1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
24 * Copyright 2014 HybridCluster. All rights reserved.
25 */
26
27#include <sys/dmu.h>
28#include <sys/dmu_objset.h>
29#include <sys/dmu_tx.h>
30#include <sys/dnode.h>
31#include <sys/zap.h>
32#include <sys/zfeature.h>
33#include <sys/dsl_dataset.h>
34
35/*
36 * Each of the concurrent object allocators will grab
37 * 2^dmu_object_alloc_chunk_shift dnode slots at a time.  The default is to
38 * grab 128 slots, which is 4 blocks worth.  This was experimentally
39 * determined to be the lowest value that eliminates the measurable effect
40 * of lock contention from this code path.
41 */
42int dmu_object_alloc_chunk_shift = 7;
43
44static uint64_t
45dmu_object_alloc_impl(objset_t *os, dmu_object_type_t ot, int blocksize,
46    int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
47    int dnodesize, dmu_tx_t *tx)
48{
49	uint64_t object;
50	uint64_t L1_dnode_count = DNODES_PER_BLOCK <<
51	    (DMU_META_DNODE(os)->dn_indblkshift - SPA_BLKPTRSHIFT);
52	dnode_t *dn = NULL;
53	int dn_slots = dnodesize >> DNODE_SHIFT;
54	boolean_t restarted = B_FALSE;
55	uint64_t *cpuobj = &os->os_obj_next_percpu[CPU_SEQID %
56	    os->os_obj_next_percpu_len];
57	int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
58	int error;
59
60	if (dn_slots == 0) {
61		dn_slots = DNODE_MIN_SLOTS;
62	} else {
63		ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
64		ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
65	}
66
67	/*
68	 * The "chunk" of dnodes that is assigned to a CPU-specific
69	 * allocator needs to be at least one block's worth, to avoid
70	 * lock contention on the dbuf.  It can be at most one L1 block's
71	 * worth, so that the "rescan after polishing off a L1's worth"
72	 * logic below will be sure to kick in.
73	 */
74	if (dnodes_per_chunk < DNODES_PER_BLOCK)
75		dnodes_per_chunk = DNODES_PER_BLOCK;
76	if (dnodes_per_chunk > L1_dnode_count)
77		dnodes_per_chunk = L1_dnode_count;
78
79#ifdef __FreeBSD__
80	object = atomic_load_64(cpuobj);
81#else
82	object = *cpuobj;
83#endif
84
85	for (;;) {
86		/*
87		 * If we finished a chunk of dnodes, get a new one from
88		 * the global allocator.
89		 */
90		if ((P2PHASE(object, dnodes_per_chunk) == 0) ||
91		    (P2PHASE(object + dn_slots - 1, dnodes_per_chunk) <
92		    dn_slots)) {
93			DNODE_STAT_BUMP(dnode_alloc_next_chunk);
94			mutex_enter(&os->os_obj_lock);
95			ASSERT0(P2PHASE(os->os_obj_next_chunk,
96			    dnodes_per_chunk));
97			object = os->os_obj_next_chunk;
98
99			/*
100			 * Each time we polish off a L1 bp worth of dnodes
101			 * (2^12 objects), move to another L1 bp that's
102			 * still reasonably sparse (at most 1/4 full). Look
103			 * from the beginning at most once per txg. If we
104			 * still can't allocate from that L1 block, search
105			 * for an empty L0 block, which will quickly skip
106			 * to the end of the metadnode if the no nearby L0
107			 * blocks are empty. This fallback avoids a
108			 * pathology where full dnode blocks containing
109			 * large dnodes appear sparse because they have a
110			 * low blk_fill, leading to many failed allocation
111			 * attempts. In the long term a better mechanism to
112			 * search for sparse metadnode regions, such as
113			 * spacemaps, could be implemented.
114			 *
115			 * os_scan_dnodes is set during txg sync if enough
116			 * objects have been freed since the previous
117			 * rescan to justify backfilling again.
118			 *
119			 * Note that dmu_traverse depends on the behavior
120			 * that we use multiple blocks of the dnode object
121			 * before going back to reuse objects. Any change
122			 * to this algorithm should preserve that property
123			 * or find another solution to the issues described
124			 * in traverse_visitbp.
125			 */
126			if (P2PHASE(object, L1_dnode_count) == 0) {
127				uint64_t offset;
128				uint64_t blkfill;
129				int minlvl;
130				if (os->os_rescan_dnodes) {
131					offset = 0;
132					os->os_rescan_dnodes = B_FALSE;
133				} else {
134					offset = object << DNODE_SHIFT;
135				}
136				blkfill = restarted ? 1 : DNODES_PER_BLOCK >> 2;
137				minlvl = restarted ? 1 : 2;
138				restarted = B_TRUE;
139				error = dnode_next_offset(DMU_META_DNODE(os),
140				    DNODE_FIND_HOLE, &offset, minlvl,
141				    blkfill, 0);
142				if (error == 0) {
143					object = offset >> DNODE_SHIFT;
144				}
145			}
146			/*
147			 * Note: if "restarted", we may find a L0 that
148			 * is not suitably aligned.
