1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted.  In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored.  For example,
106 * when using the ZPL each dentry holds a references on a znode.  These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
114 *
115 *	- L2ARC buflist creation
116 *	- L2ARC buflist eviction
117 *	- L2ARC write completion, which walks L2ARC buflists
118 *	- ARC header destruction, as it removes from L2ARC buflists
119 *	- ARC header release, as it removes from L2ARC buflists
120 */
121
122/*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
146 * compressed ARC functionality is disabled, the b_pabd will point to an
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
156 * "overhead_size" kstat.
157 *
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
165 *
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
171 *
172 *   arc_buf_hdr_t
173 *   +-----------+
174 *   | fields    |
175 *   | common to |
176 *   | L1- and   |
177 *   | L2ARC     |
178 *   +-----------+
179 *   | l2arc_buf_hdr_t
180 *   |           |
181 *   +-----------+
182 *   | l1arc_buf_hdr_t
183 *   |           |              arc_buf_t
184 *   | b_buf     +------------>+-----------+      arc_buf_t
185 *   | b_pabd    +-+           |b_next     +---->+-----------+
186 *   +-----------+ |           |-----------|     |b_next     +-->NULL
187 *                 |           |b_comp = T |     +-----------+
188 *                 |           |b_data     +-+   |b_comp = F |
189 *                 |           +-----------+ |   |b_data     +-+
190 *                 +->+------+               |   +-----------+ |
191 *        compressed  |      |               |                 |
192 *           data     |      |<--------------+                 | uncompressed
193 *                    +------+          compressed,            |     data
194 *                                        shared               +-->+------+
195 *                                         data                    |      |
196 *                                                                 |      |
197 *                                                                 +------+
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
213 *
214 *                arc_buf_hdr_t
215 *                +-----------+
216 *                |           |
217 *                |           |
218 *                |           |
219 *                +-----------+
220 * l2arc_buf_hdr_t|           |
221 *                |           |
222 *                +-----------+
223 * l1arc_buf_hdr_t|           |
224 *                |           |                 arc_buf_t    (shared)
225 *                |    b_buf  +------------>+---------+      arc_buf_t
226 *                |           |             |b_next   +---->+---------+
227 *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
228 *                +-----------+ |           |         |     +---------+
229 *                              |           |b_data   +-+   |         |
230 *                              |           +---------+ |   |b_data   +-+
231 *                              +->+------+             |   +---------+ |
232 *                                 |      |             |               |
233 *                   uncompressed  |      |             |               |
234 *                        data     +------+             |               |
235 *                                    ^                 +->+------+     |
236 *                                    |       uncompressed |      |     |
237 *                                    |           data     |      |     |
238 *                                    |                    +------+     |
239 *                                    +---------------------------------+
240 *
241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
242 * since the physical block is about to be rewritten. The new data contents
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
246 * a newly allocated b_pabd. Writes are always done into buffers which have
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
251 *
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
254 * that when compressed ARC is enabled that the L2ARC blocks are identical
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
258 * ARC is disabled, then the L2ARC's block must be transformed to look
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
261 */
262
263#include <sys/spa.h>
264#include <sys/zio.h>
265#include <sys/spa_impl.h>
266#include <sys/zio_compress.h>
267#include <sys/zio_checksum.h>
268#include <sys/zfs_context.h>
269#include <sys/arc.h>
270#include <sys/refcount.h>
271#include <sys/vdev.h>
272#include <sys/vdev_impl.h>
273#include <sys/dsl_pool.h>
274#include <sys/zio_checksum.h>
275#include <sys/multilist.h>
276#include <sys/abd.h>
277#ifdef _KERNEL
278#include <sys/dnlc.h>
279#include <sys/racct.h>
280#endif
281#include <sys/callb.h>
282#include <sys/kstat.h>
283#include <sys/trim_map.h>
284#include <sys/zthr.h>
285#include <zfs_fletcher.h>
286#include <sys/sdt.h>
287#include <sys/aggsum.h>
288#include <sys/cityhash.h>
289
290#include <machine/vmparam.h>
291
292#ifdef illumos
293#ifndef _KERNEL
294/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
295boolean_t arc_watch = B_FALSE;
296int arc_procfd;
297#endif
298#endif /* illumos */
299
300/*
301 * This thread's job is to keep enough free memory in the system, by
302 * calling arc_kmem_reap_now() plus arc_shrink(), which improves
303 * arc_available_memory().
