1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25/*
26 * Copyright (c) 2012 by Delphix. All rights reserved.
27 */
28
29#include <sys/refcount.h>
30#include <sys/rrwlock.h>
31
32/*
33 * This file contains the implementation of a re-entrant read
34 * reader/writer lock (aka "rrwlock").
35 *
36 * This is a normal reader/writer lock with the additional feature
37 * of allowing threads who have already obtained a read lock to
38 * re-enter another read lock (re-entrant read) - even if there are
39 * waiting writers.
40 *
41 * Callers who have not obtained a read lock give waiting writers priority.
42 *
43 * The rrwlock_t lock does not allow re-entrant writers, nor does it
44 * allow a re-entrant mix of reads and writes (that is, it does not
45 * allow a caller who has already obtained a read lock to be able to
46 * then grab a write lock without first dropping all read locks, and
47 * vice versa).
48 *
49 * The rrwlock_t uses tsd (thread specific data) to keep a list of
50 * nodes (rrw_node_t), where each node keeps track of which specific
51 * lock (rrw_node_t::rn_rrl) the thread has grabbed.  Since re-entering
52 * should be rare, a thread that grabs multiple reads on the same rrwlock_t
53 * will store multiple rrw_node_ts of the same 'rrn_rrl'. Nodes on the
54 * tsd list can represent a different rrwlock_t.  This allows a thread
55 * to enter multiple and unique rrwlock_ts for read locks at the same time.
56 *
57 * Since using tsd exposes some overhead, the rrwlock_t only needs to
58 * keep tsd data when writers are waiting.  If no writers are waiting, then
59 * a reader just bumps the anonymous read count (rr_anon_rcount) - no tsd
60 * is needed.  Once a writer attempts to grab the lock, readers then
61 * keep tsd data and bump the linked readers count (rr_linked_rcount).
62 *
63 * If there are waiting writers and there are anonymous readers, then a
64 * reader doesn't know if it is a re-entrant lock. But since it may be one,
65 * we allow the read to proceed (otherwise it could deadlock).  Since once
66 * waiting writers are active, readers no longer bump the anonymous count,
67 * the anonymous readers will eventually flush themselves out.  At this point,
68 * readers will be able to tell if they are a re-entrant lock (have a
69 * rrw_node_t entry for the lock) or not. If they are a re-entrant lock, then
70 * we must let the proceed.  If they are not, then the reader blocks for the
71 * waiting writers.  Hence, we do not starve writers.
72 */
73
74/* global key for TSD */
75uint_t rrw_tsd_key;
76
77typedef struct rrw_node {
78	struct rrw_node *rn_next;
79	rrwlock_t *rn_rrl;
80	void *rn_tag;
81} rrw_node_t;
82
83static rrw_node_t *
84rrn_find(rrwlock_t *rrl)
85{
86	rrw_node_t *rn;
87
88	if (zfs_refcount_count(&rrl->rr_linked_rcount) == 0)
89		return (NULL);
90
91	for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) {
92		if (rn->rn_rrl == rrl)
93			return (rn);
94	}
95	return (NULL);
96}
97
98/*
99 * Add a node to the head of the singly linked list.
100 */
101static void
102rrn_add(rrwlock_t *rrl, void *tag)
103{
104	rrw_node_t *rn;
105
106	rn = kmem_alloc(sizeof (*rn), KM_SLEEP);
107	rn->rn_rrl = rrl;
108	rn->rn_next = tsd_get(rrw_tsd_key);
109	rn->rn_tag = tag;
110	VERIFY(tsd_set(rrw_tsd_key, rn) == 0);
111}
112
113/*
114 * If a node is found for 'rrl', then remove the node from this
115 * thread's list and return TRUE; otherwise return FALSE.
