1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26 * THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#ifndef ECORE_INIT_OPS_H
33#define ECORE_INIT_OPS_H
34
35
36
37
38
39
40
41
42
43
44static int ecore_gunzip(struct bxe_softc *sc, const uint8_t *zbuf, int len);
45static void ecore_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val);
46static void ecore_write_dmae_phys_len(struct bxe_softc *sc,
47				      ecore_dma_addr_t phys_addr, uint32_t addr,
48				      uint32_t len);
49
50static void ecore_init_str_wr(struct bxe_softc *sc, uint32_t addr,
51			      const uint32_t *data, uint32_t len)
52{
53	uint32_t i;
54
55	for (i = 0; i < len; i++)
56		REG_WR(sc, addr + i*4, data[i]);
57}
58
59static void ecore_init_ind_wr(struct bxe_softc *sc, uint32_t addr,
60			      const uint32_t *data, uint32_t len)
61{
62	uint32_t i;
63
64	for (i = 0; i < len; i++)
65		ecore_reg_wr_ind(sc, addr + i*4, data[i]);
66}
67
68static void ecore_write_big_buf(struct bxe_softc *sc, uint32_t addr, uint32_t len,
69				uint8_t wb)
70{
71	if (DMAE_READY(sc))
72		ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
73
74	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
75	else if (wb && CHIP_IS_E1(sc))
76		ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
77
78	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
79	else
80		ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
81}
82
83static void ecore_init_fill(struct bxe_softc *sc, uint32_t addr, int fill,
84			    uint32_t len, uint8_t wb)
85{
86	uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
87	uint32_t buf_len32 = buf_len/4;
88	uint32_t i;
89
90	ECORE_MEMSET(GUNZIP_BUF(sc), (uint8_t)fill, buf_len);
91
92	for (i = 0; i < len; i += buf_len32) {
93		uint32_t cur_len = min(buf_len32, len - i);
94
95		ecore_write_big_buf(sc, addr + i*4, cur_len, wb);
96	}
97}
98
99static void ecore_write_big_buf_wb(struct bxe_softc *sc, uint32_t addr, uint32_t len)
100{
101	if (DMAE_READY(sc))
102		ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
103
104	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
105	else if (CHIP_IS_E1(sc))
106		ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
107
108	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
109	else
110		ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
111}
112
113static void ecore_init_wr_64(struct bxe_softc *sc, uint32_t addr,
114			     const uint32_t *data, uint32_t len64)
115{
116	uint32_t buf_len32 = FW_BUF_SIZE/4;
117	uint32_t len = len64*2;
118	uint64_t data64 = 0;
119	uint32_t i;
120
121	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
122	data64 = HILO_U64((*(data + 1)), (*data));
123
124	len64 = min((uint32_t)(FW_BUF_SIZE/8), len64);
125	for (i = 0; i < len64; i++) {
126		uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(sc))) + i;
127
128		*pdata = data64;
129	}
130
131	for (i = 0; i < len; i += buf_len32) {
132		uint32_t cur_len = min(buf_len32, len - i);
133
134		ecore_write_big_buf_wb(sc, addr + i*4, cur_len);
135	}
136}
137
138/*********************************************************
139   There are different blobs for each PRAM section.
140   In addition, each blob write operation is divided into a few operations
141   in order to decrease the amount of phys. contiguous buffer needed.
142   Thus, when we select a blob the address may be with some offset
143   from the beginning of PRAM section.
