3254
3255		MPASS(wr_can_update_eq(wr));
3256		set_txupdate_flags(txq, avail - n, wr);
3257		ring_eq_db(sc, eq, n);
3258		reclaim_tx_descs(txq, 32);
3259	}
3260	*coalescing = txp->npkt > 0;
3261
3262	return (total);
3263}
3264
3265static inline void
3266init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3267    int qsize)
3268{
3269
3270	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3271	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
3272	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
3273	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
3274
3275	iq->flags = 0;
3276	iq->adapter = sc;
3277	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3278	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3279	if (pktc_idx >= 0) {
3280		iq->intr_params |= F_QINTR_CNT_EN;
3281		iq->intr_pktc_idx = pktc_idx;
3282	}
3283	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
3284	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3285}
3286
3287static inline void
3288init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3289{
3290
3291	fl->qsize = qsize;
3292	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3293	strlcpy(fl->lockname, name, sizeof(fl->lockname));
3294	if (sc->flags & BUF_PACKING_OK &&
3295	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
3296	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3297		fl->flags |= FL_BUF_PACKING;
3298	fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3299	fl->safe_zidx = sc->sge.safe_zidx;
3300}
3301
3302static inline void
3303init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3304    uint8_t tx_chan, uint16_t iqid, char *name)
3305{
3306	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
3307
3308	eq->flags = eqtype & EQ_TYPEMASK;
3309	eq->tx_chan = tx_chan;
3310	eq->iqid = iqid;
3311	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3312	strlcpy(eq->lockname, name, sizeof(eq->lockname));
3313}
3314
3315static int
3316alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3317    bus_dmamap_t *map, bus_addr_t *pa, void **va)
3318{
3319	int rc;
3320
3321	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3322	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3323	if (rc != 0) {
3324		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
3325		goto done;
3326	}
3327
3328	rc = bus_dmamem_alloc(*tag, va,
3329	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3330	if (rc != 0) {
3331		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
3332		goto done;
3333	}
3334
3335	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3336	if (rc != 0) {
3337		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
3338		goto done;
3339	}
3340done:
3341	if (rc)
3342		free_ring(sc, *tag, *map, *pa, *va);
3343
3344	return (rc);
3345}
3346
3347static int
3348free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3349    bus_addr_t pa, void *va)
3350{
3351	if (pa)
3352		bus_dmamap_unload(tag, map);
3353	if (va)
3354		bus_dmamem_free(tag, va, map);
3355	if (tag)
3356		bus_dma_tag_destroy(tag);
3357
3358	return (0);
3359}
3360
3361/*
3362 * Allocates the ring for an ingress queue and an optional freelist.  If the
3363 * freelist is specified it will be allocated and then associated with the
3364 * ingress queue.
3365 *
3366 * Returns errno on failure.  Resources allocated up to that point may still be
3367 * allocated.  Caller is responsible for cleanup in case this function fails.
3368 *
3369 * If the ingress queue will take interrupts directly then the intr_idx
3370 * specifies the vector, starting from 0.  -1 means the interrupts for this
3371 * queue should be forwarded to the fwq.
3372 */
3373static int
3374alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3375    int intr_idx, int cong)
3376{
3377	int rc, i, cntxt_id;
3378	size_t len;
3379	struct fw_iq_cmd c;
3380	struct port_info *pi = vi->pi;
3381	struct adapter *sc = iq->adapter;
3382	struct sge_params *sp = &sc->params.sge;
3383	__be32 v = 0;
3384
3385	len = iq->qsize * IQ_ESIZE;
3386	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3387	    (void **)&iq->desc);
3388	if (rc != 0)
3389		return (rc);
3390
3391	bzero(&c, sizeof(c));
3392	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3393	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3394	    V_FW_IQ_CMD_VFN(0));
3395
3396	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3397	    FW_LEN16(c));
3398
3399	/* Special handling for firmware event queue */
3400	if (iq == &sc->sge.fwq)
3401		v |= F_FW_IQ_CMD_IQASYNCH;
3402
3403	if (intr_idx < 0) {
3404		/* Forwarded interrupts, all headed to fwq */
3405		v |= F_FW_IQ_CMD_IQANDST;
3406		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3407	} else {
3408		KASSERT(intr_idx < sc->intr_count,
3409		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
3410		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
3411	}
3412
3413	c.type_to_iqandstindex = htobe32(v |
3414	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3415	    V_FW_IQ_CMD_VIID(vi->viid) |
3416	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3417	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
3418	    F_FW_IQ_CMD_IQGTSMODE |
3419	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3420	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3421	c.iqsize = htobe16(iq->qsize);
3422	c.iqaddr = htobe64(iq->ba);
3423	if (cong >= 0)
3424		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3425
3426	if (fl) {
3427		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3428
3429		len = fl->qsize * EQ_ESIZE;
3430		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3431		    &fl->ba, (void **)&fl->desc);
3432		if (rc)
3433			return (rc);
3434
3435		/* Allocate space for one software descriptor per buffer. */
3436		rc = alloc_fl_sdesc(fl);
3437		if (rc != 0) {
3438			device_printf(sc->dev,
3439			    "failed to setup fl software descriptors: %d\n",
3440			    rc);
3441			return (rc);
3442		}
3443
3444		if (fl->flags & FL_BUF_PACKING) {
3445			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3446			fl->buf_boundary = sp->pack_boundary;
3447		} else {
3448			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3449			fl->buf_boundary = 16;
3450		}
3451		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3452			fl->buf_boundary = sp->pad_boundary;
3453
3454		c.iqns_to_fl0congen |=
3455		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3456			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3457			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3458			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3459			    0));
3460		if (cong >= 0) {
3461			c.iqns_to_fl0congen |=
3462				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
3463				    F_FW_IQ_CMD_FL0CONGCIF |
3464				    F_FW_IQ_CMD_FL0CONGEN);
3465		}
3466		c.fl0dcaen_to_fl0cidxfthresh =
3467		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3468			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3469			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3470			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3471		c.fl0size = htobe16(fl->qsize);
3472		c.fl0addr = htobe64(fl->ba);
3473	}
3474
3475	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3476	if (rc != 0) {
3477		device_printf(sc->dev,
3478		    "failed to create ingress queue: %d\n", rc);
3479		return (rc);
3480	}
3481
3482	iq->cidx = 0;
3483	iq->gen = F_RSPD_GEN;
3484	iq->intr_next = iq->intr_params;
3485	iq->cntxt_id = be16toh(c.iqid);
3486	iq->abs_id = be16toh(c.physiqid);
3487	iq->flags |= IQ_ALLOCATED;
3488
3489	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3490	if (cntxt_id >= sc->sge.iqmap_sz) {
3491		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3492		    cntxt_id, sc->sge.iqmap_sz - 1);
3493	}
3494	sc->sge.iqmap[cntxt_id] = iq;
3495
3496	if (fl) {
3497		u_int qid;
3498
3499		iq->flags |= IQ_HAS_FL;
3500		fl->cntxt_id = be16toh(c.fl0id);
3501		fl->pidx = fl->cidx = 0;
3502
3503		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3504		if (cntxt_id >= sc->sge.eqmap_sz) {
3505			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3506			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3507		}
3508		sc->sge.eqmap[cntxt_id] = (void *)fl;
3509
3510		qid = fl->cntxt_id;
3511		if (isset(&sc->doorbells, DOORBELL_UDB)) {
3512			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3513			uint32_t mask = (1 << s_qpp) - 1;
3514			volatile uint8_t *udb;
3515
3516			udb = sc->udbs_base + UDBS_DB_OFFSET;
3517			udb += (qid >> s_qpp) << PAGE_SHIFT;
3518			qid &= mask;
3519			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3520				udb += qid << UDBS_SEG_SHIFT;
3521				qid = 0;
3522			}
3523			fl->udb = (volatile void *)udb;
3524		}
3525		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3526
3527		FL_LOCK(fl);
3528		/* Enough to make sure the SGE doesn't think it's starved */
3529		refill_fl(sc, fl, fl->lowat);
3530		FL_UNLOCK(fl);
3531	}
3532
3533	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
3534		uint32_t param, val;
3535
3536		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3537		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3538		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
3539		if (cong == 0)
3540			val = 1 << 19;
3541		else {
3542			val = 2 << 19;
3543			for (i = 0; i < 4; i++) {
3544				if (cong & (1 << i))
3545					val |= 1 << (i << 2);
3546			}
3547		}
3548
3549		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3550		if (rc != 0) {
3551			/* report error but carry on */
3552			device_printf(sc->dev,
3553			    "failed to set congestion manager context for "
3554			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
3555		}
3556	}
3557
3558	/* Enable IQ interrupts */
3559	atomic_store_rel_int(&iq->state, IQS_IDLE);
3560	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3561	    V_INGRESSQID(iq->cntxt_id));
3562
3563	return (0);
3564}
3565
3566static int
3567free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3568{
3569	int rc;
3570	struct adapter *sc = iq->adapter;
3571	device_t dev;
3572
3573	if (sc == NULL)
3574		return (0);	/* nothing to do */
3575
3576	dev = vi ? vi->dev : sc->dev;
3577
3578	if (iq->flags & IQ_ALLOCATED) {
3579		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
3580		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
3581		    fl ? fl->cntxt_id : 0xffff, 0xffff);
3582		if (rc != 0) {
3583			device_printf(dev,
3584			    "failed to free queue %p: %d\n", iq, rc);
3585			return (rc);
3586		}
3587		iq->flags &= ~IQ_ALLOCATED;
3588	}
3589
3590	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3591
3592	bzero(iq, sizeof(*iq));
3593
3594	if (fl) {
3595		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
3596		    fl->desc);
3597
3598		if (fl->sdesc)
3599			free_fl_sdesc(sc, fl);
3600
3601		if (mtx_initialized(&fl->fl_lock))
3602			mtx_destroy(&fl->fl_lock);
3603
3604		bzero(fl, sizeof(*fl));
3605	}
3606
3607	return (0);
3608}
3609
3610static void
3611add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3612    struct sge_iq *iq)
3613{
3614	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3615
3616	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3617	    "bus address of descriptor ring");
3618	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3619	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3620	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3621	    CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I",
3622	    "absolute id of the queue");
3623	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3624	    CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I",
3625	    "SGE context id of the queue");
3626	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3627	    CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I",
3628	    "consumer index");
3629}
3630
3631static void
3632add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3633    struct sysctl_oid *oid, struct sge_fl *fl)
3634{
3635	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3636
3637	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3638	    "freelist");
3639	children = SYSCTL_CHILDREN(oid);
3640
3641	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3642	    &fl->ba, "bus address of descriptor ring");
3643	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3644	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3645	    "desc ring size in bytes");
3646	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3647	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
3648	    "SGE context id of the freelist");
3649	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3650	    fl_pad ? 1 : 0, "padding enabled");
3651	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3652	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3653	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3654	    0, "consumer index");
3655	if (fl->flags & FL_BUF_PACKING) {
3656		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3657		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3658	}
3659	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3660	    0, "producer index");
3661	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3662	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3663	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3664	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3665	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3666	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3667}
3668
3669static int
3670alloc_fwq(struct adapter *sc)
3671{
3672	int rc, intr_idx;
3673	struct sge_iq *fwq = &sc->sge.fwq;
3674	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3675	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3676
3677	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
3678	if (sc->flags & IS_VF)
3679		intr_idx = 0;
3680	else
3681		intr_idx = sc->intr_count > 1 ? 1 : 0;
3682	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
3683	if (rc != 0) {
3684		device_printf(sc->dev,
3685		    "failed to create firmware event queue: %d\n", rc);
3686		return (rc);
3687	}
3688
3689	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
3690	    NULL, "firmware event queue");
3691	add_iq_sysctls(&sc->ctx, oid, fwq);
3692
3693	return (0);
3694}
3695
3696static int
3697free_fwq(struct adapter *sc)
3698{
3699	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
3700}
3701
3702static int
3703alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx,
3704    struct sysctl_oid *oid)
3705{
3706	int rc;
3707	char name[16];
3708	struct sysctl_oid_list *children;
3709
3710	snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev),
3711	    idx);
3712	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan,
3713	    sc->sge.fwq.cntxt_id, name);
3714
3715	children = SYSCTL_CHILDREN(oid);
3716	snprintf(name, sizeof(name), "%d", idx);
3717	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3718	    NULL, "ctrl queue");
3719	rc = alloc_wrq(sc, NULL, ctrlq, oid);
3720
3721	return (rc);
3722}
3723
3724int
3725tnl_cong(struct port_info *pi, int drop)
3726{
3727
3728	if (drop == -1)
3729		return (-1);
3730	else if (drop == 1)
3731		return (0);
3732	else
3733		return (pi->rx_e_chan_map);
3734}
3735
3736static int
3737alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3738    struct sysctl_oid *oid)
3739{
3740	int rc;
3741	struct adapter *sc = vi->adapter;
3742	struct sysctl_oid_list *children;
3743	char name[16];
3744
3745	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3746	    tnl_cong(vi->pi, cong_drop));
3747	if (rc != 0)
3748		return (rc);
3749
3750	if (idx == 0)
3751		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3752	else
3753		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3754		    ("iq_base mismatch"));
3755	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3756	    ("PF with non-zero iq_base"));
3757
3758	/*
3759	 * The freelist is just barely above the starvation threshold right now,
3760	 * fill it up a bit more.