304 */
305static zthr_t		*arc_reap_zthr;
306
307/*
308 * This thread's job is to keep arc_size under arc_c, by calling
309 * arc_adjust(), which improves arc_is_overflowing().
310 */
311static zthr_t		*arc_adjust_zthr;
312
313static kmutex_t		arc_adjust_lock;
314static kcondvar_t	arc_adjust_waiters_cv;
315static boolean_t	arc_adjust_needed = B_FALSE;
316
317static kmutex_t		arc_dnlc_evicts_lock;
318static kcondvar_t	arc_dnlc_evicts_cv;
319static boolean_t	arc_dnlc_evicts_thread_exit;
320
321uint_t arc_reduce_dnlc_percent = 3;
322
323/*
324 * The number of headers to evict in arc_evict_state_impl() before
325 * dropping the sublist lock and evicting from another sublist. A lower
326 * value means we're more likely to evict the "correct" header (i.e. the
327 * oldest header in the arc state), but comes with higher overhead
328 * (i.e. more invocations of arc_evict_state_impl()).
329 */
330int zfs_arc_evict_batch_limit = 10;
331
332/* number of seconds before growing cache again */
333int arc_grow_retry = 60;
334
335/*
336 * Minimum time between calls to arc_kmem_reap_soon().  Note that this will
337 * be converted to ticks, so with the default hz=100, a setting of 15 ms
338 * will actually wait 2 ticks, or 20ms.
339 */
340int arc_kmem_cache_reap_retry_ms = 1000;
341
342/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
343int zfs_arc_overflow_shift = 8;
344
345/* shift of arc_c for calculating both min and max arc_p */
346int arc_p_min_shift = 4;
347
348/* log2(fraction of arc to reclaim) */
349int arc_shrink_shift = 7;
350
351/*
352 * log2(fraction of ARC which must be free to allow growing).
353 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
354 * when reading a new block into the ARC, we will evict an equal-sized block
355 * from the ARC.
356 *
357 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
358 * we will still not allow it to grow.
359 */
360int			arc_no_grow_shift = 5;
361
362
363/*
364 * minimum lifespan of a prefetch block in clock ticks
365 * (initialized in arc_init())
366 */
367static int		zfs_arc_min_prefetch_ms = 1;
368static int		zfs_arc_min_prescient_prefetch_ms = 6;
369
370/*
371 * If this percent of memory is free, don't throttle.
372 */
373int arc_lotsfree_percent = 10;
374
375static boolean_t arc_initialized;
376extern boolean_t zfs_prefetch_disable;
377
378/*
379 * The arc has filled available memory and has now warmed up.
380 */
381static boolean_t arc_warm;
382
383/*
384 * log2 fraction of the zio arena to keep free.
385 */
386int arc_zio_arena_free_shift = 2;
387
388/*
389 * These tunables are for performance analysis.