144   The same holds for the INT_TABLE sections.
145**********************************************************/
146#define IF_IS_INT_TABLE_ADDR(base, addr) \
147			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
148
149#define IF_IS_PRAM_ADDR(base, addr) \
150			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
151
152static const uint8_t *ecore_sel_blob(struct bxe_softc *sc, uint32_t addr,
153				const uint8_t *data)
154{
155	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
156		data = INIT_TSEM_INT_TABLE_DATA(sc);
157	else
158		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
159			data = INIT_CSEM_INT_TABLE_DATA(sc);
160	else
161		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
162			data = INIT_USEM_INT_TABLE_DATA(sc);
163	else
164		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
165			data = INIT_XSEM_INT_TABLE_DATA(sc);
166	else
167		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
168			data = INIT_TSEM_PRAM_DATA(sc);
169	else
170		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
171			data = INIT_CSEM_PRAM_DATA(sc);
172	else
173		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
174			data = INIT_USEM_PRAM_DATA(sc);
175	else
176		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
177			data = INIT_XSEM_PRAM_DATA(sc);
178
179	return data;
180}
181
182static void ecore_init_wr_wb(struct bxe_softc *sc, uint32_t addr,
183			     const uint32_t *data, uint32_t len)
184{
185	if (DMAE_READY(sc))
186		VIRT_WR_DMAE_LEN(sc, data, addr, len, 0);
187
188	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
189	else if (CHIP_IS_E1(sc))
190		ecore_init_ind_wr(sc, addr, data, len);
191
192	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
193	else
194		ecore_init_str_wr(sc, addr, data, len);
195}
196
197#ifndef FW_ZIP_SUPPORT
198static void ecore_init_fw(struct bxe_softc *sc, uint32_t addr, uint32_t len)
199{
200	const uint8_t *data = NULL;
201
202	data = ecore_sel_blob(sc, addr, (const uint8_t *)data);
203
204	if (DMAE_READY(sc))
205		VIRT_WR_DMAE_LEN(sc, data, addr, len, 1);
206
207	/* in E1 BIOS initiated ZLR may interrupt widebus writes */
208	else if (CHIP_IS_E1(sc))
209		ecore_init_ind_wr(sc, addr, (const uint32_t *)data, len);
210
211	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
212	else
213		ecore_init_str_wr(sc, addr, (const uint32_t *)data, len);
214}
215
216#endif
217
218static void ecore_wr_64(struct bxe_softc *sc, uint32_t reg, uint32_t val_lo,
219			uint32_t val_hi)
220{
221	uint32_t wb_write[2];
222
223	wb_write[0] = val_lo;
224	wb_write[1] = val_hi;
225	REG_WR_DMAE_LEN(sc, reg, wb_write, 2);
226}
227
228static void ecore_init_wr_zp(struct bxe_softc *sc, uint32_t addr, uint32_t len,
229			     uint32_t blob_off)
230{
231	const uint8_t *data = NULL;
232	int rc;
233	uint32_t i;
234
235	data = ecore_sel_blob(sc, addr, data) + blob_off*4;
236
237	rc = ecore_gunzip(sc, data, len);
238	if (rc)
239		return;
240
241	/* gunzip_outlen is in dwords */
242	len = GUNZIP_OUTLEN(sc);
243	for (i = 0; i < len; i++)
244		((uint32_t *)GUNZIP_BUF(sc))[i] = (uint32_t)
245				ECORE_CPU_TO_LE32(((uint32_t *)GUNZIP_BUF(sc))[i]);
246
247	ecore_write_big_buf_wb(sc, addr, len);
248}
249
250static void ecore_init_block(struct bxe_softc *sc, uint32_t block, uint32_t stage)
251{
252	uint16_t op_start =
253		INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
254						     STAGE_START)];
255	uint16_t op_end =
256		INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
257						     STAGE_END)];
258	const union init_op *op;
259	uint32_t op_idx, op_type, addr, len;
260	const uint32_t *data, *data_base;
261
262	/* If empty block */
263	if (op_start == op_end)
264		return;
265
266	data_base = INIT_DATA(sc);
267
268	for (op_idx = op_start; op_idx < op_end; op_idx++) {
269
270		op = (const union init_op *)&(INIT_OPS(sc)[op_idx]);
271		/* Get generic data */
272		op_type = op->raw.op;
273		addr = op->raw.offset;
274		/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
275		 * OP_WR64 (we assume that op_arr_write and op_write have the
276		 * same structure).
277		 */
278		len = op->arr_wr.data_len;
279		data = data_base + op->arr_wr.data_off;
280
281		switch (op_type) {
282		case OP_RD:
283			REG_RD(sc, addr);
284			break;
285		case OP_WR:
286			REG_WR(sc, addr, op->write.val);
287			break;
288		case OP_SW:
289			ecore_init_str_wr(sc, addr, data, len);
290			break;
291		case OP_WB:
292			ecore_init_wr_wb(sc, addr, data, len);
293			break;
294#ifndef FW_ZIP_SUPPORT
295		case OP_FW:
296			ecore_init_fw(sc, addr, len);
297			break;
298#endif
299		case OP_ZR:
300			ecore_init_fill(sc, addr, 0, op->zero.len, 0);
301			break;
302		case OP_WB_ZR:
303			ecore_init_fill(sc, addr, 0, op->zero.len, 1);
304			break;
305		case OP_ZP:
306			ecore_init_wr_zp(sc, addr, len,
307					 op->arr_wr.data_off);
308			break;
309		case OP_WR_64:
310			ecore_init_wr_64(sc, addr, data, len);
311			break;
312		case OP_IF_MODE_AND:
313			/* if any of the flags doesn't match, skip the
314			 * conditional block.