3761	 */
3762	FL_LOCK(&rxq->fl);
3763	refill_fl(sc, &rxq->fl, 128);
3764	FL_UNLOCK(&rxq->fl);
3765
3766#if defined(INET) || defined(INET6)
3767	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3768	if (rc != 0)
3769		return (rc);
3770	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3771
3772	if (vi->ifp->if_capenable & IFCAP_LRO)
3773		rxq->iq.flags |= IQ_LRO_ENABLED;
3774#endif
3775	if (vi->ifp->if_capenable & IFCAP_HWRXTSTMP)
3776		rxq->iq.flags |= IQ_RX_TIMESTAMP;
3777	rxq->ifp = vi->ifp;
3778
3779	children = SYSCTL_CHILDREN(oid);
3780
3781	snprintf(name, sizeof(name), "%d", idx);
3782	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3783	    NULL, "rx queue");
3784	children = SYSCTL_CHILDREN(oid);
3785
3786	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3787#if defined(INET) || defined(INET6)
3788	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3789	    &rxq->lro.lro_queued, 0, NULL);
3790	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3791	    &rxq->lro.lro_flushed, 0, NULL);
3792#endif
3793	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3794	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3795	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3796	    CTLFLAG_RD, &rxq->vlan_extraction,
3797	    "# of times hardware extracted 802.1Q tag");
3798	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vxlan_rxcsum",
3799	    CTLFLAG_RD, &rxq->vxlan_rxcsum,
3800	    "# of times hardware assisted with inner checksum (VXLAN) ");
3801
3802	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3803
3804	return (rc);
3805}
3806
3807static int
3808free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3809{
3810	int rc;
3811
3812#if defined(INET) || defined(INET6)
3813	if (rxq->lro.ifp) {
3814		tcp_lro_free(&rxq->lro);
3815		rxq->lro.ifp = NULL;
3816	}
3817#endif
3818
3819	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3820	if (rc == 0)
3821		bzero(rxq, sizeof(*rxq));
3822
3823	return (rc);
3824}
3825
3826#ifdef TCP_OFFLOAD
3827static int
3828alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3829    int intr_idx, int idx, struct sysctl_oid *oid)
3830{
3831	struct port_info *pi = vi->pi;
3832	int rc;
3833	struct sysctl_oid_list *children;
3834	char name[16];
3835
3836	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3837	if (rc != 0)
3838		return (rc);
3839
3840	children = SYSCTL_CHILDREN(oid);
3841
3842	snprintf(name, sizeof(name), "%d", idx);
3843	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3844	    NULL, "rx queue");
3845	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3846	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3847
3848	return (rc);
3849}
3850
3851static int
3852free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3853{
3854	int rc;
3855
3856	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3857	if (rc == 0)
3858		bzero(ofld_rxq, sizeof(*ofld_rxq));
3859
3860	return (rc);
3861}
3862#endif
3863
3864#ifdef DEV_NETMAP
3865static int
3866alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3867    int idx, struct sysctl_oid *oid)
3868{
3869	int rc;
3870	struct sysctl_oid_list *children;
3871	struct sysctl_ctx_list *ctx;
3872	char name[16];
3873	size_t len;
3874	struct adapter *sc = vi->adapter;
3875	struct netmap_adapter *na = NA(vi->ifp);
3876
3877	MPASS(na != NULL);
3878
3879	len = vi->qsize_rxq * IQ_ESIZE;
3880	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3881	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3882	if (rc != 0)
3883		return (rc);
3884
3885	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3886	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3887	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3888	if (rc != 0)
3889		return (rc);
3890
3891	nm_rxq->vi = vi;
3892	nm_rxq->nid = idx;
3893	nm_rxq->iq_cidx = 0;
3894	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3895	nm_rxq->iq_gen = F_RSPD_GEN;
3896	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3897	nm_rxq->fl_sidx = na->num_rx_desc;
3898	nm_rxq->fl_sidx2 = nm_rxq->fl_sidx;	/* copy for rxsync cacheline */
3899	nm_rxq->intr_idx = intr_idx;
3900	nm_rxq->iq_cntxt_id = INVALID_NM_RXQ_CNTXT_ID;
3901
3902	ctx = &vi->ctx;
3903	children = SYSCTL_CHILDREN(oid);
3904
3905	snprintf(name, sizeof(name), "%d", idx);
3906	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3907	    "rx queue");
3908	children = SYSCTL_CHILDREN(oid);
3909
3910	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3911	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3912	    "I", "absolute id of the queue");
3913	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3914	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3915	    "I", "SGE context id of the queue");
3916	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3917	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3918	    "consumer index");
3919
3920	children = SYSCTL_CHILDREN(oid);
3921	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3922	    "freelist");
3923	children = SYSCTL_CHILDREN(oid);
3924
3925	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3926	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3927	    "I", "SGE context id of the freelist");
3928	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3929	    &nm_rxq->fl_cidx, 0, "consumer index");
3930	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3931	    &nm_rxq->fl_pidx, 0, "producer index");
3932
3933	return (rc);
3934}
3935
3936
3937static int
3938free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3939{
3940	struct adapter *sc = vi->adapter;
3941
3942	if (vi->flags & VI_INIT_DONE)
3943		MPASS(nm_rxq->iq_cntxt_id == INVALID_NM_RXQ_CNTXT_ID);
3944	else
3945		MPASS(nm_rxq->iq_cntxt_id == 0);
3946
3947	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3948	    nm_rxq->iq_desc);
3949	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3950	    nm_rxq->fl_desc);
3951
3952	return (0);
3953}
3954
3955static int
3956alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3957    struct sysctl_oid *oid)
3958{
3959	int rc;
3960	size_t len;
3961	struct port_info *pi = vi->pi;
3962	struct adapter *sc = pi->adapter;
3963	struct netmap_adapter *na = NA(vi->ifp);
3964	char name[16];
3965	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3966
3967	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3968	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3969	    &nm_txq->ba, (void **)&nm_txq->desc);
3970	if (rc)
3971		return (rc);
3972
3973	nm_txq->pidx = nm_txq->cidx = 0;
3974	nm_txq->sidx = na->num_tx_desc;
3975	nm_txq->nid = idx;
3976	nm_txq->iqidx = iqidx;
3977	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3978	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
3979	    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
3980	if (sc->params.fw_vers >= FW_VERSION32(1, 24, 11, 0))
3981		nm_txq->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR));
3982	else
3983		nm_txq->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3984	nm_txq->cntxt_id = INVALID_NM_TXQ_CNTXT_ID;
3985
3986	snprintf(name, sizeof(name), "%d", idx);
3987	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3988	    NULL, "netmap tx queue");
3989	children = SYSCTL_CHILDREN(oid);
3990
3991	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3992	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3993	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3994	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3995	    "consumer index");
3996	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3997	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3998	    "producer index");
3999
4000	return (rc);
4001}
4002
4003static int
4004free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
4005{
4006	struct adapter *sc = vi->adapter;
4007
4008	if (vi->flags & VI_INIT_DONE)
4009		MPASS(nm_txq->cntxt_id == INVALID_NM_TXQ_CNTXT_ID);
4010	else
4011		MPASS(nm_txq->cntxt_id == 0);
4012
4013	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
4014	    nm_txq->desc);
4015
4016	return (0);
4017}
4018#endif
4019
4020/*
4021 * Returns a reasonable automatic cidx flush threshold for a given queue size.