390 */
391uint64_t zfs_arc_max;
392uint64_t zfs_arc_min;
393uint64_t zfs_arc_meta_limit = 0;
394uint64_t zfs_arc_meta_min = 0;
395uint64_t zfs_arc_dnode_limit = 0;
396uint64_t zfs_arc_dnode_reduce_percent = 10;
397int zfs_arc_grow_retry = 0;
398int zfs_arc_shrink_shift = 0;
399int zfs_arc_no_grow_shift = 0;
400int zfs_arc_p_min_shift = 0;
401uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
402u_int zfs_arc_free_target = 0;
403
404/* Absolute min for arc min / max is 16MB. */
405static uint64_t arc_abs_min = 16 << 20;
406
407/*
408 * ARC dirty data constraints for arc_tempreserve_space() throttle
409 */
410uint_t zfs_arc_dirty_limit_percent = 50;	/* total dirty data limit */
411uint_t zfs_arc_anon_limit_percent = 25;		/* anon block dirty limit */
412uint_t zfs_arc_pool_dirty_percent = 20;		/* each pool's anon allowance */
413
414boolean_t zfs_compressed_arc_enabled = B_TRUE;
415
416static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
417static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
418static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
419static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
420static int sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS);
421
422#if defined(__FreeBSD__) && defined(_KERNEL)
423static void
424arc_free_target_init(void *unused __unused)
425{
426
427	zfs_arc_free_target = vm_cnt.v_free_target;
428}
429SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
430    arc_free_target_init, NULL);
431
432TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
433TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
434TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
435TUNABLE_INT("vfs.zfs.arc_grow_retry", &zfs_arc_grow_retry);
436TUNABLE_INT("vfs.zfs.arc_no_grow_shift", &zfs_arc_no_grow_shift);
437SYSCTL_DECL(_vfs_zfs);
438SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
439    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
440SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
441    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
442SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_no_grow_shift, CTLTYPE_U32 | CTLFLAG_RWTUN,
443    0, sizeof(uint32_t), sysctl_vfs_zfs_arc_no_grow_shift, "U",
444    "log2(fraction of ARC which must be free to allow growing)");
445SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
446    &zfs_arc_average_blocksize, 0,
447    "ARC average blocksize");
448SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
449    &arc_shrink_shift, 0,
450    "log2(fraction of arc to reclaim)");
451SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_grow_retry, CTLFLAG_RW,
452    &arc_grow_retry, 0,
453    "Wait in seconds before considering growing ARC");
454SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN,
455    &zfs_compressed_arc_enabled, 0,
456    "Enable compressed ARC");
457SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_kmem_cache_reap_retry_ms, CTLFLAG_RWTUN,
458    &arc_kmem_cache_reap_retry_ms, 0,
459    "Interval between ARC kmem_cache reapings");
460
461/*
462 * We don't have a tunable for arc_free_target due to the dependency on
463 * pagedaemon initialisation.
464 */
465SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
466    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
467    sysctl_vfs_zfs_arc_free_target, "IU",
468    "Desired number of free pages below which ARC triggers reclaim");
469
470static int
471sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
472{
473	u_int val;
474	int err;
475
476	val = zfs_arc_free_target;
477	err = sysctl_handle_int(oidp, &val, 0, req);
478	if (err != 0 || req->newptr == NULL)
479		return (err);
480
481	if (val < minfree)
482		return (EINVAL);
483	if (val > vm_cnt.v_page_count)
484		return (EINVAL);
485
486	zfs_arc_free_target = val;
487
488	return (0);
489}
490
491/*
492 * Must be declared here, before the definition of corresponding kstat
493 * macro which uses the same names will confuse the compiler.
494 */
495SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
496    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
497    sysctl_vfs_zfs_arc_meta_limit, "QU",
498    "ARC metadata limit");
499#endif
500
501/*
502 * Note that buffers can be in one of 6 states:
503 *	ARC_anon	- anonymous (discussed below)
504 *	ARC_mru		- recently used, currently cached
505 *	ARC_mru_ghost	- recentely used, no longer in cache
506 *	ARC_mfu		- frequently used, currently cached
507 *	ARC_mfu_ghost	- frequently used, no longer in cache
508 *	ARC_l2c_only	- exists in L2ARC but not other states
509 * When there are no active references to the buffer, they are
510 * are linked onto a list in one of these arc states.  These are
511 * the only buffers that can be evicted or deleted.  Within each
512 * state there are multiple lists, one for meta-data and one for
513 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
514 * etc.) is tracked separately so that it can be managed more
515 * explicitly: favored over data, limited explicitly.
516 *
517 * Anonymous buffers are buffers that are not associated with
518 * a DVA.  These are buffers that hold dirty block copies
519 * before they are written to stable storage.  By definition,
520 * they are "ref'd" and are considered part of arc_mru
521 * that cannot be freed.  Generally, they will aquire a DVA
522 * as they are written and migrate onto the arc_mru list.