149			 */
150			os->os_obj_next_chunk =
151			    P2ALIGN(object, dnodes_per_chunk) +
152			    dnodes_per_chunk;
153			(void) atomic_swap_64(cpuobj, object);
154			mutex_exit(&os->os_obj_lock);
155		}
156
157		/*
158		 * The value of (*cpuobj) before adding dn_slots is the object
159		 * ID assigned to us.  The value afterwards is the object ID
160		 * assigned to whoever wants to do an allocation next.
161		 */
162		object = atomic_add_64_nv(cpuobj, dn_slots) - dn_slots;
163
164		/*
165		 * XXX We should check for an i/o error here and return
166		 * up to our caller.  Actually we should pre-read it in
167		 * dmu_tx_assign(), but there is currently no mechanism
168		 * to do so.
169		 */
170		error = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE,
171		    dn_slots, FTAG, &dn);
172		if (error == 0) {
173			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
174			/*
175			 * Another thread could have allocated it; check
176			 * again now that we have the struct lock.
177			 */
178			if (dn->dn_type == DMU_OT_NONE) {
179				dnode_allocate(dn, ot, blocksize, 0,
180				    bonustype, bonuslen, dn_slots, tx);
181				rw_exit(&dn->dn_struct_rwlock);
182				dmu_tx_add_new_object(tx, dn);
183				dnode_rele(dn, FTAG);
184				return (object);
185			}
186			rw_exit(&dn->dn_struct_rwlock);
187			dnode_rele(dn, FTAG);
188			DNODE_STAT_BUMP(dnode_alloc_race);
189		}
190
191		/*
192		 * Skip to next known valid starting point on error. This
193		 * is the start of the next block of dnodes.
194		 */
195		if (dmu_object_next(os, &object, B_TRUE, 0) != 0) {
196			object = P2ROUNDUP(object + 1, DNODES_PER_BLOCK);
197			DNODE_STAT_BUMP(dnode_alloc_next_block);
198		}
199		(void) atomic_swap_64(cpuobj, object);
200	}
201}
202
203uint64_t
204dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize,
205    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
206{
207	return (dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
208	    bonuslen, 0, tx));
209}
210
211uint64_t
212dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
213    int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
214    dmu_tx_t *tx)
215{
216	return (dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
217	    bonustype, bonuslen, 0, tx));
218}
219
220uint64_t
221dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, int blocksize,
222    dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
223{
224	return (dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
225	    bonuslen, dnodesize, tx));
226}
227
228int
229dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
230    int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
231{
232	return (dmu_object_claim_dnsize(os, object, ot, blocksize, bonustype,
233	    bonuslen, 0, tx));
234}
235
236int
237dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
238    int blocksize, dmu_object_type_t bonustype, int bonuslen,
239    int dnodesize, dmu_tx_t *tx)
240{
241	dnode_t *dn;
242	int dn_slots = dnodesize >> DNODE_SHIFT;
243	int err;
244
245	if (dn_slots == 0)
246		dn_slots = DNODE_MIN_SLOTS;
247	ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
248	ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
249
250	if (object == DMU_META_DNODE_OBJECT && !dmu_tx_private_ok(tx))
251		return (SET_ERROR(EBADF));
252
253	err = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, dn_slots,
254	    FTAG, &dn);
255	if (err)
256		return (err);
257	dnode_allocate(dn, ot, blocksize, 0, bonustype, bonuslen, dn_slots, tx);
258	dmu_tx_add_new_object(tx, dn);
259
260	dnode_rele(dn, FTAG);
261
262	return (0);
263}
264
265int
266dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
267    int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
268{
269	return (dmu_object_reclaim_dnsize(os, object, ot, blocksize, bonustype,
270	    bonuslen, DNODE_MIN_SIZE, tx));
271}
272
273int
274dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
275    int blocksize, dmu_object_type_t bonustype, int bonuslen, int dnodesize,
276    dmu_tx_t *tx)
277{
278	dnode_t *dn;
279	int dn_slots = dnodesize >> DNODE_SHIFT;
280	int err;
281
282	if (dn_slots == 0)
283		dn_slots = DNODE_MIN_SLOTS;
284
285	if (object == DMU_META_DNODE_OBJECT)
286		return (SET_ERROR(EBADF));
287
288	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
289	    FTAG, &dn);
290	if (err)
291		return (err);
292
293	dnode_reallocate(dn, ot, blocksize, bonustype, bonuslen, dn_slots, tx);
294
295	dnode_rele(dn, FTAG);
296	return (err);
297}
298
299
300int
301dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx)
302{
303	dnode_t *dn;
304	int err;
305
306	ASSERT(object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
307
308	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
309	    FTAG, &dn);
310	if (err)
311		return (err);
312
313	ASSERT(dn->dn_type != DMU_OT_NONE);
314	/*
315	 * If we don't create this free range, we'll leak indirect blocks when
316	 * we get to freeing the dnode in syncing context.