4022 */
4023static u_int
4024qsize_to_fthresh(int qsize)
4025{
4026	u_int fthresh;
4027
4028	while (!powerof2(qsize))
4029		qsize++;
4030	fthresh = ilog2(qsize);
4031	if (fthresh > X_CIDXFLUSHTHRESH_128)
4032		fthresh = X_CIDXFLUSHTHRESH_128;
4033
4034	return (fthresh);
4035}
4036
4037static int
4038ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
4039{
4040	int rc, cntxt_id;
4041	struct fw_eq_ctrl_cmd c;
4042	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4043
4044	bzero(&c, sizeof(c));
4045
4046	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4047	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4048	    V_FW_EQ_CTRL_CMD_VFN(0));
4049	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4050	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4051	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4052	c.physeqid_pkd = htobe32(0);
4053	c.fetchszm_to_iqid =
4054	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4055		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
4056		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4057	c.dcaen_to_eqsize =
4058	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4059		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4060		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4061		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4062		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4063	c.eqaddr = htobe64(eq->ba);
4064
4065	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4066	if (rc != 0) {
4067		device_printf(sc->dev,
4068		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
4069		return (rc);
4070	}
4071	eq->flags |= EQ_ALLOCATED;
4072
4073	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4074	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4075	if (cntxt_id >= sc->sge.eqmap_sz)
4076	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4077		cntxt_id, sc->sge.eqmap_sz - 1);
4078	sc->sge.eqmap[cntxt_id] = eq;
4079
4080	return (rc);
4081}
4082
4083static int
4084eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4085{
4086	int rc, cntxt_id;
4087	struct fw_eq_eth_cmd c;
4088	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4089
4090	bzero(&c, sizeof(c));
4091
4092	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4093	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4094	    V_FW_EQ_ETH_CMD_VFN(0));
4095	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4096	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4097	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4098	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4099	c.fetchszm_to_iqid =
4100	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4101		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
4102		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4103	c.dcaen_to_eqsize =
4104	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4105		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4106		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4107		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4108	c.eqaddr = htobe64(eq->ba);
4109
4110	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4111	if (rc != 0) {
4112		device_printf(vi->dev,
4113		    "failed to create Ethernet egress queue: %d\n", rc);
4114		return (rc);
4115	}
4116	eq->flags |= EQ_ALLOCATED;
4117
4118	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4119	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4120	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4121	if (cntxt_id >= sc->sge.eqmap_sz)
4122	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4123		cntxt_id, sc->sge.eqmap_sz - 1);
4124	sc->sge.eqmap[cntxt_id] = eq;
4125
4126	return (rc);
4127}
4128
4129#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4130static int
4131ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4132{
4133	int rc, cntxt_id;
4134	struct fw_eq_ofld_cmd c;
4135	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4136
4137	bzero(&c, sizeof(c));
4138
4139	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4140	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4141	    V_FW_EQ_OFLD_CMD_VFN(0));
4142	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4143	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4144	c.fetchszm_to_iqid =
4145		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4146		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
4147		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4148	c.dcaen_to_eqsize =
4149	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4150		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4151		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4152		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4153		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4154	c.eqaddr = htobe64(eq->ba);
4155
4156	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4157	if (rc != 0) {
4158		device_printf(vi->dev,
4159		    "failed to create egress queue for TCP offload: %d\n", rc);
4160		return (rc);
4161	}
4162	eq->flags |= EQ_ALLOCATED;
4163
4164	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4165	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4166	if (cntxt_id >= sc->sge.eqmap_sz)
4167	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4168		cntxt_id, sc->sge.eqmap_sz - 1);
4169	sc->sge.eqmap[cntxt_id] = eq;
4170
4171	return (rc);
4172}
4173#endif
4174
4175static int
4176alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4177{
4178	int rc, qsize;
4179	size_t len;
4180
4181	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
4182
4183	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4184	len = qsize * EQ_ESIZE;
4185	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
4186	    &eq->ba, (void **)&eq->desc);
4187	if (rc)
4188		return (rc);
4189
4190	eq->pidx = eq->cidx = eq->dbidx = 0;
4191	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4192	eq->equeqidx = 0;
4193	eq->doorbells = sc->doorbells;
4194
4195	switch (eq->flags & EQ_TYPEMASK) {
4196	case EQ_CTRL:
4197		rc = ctrl_eq_alloc(sc, eq);
4198		break;
4199
4200	case EQ_ETH:
4201		rc = eth_eq_alloc(sc, vi, eq);
4202		break;
4203
4204#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4205	case EQ_OFLD:
4206		rc = ofld_eq_alloc(sc, vi, eq);
4207		break;
4208#endif
4209
4210	default:
4211		panic("%s: invalid eq type %d.", __func__,
4212		    eq->flags & EQ_TYPEMASK);
4213	}
4214	if (rc != 0) {
4215		device_printf(sc->dev,
4216		    "failed to allocate egress queue(%d): %d\n",
4217		    eq->flags & EQ_TYPEMASK, rc);
4218	}
4219
4220	if (isset(&eq->doorbells, DOORBELL_UDB) ||
4221	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
4222	    isset(&eq->doorbells, DOORBELL_WCWR)) {
4223		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4224		uint32_t mask = (1 << s_qpp) - 1;
4225		volatile uint8_t *udb;
4226
4227		udb = sc->udbs_base + UDBS_DB_OFFSET;
4228		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
4229		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
4230		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4231	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
4232		else {
4233			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
4234			eq->udb_qid = 0;
4235		}
4236		eq->udb = (volatile void *)udb;
4237	}
4238
4239	return (rc);
4240}
4241
4242static int
4243free_eq(struct adapter *sc, struct sge_eq *eq)
4244{
4245	int rc;
4246
4247	if (eq->flags & EQ_ALLOCATED) {
4248		switch (eq->flags & EQ_TYPEMASK) {
4249		case EQ_CTRL:
4250			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
4251			    eq->cntxt_id);
4252			break;
4253
4254		case EQ_ETH:
4255			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
4256			    eq->cntxt_id);
4257			break;
4258
4259#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4260		case EQ_OFLD:
4261			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
4262			    eq->cntxt_id);
4263			break;
4264#endif
4265
4266		default:
4267			panic("%s: invalid eq type %d.", __func__,
4268			    eq->flags & EQ_TYPEMASK);
4269		}
4270		if (rc != 0) {
4271			device_printf(sc->dev,
4272			    "failed to free egress queue (%d): %d\n",
4273			    eq->flags & EQ_TYPEMASK, rc);
4274			return (rc);
4275		}
4276		eq->flags &= ~EQ_ALLOCATED;
4277	}
4278
4279	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4280
4281	if (mtx_initialized(&eq->eq_lock))
4282		mtx_destroy(&eq->eq_lock);
4283
4284	bzero(eq, sizeof(*eq));
4285	return (0);
4286}
4287
4288static int
4289alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4290    struct sysctl_oid *oid)
4291{
4292	int rc;
4293	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
4294	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4295
4296	rc = alloc_eq(sc, vi, &wrq->eq);
4297	if (rc)
4298		return (rc);
4299
4300	wrq->adapter = sc;
4301	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4302	TAILQ_INIT(&wrq->incomplete_wrs);
4303	STAILQ_INIT(&wrq->wr_list);
4304	wrq->nwr_pending = 0;
4305	wrq->ndesc_needed = 0;
4306
4307	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4308	    &wrq->eq.ba, "bus address of descriptor ring");
4309	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4310	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
4311	    "desc ring size in bytes");
4312	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4313	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
4314	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
4315	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
4316	    "consumer index");
4317	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
4318	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
4319	    "producer index");
4320	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4321	    wrq->eq.sidx, "status page index");
4322	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4323	    &wrq->tx_wrs_direct, "# of work requests (direct)");
4324	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4325	    &wrq->tx_wrs_copied, "# of work requests (copied)");
4326	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4327	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4328
4329	return (rc);
4330}
4331
4332static int
4333free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4334{
4335	int rc;
4336
4337	rc = free_eq(sc, &wrq->eq);
4338	if (rc)
4339		return (rc);
4340
4341	bzero(wrq, sizeof(*wrq));
4342	return (0);
4343}
4344
4345static int
4346alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
4347    struct sysctl_oid *oid)
4348{
4349	int rc;
4350	struct port_info *pi = vi->pi;
4351	struct adapter *sc = pi->adapter;
4352	struct sge_eq *eq = &txq->eq;
4353	struct txpkts *txp;
4354	char name[16];
4355	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4356
4357	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
4358	    M_CXGBE, &eq->eq_lock, M_WAITOK);
4359	if (rc != 0) {
4360		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
4361		return (rc);
4362	}
4363
4364	rc = alloc_eq(sc, vi, eq);
4365	if (rc != 0) {
4366		mp_ring_free(txq->r);
4367		txq->r = NULL;
4368		return (rc);
4369	}
4370
4371	/* Can't fail after this point. */
4372
4373	if (idx == 0)
4374		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4375	else
4376		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4377		    ("eq_base mismatch"));
4378	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4379	    ("PF with non-zero eq_base"));
4380
4381	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4382	txq->ifp = vi->ifp;
4383	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4384	if (vi->flags & TX_USES_VM_WR)
4385		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4386		    V_TXPKT_INTF(pi->tx_chan));
4387	else
4388		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4389		    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4390		    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4391	txq->tc_idx = -1;
4392	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4393	    M_ZERO | M_WAITOK);
4394
4395	txp = &txq->txp;
4396	MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4397	txq->txp.max_npkt = min(nitems(txp->mb),
4398	    sc->params.max_pkts_per_eth_tx_pkts_wr);
4399	if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4400		txq->txp.max_npkt--;
4401
4402	snprintf(name, sizeof(name), "%d", idx);
4403	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
4404	    NULL, "tx queue");
4405	children = SYSCTL_CHILDREN(oid);
4406
4407	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
4408	    &eq->ba, "bus address of descriptor ring");
4409	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4410	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4411	    "desc ring size in bytes");
4412	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4413	    &eq->abs_id, 0, "absolute id of the queue");
4414	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4415	    &eq->cntxt_id, 0, "SGE context id of the queue");
4416	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
4417	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
4418	    "consumer index");
4419	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
4420	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
4421	    "producer index");
4422	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4423	    eq->sidx, "status page index");
4424
4425	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
4426	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
4427	    "traffic class (-1 means none)");
4428
4429	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4430	    &txq->txcsum, "# of times hardware assisted with checksum");
4431	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
4432	    CTLFLAG_RD, &txq->vlan_insertion,
4433	    "# of times hardware inserted 802.1Q tag");
4434	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4435	    &txq->tso_wrs, "# of TSO work requests");
4436	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4437	    &txq->imm_wrs, "# of work requests with immediate data");
4438	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4439	    &txq->sgl_wrs, "# of work requests with direct SGL");
4440	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4441	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4442	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
4443	    CTLFLAG_RD, &txq->txpkts0_wrs,
4444	    "# of txpkts (type 0) work requests");
4445	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
4446	    CTLFLAG_RD, &txq->txpkts1_wrs,
4447	    "# of txpkts (type 1) work requests");
4448	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
4449	    CTLFLAG_RD, &txq->txpkts0_pkts,
4450	    "# of frames tx'd using type0 txpkts work requests");
4451	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
4452	    CTLFLAG_RD, &txq->txpkts1_pkts,
4453	    "# of frames tx'd using type1 txpkts work requests");
4454	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts_flush",
4455	    CTLFLAG_RD, &txq->txpkts_flush,
4456	    "# of times txpkts had to be flushed out by an egress-update");
4457	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4458	    &txq->raw_wrs, "# of raw work requests (non-packets)");
4459	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vxlan_tso_wrs",
4460	    CTLFLAG_RD, &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4461	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vxlan_txcsum",
4462	    CTLFLAG_RD, &txq->vxlan_txcsum,
4463	    "# of times hardware assisted with inner checksums (VXLAN)");
4464
4465	mp_ring_sysctls(txq->r, &vi->ctx, children);
4466
4467	return (0);
4468}
4469
4470static int
4471free_txq(struct vi_info *vi, struct sge_txq *txq)
4472{
4473	int rc;
4474	struct adapter *sc = vi->adapter;
4475	struct sge_eq *eq = &txq->eq;
4476
4477	rc = free_eq(sc, eq);
4478	if (rc)
4479		return (rc);
4480
4481	sglist_free(txq->gl);
4482	free(txq->sdesc, M_CXGBE);
4483	mp_ring_free(txq->r);
4484
4485	bzero(txq, sizeof(*txq));
4486	return (0);
4487}
4488
4489static void
4490oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4491{
4492	bus_addr_t *ba = arg;
4493
4494	KASSERT(nseg == 1,
4495	    ("%s meant for single segment mappings only.", __func__));
4496
4497	*ba = error ? 0 : segs->ds_addr;
4498}
4499
4500static inline void
4501ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4502{
4503	uint32_t n, v;
4504
4505	n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4506	MPASS(n > 0);
4507
4508	wmb();
4509	v = fl->dbval | V_PIDX(n);
4510	if (fl->udb)
4511		*fl->udb = htole32(v);
4512	else
4513		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4514	IDXINCR(fl->dbidx, n, fl->sidx);
4515}
4516
4517/*
4518 * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
4519 * recycled do not count towards this allocation budget.
4520 *
4521 * Returns non-zero to indicate that this freelist should be added to the list
4522 * of starving freelists.
4523 */
4524static int
4525refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4526{
4527	__be64 *d;
4528	struct fl_sdesc *sd;
4529	uintptr_t pa;
4530	caddr_t cl;
4531	struct rx_buf_info *rxb;
4532	struct cluster_metadata *clm;
4533	uint16_t max_pidx, zidx = fl->zidx;
4534	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
4535
4536	FL_LOCK_ASSERT_OWNED(fl);
4537
4538	/*
4539	 * We always stop at the beginning of the hardware descriptor that's just
4540	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
4541	 * which would mean an empty freelist to the chip.
4542	 */
4543	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
4544	if (fl->pidx == max_pidx * 8)
4545		return (0);
4546
4547	d = &fl->desc[fl->pidx];
4548	sd = &fl->sdesc[fl->pidx];
4549	rxb = &sc->sge.rx_buf_info[zidx];
4550
4551	while (n > 0) {
4552
4553		if (sd->cl != NULL) {
4554
4555			if (sd->nmbuf == 0) {
4556				/*
4557				 * Fast recycle without involving any atomics on
4558				 * the cluster's metadata (if the cluster has
4559				 * metadata).  This happens when all frames
4560				 * received in the cluster were small enough to
4561				 * fit within a single mbuf each.