523 *
524 * The ARC_l2c_only state is for buffers that are in the second
525 * level ARC but no longer in any of the ARC_m* lists.  The second
526 * level ARC itself may also contain buffers that are in any of
527 * the ARC_m* states - meaning that a buffer can exist in two
528 * places.  The reason for the ARC_l2c_only state is to keep the
529 * buffer header in the hash table, so that reads that hit the
530 * second level ARC benefit from these fast lookups.
531 */
532
533typedef struct arc_state {
534	/*
535	 * list of evictable buffers
536	 */
537	multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
538	/*
539	 * total amount of evictable data in this state
540	 */
541	zfs_refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
542	/*
543	 * total amount of data in this state; this includes: evictable,
544	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
545	 */
546	zfs_refcount_t arcs_size;
547	/*
548	 * supports the "dbufs" kstat
549	 */
550	arc_state_type_t arcs_state;
551} arc_state_t;
552
553/*
554 * Percentage that can be consumed by dnodes of ARC meta buffers.
555 */
556int zfs_arc_meta_prune = 10000;
557unsigned long zfs_arc_dnode_limit_percent = 10;
558int zfs_arc_meta_strategy = ARC_STRATEGY_META_ONLY;
559int zfs_arc_meta_adjust_restarts = 4096;
560
561SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_meta_strategy, CTLFLAG_RWTUN,
562    &zfs_arc_meta_strategy, 0,
563    "ARC metadata reclamation strategy "
564    "(0 = metadata only, 1 = balance data and metadata)");
565
566/* The 6 states: */
567static arc_state_t ARC_anon;
568static arc_state_t ARC_mru;
569static arc_state_t ARC_mru_ghost;
570static arc_state_t ARC_mfu;
571static arc_state_t ARC_mfu_ghost;
572static arc_state_t ARC_l2c_only;
573
574typedef struct arc_stats {
575	kstat_named_t arcstat_hits;
576	kstat_named_t arcstat_misses;
577	kstat_named_t arcstat_demand_data_hits;
578	kstat_named_t arcstat_demand_data_misses;
579	kstat_named_t arcstat_demand_metadata_hits;
580	kstat_named_t arcstat_demand_metadata_misses;
581	kstat_named_t arcstat_prefetch_data_hits;
582	kstat_named_t arcstat_prefetch_data_misses;
583	kstat_named_t arcstat_prefetch_metadata_hits;
584	kstat_named_t arcstat_prefetch_metadata_misses;
585	kstat_named_t arcstat_mru_hits;
586	kstat_named_t arcstat_mru_ghost_hits;
587	kstat_named_t arcstat_mfu_hits;
588	kstat_named_t arcstat_mfu_ghost_hits;
589	kstat_named_t arcstat_allocated;
590	kstat_named_t arcstat_deleted;
591	/*
592	 * Number of buffers that could not be evicted because the hash lock
593	 * was held by another thread.  The lock may not necessarily be held
594	 * by something using the same buffer, since hash locks are shared
595	 * by multiple buffers.
596	 */
597	kstat_named_t arcstat_mutex_miss;
598	/*
599	 * Number of buffers skipped when updating the access state due to the
600	 * header having already been released after acquiring the hash lock.
601	 */
602	kstat_named_t arcstat_access_skip;
603	/*
604	 * Number of buffers skipped because they have I/O in progress, are
605	 * indirect prefetch buffers that have not lived long enough, or are
606	 * not from the spa we're trying to evict from.
607	 */
608	kstat_named_t arcstat_evict_skip;
609	/*
610	 * Number of times arc_evict_state() was unable to evict enough
611	 * buffers to reach it's target amount.