315			 */
316			if ((INIT_MODE_FLAGS(sc) &
317				op->if_mode.mode_bit_map) !=
318				op->if_mode.mode_bit_map)
319				op_idx += op->if_mode.cmd_offset;
320			break;
321		case OP_IF_MODE_OR:
322			/* if all the flags don't match, skip the conditional
323			 * block.
324			 */
325			if ((INIT_MODE_FLAGS(sc) &
326				op->if_mode.mode_bit_map) == 0)
327				op_idx += op->if_mode.cmd_offset;
328			break;
329		    /* the following opcodes are unused at the moment. */
330		case OP_IF_PHASE:
331		case OP_RT:
332		case OP_DELAY:
333		case OP_VERIFY:
334		default:
335			/* Should never get here! */
336
337			break;
338		}
339	}
340}
341
342
343/****************************************************************************
344* PXP Arbiter
345****************************************************************************/
346/*
347 * This code configures the PCI read/write arbiter
348 * which implements a weighted round robin
349 * between the virtual queues in the chip.
350 *
351 * The values were derived for each PCI max payload and max request size.
352 * since max payload and max request size are only known at run time,
353 * this is done as a separate init stage.
354 */
355
356#define NUM_WR_Q			13
357#define NUM_RD_Q			29
358#define MAX_RD_ORD			3
359#define MAX_WR_ORD			2
360
361/* configuration for one arbiter queue */
362struct arb_line {
363	int l;
364	int add;
365	int ubound;
366};
367
368/* derived configuration for each read queue for each max request size */
369static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
370/* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
371	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
372	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
373	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
374	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
375	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
376	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
377	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
378	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
379/* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
380	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
381	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
382	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
383	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
384	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
385	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
386	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
387	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
388	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
389/* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
390	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
391	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
392	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
393	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
394	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
395	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
396	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
397	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
398	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
399};
400
401/* derived configuration for each write queue for each max request size */
402static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
403/* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
404	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
405	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
406	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
407	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
408	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
409	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
410	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
411	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
412/* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
413	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
414	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
415	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
416};
417
418/* register addresses for read queues */
419static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
420/* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
421		PXP2_REG_RQ_BW_RD_UBOUND0},
422	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
423		PXP2_REG_PSWRQ_BW_UB1},
424	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
425		PXP2_REG_PSWRQ_BW_UB2},
426	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
427		PXP2_REG_PSWRQ_BW_UB3},