4562				 */
4563				fl->cl_fast_recycled++;
4564				goto recycled;
4565			}
4566
4567			/*
4568			 * Cluster is guaranteed to have metadata.  Clusters
4569			 * without metadata always take the fast recycle path
4570			 * when they're recycled.
4571			 */
4572			clm = cl_metadata(sd);
4573			MPASS(clm != NULL);
4574
4575			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4576				fl->cl_recycled++;
4577				counter_u64_add(extfree_rels, 1);
4578				goto recycled;
4579			}
4580			sd->cl = NULL;	/* gave up my reference */
4581		}
4582		MPASS(sd->cl == NULL);
4583		cl = uma_zalloc(rxb->zone, M_NOWAIT);
4584		if (__predict_false(cl == NULL)) {
4585			if (zidx != fl->safe_zidx) {
4586				zidx = fl->safe_zidx;
4587				rxb = &sc->sge.rx_buf_info[zidx];
4588				cl = uma_zalloc(rxb->zone, M_NOWAIT);
4589			}
4590			if (cl == NULL)
4591				break;
4592		}
4593		fl->cl_allocated++;
4594		n--;
4595
4596		pa = pmap_kextract((vm_offset_t)cl);
4597		sd->cl = cl;
4598		sd->zidx = zidx;
4599
4600		if (fl->flags & FL_BUF_PACKING) {
4601			*d = htobe64(pa | rxb->hwidx2);
4602			sd->moff = rxb->size2;
4603		} else {
4604			*d = htobe64(pa | rxb->hwidx1);
4605			sd->moff = 0;
4606		}
4607recycled:
4608		sd->nmbuf = 0;
4609		d++;
4610		sd++;
4611		if (__predict_false((++fl->pidx & 7) == 0)) {
4612			uint16_t pidx = fl->pidx >> 3;
4613
4614			if (__predict_false(pidx == fl->sidx)) {
4615				fl->pidx = 0;
4616				pidx = 0;
4617				sd = fl->sdesc;
4618				d = fl->desc;
4619			}
4620			if (n < 8 || pidx == max_pidx)
4621				break;
4622
4623			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4624				ring_fl_db(sc, fl);
4625		}
4626	}
4627
4628	if ((fl->pidx >> 3) != fl->dbidx)
4629		ring_fl_db(sc, fl);
4630
4631	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4632}
4633
4634/*
4635 * Attempt to refill all starving freelists.
4636 */
4637static void
4638refill_sfl(void *arg)
4639{
4640	struct adapter *sc = arg;
4641	struct sge_fl *fl, *fl_temp;
4642
4643	mtx_assert(&sc->sfl_lock, MA_OWNED);
4644	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4645		FL_LOCK(fl);
4646		refill_fl(sc, fl, 64);
4647		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
4648			TAILQ_REMOVE(&sc->sfl, fl, link);
4649			fl->flags &= ~FL_STARVING;
4650		}
4651		FL_UNLOCK(fl);
4652	}
4653
4654	if (!TAILQ_EMPTY(&sc->sfl))
4655		callout_schedule(&sc->sfl_callout, hz / 5);
4656}
4657
4658static int
4659alloc_fl_sdesc(struct sge_fl *fl)
4660{
4661
4662	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
4663	    M_ZERO | M_WAITOK);
4664
4665	return (0);
4666}
4667
4668static void
4669free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
4670{
4671	struct fl_sdesc *sd;
4672	struct cluster_metadata *clm;
4673	int i;
4674
4675	sd = fl->sdesc;
4676	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4677		if (sd->cl == NULL)
4678			continue;
4679
4680		if (sd->nmbuf == 0)
4681			uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
4682		else if (fl->flags & FL_BUF_PACKING) {
4683			clm = cl_metadata(sd);
4684			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4685				uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
4686				    sd->cl);
4687				counter_u64_add(extfree_rels, 1);
4688			}
4689		}
4690		sd->cl = NULL;
4691	}
4692
4693	free(fl->sdesc, M_CXGBE);
4694	fl->sdesc = NULL;
4695}
4696
4697static inline void
4698get_pkt_gl(struct mbuf *m, struct sglist *gl)
4699{
4700	int rc;
4701
4702	M_ASSERTPKTHDR(m);
4703
4704	sglist_reset(gl);
4705	rc = sglist_append_mbuf(gl, m);
4706	if (__predict_false(rc != 0)) {
4707		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
4708		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
4709	}
4710
4711	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
4712	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
4713	    mbuf_nsegs(m), gl->sg_nseg));
4714#if 0	/* vm_wr not readily available here. */
4715	KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
4716	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
4717		gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
4718#endif
4719}
4720
4721/*
4722 * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4723 */
4724static inline u_int
4725txpkt_len16(u_int nsegs, const u_int extra)
4726{
4727	u_int n;
4728
4729	MPASS(nsegs > 0);
4730
4731	nsegs--; /* first segment is part of ulptx_sgl */
4732	n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
4733	    sizeof(struct cpl_tx_pkt_core) +
4734	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4735
4736	return (howmany(n, 16));
4737}
4738
4739/*
4740 * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4741 * request header.
4742 */
4743static inline u_int
4744txpkt_vm_len16(u_int nsegs, const u_int extra)
4745{
4746	u_int n;
4747
4748	MPASS(nsegs > 0);
4749
4750	nsegs--; /* first segment is part of ulptx_sgl */
4751	n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
4752	    sizeof(struct cpl_tx_pkt_core) +
4753	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4754
4755	return (howmany(n, 16));
4756}
4757
4758static inline void
4759calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
4760{
4761	const int lso = sizeof(struct cpl_tx_pkt_lso_core);
4762	const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
4763
4764	if (vm_wr) {
4765		if (needs_tso(m))
4766			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
4767		else
4768			set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
4769		return;
4770	}
4771
4772	if (needs_tso(m)) {
4773		if (needs_vxlan_tso(m))
4774			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
4775		else
4776			set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
4777	} else
4778		set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
4779}
4780
4781/*
4782 * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4783 * request header.
4784 */
4785static inline u_int
4786txpkts0_len16(u_int nsegs)
4787{
4788	u_int n;
4789
4790	MPASS(nsegs > 0);
4791
4792	nsegs--; /* first segment is part of ulptx_sgl */
4793	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4794	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4795	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4796
4797	return (howmany(n, 16));
4798}
4799
4800/*
4801 * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4802 * request header.
4803 */
4804static inline u_int
4805txpkts1_len16(void)
4806{
4807	u_int n;
4808
4809	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4810
4811	return (howmany(n, 16));
4812}
4813
4814static inline u_int
4815imm_payload(u_int ndesc)
4816{
4817	u_int n;
4818
4819	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4820	    sizeof(struct cpl_tx_pkt_core);
4821
4822	return (n);
4823}
4824
4825static inline uint64_t
4826csum_to_ctrl(struct adapter *sc, struct mbuf *m)
4827{
4828	uint64_t ctrl;
4829	int csum_type, l2hlen, l3hlen;
4830	int x, y;
4831	static const int csum_types[3][2] = {
4832		{TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
4833		{TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
4834		{TX_CSUM_IP, 0}
4835	};
4836
4837	M_ASSERTPKTHDR(m);
4838
4839	if (!needs_hwcsum(m))
4840		return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
4841
4842	MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
4843	MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
4844
4845	if (needs_vxlan_csum(m)) {
4846		MPASS(m->m_pkthdr.l4hlen > 0);
4847		MPASS(m->m_pkthdr.l5hlen > 0);
4848		MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
4849		MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
4850
4851		l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
4852		    m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
4853		    m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
4854		l3hlen = m->m_pkthdr.inner_l3hlen;
4855	} else {
4856		l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
4857		l3hlen = m->m_pkthdr.l3hlen;
4858	}
4859
4860	ctrl = 0;
4861	if (!needs_l3_csum(m))
4862		ctrl |= F_TXPKT_IPCSUM_DIS;
4863
4864	if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
4865	    CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
4866		x = 0;	/* TCP */
4867	else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
4868	    CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
4869		x = 1;	/* UDP */
4870	else
4871		x = 2;
4872
4873	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
4874	    CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
4875		y = 0;	/* IPv4 */
4876	else {
4877		MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
4878		    CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
4879		y = 1;	/* IPv6 */
4880	}
4881	/*
4882	 * needs_hwcsum returned true earlier so there must be some kind of
4883	 * checksum to calculate.
4884	 */
4885	csum_type = csum_types[x][y];
4886	MPASS(csum_type != 0);
4887	if (csum_type == TX_CSUM_IP)
4888		ctrl |= F_TXPKT_L4CSUM_DIS;
4889	ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
4890	if (chip_id(sc) <= CHELSIO_T5)
4891		ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
4892	else
4893		ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
4894
4895	return (ctrl);
4896}
4897
4898static inline void *
4899write_lso_cpl(void *cpl, struct mbuf *m0)
4900{
4901	struct cpl_tx_pkt_lso_core *lso;
4902	uint32_t ctrl;
4903
4904	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4905	    m0->m_pkthdr.l4hlen > 0,
4906	    ("%s: mbuf %p needs TSO but missing header lengths",
4907		__func__, m0));
4908
4909	ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
4910	    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
4911	    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
4912	    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
4913	    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4914	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4915		ctrl |= F_LSO_IPV6;
4916
4917	lso = cpl;
4918	lso->lso_ctrl = htobe32(ctrl);
4919	lso->ipid_ofst = htobe16(0);
4920	lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4921	lso->seqno_offset = htobe32(0);
4922	lso->len = htobe32(m0->m_pkthdr.len);
4923
4924	return (lso + 1);
4925}
4926
4927static void *
4928write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
4929{
4930	struct cpl_tx_tnl_lso *tnl_lso = cpl;
4931	uint32_t ctrl;
4932
4933	KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
4934	    m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
4935	    m0->m_pkthdr.inner_l5hlen > 0,
4936	    ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
4937		__func__, m0));
4938	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4939	    m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
4940	    ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
4941		__func__, m0));
4942
4943	/* Outer headers. */
4944	ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
4945	    F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
4946	    V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
4947		(m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
4948	    V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
4949	    F_CPL_TX_TNL_LSO_IPLENSETOUT;
4950	if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4951		ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
4952	else {
4953		ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
4954		    F_CPL_TX_TNL_LSO_IPIDINCOUT;
4955	}
4956	tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
4957	tnl_lso->IpIdOffsetOut = 0;
4958	tnl_lso->UdpLenSetOut_to_TnlHdrLen =
4959		htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
4960		    F_CPL_TX_TNL_LSO_UDPLENSETOUT |
4961		    V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
4962			m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
4963			m0->m_pkthdr.l5hlen) |
4964		    V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
4965	tnl_lso->r1 = 0;
4966
4967	/* Inner headers. */
4968	ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
4969	    (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
4970	    V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
4971	    V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
4972	if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
4973		ctrl |= F_CPL_TX_TNL_LSO_IPV6;
4974	tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
4975	tnl_lso->IpIdOffset = 0;
4976	tnl_lso->IpIdSplit_to_Mss =
4977	    htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
4978	tnl_lso->TCPSeqOffset = 0;
4979	tnl_lso->EthLenOffset_Size =
4980	    htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
4981
4982	return (tnl_lso + 1);
4983}
4984
4985#define VM_TX_L2HDR_LEN	16	/* ethmacdst to vlantci */
4986
4987/*
4988 * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4989 * software descriptor, and advance the pidx.  It is guaranteed that enough
4990 * descriptors are available.
4991 *
4992 * The return value is the # of hardware descriptors used.