612	 */
613	kstat_named_t arcstat_evict_not_enough;
614	kstat_named_t arcstat_evict_l2_cached;
615	kstat_named_t arcstat_evict_l2_eligible;
616	kstat_named_t arcstat_evict_l2_ineligible;
617	kstat_named_t arcstat_evict_l2_skip;
618	kstat_named_t arcstat_hash_elements;
619	kstat_named_t arcstat_hash_elements_max;
620	kstat_named_t arcstat_hash_collisions;
621	kstat_named_t arcstat_hash_chains;
622	kstat_named_t arcstat_hash_chain_max;
623	kstat_named_t arcstat_p;
624	kstat_named_t arcstat_c;
625	kstat_named_t arcstat_c_min;
626	kstat_named_t arcstat_c_max;
627	/* Not updated directly; only synced in arc_kstat_update. */
628	kstat_named_t arcstat_size;
629	/*
630	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
631	 * Note that the compressed bytes may match the uncompressed bytes
632	 * if the block is either not compressed or compressed arc is disabled.
633	 */
634	kstat_named_t arcstat_compressed_size;
635	/*
636	 * Uncompressed size of the data stored in b_pabd. If compressed
637	 * arc is disabled then this value will be identical to the stat
638	 * above.
639	 */
640	kstat_named_t arcstat_uncompressed_size;
641	/*
642	 * Number of bytes stored in all the arc_buf_t's. This is classified
643	 * as "overhead" since this data is typically short-lived and will
644	 * be evicted from the arc when it becomes unreferenced unless the
645	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
646	 * values have been set (see comment in dbuf.c for more information).
647	 */
648	kstat_named_t arcstat_overhead_size;
649	/*
650	 * Number of bytes consumed by internal ARC structures necessary
651	 * for tracking purposes; these structures are not actually
652	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
653	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
654	 * caches), and arc_buf_t structures (allocated via arc_buf_t
655	 * cache).
656	 * Not updated directly; only synced in arc_kstat_update.
657	 */
658	kstat_named_t arcstat_hdr_size;
659	/*
660	 * Number of bytes consumed by ARC buffers of type equal to
661	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
662	 * on disk user data (e.g. plain file contents).
663	 * Not updated directly; only synced in arc_kstat_update.
664	 */
665	kstat_named_t arcstat_data_size;
666	/*
667	 * Number of bytes consumed by ARC buffers of type equal to
668	 * ARC_BUFC_METADATA. This is generally consumed by buffers
669	 * backing on disk data that is used for internal ZFS
670	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
671	 * Not updated directly; only synced in arc_kstat_update.
672	 */
673	kstat_named_t arcstat_metadata_size;
674	/*
675	 * Number of bytes consumed by dmu_buf_impl_t objects.
676	 */
677	kstat_named_t arcstat_dbuf_size;
678	/*
679	 * Number of bytes consumed by dnode_t objects.
680	 */
681	kstat_named_t arcstat_dnode_size;
682	/*
683	 * Number of bytes consumed by bonus buffers.
684	 */
685	kstat_named_t arcstat_bonus_size;
686#if defined(__FreeBSD__) && defined(COMPAT_FREEBSD11)
687	/*
688	 * Sum of the previous three counters, provided for compatibility.
689	 */
690	kstat_named_t arcstat_other_size;
691#endif
692	/*
693	 * Total number of bytes consumed by ARC buffers residing in the
694	 * arc_anon state. This includes *all* buffers in the arc_anon
695	 * state; e.g. data, metadata, evictable, and unevictable buffers
696	 * are all included in this value.
697	 * Not updated directly; only synced in arc_kstat_update.
698	 */
699	kstat_named_t arcstat_anon_size;
700	/*
701	 * Number of bytes consumed by ARC buffers that meet the
702	 * following criteria: backing buffers of type ARC_BUFC_DATA,
703	 * residing in the arc_anon state, and are eligible for eviction
704	 * (e.g. have no outstanding holds on the buffer).
705	 * Not updated directly; only synced in arc_kstat_update.
706	 */
707	kstat_named_t arcstat_anon_evictable_data;
708	/*
709	 * Number of bytes consumed by ARC buffers that meet the
710	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
711	 * residing in the arc_anon state, and are eligible for eviction
712	 * (e.g. have no outstanding holds on the buffer).
713	 * Not updated directly; only synced in arc_kstat_update.
714	 */
715	kstat_named_t arcstat_anon_evictable_metadata;
716	/*
717	 * Total number of bytes consumed by ARC buffers residing in the
718	 * arc_mru state. This includes *all* buffers in the arc_mru
719	 * state; e.g. data, metadata, evictable, and unevictable buffers
720	 * are all included in this value.