428	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
429		PXP2_REG_RQ_BW_RD_UBOUND4},
430	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
431		PXP2_REG_RQ_BW_RD_UBOUND5},
432	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
433		PXP2_REG_PSWRQ_BW_UB6},
434	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
435		PXP2_REG_PSWRQ_BW_UB7},
436	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
437		PXP2_REG_PSWRQ_BW_UB8},
438/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
439		PXP2_REG_PSWRQ_BW_UB9},
440	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
441		PXP2_REG_PSWRQ_BW_UB10},
442	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
443		PXP2_REG_PSWRQ_BW_UB11},
444	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
445		PXP2_REG_RQ_BW_RD_UBOUND12},
446	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
447		PXP2_REG_RQ_BW_RD_UBOUND13},
448	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
449		PXP2_REG_RQ_BW_RD_UBOUND14},
450	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
451		PXP2_REG_RQ_BW_RD_UBOUND15},
452	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
453		PXP2_REG_RQ_BW_RD_UBOUND16},
454	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
455		PXP2_REG_RQ_BW_RD_UBOUND17},
456	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
457		PXP2_REG_RQ_BW_RD_UBOUND18},
458/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
459		PXP2_REG_RQ_BW_RD_UBOUND19},
460	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
461		PXP2_REG_RQ_BW_RD_UBOUND20},
462	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
463		PXP2_REG_RQ_BW_RD_UBOUND22},
464	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
465		PXP2_REG_RQ_BW_RD_UBOUND23},
466	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
467		PXP2_REG_RQ_BW_RD_UBOUND24},
468	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
469		PXP2_REG_RQ_BW_RD_UBOUND25},
470	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
471		PXP2_REG_RQ_BW_RD_UBOUND26},
472	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
473		PXP2_REG_RQ_BW_RD_UBOUND27},
474	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
475		PXP2_REG_PSWRQ_BW_UB28}
476};
477
478/* register addresses for write queues */
479static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
480/* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
481		PXP2_REG_PSWRQ_BW_UB1},
482	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
483		PXP2_REG_PSWRQ_BW_UB2},
484	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
485		PXP2_REG_PSWRQ_BW_UB3},
486	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
487		PXP2_REG_PSWRQ_BW_UB6},
488	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
489		PXP2_REG_PSWRQ_BW_UB7},
490	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
491		PXP2_REG_PSWRQ_BW_UB8},
492	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
493		PXP2_REG_PSWRQ_BW_UB9},
494	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
495		PXP2_REG_PSWRQ_BW_UB10},
496	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
497		PXP2_REG_PSWRQ_BW_UB11},
498/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
499		PXP2_REG_PSWRQ_BW_UB28},
500	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
501		PXP2_REG_RQ_BW_WR_UBOUND29},
502	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
503		PXP2_REG_RQ_BW_WR_UBOUND30}
504};
505
506static void ecore_init_pxp_arb(struct bxe_softc *sc, int r_order,
507			       int w_order)
508{
509	uint32_t val, i;
510
511	if (r_order > MAX_RD_ORD) {
512		ECORE_MSG(sc, "read order of %d  order adjusted to %d\n",
513			   r_order, MAX_RD_ORD);
514		r_order = MAX_RD_ORD;
515	}
516	if (w_order > MAX_WR_ORD) {
517		ECORE_MSG(sc, "write order of %d  order adjusted to %d\n",
518			   w_order, MAX_WR_ORD);
519		w_order = MAX_WR_ORD;
520	}
521	if (CHIP_REV_IS_FPGA(sc)) {
522		ECORE_MSG(sc, "write order adjusted to 1 for FPGA\n");
523		w_order = 0;
524	}
525	ECORE_MSG(sc, "read order %d  write order %d\n", r_order, w_order);
526
527	for (i = 0; i < NUM_RD_Q-1; i++) {
528		REG_WR(sc, read_arb_addr[i].l, read_arb_data[i][r_order].l);
529		REG_WR(sc, read_arb_addr[i].add,
530		       read_arb_data[i][r_order].add);
531		REG_WR(sc, read_arb_addr[i].ubound,
532		       read_arb_data[i][r_order].ubound);
533	}
534
535	for (i = 0; i < NUM_WR_Q-1; i++) {
536		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
537		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
538
539			REG_WR(sc, write_arb_addr[i].l,
540			       write_arb_data[i][w_order].l);
541
542			REG_WR(sc, write_arb_addr[i].add,