4993 */
4994static u_int
4995write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
4996{
4997	struct sge_eq *eq;
4998	struct fw_eth_tx_pkt_vm_wr *wr;
4999	struct tx_sdesc *txsd;
5000	struct cpl_tx_pkt_core *cpl;
5001	uint32_t ctrl;	/* used in many unrelated places */
5002	uint64_t ctrl1;
5003	int len16, ndesc, pktlen, nsegs;
5004	caddr_t dst;
5005
5006	TXQ_LOCK_ASSERT_OWNED(txq);
5007	M_ASSERTPKTHDR(m0);
5008
5009	len16 = mbuf_len16(m0);
5010	nsegs = mbuf_nsegs(m0);
5011	pktlen = m0->m_pkthdr.len;
5012	ctrl = sizeof(struct cpl_tx_pkt_core);
5013	if (needs_tso(m0))
5014		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5015	ndesc = tx_len16_to_desc(len16);
5016
5017	/* Firmware work request header */
5018	eq = &txq->eq;
5019	wr = (void *)&eq->desc[eq->pidx];
5020	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5021	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5022
5023	ctrl = V_FW_WR_LEN16(len16);
5024	wr->equiq_to_len16 = htobe32(ctrl);
5025	wr->r3[0] = 0;
5026	wr->r3[1] = 0;
5027
5028	/*
5029	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5030	 * vlantci is ignored unless the ethtype is 0x8100, so it's
5031	 * simpler to always copy it rather than making it
5032	 * conditional.  Also, it seems that we do not have to set
5033	 * vlantci or fake the ethtype when doing VLAN tag insertion.
5034	 */
5035	m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5036
5037	if (needs_tso(m0)) {
5038		cpl = write_lso_cpl(wr + 1, m0);
5039		txq->tso_wrs++;
5040	} else
5041		cpl = (void *)(wr + 1);
5042
5043	/* Checksum offload */
5044	ctrl1 = csum_to_ctrl(sc, m0);
5045	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5046		txq->txcsum++;	/* some hardware assistance provided */
5047
5048	/* VLAN tag insertion */
5049	if (needs_vlan_insertion(m0)) {
5050		ctrl1 |= F_TXPKT_VLAN_VLD |
5051		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5052		txq->vlan_insertion++;
5053	}
5054
5055	/* CPL header */
5056	cpl->ctrl0 = txq->cpl_ctrl0;
5057	cpl->pack = 0;
5058	cpl->len = htobe16(pktlen);
5059	cpl->ctrl1 = htobe64(ctrl1);
5060
5061	/* SGL */
5062	dst = (void *)(cpl + 1);
5063
5064	/*
5065	 * A packet using TSO will use up an entire descriptor for the
5066	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5067	 * If this descriptor is the last descriptor in the ring, wrap
5068	 * around to the front of the ring explicitly for the start of
5069	 * the sgl.
5070	 */
5071	if (dst == (void *)&eq->desc[eq->sidx]) {
5072		dst = (void *)&eq->desc[0];
5073		write_gl_to_txd(txq, m0, &dst, 0);
5074	} else
5075		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5076	txq->sgl_wrs++;
5077	txq->txpkt_wrs++;
5078
5079	txsd = &txq->sdesc[eq->pidx];
5080	txsd->m = m0;
5081	txsd->desc_used = ndesc;
5082
5083	return (ndesc);
5084}
5085
5086/*
5087 * Write a raw WR to the hardware descriptors, update the software
5088 * descriptor, and advance the pidx.  It is guaranteed that enough
5089 * descriptors are available.
5090 *
5091 * The return value is the # of hardware descriptors used.
5092 */
5093static u_int
5094write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5095{
5096	struct sge_eq *eq = &txq->eq;
5097	struct tx_sdesc *txsd;
5098	struct mbuf *m;
5099	caddr_t dst;
5100	int len16, ndesc;
5101
5102	len16 = mbuf_len16(m0);
5103	ndesc = tx_len16_to_desc(len16);
5104	MPASS(ndesc <= available);
5105
5106	dst = wr;
5107	for (m = m0; m != NULL; m = m->m_next)
5108		copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5109
5110	txq->raw_wrs++;
5111
5112	txsd = &txq->sdesc[eq->pidx];
5113	txsd->m = m0;
5114	txsd->desc_used = ndesc;
5115
5116	return (ndesc);
5117}
5118
5119/*
5120 * Write a txpkt WR for this packet to the hardware descriptors, update the
5121 * software descriptor, and advance the pidx.  It is guaranteed that enough
5122 * descriptors are available.
5123 *
5124 * The return value is the # of hardware descriptors used.
5125 */
5126static u_int
5127write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5128    u_int available)
5129{
5130	struct sge_eq *eq;
5131	struct fw_eth_tx_pkt_wr *wr;
5132	struct tx_sdesc *txsd;
5133	struct cpl_tx_pkt_core *cpl;
5134	uint32_t ctrl;	/* used in many unrelated places */
5135	uint64_t ctrl1;
5136	int len16, ndesc, pktlen, nsegs;
5137	caddr_t dst;
5138
5139	TXQ_LOCK_ASSERT_OWNED(txq);
5140	M_ASSERTPKTHDR(m0);
5141
5142	len16 = mbuf_len16(m0);
5143	nsegs = mbuf_nsegs(m0);
5144	pktlen = m0->m_pkthdr.len;
5145	ctrl = sizeof(struct cpl_tx_pkt_core);
5146	if (needs_tso(m0)) {
5147		if (needs_vxlan_tso(m0))
5148			ctrl += sizeof(struct cpl_tx_tnl_lso);
5149		else
5150			ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5151	} else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5152	    available >= 2) {
5153		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
5154		ctrl += pktlen;
5155		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5156		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5157		nsegs = 0;
5158	}
5159	ndesc = tx_len16_to_desc(len16);
5160	MPASS(ndesc <= available);
5161
5162	/* Firmware work request header */
5163	eq = &txq->eq;
5164	wr = (void *)&eq->desc[eq->pidx];
5165	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5166	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5167
5168	ctrl = V_FW_WR_LEN16(len16);
5169	wr->equiq_to_len16 = htobe32(ctrl);
5170	wr->r3 = 0;
5171
5172	if (needs_tso(m0)) {
5173		if (needs_vxlan_tso(m0)) {
5174			cpl = write_tnl_lso_cpl(wr + 1, m0);
5175			txq->vxlan_tso_wrs++;
5176		} else {
5177			cpl = write_lso_cpl(wr + 1, m0);
5178			txq->tso_wrs++;
5179		}
5180	} else
5181		cpl = (void *)(wr + 1);
5182
5183	/* Checksum offload */
5184	ctrl1 = csum_to_ctrl(sc, m0);
5185	if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5186		/* some hardware assistance provided */
5187		if (needs_vxlan_csum(m0))
5188			txq->vxlan_txcsum++;
5189		else
5190			txq->txcsum++;
5191	}
5192
5193	/* VLAN tag insertion */
5194	if (needs_vlan_insertion(m0)) {
5195		ctrl1 |= F_TXPKT_VLAN_VLD |
5196		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5197		txq->vlan_insertion++;
5198	}
5199
5200	/* CPL header */
5201	cpl->ctrl0 = txq->cpl_ctrl0;
5202	cpl->pack = 0;
5203	cpl->len = htobe16(pktlen);
5204	cpl->ctrl1 = htobe64(ctrl1);
5205
5206	/* SGL */
5207	dst = (void *)(cpl + 1);
5208	if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5209		dst = (caddr_t)&eq->desc[0];
5210	if (nsegs > 0) {
5211
5212		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5213		txq->sgl_wrs++;
5214	} else {
5215		struct mbuf *m;
5216
5217		for (m = m0; m != NULL; m = m->m_next) {
5218			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5219#ifdef INVARIANTS
5220			pktlen -= m->m_len;
5221#endif
5222		}
5223#ifdef INVARIANTS
5224		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5225#endif
5226		txq->imm_wrs++;
5227	}
5228
5229	txq->txpkt_wrs++;
5230
5231	txsd = &txq->sdesc[eq->pidx];
5232	txsd->m = m0;
5233	txsd->desc_used = ndesc;
5234
5235	return (ndesc);
5236}
5237
5238static inline bool
5239cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5240{
5241	int len;
5242
5243	MPASS(txp->npkt > 0);
5244	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5245
5246	if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5247		len = VM_TX_L2HDR_LEN;
5248	else
5249		len = sizeof(struct ether_header);
5250
5251	return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5252}
5253
5254static inline void
5255save_l2hdr(struct txpkts *txp, struct mbuf *m)
5256{
5257	MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5258
5259	memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5260}
5261
5262static int
5263add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5264    int avail, bool *send)
5265{
5266	struct txpkts *txp = &txq->txp;
5267
5268	/* Cannot have TSO and coalesce at the same time. */
5269	if (cannot_use_txpkts(m)) {
5270cannot_coalesce:
5271		*send = txp->npkt > 0;
5272		return (EINVAL);
5273	}
5274
5275	/* VF allows coalescing of type 1 (1 GL) only */
5276	if (mbuf_nsegs(m) > 1)
5277		goto cannot_coalesce;
5278
5279	*send = false;
5280	if (txp->npkt > 0) {
5281		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5282		MPASS(txp->npkt < txp->max_npkt);
5283		MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5284
5285		if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5286retry_after_send:
5287			*send = true;
5288			return (EAGAIN);
5289		}
5290		if (m->m_pkthdr.len + txp->plen > 65535)
5291			goto retry_after_send;
5292		if (cmp_l2hdr(txp, m))
5293			goto retry_after_send;
5294
5295		txp->len16 += txpkts1_len16();
5296		txp->plen += m->m_pkthdr.len;
5297		txp->mb[txp->npkt++] = m;
5298		if (txp->npkt == txp->max_npkt)
5299			*send = true;
5300	} else {
5301		txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5302		    txpkts1_len16();
5303		if (tx_len16_to_desc(txp->len16) > avail)
5304			goto cannot_coalesce;
5305		txp->npkt = 1;
5306		txp->wr_type = 1;
5307		txp->plen = m->m_pkthdr.len;
5308		txp->mb[0] = m;
5309		save_l2hdr(txp, m);
5310	}
5311	return (0);
5312}
5313
5314static int
5315add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5316    int avail, bool *send)
5317{
5318	struct txpkts *txp = &txq->txp;
5319	int nsegs;
5320
5321	MPASS(!(sc->flags & IS_VF));
5322
5323	/* Cannot have TSO and coalesce at the same time. */
5324	if (cannot_use_txpkts(m)) {
5325cannot_coalesce:
5326		*send = txp->npkt > 0;
5327		return (EINVAL);
5328	}
5329
5330	*send = false;
5331	nsegs = mbuf_nsegs(m);
5332	if (txp->npkt == 0) {
5333		if (m->m_pkthdr.len > 65535)
5334			goto cannot_coalesce;
5335		if (nsegs > 1) {
5336			txp->wr_type = 0;
5337			txp->len16 =
5338			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5339			    txpkts0_len16(nsegs);
5340		} else {
5341			txp->wr_type = 1;
5342			txp->len16 =
5343			    howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5344			    txpkts1_len16();
5345		}
5346		if (tx_len16_to_desc(txp->len16) > avail)
5347			goto cannot_coalesce;
5348		txp->npkt = 1;
5349		txp->plen = m->m_pkthdr.len;
5350		txp->mb[0] = m;
5351	} else {
5352		MPASS(tx_len16_to_desc(txp->len16) <= avail);
5353		MPASS(txp->npkt < txp->max_npkt);
5354
5355		if (m->m_pkthdr.len + txp->plen > 65535) {
5356retry_after_send:
5357			*send = true;
5358			return (EAGAIN);
5359		}
5360
5361		MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5362		if (txp->wr_type == 0) {
5363			if (tx_len16_to_desc(txp->len16 +
5364			    txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5365				goto retry_after_send;
5366			txp->len16 += txpkts0_len16(nsegs);
5367		} else {
5368			if (nsegs != 1)
5369				goto retry_after_send;
5370			if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5371			    avail)
5372				goto retry_after_send;
5373			txp->len16 += txpkts1_len16();
5374		}
5375
5376		txp->plen += m->m_pkthdr.len;
5377		txp->mb[txp->npkt++] = m;
5378		if (txp->npkt == txp->max_npkt)
5379			*send = true;
5380	}
5381	return (0);
5382}
5383
5384/*
5385 * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5386 * the software descriptor, and advance the pidx.  It is guaranteed that enough
5387 * descriptors are available.