721	 * Not updated directly; only synced in arc_kstat_update.
722	 */
723	kstat_named_t arcstat_mru_size;
724	/*
725	 * Number of bytes consumed by ARC buffers that meet the
726	 * following criteria: backing buffers of type ARC_BUFC_DATA,
727	 * residing in the arc_mru state, and are eligible for eviction
728	 * (e.g. have no outstanding holds on the buffer).
729	 * Not updated directly; only synced in arc_kstat_update.
730	 */
731	kstat_named_t arcstat_mru_evictable_data;
732	/*
733	 * Number of bytes consumed by ARC buffers that meet the
734	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
735	 * residing in the arc_mru state, and are eligible for eviction
736	 * (e.g. have no outstanding holds on the buffer).
737	 * Not updated directly; only synced in arc_kstat_update.
738	 */
739	kstat_named_t arcstat_mru_evictable_metadata;
740	/*
741	 * Total number of bytes that *would have been* consumed by ARC
742	 * buffers in the arc_mru_ghost state. The key thing to note
743	 * here, is the fact that this size doesn't actually indicate
744	 * RAM consumption. The ghost lists only consist of headers and
745	 * don't actually have ARC buffers linked off of these headers.
746	 * Thus, *if* the headers had associated ARC buffers, these
747	 * buffers *would have* consumed this number of bytes.
748	 * Not updated directly; only synced in arc_kstat_update.
749	 */
750	kstat_named_t arcstat_mru_ghost_size;
751	/*
752	 * Number of bytes that *would have been* consumed by ARC
753	 * buffers that are eligible for eviction, of type
754	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
755	 * Not updated directly; only synced in arc_kstat_update.
756	 */
757	kstat_named_t arcstat_mru_ghost_evictable_data;
758	/*
759	 * Number of bytes that *would have been* consumed by ARC
760	 * buffers that are eligible for eviction, of type
761	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
762	 * Not updated directly; only synced in arc_kstat_update.
763	 */
764	kstat_named_t arcstat_mru_ghost_evictable_metadata;
765	/*
766	 * Total number of bytes consumed by ARC buffers residing in the
767	 * arc_mfu state. This includes *all* buffers in the arc_mfu
768	 * state; e.g. data, metadata, evictable, and unevictable buffers
769	 * are all included in this value.
770	 * Not updated directly; only synced in arc_kstat_update.
771	 */
772	kstat_named_t arcstat_mfu_size;
773	/*
774	 * Number of bytes consumed by ARC buffers that are eligible for
775	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
776	 * state.
777	 * Not updated directly; only synced in arc_kstat_update.
778	 */
779	kstat_named_t arcstat_mfu_evictable_data;
780	/*
781	 * Number of bytes consumed by ARC buffers that are eligible for
782	 * eviction, of type ARC_BUFC_METADATA, and reside in the
783	 * arc_mfu state.
784	 * Not updated directly; only synced in arc_kstat_update.
785	 */
786	kstat_named_t arcstat_mfu_evictable_metadata;
787	/*
788	 * Total number of bytes that *would have been* consumed by ARC
789	 * buffers in the arc_mfu_ghost state. See the comment above
790	 * arcstat_mru_ghost_size for more details.
791	 * Not updated directly; only synced in arc_kstat_update.
792	 */
793	kstat_named_t arcstat_mfu_ghost_size;
794	/*
795	 * Number of bytes that *would have been* consumed by ARC
796	 * buffers that are eligible for eviction, of type
797	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
798	 * Not updated directly; only synced in arc_kstat_update.
799	 */
800	kstat_named_t arcstat_mfu_ghost_evictable_data;
801	/*
802	 * Number of bytes that *would have been* consumed by ARC
803	 * buffers that are eligible for eviction, of type
804	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
805	 * Not updated directly; only synced in arc_kstat_update.