543			       write_arb_data[i][w_order].add);
544
545			REG_WR(sc, write_arb_addr[i].ubound,
546			       write_arb_data[i][w_order].ubound);
547		} else {
548
549			val = REG_RD(sc, write_arb_addr[i].l);
550			REG_WR(sc, write_arb_addr[i].l,
551			       val | (write_arb_data[i][w_order].l << 10));
552
553			val = REG_RD(sc, write_arb_addr[i].add);
554			REG_WR(sc, write_arb_addr[i].add,
555			       val | (write_arb_data[i][w_order].add << 10));
556
557			val = REG_RD(sc, write_arb_addr[i].ubound);
558			REG_WR(sc, write_arb_addr[i].ubound,
559			       val | (write_arb_data[i][w_order].ubound << 7));
560		}
561	}
562
563	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
564	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
565	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
566	REG_WR(sc, PXP2_REG_PSWRQ_BW_RD, val);
567
568	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
569	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
570	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
571	REG_WR(sc, PXP2_REG_PSWRQ_BW_WR, val);
572
573	REG_WR(sc, PXP2_REG_RQ_WR_MBS0, w_order);
574	REG_WR(sc, PXP2_REG_RQ_WR_MBS1, w_order);
575	REG_WR(sc, PXP2_REG_RQ_RD_MBS0, r_order);
576	REG_WR(sc, PXP2_REG_RQ_RD_MBS1, r_order);
577
578	if ((CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) && (r_order == MAX_RD_ORD))
579		REG_WR(sc, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
580
581	if (CHIP_IS_E3(sc))
582		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
583	else if (CHIP_IS_E2(sc))
584		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
585	else
586		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
587
588	if (!CHIP_IS_E1(sc)) {
589		/*    MPS      w_order     optimal TH      presently TH
590		 *    128         0             0               2
591		 *    256         1             1               3
592		 *    >=512       2             2               3
593		 */
594		/* DMAE is special */
595		if (!CHIP_IS_E1H(sc)) {
596			/* E2 can use optimal TH */
597			val = w_order;
598			REG_WR(sc, PXP2_REG_WR_DMAE_MPS, val);
599		} else {
600			val = ((w_order == 0) ? 2 : 3);
601			REG_WR(sc, PXP2_REG_WR_DMAE_MPS, 2);
602		}
603
604		REG_WR(sc, PXP2_REG_WR_HC_MPS, val);
605		REG_WR(sc, PXP2_REG_WR_USDM_MPS, val);
606		REG_WR(sc, PXP2_REG_WR_CSDM_MPS, val);
607		REG_WR(sc, PXP2_REG_WR_TSDM_MPS, val);
608		REG_WR(sc, PXP2_REG_WR_XSDM_MPS, val);
609		REG_WR(sc, PXP2_REG_WR_QM_MPS, val);
610		REG_WR(sc, PXP2_REG_WR_TM_MPS, val);
611		REG_WR(sc, PXP2_REG_WR_SRC_MPS, val);
612		REG_WR(sc, PXP2_REG_WR_DBG_MPS, val);
613		REG_WR(sc, PXP2_REG_WR_CDU_MPS, val);
614	}
615
616	/* Validate number of tags suppoted by device */
617#define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
618	val = REG_RD(sc, PCIE_REG_PCIER_TL_HDR_FC_ST);
619	val &= 0xFF;
620	if (val <= 0x20)
621		REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
622}
623
624/****************************************************************************
625* ILT management
626****************************************************************************/
627/*
628 * This codes hides the low level HW interaction for ILT management and
629 * configuration. The API consists of a shadow ILT table which is set by the
630 * driver and a set of routines to use it to configure the HW.
631 *
632 */
633
634/* ILT HW init operations */
635
636/* ILT memory management operations */
637#define ILT_MEMOP_ALLOC		0
638#define ILT_MEMOP_FREE		1
639
640/* the phys address is shifted right 12 bits and has an added
641 * 1=valid bit added to the 53rd bit
642 * then since this is a wide register(TM)
643 * we split it into two 32 bit writes
644 */
645#define ILT_ADDR1(x)		((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
646#define ILT_ADDR2(x)		((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
647#define ILT_RANGE(f, l)		(((l) << 10) | f)
648
649static int ecore_ilt_line_mem_op(struct bxe_softc *sc,
650				 struct ilt_line *line, uint32_t size, uint8_t memop)
651{
652	if (memop == ILT_MEMOP_FREE) {
653		ECORE_ILT_FREE(line->page, line->page_mapping, line->size);
654		return 0;
655	}
656	ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size);
657	if (!line->page)
658		return -1;
659	line->size = size;
660	return 0;
661}
662
663
664static int ecore_ilt_client_mem_op(struct bxe_softc *sc, int cli_num,
665				   uint8_t memop)
666{
667	int i, rc;
668	struct ecore_ilt *ilt = SC_ILT(sc);
669	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
670
671	if (!ilt || !ilt->lines)
672		return -1;
673
674	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