5388 *
5389 * The return value is the # of hardware descriptors used.
5390 */
5391static u_int
5392write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5393{
5394	const struct txpkts *txp = &txq->txp;
5395	struct sge_eq *eq = &txq->eq;
5396	struct fw_eth_tx_pkts_wr *wr;
5397	struct tx_sdesc *txsd;
5398	struct cpl_tx_pkt_core *cpl;
5399	uint64_t ctrl1;
5400	int ndesc, i, checkwrap;
5401	struct mbuf *m, *last;
5402	void *flitp;
5403
5404	TXQ_LOCK_ASSERT_OWNED(txq);
5405	MPASS(txp->npkt > 0);
5406	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5407
5408	wr = (void *)&eq->desc[eq->pidx];
5409	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5410	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5411	wr->plen = htobe16(txp->plen);
5412	wr->npkt = txp->npkt;
5413	wr->r3 = 0;
5414	wr->type = txp->wr_type;
5415	flitp = wr + 1;
5416
5417	/*
5418	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
5419	 * set then we know the WR is going to wrap around somewhere.  We'll
5420	 * check for that at appropriate points.
5421	 */
5422	ndesc = tx_len16_to_desc(txp->len16);
5423	last = NULL;
5424	checkwrap = eq->sidx - ndesc < eq->pidx;
5425	for (i = 0; i < txp->npkt; i++) {
5426		m = txp->mb[i];
5427		if (txp->wr_type == 0) {
5428			struct ulp_txpkt *ulpmc;
5429			struct ulptx_idata *ulpsc;
5430
5431			/* ULP master command */
5432			ulpmc = flitp;
5433			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5434			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5435			ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5436
5437			/* ULP subcommand */
5438			ulpsc = (void *)(ulpmc + 1);
5439			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5440			    F_ULP_TX_SC_MORE);
5441			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5442
5443			cpl = (void *)(ulpsc + 1);
5444			if (checkwrap &&
5445			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5446				cpl = (void *)&eq->desc[0];
5447		} else {
5448			cpl = flitp;
5449		}
5450
5451		/* Checksum offload */
5452		ctrl1 = csum_to_ctrl(sc, m);
5453		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5454			/* some hardware assistance provided */
5455			if (needs_vxlan_csum(m))
5456				txq->vxlan_txcsum++;
5457			else
5458				txq->txcsum++;
5459		}
5460
5461		/* VLAN tag insertion */
5462		if (needs_vlan_insertion(m)) {
5463			ctrl1 |= F_TXPKT_VLAN_VLD |
5464			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5465			txq->vlan_insertion++;
5466		}
5467
5468		/* CPL header */
5469		cpl->ctrl0 = txq->cpl_ctrl0;
5470		cpl->pack = 0;
5471		cpl->len = htobe16(m->m_pkthdr.len);
5472		cpl->ctrl1 = htobe64(ctrl1);
5473
5474		flitp = cpl + 1;
5475		if (checkwrap &&
5476		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5477			flitp = (void *)&eq->desc[0];
5478
5479		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5480
5481		if (last != NULL)
5482			last->m_nextpkt = m;
5483		last = m;
5484	}
5485
5486	txq->sgl_wrs++;
5487	if (txp->wr_type == 0) {
5488		txq->txpkts0_pkts += txp->npkt;
5489		txq->txpkts0_wrs++;
5490	} else {
5491		txq->txpkts1_pkts += txp->npkt;
5492		txq->txpkts1_wrs++;
5493	}
5494
5495	txsd = &txq->sdesc[eq->pidx];
5496	txsd->m = txp->mb[0];
5497	txsd->desc_used = ndesc;
5498
5499	return (ndesc);
5500}
5501
5502static u_int
5503write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5504{
5505	const struct txpkts *txp = &txq->txp;
5506	struct sge_eq *eq = &txq->eq;
5507	struct fw_eth_tx_pkts_vm_wr *wr;
5508	struct tx_sdesc *txsd;
5509	struct cpl_tx_pkt_core *cpl;
5510	uint64_t ctrl1;
5511	int ndesc, i;
5512	struct mbuf *m, *last;
5513	void *flitp;
5514
5515	TXQ_LOCK_ASSERT_OWNED(txq);
5516	MPASS(txp->npkt > 0);
5517	MPASS(txp->wr_type == 1);	/* VF supports type 1 only */
5518	MPASS(txp->mb[0] != NULL);
5519	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5520
5521	wr = (void *)&eq->desc[eq->pidx];
5522	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
5523	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5524	wr->r3 = 0;
5525	wr->plen = htobe16(txp->plen);
5526	wr->npkt = txp->npkt;
5527	wr->r4 = 0;
5528	memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
5529	flitp = wr + 1;
5530
5531	/*
5532	 * At this point we are 32B into a hardware descriptor.  Each mbuf in
5533	 * the WR will take 32B so we check for the end of the descriptor ring
5534	 * before writing odd mbufs (mb[1], 3, 5, ..)
5535	 */
5536	ndesc = tx_len16_to_desc(txp->len16);
5537	last = NULL;
5538	for (i = 0; i < txp->npkt; i++) {
5539		m = txp->mb[i];
5540		if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5541			flitp = &eq->desc[0];
5542		cpl = flitp;
5543
5544		/* Checksum offload */
5545		ctrl1 = csum_to_ctrl(sc, m);
5546		if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5547			txq->txcsum++;	/* some hardware assistance provided */
5548
5549		/* VLAN tag insertion */
5550		if (needs_vlan_insertion(m)) {
5551			ctrl1 |= F_TXPKT_VLAN_VLD |
5552			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5553			txq->vlan_insertion++;
5554		}
5555
5556		/* CPL header */
5557		cpl->ctrl0 = txq->cpl_ctrl0;
5558		cpl->pack = 0;
5559		cpl->len = htobe16(m->m_pkthdr.len);
5560		cpl->ctrl1 = htobe64(ctrl1);
5561
5562		flitp = cpl + 1;
5563		MPASS(mbuf_nsegs(m) == 1);
5564		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
5565
5566		if (last != NULL)
5567			last->m_nextpkt = m;
5568		last = m;
5569	}
5570
5571	txq->sgl_wrs++;
5572	txq->txpkts1_pkts += txp->npkt;
5573	txq->txpkts1_wrs++;
5574
5575	txsd = &txq->sdesc[eq->pidx];
5576	txsd->m = txp->mb[0];
5577	txsd->desc_used = ndesc;
5578
5579	return (ndesc);
5580}
5581
5582/*
5583 * If the SGL ends on an address that is not 16 byte aligned, this function will
5584 * add a 0 filled flit at the end.
5585 */
5586static void
5587write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
5588{
5589	struct sge_eq *eq = &txq->eq;
5590	struct sglist *gl = txq->gl;
5591	struct sglist_seg *seg;
5592	__be64 *flitp, *wrap;
5593	struct ulptx_sgl *usgl;
5594	int i, nflits, nsegs;
5595
5596	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
5597	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
5598	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5599	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5600
5601	get_pkt_gl(m, gl);
5602	nsegs = gl->sg_nseg;
5603	MPASS(nsegs > 0);
5604
5605	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
5606	flitp = (__be64 *)(*to);
5607	wrap = (__be64 *)(&eq->desc[eq->sidx]);
5608	seg = &gl->sg_segs[0];
5609	usgl = (void *)flitp;
5610
5611	/*
5612	 * We start at a 16 byte boundary somewhere inside the tx descriptor
5613	 * ring, so we're at least 16 bytes away from the status page.  There is
5614	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
5615	 */
5616
5617	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
5618	    V_ULPTX_NSGE(nsegs));
5619	usgl->len0 = htobe32(seg->ss_len);
5620	usgl->addr0 = htobe64(seg->ss_paddr);
5621	seg++;
5622
5623	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
5624
5625		/* Won't wrap around at all */
5626
5627		for (i = 0; i < nsegs - 1; i++, seg++) {
5628			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
5629			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
5630		}
5631		if (i & 1)
5632			usgl->sge[i / 2].len[1] = htobe32(0);
5633		flitp += nflits;
5634	} else {
5635
5636		/* Will wrap somewhere in the rest of the SGL */
5637
5638		/* 2 flits already written, write the rest flit by flit */
5639		flitp = (void *)(usgl + 1);
5640		for (i = 0; i < nflits - 2; i++) {
5641			if (flitp == wrap)
5642				flitp = (void *)eq->desc;
5643			*flitp++ = get_flit(seg, nsegs - 1, i);
5644		}
5645	}
5646
5647	if (nflits & 1) {
5648		MPASS(((uintptr_t)flitp) & 0xf);
5649		*flitp++ = 0;
5650	}
5651
5652	MPASS((((uintptr_t)flitp) & 0xf) == 0);
5653	if (__predict_false(flitp == wrap))
5654		*to = (void *)eq->desc;
5655	else
5656		*to = (void *)flitp;
5657}
5658
5659static inline void
5660copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
5661{
5662
5663	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
5664	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
5665
5666	if (__predict_true((uintptr_t)(*to) + len <=
5667	    (uintptr_t)&eq->desc[eq->sidx])) {
5668		bcopy(from, *to, len);
5669		(*to) += len;
5670	} else {
5671		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
5672
5673		bcopy(from, *to, portion);
5674		from += portion;
5675		portion = len - portion;	/* remaining */
5676		bcopy(from, (void *)eq->desc, portion);
5677		(*to) = (caddr_t)eq->desc + portion;
5678	}
5679}
5680
5681static inline void
5682ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
5683{
5684	u_int db;
5685
5686	MPASS(n > 0);
5687
5688	db = eq->doorbells;
5689	if (n > 1)
5690		clrbit(&db, DOORBELL_WCWR);
5691	wmb();
5692
5693	switch (ffs(db) - 1) {
5694	case DOORBELL_UDB:
5695		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5696		break;
5697
5698	case DOORBELL_WCWR: {
5699		volatile uint64_t *dst, *src;
5700		int i;
5701
5702		/*
5703		 * Queues whose 128B doorbell segment fits in the page do not
5704		 * use relative qid (udb_qid is always 0).  Only queues with
5705		 * doorbell segments can do WCWR.
5706		 */
5707		KASSERT(eq->udb_qid == 0 && n == 1,
5708		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
5709		    __func__, eq->doorbells, n, eq->dbidx, eq));
5710
5711		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
5712		    UDBS_DB_OFFSET);
5713		i = eq->dbidx;
5714		src = (void *)&eq->desc[i];
5715		while (src != (void *)&eq->desc[i + 1])
5716			*dst++ = *src++;
5717		wmb();
5718		break;
5719	}
5720
5721	case DOORBELL_UDBWC:
5722		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
5723		wmb();
5724		break;
5725
5726	case DOORBELL_KDB:
5727		t4_write_reg(sc, sc->sge_kdoorbell_reg,
5728		    V_QID(eq->cntxt_id) | V_PIDX(n));
5729		break;
5730	}
5731
5732	IDXINCR(eq->dbidx, n, eq->sidx);
5733}
5734
5735static inline u_int
5736reclaimable_tx_desc(struct sge_eq *eq)
5737{
5738	uint16_t hw_cidx;
5739
5740	hw_cidx = read_hw_cidx(eq);
5741	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
5742}
5743
5744static inline u_int
5745total_available_tx_desc(struct sge_eq *eq)
5746{
5747	uint16_t hw_cidx, pidx;
5748
5749	hw_cidx = read_hw_cidx(eq);
5750	pidx = eq->pidx;
5751
5752	if (pidx == hw_cidx)
5753		return (eq->sidx - 1);
5754	else
5755		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
5756}
5757
5758static inline uint16_t
5759read_hw_cidx(struct sge_eq *eq)
5760{
5761	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5762	uint16_t cidx = spg->cidx;	/* stable snapshot */
5763
5764	return (be16toh(cidx));
5765}
5766
5767/*
5768 * Reclaim 'n' descriptors approximately.