116 */
117static boolean_t
118rrn_find_and_remove(rrwlock_t *rrl, void *tag)
119{
120	rrw_node_t *rn;
121	rrw_node_t *prev = NULL;
122
123	if (zfs_refcount_count(&rrl->rr_linked_rcount) == 0)
124		return (B_FALSE);
125
126	for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) {
127		if (rn->rn_rrl == rrl && rn->rn_tag == tag) {
128			if (prev)
129				prev->rn_next = rn->rn_next;
130			else
131				VERIFY(tsd_set(rrw_tsd_key, rn->rn_next) == 0);
132			kmem_free(rn, sizeof (*rn));
133			return (B_TRUE);
134		}
135		prev = rn;
136	}
137	return (B_FALSE);
138}
139
140void
141rrw_init(rrwlock_t *rrl, boolean_t track_all)
142{
143	mutex_init(&rrl->rr_lock, NULL, MUTEX_DEFAULT, NULL);
144	cv_init(&rrl->rr_cv, NULL, CV_DEFAULT, NULL);
145	rrl->rr_writer = NULL;
146	zfs_refcount_create(&rrl->rr_anon_rcount);
147	zfs_refcount_create(&rrl->rr_linked_rcount);
148	rrl->rr_writer_wanted = B_FALSE;
149	rrl->rr_track_all = track_all;
150}
151
152void
153rrw_destroy(rrwlock_t *rrl)
154{
155	mutex_destroy(&rrl->rr_lock);
156	cv_destroy(&rrl->rr_cv);
157	ASSERT(rrl->rr_writer == NULL);
158	zfs_refcount_destroy(&rrl->rr_anon_rcount);
159	zfs_refcount_destroy(&rrl->rr_linked_rcount);
160}
161
162static void
163rrw_enter_read_impl(rrwlock_t *rrl, boolean_t prio, void *tag)
164{
165	mutex_enter(&rrl->rr_lock);
166#if !defined(DEBUG) && defined(_KERNEL)
167	if (rrl->rr_writer == NULL && !rrl->rr_writer_wanted &&
168	    !rrl->rr_track_all) {
169		rrl->rr_anon_rcount.rc_count++;
170		mutex_exit(&rrl->rr_lock);
171		return;
172	}
173	DTRACE_PROBE(zfs__rrwfastpath__rdmiss);
174#endif
175	ASSERT(rrl->rr_writer != curthread);
176	ASSERT(zfs_refcount_count(&rrl->rr_anon_rcount) >= 0);
177
178	while (rrl->rr_writer != NULL || (rrl->rr_writer_wanted &&
179	    zfs_refcount_is_zero(&rrl->rr_anon_rcount) && !prio &&
180	    rrn_find(rrl) == NULL))
181		cv_wait(&rrl->rr_cv, &rrl->rr_lock);
182
183	if (rrl->rr_writer_wanted || rrl->rr_track_all) {
184		/* may or may not be a re-entrant enter */
185		rrn_add(rrl, tag);
186		(void) zfs_refcount_add(&rrl->rr_linked_rcount, tag);
187	} else {
188		(void) zfs_refcount_add(&rrl->rr_anon_rcount, tag);
189	}
190	ASSERT(rrl->rr_writer == NULL);
191	mutex_exit(&rrl->rr_lock);
192}
193
194void
195rrw_enter_read(rrwlock_t *rrl, void *tag)
196{
197	rrw_enter_read_impl(rrl, B_FALSE, tag);
198}
199
200/*
201 * take a read lock even if there are pending write lock requests. if we want
202 * to take a lock reentrantly, but from different threads (that have a
203 * relationship to each other), the normal detection mechanism to overrule
204 * the pending writer does not work, so we have to give an explicit hint here.
205 */
206void
207rrw_enter_read_prio(rrwlock_t *rrl, void *tag)
208{
209	rrw_enter_read_impl(rrl, B_TRUE, tag);
210}
211
212
213void
214rrw_enter_write(rrwlock_t *rrl)
215{
216	mutex_enter(&rrl->rr_lock);
217	ASSERT(rrl->rr_writer != curthread);
218
219	while (zfs_refcount_count(&rrl->rr_anon_rcount) > 0 ||
220	    zfs_refcount_count(&rrl->rr_linked_rcount) > 0 ||
221	    rrl->rr_writer != NULL) {
222		rrl->rr_writer_wanted = B_TRUE;
223		cv_wait(&rrl->rr_cv, &rrl->rr_lock);
224	}
225	rrl->rr_writer_wanted = B_FALSE;
226	rrl->rr_writer = curthread;
227	mutex_exit(&rrl->rr_lock);
228}
229
230void
231rrw_enter(rrwlock_t *rrl, krw_t rw, void *tag)
232{
233	if (rw == RW_READER)
234		rrw_enter_read(rrl, tag);
235	else
236		rrw_enter_write(rrl);
237}
238
239void
240rrw_exit(rrwlock_t *rrl, void *tag)
241{
242	mutex_enter(&rrl->rr_lock);
243#if !defined(DEBUG) && defined(_KERNEL)
244	if (!rrl->rr_writer && rrl->rr_linked_rcount.rc_count == 0) {
245		rrl->rr_anon_rcount.rc_count--;
246		if (rrl->rr_anon_rcount.rc_count == 0)
247			cv_broadcast(&rrl->rr_cv);
248		mutex_exit(&rrl->rr_lock);
249		return;
250	}
251	DTRACE_PROBE(zfs__rrwfastpath__exitmiss);
252#endif
253	ASSERT(!zfs_refcount_is_zero(&rrl->rr_anon_rcount) ||
254	    !zfs_refcount_is_zero(&rrl->rr_linked_rcount) ||
255	    rrl->rr_writer != NULL);
256
257	if (rrl->rr_writer == NULL) {
258		int64_t count;
259		if (rrn_find_and_remove(rrl, tag)) {
260			count = zfs_refcount_remove(
261			    &rrl->rr_linked_rcount, tag);
262		} else {
263			ASSERT(!rrl->rr_track_all);
264			count = zfs_refcount_remove(&rrl->rr_anon_rcount, tag);
265		}
266		if (count == 0)
267			cv_broadcast(&rrl->rr_cv);
268	} else {
269		ASSERT(rrl->rr_writer == curthread);
270		ASSERT(zfs_refcount_is_zero(&rrl->rr_anon_rcount) &&
271		    zfs_refcount_is_zero(&rrl->rr_linked_rcount));
272		rrl->rr_writer = NULL;
273		cv_broadcast(&rrl->rr_cv);
274	}
275	mutex_exit(&rrl->rr_lock);
276}
277
278/*
279 * If the lock was created with track_all, rrw_held(RW_READER) will return
280 * B_TRUE iff the current thread has the lock for reader.  Otherwise it may
281 * return B_TRUE if any thread has the lock for reader.