675		return 0;
676
677	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
678		rc = ecore_ilt_line_mem_op(sc, &ilt->lines[i],
679					   ilt_cli->page_size, memop);
680	}
681	return rc;
682}
683
684static inline int ecore_ilt_mem_op_cnic(struct bxe_softc *sc, uint8_t memop)
685{
686	int rc = 0;
687
688	if (CONFIGURE_NIC_MODE(sc))
689		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
690	if (!rc)
691		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_TM, memop);
692
693	return rc;
694}
695
696static int ecore_ilt_mem_op(struct bxe_softc *sc, uint8_t memop)
697{
698	int rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_CDU, memop);
699	if (!rc)
700		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_QM, memop);
701	if (!rc && CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
702		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
703
704	return rc;
705}
706
707static void ecore_ilt_line_wr(struct bxe_softc *sc, int abs_idx,
708			      ecore_dma_addr_t page_mapping)
709{
710	uint32_t reg;
711
712	if (CHIP_IS_E1(sc))
713		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
714	else
715		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
716
717	ecore_wr_64(sc, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
718}
719
720static void ecore_ilt_line_init_op(struct bxe_softc *sc,
721				   struct ecore_ilt *ilt, int idx, uint8_t initop)
722{
723	ecore_dma_addr_t	null_mapping;
724	int abs_idx = ilt->start_line + idx;
725
726
727	switch (initop) {
728	case INITOP_INIT:
729		/* set in the init-value array */
730	case INITOP_SET:
731		ecore_ilt_line_wr(sc, abs_idx, ilt->lines[idx].page_mapping);
732		break;
733	case INITOP_CLEAR:
734		null_mapping = 0;
735		ecore_ilt_line_wr(sc, abs_idx, null_mapping);
736		break;
737	}
738}
739
740static void ecore_ilt_boundry_init_op(struct bxe_softc *sc,
741				      struct ilt_client_info *ilt_cli,
742				      uint32_t ilt_start, uint8_t initop)
743{
744	uint32_t start_reg = 0;
745	uint32_t end_reg = 0;
746
747	/* The boundary is either SET or INIT,
748	   CLEAR => SET and for now SET ~~ INIT */
749
750	/* find the appropriate regs */
751	if (CHIP_IS_E1(sc)) {
752		switch (ilt_cli->client_num) {
753		case ILT_CLIENT_CDU:
754			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
755			break;
756		case ILT_CLIENT_QM:
757			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
758			break;
759		case ILT_CLIENT_SRC:
760			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
761			break;
762		case ILT_CLIENT_TM:
763			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
764			break;
765		}
766		REG_WR(sc, start_reg + SC_FUNC(sc)*4,
767		       ILT_RANGE((ilt_start + ilt_cli->start),
768				 (ilt_start + ilt_cli->end)));
769	} else {
770		switch (ilt_cli->client_num) {
771		case ILT_CLIENT_CDU:
772			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
773			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
774			break;
775		case ILT_CLIENT_QM:
776			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
777			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
778			break;
779		case ILT_CLIENT_SRC:
780			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
781			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
782			break;
783		case ILT_CLIENT_TM:
784			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
785			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
786			break;
787		}
788		REG_WR(sc, start_reg, (ilt_start + ilt_cli->start));
789		REG_WR(sc, end_reg, (ilt_start + ilt_cli->end));
790	}
791}
792
793static void ecore_ilt_client_init_op_ilt(struct bxe_softc *sc,
794					 struct ecore_ilt *ilt,
795					 struct ilt_client_info *ilt_cli,
796					 uint8_t initop)
797{
798	int i;
799
800	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
801		return;
802
803	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
804		ecore_ilt_line_init_op(sc, ilt, i, initop);
805
806	/* init/clear the ILT boundries */
807	ecore_ilt_boundry_init_op(sc, ilt_cli, ilt->start_line, initop);
808}
809
810static void ecore_ilt_client_init_op(struct bxe_softc *sc,
811				     struct ilt_client_info *ilt_cli, uint8_t initop)
812{
813	struct ecore_ilt *ilt = SC_ILT(sc);
814
815	ecore_ilt_client_init_op_ilt(sc, ilt, ilt_cli, initop);
816}
817
818static void ecore_ilt_client_id_init_op(struct bxe_softc *sc,
819					int cli_num, uint8_t initop)
820{
821	struct ecore_ilt *ilt = SC_ILT(sc);
822	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
823
824	ecore_ilt_client_init_op(sc, ilt_cli, initop);
825}
826
827static inline void ecore_ilt_init_op_cnic(struct bxe_softc *sc, uint8_t initop)