5769 */
5770static u_int
5771reclaim_tx_descs(struct sge_txq *txq, u_int n)
5772{
5773	struct tx_sdesc *txsd;
5774	struct sge_eq *eq = &txq->eq;
5775	u_int can_reclaim, reclaimed;
5776
5777	TXQ_LOCK_ASSERT_OWNED(txq);
5778	MPASS(n > 0);
5779
5780	reclaimed = 0;
5781	can_reclaim = reclaimable_tx_desc(eq);
5782	while (can_reclaim && reclaimed < n) {
5783		int ndesc;
5784		struct mbuf *m, *nextpkt;
5785
5786		txsd = &txq->sdesc[eq->cidx];
5787		ndesc = txsd->desc_used;
5788
5789		/* Firmware doesn't return "partial" credits. */
5790		KASSERT(can_reclaim >= ndesc,
5791		    ("%s: unexpected number of credits: %d, %d",
5792		    __func__, can_reclaim, ndesc));
5793		KASSERT(ndesc != 0,
5794		    ("%s: descriptor with no credits: cidx %d",
5795		    __func__, eq->cidx));
5796
5797		for (m = txsd->m; m != NULL; m = nextpkt) {
5798			nextpkt = m->m_nextpkt;
5799			m->m_nextpkt = NULL;
5800			m_freem(m);
5801		}
5802		reclaimed += ndesc;
5803		can_reclaim -= ndesc;
5804		IDXINCR(eq->cidx, ndesc, eq->sidx);
5805	}
5806
5807	return (reclaimed);
5808}
5809
5810static void
5811tx_reclaim(void *arg, int n)
5812{
5813	struct sge_txq *txq = arg;
5814	struct sge_eq *eq = &txq->eq;
5815
5816	do {
5817		if (TXQ_TRYLOCK(txq) == 0)
5818			break;
5819		n = reclaim_tx_descs(txq, 32);
5820		if (eq->cidx == eq->pidx)
5821			eq->equeqidx = eq->pidx;
5822		TXQ_UNLOCK(txq);
5823	} while (n > 0);
5824}
5825
5826static __be64
5827get_flit(struct sglist_seg *segs, int nsegs, int idx)
5828{
5829	int i = (idx / 3) * 2;
5830
5831	switch (idx % 3) {
5832	case 0: {
5833		uint64_t rc;
5834
5835		rc = (uint64_t)segs[i].ss_len << 32;
5836		if (i + 1 < nsegs)
5837			rc |= (uint64_t)(segs[i + 1].ss_len);
5838
5839		return (htobe64(rc));
5840	}
5841	case 1:
5842		return (htobe64(segs[i].ss_paddr));
5843	case 2:
5844		return (htobe64(segs[i + 1].ss_paddr));
5845	}
5846
5847	return (0);
5848}
5849
5850static int
5851find_refill_source(struct adapter *sc, int maxp, bool packing)
5852{
5853	int i, zidx = -1;
5854	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
5855
5856	if (packing) {
5857		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5858			if (rxb->hwidx2 == -1)
5859				continue;
5860			if (rxb->size1 < PAGE_SIZE &&
5861			    rxb->size1 < largest_rx_cluster)
5862				continue;
5863			if (rxb->size1 > largest_rx_cluster)
5864				break;
5865			MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
5866			if (rxb->size2 >= maxp)
5867				return (i);
5868			zidx = i;
5869		}
5870	} else {
5871		for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
5872			if (rxb->hwidx1 == -1)
5873				continue;
5874			if (rxb->size1 > largest_rx_cluster)
5875				break;
5876			if (rxb->size1 >= maxp)
5877				return (i);
5878			zidx = i;
5879		}
5880	}
5881
5882	return (zidx);
5883}
5884
5885static void
5886add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5887{
5888	mtx_lock(&sc->sfl_lock);
5889	FL_LOCK(fl);
5890	if ((fl->flags & FL_DOOMED) == 0) {
5891		fl->flags |= FL_STARVING;
5892		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5893		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5894	}
5895	FL_UNLOCK(fl);
5896	mtx_unlock(&sc->sfl_lock);
5897}
5898
5899static void
5900handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5901{
5902	struct sge_wrq *wrq = (void *)eq;
5903
5904	atomic_readandclear_int(&eq->equiq);
5905	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5906}
5907
5908static void
5909handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5910{
5911	struct sge_txq *txq = (void *)eq;
5912
5913	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5914
5915	atomic_readandclear_int(&eq->equiq);
5916	if (mp_ring_is_idle(txq->r))
5917		taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5918	else
5919		mp_ring_check_drainage(txq->r, 64);
5920}
5921
5922static int
5923handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5924    struct mbuf *m)
5925{
5926	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5927	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5928	struct adapter *sc = iq->adapter;
5929	struct sge *s = &sc->sge;
5930	struct sge_eq *eq;
5931	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5932		&handle_wrq_egr_update, &handle_eth_egr_update,
5933		&handle_wrq_egr_update};
5934
5935	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5936	    rss->opcode));
5937
5938	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5939	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5940
5941	return (0);
5942}
5943
5944/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5945CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5946    offsetof(struct cpl_fw6_msg, data));
5947
5948static int
5949handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5950{
5951	struct adapter *sc = iq->adapter;
5952	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5953
5954	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5955	    rss->opcode));
5956
5957	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5958		const struct rss_header *rss2;
5959
5960		rss2 = (const struct rss_header *)&cpl->data[0];
5961		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5962	}
5963
5964	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5965}
5966
5967/**
5968 *	t4_handle_wrerr_rpl - process a FW work request error message
5969 *	@adap: the adapter
5970 *	@rpl: start of the FW message
5971 */
5972static int
5973t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5974{
5975	u8 opcode = *(const u8 *)rpl;
5976	const struct fw_error_cmd *e = (const void *)rpl;
5977	unsigned int i;
5978
5979	if (opcode != FW_ERROR_CMD) {
5980		log(LOG_ERR,
5981		    "%s: Received WRERR_RPL message with opcode %#x\n",
5982		    device_get_nameunit(adap->dev), opcode);
5983		return (EINVAL);
5984	}
5985	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5986	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5987	    "non-fatal");
5988	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5989	case FW_ERROR_TYPE_EXCEPTION:
5990		log(LOG_ERR, "exception info:\n");
5991		for (i = 0; i < nitems(e->u.exception.info); i++)
5992			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5993			    be32toh(e->u.exception.info[i]));
5994		log(LOG_ERR, "\n");
5995		break;
5996	case FW_ERROR_TYPE_HWMODULE:
5997		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5998		    be32toh(e->u.hwmodule.regaddr),
5999		    be32toh(e->u.hwmodule.regval));
6000		break;
6001	case FW_ERROR_TYPE_WR:
6002		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6003		    be16toh(e->u.wr.cidx),
6004		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6005		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6006		    be32toh(e->u.wr.eqid));
6007		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6008			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6009			    e->u.wr.wrhdr[i]);
6010		log(LOG_ERR, "\n");
6011		break;
6012	case FW_ERROR_TYPE_ACL:
6013		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6014		    be16toh(e->u.acl.cidx),
6015		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6016		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6017		    be32toh(e->u.acl.eqid),
6018		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6019		    "MAC");
6020		for (i = 0; i < nitems(e->u.acl.val); i++)
6021			log(LOG_ERR, " %02x", e->u.acl.val[i]);
6022		log(LOG_ERR, "\n");
6023		break;
6024	default:
6025		log(LOG_ERR, "type %#x\n",
6026		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6027		return (EINVAL);
6028	}
6029	return (0);
6030}
6031
6032static int
6033sysctl_uint16(SYSCTL_HANDLER_ARGS)
6034{
6035	uint16_t *id = arg1;
6036	int i = *id;
6037
6038	return sysctl_handle_int(oidp, &i, 0, req);
6039}
6040
6041static inline bool
6042bufidx_used(struct adapter *sc, int idx)
6043{
6044	struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6045	int i;
6046
6047	for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6048		if (rxb->size1 > largest_rx_cluster)
6049			continue;
6050		if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6051			return (true);
6052	}
6053
6054	return (false);
6055}
6056
6057static int
6058sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6059{
6060	struct adapter *sc = arg1;
6061	struct sge_params *sp = &sc->params.sge;
6062	int i, rc;
6063	struct sbuf sb;
6064	char c;
6065
6066	sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6067	for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6068		if (bufidx_used(sc, i))
6069			c = '*';
6070		else
6071			c = '\0';
6072
6073		sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6074	}
6075	sbuf_trim(&sb);
6076	sbuf_finish(&sb);
6077	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6078	sbuf_delete(&sb);
6079	return (rc);
6080}
6081
6082#ifdef RATELIMIT
6083/*
6084 * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
6085 */
6086static inline u_int
6087txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6088{
6089	u_int n;
6090
6091	MPASS(immhdrs > 0);
6092
6093	n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6094	    sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6095	if (__predict_false(nsegs == 0))
6096		goto done;
6097
6098	nsegs--; /* first segment is part of ulptx_sgl */
6099	n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6100	if (tso)
6101		n += sizeof(struct cpl_tx_pkt_lso_core);
6102
6103done:
6104	return (howmany(n, 16));
6105}
6106
6107#define ETID_FLOWC_NPARAMS 6
6108#define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6109    ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6110#define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6111
6112static int
6113send_etid_flowc_wr(struct cxgbe_snd_tag *cst, struct port_info *pi,
6114    struct vi_info *vi)
6115{
6116	struct wrq_cookie cookie;
6117	u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6118	struct fw_flowc_wr *flowc;
6119
6120	mtx_assert(&cst->lock, MA_OWNED);
6121	MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6122	    EO_FLOWC_PENDING);
6123
6124	flowc = start_wrq_wr(cst->eo_txq, ETID_FLOWC_LEN16, &cookie);
6125	if (__predict_false(flowc == NULL))
6126		return (ENOMEM);
6127
6128	bzero(flowc, ETID_FLOWC_LEN);
6129	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6130	    V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6131	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6132	    V_FW_WR_FLOWID(cst->etid));
6133	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6134	flowc->mnemval[0].val = htobe32(pfvf);
6135	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6136	flowc->mnemval[1].val = htobe32(pi->tx_chan);
6137	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6138	flowc->mnemval[2].val = htobe32(pi->tx_chan);
6139	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6140	flowc->mnemval[3].val = htobe32(cst->iqid);
6141	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6142	flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6143	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6144	flowc->mnemval[5].val = htobe32(cst->schedcl);
6145
6146	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
6147
6148	cst->flags &= ~EO_FLOWC_PENDING;
6149	cst->flags |= EO_FLOWC_RPL_PENDING;