806	 */
807	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
808	kstat_named_t arcstat_l2_hits;
809	kstat_named_t arcstat_l2_misses;
810	kstat_named_t arcstat_l2_feeds;
811	kstat_named_t arcstat_l2_rw_clash;
812	kstat_named_t arcstat_l2_read_bytes;
813	kstat_named_t arcstat_l2_write_bytes;
814	kstat_named_t arcstat_l2_writes_sent;
815	kstat_named_t arcstat_l2_writes_done;
816	kstat_named_t arcstat_l2_writes_error;
817	kstat_named_t arcstat_l2_writes_lock_retry;
818	kstat_named_t arcstat_l2_evict_lock_retry;
819	kstat_named_t arcstat_l2_evict_reading;
820	kstat_named_t arcstat_l2_evict_l1cached;
821	kstat_named_t arcstat_l2_free_on_write;
822	kstat_named_t arcstat_l2_abort_lowmem;
823	kstat_named_t arcstat_l2_cksum_bad;
824	kstat_named_t arcstat_l2_io_error;
825	kstat_named_t arcstat_l2_lsize;
826	kstat_named_t arcstat_l2_psize;
827	/* Not updated directly; only synced in arc_kstat_update. */
828	kstat_named_t arcstat_l2_hdr_size;
829	kstat_named_t arcstat_l2_write_trylock_fail;
830	kstat_named_t arcstat_l2_write_passed_headroom;
831	kstat_named_t arcstat_l2_write_spa_mismatch;
832	kstat_named_t arcstat_l2_write_in_l2;
833	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
834	kstat_named_t arcstat_l2_write_not_cacheable;
835	kstat_named_t arcstat_l2_write_full;
836	kstat_named_t arcstat_l2_write_buffer_iter;
837	kstat_named_t arcstat_l2_write_pios;
838	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
839	kstat_named_t arcstat_l2_write_buffer_list_iter;
840	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
841	kstat_named_t arcstat_memory_throttle_count;
842	kstat_named_t arcstat_memory_direct_count;
843	kstat_named_t arcstat_memory_indirect_count;
844	kstat_named_t arcstat_memory_all_bytes;
845	kstat_named_t arcstat_memory_free_bytes;
846	kstat_named_t arcstat_memory_available_bytes;
847	kstat_named_t arcstat_no_grow;
848	kstat_named_t arcstat_tempreserve;
849	kstat_named_t arcstat_loaned_bytes;
850	kstat_named_t arcstat_prune;
851	/* Not updated directly; only synced in arc_kstat_update. */
852	kstat_named_t arcstat_meta_used;
853	kstat_named_t arcstat_meta_limit;
854	kstat_named_t arcstat_dnode_limit;
855	kstat_named_t arcstat_meta_max;
856	kstat_named_t arcstat_meta_min;
857	kstat_named_t arcstat_async_upgrade_sync;
858	kstat_named_t arcstat_demand_hit_predictive_prefetch;
859	kstat_named_t arcstat_demand_hit_prescient_prefetch;
860} arc_stats_t;
861
862static arc_stats_t arc_stats = {
863	{ "hits",			KSTAT_DATA_UINT64 },
864	{ "misses",			KSTAT_DATA_UINT64 },
865	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
866	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
867	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
868	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
869	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
870	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
871	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
872	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
873	{ "mru_hits",			KSTAT_DATA_UINT64 },
874	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
875	{ "mfu_hits",			KSTAT_DATA_UINT64 },
876	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
877	{ "allocated",			KSTAT_DATA_UINT64 },
878	{ "deleted",			KSTAT_DATA_UINT64 },
879	{ "mutex_miss",			KSTAT_DATA_UINT64 },
880	{ "access_skip",		KSTAT_DATA_UINT64 },
881	{ "evict_skip",			KSTAT_DATA_UINT64 },
882	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
883	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
884	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
885	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
886	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
887	{ "hash_elements",		KSTAT_DATA_UINT64 },
888	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
889	{ "hash_collisions",		KSTAT_DATA_UINT64 },
890	{ "hash_chains",		KSTAT_DATA_UINT64 },
891	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
892	{ "p",				KSTAT_DATA_UINT64 },
893	{ "c",				KSTAT_DATA_UINT64 },
894	{ "c_min",			KSTAT_DATA_UINT64 },
895	{ "c_max",			KSTAT_DATA_UINT64 },
896	{ "size",			KSTAT_DATA_UINT64 },
897	{ "compressed_size",		KSTAT_DATA_UINT64 },
898	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
899	{ "overhead_size",		KSTAT_DATA_UINT64 },
900	{ "hdr_size",			KSTAT_DATA_UINT64 },
901	{ "data_size",			KSTAT_DATA_UINT64 },
902	{ "metadata_size",		KSTAT_DATA_UINT64 },
903	{ "dbuf_size",			KSTAT_DATA_UINT64 },
904	{ "dnode_size",			KSTAT_DATA_UINT64 },
905	{ "bonus_size",			KSTAT_DATA_UINT64 },
906#if defined(__FreeBSD__) && defined(COMPAT_FREEBSD11)
907	{ "other_size",			KSTAT_DATA_UINT64 },
908#endif
909	{ "anon_size",			KSTAT_DATA_UINT64 },
910	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
911	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
912	{ "mru_size",			KSTAT_DATA_UINT64 },
913	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
914	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
915	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