828{
829	if (CONFIGURE_NIC_MODE(sc))
830		ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
831	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_TM, initop);
832}
833
834static void ecore_ilt_init_op(struct bxe_softc *sc, uint8_t initop)
835{
836	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_CDU, initop);
837	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_QM, initop);
838	if (CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
839		ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
840}
841
842static void ecore_ilt_init_client_psz(struct bxe_softc *sc, int cli_num,
843				      uint32_t psz_reg, uint8_t initop)
844{
845	struct ecore_ilt *ilt = SC_ILT(sc);
846	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
847
848	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
849		return;
850
851	switch (initop) {
852	case INITOP_INIT:
853		/* set in the init-value array */
854	case INITOP_SET:
855		REG_WR(sc, psz_reg, ILOG2(ilt_cli->page_size >> 12));
856		break;
857	case INITOP_CLEAR:
858		break;
859	}
860}
861
862/*
863 * called during init common stage, ilt clients should be initialized
864 * prioir to calling this function
865 */
866static void ecore_ilt_init_page_size(struct bxe_softc *sc, uint8_t initop)
867{
868	ecore_ilt_init_client_psz(sc, ILT_CLIENT_CDU,
869				  PXP2_REG_RQ_CDU_P_SIZE, initop);
870	ecore_ilt_init_client_psz(sc, ILT_CLIENT_QM,
871				  PXP2_REG_RQ_QM_P_SIZE, initop);
872	ecore_ilt_init_client_psz(sc, ILT_CLIENT_SRC,
873				  PXP2_REG_RQ_SRC_P_SIZE, initop);
874	ecore_ilt_init_client_psz(sc, ILT_CLIENT_TM,
875				  PXP2_REG_RQ_TM_P_SIZE, initop);
876}
877
878/****************************************************************************
879* QM initializations
880****************************************************************************/
881#define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
882#define QM_INIT_MIN_CID_COUNT	31
883#define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
884
885/* called during init port stage */
886static void ecore_qm_init_cid_count(struct bxe_softc *sc, int qm_cid_count,
887				    uint8_t initop)
888{
889	int port = SC_PORT(sc);
890
891	if (QM_INIT(qm_cid_count)) {
892		switch (initop) {
893		case INITOP_INIT:
894			/* set in the init-value array */
895		case INITOP_SET:
896			REG_WR(sc, QM_REG_CONNNUM_0 + port*4,
897			       qm_cid_count/16 - 1);
898			break;
899		case INITOP_CLEAR:
900			break;
901		}
902	}
903}
904
905static void ecore_qm_set_ptr_table(struct bxe_softc *sc, int qm_cid_count,
906				   uint32_t base_reg, uint32_t reg)
907{
908	int i;
909	uint32_t wb_data[2] = {0, 0};
910	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
911		REG_WR(sc, base_reg + i*4,
912		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
913		ecore_init_wr_wb(sc, reg + i*8,
914				 wb_data, 2);
915	}
916}
917
918/* called during init common stage */
919static void ecore_qm_init_ptr_table(struct bxe_softc *sc, int qm_cid_count,
920				    uint8_t initop)
921{
922	if (!QM_INIT(qm_cid_count))
923		return;
924
925	switch (initop) {
926	case INITOP_INIT:
927		/* set in the init-value array */
928	case INITOP_SET:
929		ecore_qm_set_ptr_table(sc, qm_cid_count,
930				       QM_REG_BASEADDR, QM_REG_PTRTBL);
931		if (CHIP_IS_E1H(sc))
932			ecore_qm_set_ptr_table(sc, qm_cid_count,
933					       QM_REG_BASEADDR_EXT_A,
934					       QM_REG_PTRTBL_EXT_A);
935		break;
936	case INITOP_CLEAR:
937		break;
938	}
939}
940
941/****************************************************************************
942* SRC initializations
943****************************************************************************/
944#ifdef ECORE_L5
945/* called during init func stage */
946static void ecore_src_init_t2(struct bxe_softc *sc, struct src_ent *t2,
947			      ecore_dma_addr_t t2_mapping, int src_cid_count)
948{
949	int i;
950	int port = SC_PORT(sc);
951
952	/* Initialize T2 */
953	for (i = 0; i < src_cid_count-1; i++)
954		t2[i].next = (uint64_t)(t2_mapping +
955			     (i+1)*sizeof(struct src_ent));
956
957	/* tell the searcher where the T2 table is */
958	REG_WR(sc, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
959
960	ecore_wr_64(sc, SRC_REG_FIRSTFREE0 + port*16,
961		    U64_LO(t2_mapping), U64_HI(t2_mapping));
962
963	ecore_wr_64(sc, SRC_REG_LASTFREE0 + port*16,
964		    U64_LO((uint64_t)t2_mapping +
965			   (src_cid_count-1) * sizeof(struct src_ent)),
966		    U64_HI((uint64_t)t2_mapping +
967			   (src_cid_count-1) * sizeof(struct src_ent)));
968}
969#endif
970#endif /* ECORE_INIT_OPS_H */
971