282 */
283boolean_t
284rrw_held(rrwlock_t *rrl, krw_t rw)
285{
286	boolean_t held;
287
288	mutex_enter(&rrl->rr_lock);
289	if (rw == RW_WRITER) {
290		held = (rrl->rr_writer == curthread);
291	} else {
292		held = (!zfs_refcount_is_zero(&rrl->rr_anon_rcount) ||
293		    rrn_find(rrl) != NULL);
294	}
295	mutex_exit(&rrl->rr_lock);
296
297	return (held);
298}
299
300void
301rrw_tsd_destroy(void *arg)
302{
303	rrw_node_t *rn = arg;
304	if (rn != NULL) {
305		panic("thread %p terminating with rrw lock %p held",
306		    (void *)curthread, (void *)rn->rn_rrl);
307	}
308}
309
310/*
311 * A reader-mostly lock implementation, tuning above reader-writer locks
312 * for hightly parallel read acquisitions, while pessimizing writes.
313 *
314 * The idea is to split single busy lock into array of locks, so that
315 * each reader can lock only one of them for read, depending on result
316 * of simple hash function.  That proportionally reduces lock congestion.
317 * Writer same time has to sequentially aquire write on all the locks.
318 * That makes write aquisition proportionally slower, but in places where
319 * it is used (filesystem unmount) performance is not critical.
320 *
321 * All the functions below are direct wrappers around functions above.
322 */
323void
324rrm_init(rrmlock_t *rrl, boolean_t track_all)
325{
326	int i;
327
328	for (i = 0; i < RRM_NUM_LOCKS; i++)
329		rrw_init(&rrl->locks[i], track_all);
330}
331
332void
333rrm_destroy(rrmlock_t *rrl)
334{
335	int i;
336
337	for (i = 0; i < RRM_NUM_LOCKS; i++)
338		rrw_destroy(&rrl->locks[i]);
339}
340
341void
342rrm_enter(rrmlock_t *rrl, krw_t rw, void *tag)
343{
344	if (rw == RW_READER)
345		rrm_enter_read(rrl, tag);
346	else
347		rrm_enter_write(rrl);
348}
349
350/*
351 * This maps the current thread to a specific lock.  Note that the lock
352 * must be released by the same thread that acquired it.  We do this
353 * mapping by taking the thread pointer mod a prime number.  We examine
354 * only the low 32 bits of the thread pointer, because 32-bit division
355 * is faster than 64-bit division, and the high 32 bits have little
356 * entropy anyway.
357 */
358#define	RRM_TD_LOCK()	(((uint32_t)(uintptr_t)(curthread)) % RRM_NUM_LOCKS)
359
360void
361rrm_enter_read(rrmlock_t *rrl, void *tag)
362{
363	rrw_enter_read(&rrl->locks[RRM_TD_LOCK()], tag);
364}
365
366void
367rrm_enter_write(rrmlock_t *rrl)
368{
369	int i;
370
371	for (i = 0; i < RRM_NUM_LOCKS; i++)
372		rrw_enter_write(&rrl->locks[i]);
373}
374
375void
376rrm_exit(rrmlock_t *rrl, void *tag)
377{
378	int i;
379
380	if (rrl->locks[0].rr_writer == curthread) {
381		for (i = 0; i < RRM_NUM_LOCKS; i++)
382			rrw_exit(&rrl->locks[i], tag);
383	} else {
384		rrw_exit(&rrl->locks[RRM_TD_LOCK()], tag);
385	}
386}
387
388boolean_t
389rrm_held(rrmlock_t *rrl, krw_t rw)
390{
391	if (rw == RW_WRITER) {
392		return (rrw_held(&rrl->locks[0], rw));
393	} else {
394		return (rrw_held(&rrl->locks[RRM_TD_LOCK()], rw));
395	}
396}
397