6150	MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);	/* flowc is first WR. */
6151	cst->tx_credits -= ETID_FLOWC_LEN16;
6152
6153	return (0);
6154}
6155
6156#define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6157
6158void
6159send_etid_flush_wr(struct cxgbe_snd_tag *cst)
6160{
6161	struct fw_flowc_wr *flowc;
6162	struct wrq_cookie cookie;
6163
6164	mtx_assert(&cst->lock, MA_OWNED);
6165
6166	flowc = start_wrq_wr(cst->eo_txq, ETID_FLUSH_LEN16, &cookie);
6167	if (__predict_false(flowc == NULL))
6168		CXGBE_UNIMPLEMENTED(__func__);
6169
6170	bzero(flowc, ETID_FLUSH_LEN16 * 16);
6171	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6172	    V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6173	flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6174	    V_FW_WR_FLOWID(cst->etid));
6175
6176	commit_wrq_wr(cst->eo_txq, flowc, &cookie);
6177
6178	cst->flags |= EO_FLUSH_RPL_PENDING;
6179	MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6180	cst->tx_credits -= ETID_FLUSH_LEN16;
6181	cst->ncompl++;
6182}
6183
6184static void
6185write_ethofld_wr(struct cxgbe_snd_tag *cst, struct fw_eth_tx_eo_wr *wr,
6186    struct mbuf *m0, int compl)
6187{
6188	struct cpl_tx_pkt_core *cpl;
6189	uint64_t ctrl1;
6190	uint32_t ctrl;	/* used in many unrelated places */
6191	int len16, pktlen, nsegs, immhdrs;
6192	caddr_t dst;
6193	uintptr_t p;
6194	struct ulptx_sgl *usgl;
6195	struct sglist sg;
6196	struct sglist_seg segs[38];	/* XXX: find real limit.  XXX: get off the stack */
6197
6198	mtx_assert(&cst->lock, MA_OWNED);
6199	M_ASSERTPKTHDR(m0);
6200	KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6201	    m0->m_pkthdr.l4hlen > 0,
6202	    ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6203
6204	len16 = mbuf_eo_len16(m0);
6205	nsegs = mbuf_eo_nsegs(m0);
6206	pktlen = m0->m_pkthdr.len;
6207	ctrl = sizeof(struct cpl_tx_pkt_core);
6208	if (needs_tso(m0))
6209		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6210	immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6211	ctrl += immhdrs;
6212
6213	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6214	    V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6215	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6216	    V_FW_WR_FLOWID(cst->etid));
6217	wr->r3 = 0;
6218	if (needs_outer_udp_csum(m0)) {
6219		wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6220		wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6221		wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6222		wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6223		wr->u.udpseg.rtplen = 0;
6224		wr->u.udpseg.r4 = 0;
6225		wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6226		wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6227		wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6228		cpl = (void *)(wr + 1);
6229	} else {
6230		MPASS(needs_outer_tcp_csum(m0));
6231		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6232		wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6233		wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6234		wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6235		wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6236		wr->u.tcpseg.r4 = 0;
6237		wr->u.tcpseg.r5 = 0;
6238		wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6239
6240		if (needs_tso(m0)) {
6241			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6242
6243			wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6244
6245			ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6246			    F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6247			    V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6248				ETHER_HDR_LEN) >> 2) |
6249			    V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6250			    V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6251			if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6252				ctrl |= F_LSO_IPV6;
6253			lso->lso_ctrl = htobe32(ctrl);
6254			lso->ipid_ofst = htobe16(0);
6255			lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6256			lso->seqno_offset = htobe32(0);
6257			lso->len = htobe32(pktlen);
6258
6259			cpl = (void *)(lso + 1);
6260		} else {
6261			wr->u.tcpseg.mss = htobe16(0xffff);
6262			cpl = (void *)(wr + 1);
6263		}
6264	}
6265
6266	/* Checksum offload must be requested for ethofld. */
6267	MPASS(needs_outer_l4_csum(m0));
6268	ctrl1 = csum_to_ctrl(cst->adapter, m0);
6269
6270	/* VLAN tag insertion */
6271	if (needs_vlan_insertion(m0)) {
6272		ctrl1 |= F_TXPKT_VLAN_VLD |
6273		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6274	}
6275
6276	/* CPL header */
6277	cpl->ctrl0 = cst->ctrl0;
6278	cpl->pack = 0;
6279	cpl->len = htobe16(pktlen);
6280	cpl->ctrl1 = htobe64(ctrl1);
6281
6282	/* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6283	p = (uintptr_t)(cpl + 1);
6284	m_copydata(m0, 0, immhdrs, (void *)p);
6285
6286	/* SGL */
6287	dst = (void *)(cpl + 1);
6288	if (nsegs > 0) {
6289		int i, pad;
6290
6291		/* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6292		p += immhdrs;
6293		pad = 16 - (immhdrs & 0xf);
6294		bzero((void *)p, pad);
6295
6296		usgl = (void *)(p + pad);
6297		usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6298		    V_ULPTX_NSGE(nsegs));
6299
6300		sglist_init(&sg, nitems(segs), segs);
6301		for (; m0 != NULL; m0 = m0->m_next) {
6302			if (__predict_false(m0->m_len == 0))
6303				continue;
6304			if (immhdrs >= m0->m_len) {
6305				immhdrs -= m0->m_len;
6306				continue;
6307			}
6308
6309			sglist_append(&sg, mtod(m0, char *) + immhdrs,
6310			    m0->m_len - immhdrs);
6311			immhdrs = 0;
6312		}
6313		MPASS(sg.sg_nseg == nsegs);
6314
6315		/*
6316		 * Zero pad last 8B in case the WR doesn't end on a 16B
6317		 * boundary.
6318		 */
6319		*(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6320
6321		usgl->len0 = htobe32(segs[0].ss_len);
6322		usgl->addr0 = htobe64(segs[0].ss_paddr);
6323		for (i = 0; i < nsegs - 1; i++) {
6324			usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6325			usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6326		}
6327		if (i & 1)
6328			usgl->sge[i / 2].len[1] = htobe32(0);
6329	}
6330
6331}
6332
6333static void
6334ethofld_tx(struct cxgbe_snd_tag *cst)
6335{
6336	struct mbuf *m;
6337	struct wrq_cookie cookie;
6338	int next_credits, compl;
6339	struct fw_eth_tx_eo_wr *wr;
6340
6341	mtx_assert(&cst->lock, MA_OWNED);
6342
6343	while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6344		M_ASSERTPKTHDR(m);
6345
6346		/* How many len16 credits do we need to send this mbuf. */
6347		next_credits = mbuf_eo_len16(m);
6348		MPASS(next_credits > 0);
6349		if (next_credits > cst->tx_credits) {
6350			/*
6351			 * Tx will make progress eventually because there is at
6352			 * least one outstanding fw4_ack that will return
6353			 * credits and kick the tx.
6354			 */
6355			MPASS(cst->ncompl > 0);
6356			return;
6357		}
6358		wr = start_wrq_wr(cst->eo_txq, next_credits, &cookie);
6359		if (__predict_false(wr == NULL)) {
6360			/* XXX: wishful thinking, not a real assertion. */
6361			MPASS(cst->ncompl > 0);
6362			return;
6363		}
6364		cst->tx_credits -= next_credits;
6365		cst->tx_nocompl += next_credits;
6366		compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6367		ETHER_BPF_MTAP(cst->com.ifp, m);
6368		write_ethofld_wr(cst, wr, m, compl);
6369		commit_wrq_wr(cst->eo_txq, wr, &cookie);
6370		if (compl) {
6371			cst->ncompl++;
6372			cst->tx_nocompl	= 0;
6373		}
6374		(void) mbufq_dequeue(&cst->pending_tx);
6375		mbufq_enqueue(&cst->pending_fwack, m);
6376	}
6377}
6378
6379int
6380ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
6381{
6382	struct cxgbe_snd_tag *cst;
6383	int rc;
6384
6385	MPASS(m0->m_nextpkt == NULL);
6386	MPASS(m0->m_pkthdr.snd_tag != NULL);
6387	cst = mst_to_cst(m0->m_pkthdr.snd_tag);
6388
6389	mtx_lock(&cst->lock);
6390	MPASS(cst->flags & EO_SND_TAG_REF);
6391
6392	if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6393		struct vi_info *vi = ifp->if_softc;
6394		struct port_info *pi = vi->pi;
6395		struct adapter *sc = pi->adapter;
6396		const uint32_t rss_mask = vi->rss_size - 1;
6397		uint32_t rss_hash;
6398
6399		cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6400		if (M_HASHTYPE_ISHASH(m0))
6401			rss_hash = m0->m_pkthdr.flowid;
6402		else
6403			rss_hash = arc4random();
6404		/* We assume RSS hashing */
6405		cst->iqid = vi->rss[rss_hash & rss_mask];
6406		cst->eo_txq += rss_hash % vi->nofldtxq;
6407		rc = send_etid_flowc_wr(cst, pi, vi);
6408		if (rc != 0)
6409			goto done;
6410	}
6411
6412	if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6413		rc = ENOBUFS;
6414		goto done;
6415	}
6416
6417	mbufq_enqueue(&cst->pending_tx, m0);
6418	cst->plen += m0->m_pkthdr.len;
6419
6420	ethofld_tx(cst);
6421	rc = 0;
6422done:
6423	mtx_unlock(&cst->lock);
6424	if (__predict_false(rc != 0))
6425		m_freem(m0);
6426	return (rc);
6427}
6428
6429static int
6430ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6431{
6432	struct adapter *sc = iq->adapter;
6433	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6434	struct mbuf *m;
6435	u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6436	struct cxgbe_snd_tag *cst;
6437	uint8_t credits = cpl->credits;
6438
6439	cst = lookup_etid(sc, etid);
6440	mtx_lock(&cst->lock);
6441	if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6442		MPASS(credits >= ETID_FLOWC_LEN16);
6443		credits -= ETID_FLOWC_LEN16;
6444		cst->flags &= ~EO_FLOWC_RPL_PENDING;
6445	}
6446
6447	KASSERT(cst->ncompl > 0,
6448	    ("%s: etid %u (%p) wasn't expecting completion.",
6449	    __func__, etid, cst));
6450	cst->ncompl--;
6451
6452	while (credits > 0) {
6453		m = mbufq_dequeue(&cst->pending_fwack);
6454		if (__predict_false(m == NULL)) {
6455			/*
6456			 * The remaining credits are for the final flush that
6457			 * was issued when the tag was freed by the kernel.
6458			 */
6459			MPASS((cst->flags &
6460			    (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6461			    EO_FLUSH_RPL_PENDING);
6462			MPASS(credits == ETID_FLUSH_LEN16);
6463			MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6464			MPASS(cst->ncompl == 0);
6465
6466			cst->flags &= ~EO_FLUSH_RPL_PENDING;
6467			cst->tx_credits += cpl->credits;
6468freetag:
6469			cxgbe_snd_tag_free_locked(cst);
6470			return (0);	/* cst is gone. */
6471		}
6472		KASSERT(m != NULL,
6473		    ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6474		    credits));
6475		KASSERT(credits >= mbuf_eo_len16(m),
6476		    ("%s: too few credits (%u, %u, %u)", __func__,
6477		    cpl->credits, credits, mbuf_eo_len16(m)));
6478		credits -= mbuf_eo_len16(m);
6479		cst->plen -= m->m_pkthdr.len;
6480		m_freem(m);
6481	}
6482
6483	cst->tx_credits += cpl->credits;
6484	MPASS(cst->tx_credits <= cst->tx_total);
6485
6486	m = mbufq_first(&cst->pending_tx);
6487	if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6488		ethofld_tx(cst);
6489
6490	if (__predict_false((cst->flags & EO_SND_TAG_REF) == 0) &&
6491	    cst->ncompl == 0) {
6492		if (cst->tx_credits == cst->tx_total)
6493			goto freetag;
6494		else {
6495			MPASS((cst->flags & EO_FLUSH_RPL_PENDING) == 0);
6496			send_etid_flush_wr(cst);
6497		}
6498	}
6499
6500	mtx_unlock(&cst->lock);
6501
6502	return (0);
6503}
6504#endif
6505