317	 */
318	dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
319	dnode_free(dn, tx);
320	dnode_rele(dn, FTAG);
321
322	return (0);
323}
324
325/*
326 * Return (in *objectp) the next object which is allocated (or a hole)
327 * after *object, taking into account only objects that may have been modified
328 * after the specified txg.
329 */
330int
331dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg)
332{
333	uint64_t offset;
334	uint64_t start_obj;
335	struct dsl_dataset *ds = os->os_dsl_dataset;
336	int error;
337
338	if (*objectp == 0) {
339		start_obj = 1;
340	} else if (ds && ds->ds_feature_inuse[SPA_FEATURE_LARGE_DNODE]) {
341		uint64_t i = *objectp + 1;
342		uint64_t last_obj = *objectp | (DNODES_PER_BLOCK - 1);
343		dmu_object_info_t doi;
344
345		/*
346		 * Scan through the remaining meta dnode block. The contents
347		 * of each slot in the block are known so it can be quickly
348		 * checked. If the block is exhausted without a match then
349		 * hand off to dnode_next_offset() for further scanning.
350		 */
351		while (i <= last_obj) {
352			error = dmu_object_info(os, i, &doi);
353			if (error == ENOENT) {
354				if (hole) {
355					*objectp = i;
356					return (0);
357				} else {
358					i++;
359				}
360			} else if (error == EEXIST) {
361				i++;
362			} else if (error == 0) {
363				if (hole) {
364					i += doi.doi_dnodesize >> DNODE_SHIFT;
365				} else {
366					*objectp = i;
367					return (0);
368				}
369			} else {
370				return (error);
371			}
372		}
373
374		start_obj = i;
375	} else {
376		start_obj = *objectp + 1;
377	}
378
379	offset = start_obj << DNODE_SHIFT;
380
381	error = dnode_next_offset(DMU_META_DNODE(os),
382	    (hole ? DNODE_FIND_HOLE : 0), &offset, 0, DNODES_PER_BLOCK, txg);
383
384	*objectp = offset >> DNODE_SHIFT;
385
386	return (error);
387}
388
389/*
390 * Turn this object from old_type into DMU_OTN_ZAP_METADATA, and bump the
391 * refcount on SPA_FEATURE_EXTENSIBLE_DATASET.
392 *
393 * Only for use from syncing context, on MOS objects.
394 */
395void
396dmu_object_zapify(objset_t *mos, uint64_t object, dmu_object_type_t old_type,
397    dmu_tx_t *tx)
398{
399	dnode_t *dn;
400
401	ASSERT(dmu_tx_is_syncing(tx));
402
403	VERIFY0(dnode_hold(mos, object, FTAG, &dn));
404	if (dn->dn_type == DMU_OTN_ZAP_METADATA) {
405		dnode_rele(dn, FTAG);
406		return;
407	}
408	ASSERT3U(dn->dn_type, ==, old_type);
409	ASSERT0(dn->dn_maxblkid);
410
411	/*
412	 * We must initialize the ZAP data before changing the type,
413	 * so that concurrent calls to *_is_zapified() can determine if
414	 * the object has been completely zapified by checking the type.
415	 */
416	mzap_create_impl(mos, object, 0, 0, tx);
417
418	dn->dn_next_type[tx->tx_txg & TXG_MASK] = dn->dn_type =
419	    DMU_OTN_ZAP_METADATA;
420	dnode_setdirty(dn, tx);
421	dnode_rele(dn, FTAG);
422
423	spa_feature_incr(dmu_objset_spa(mos),
424	    SPA_FEATURE_EXTENSIBLE_DATASET, tx);
425}
426
427void
428dmu_object_free_zapified(objset_t *mos, uint64_t object, dmu_tx_t *tx)
429{
430	dnode_t *dn;
431	dmu_object_type_t t;
432
433	ASSERT(dmu_tx_is_syncing(tx));
434
435	VERIFY0(dnode_hold(mos, object, FTAG, &dn));
436	t = dn->dn_type;
437	dnode_rele(dn, FTAG);
438
439	if (t == DMU_OTN_ZAP_METADATA) {
440		spa_feature_decr(dmu_objset_spa(mos),
441		    SPA_FEATURE_EXTENSIBLE_DATASET, tx);
442	}
443	VERIFY0(dmu_object_free(mos, object, tx));
444}
445