916	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
917	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
918	{ "mfu_size",			KSTAT_DATA_UINT64 },
919	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
920	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
921	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
922	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
923	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
924	{ "l2_hits",			KSTAT_DATA_UINT64 },
925	{ "l2_misses",			KSTAT_DATA_UINT64 },
926	{ "l2_feeds",			KSTAT_DATA_UINT64 },
927	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
928	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
929	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
930	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
931	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
932	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
933	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
934	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
935	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
936	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
937	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
938	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
939	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
940	{ "l2_io_error",		KSTAT_DATA_UINT64 },
941	{ "l2_size",			KSTAT_DATA_UINT64 },
942	{ "l2_asize",			KSTAT_DATA_UINT64 },
943	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
944	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
945	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
946	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
947	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
948	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
949	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
950	{ "l2_write_full",		KSTAT_DATA_UINT64 },
951	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
952	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
953	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
954	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
955	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
956	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
957	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
958	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
959	{ "memory_all_bytes",		KSTAT_DATA_UINT64 },
960	{ "memory_free_bytes",		KSTAT_DATA_UINT64 },
961	{ "memory_available_bytes",	KSTAT_DATA_UINT64 },
962	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
963	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
964	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
965	{ "arc_prune",			KSTAT_DATA_UINT64 },
966	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
967	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
968	{ "arc_dnode_limit",		KSTAT_DATA_UINT64 },
969	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
970	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
971	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
972	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
973	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
974};
975
976#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
977
978#define	ARCSTAT_INCR(stat, val) \
979	atomic_add_64(&arc_stats.stat.value.ui64, (val))
980
981#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
982#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
983
984#define	ARCSTAT_MAX(stat, val) {					\
985	uint64_t m;							\
986	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
987	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
988		continue;						\
989}
990
991#define	ARCSTAT_MAXSTAT(stat) \
992	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
993
994/*
995 * We define a macro to allow ARC hits/misses to be easily broken down by
996 * two separate conditions, giving a total of four different subtypes for
997 * each of hits and misses (so eight statistics total).
998 */
999#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
1000	if (cond1) {							\
1001		if (cond2) {						\
1002			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
1003		} else {						\
1004			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
1005		}							\
1006	} else {							\
1007		if (cond2) {						\
1008			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
1009		} else {						\
1010			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
1011		}							\
1012	}
1013
1014kstat_t			*arc_ksp;
1015static arc_state_t	*arc_anon;
1016static arc_state_t	*arc_mru;
1017static arc_state_t	*arc_mru_ghost;
1018static arc_state_t	*arc_mfu;
1019static arc_state_t	*arc_mfu_ghost;
1020static arc_state_t	*arc_l2c_only;
1021
1022/*
1023 * There are several ARC variables that are critical to export as kstats --
1024 * but we don't want to have to grovel around in the kstat whenever we wish to
1025 * manipulate them.  For these variables, we therefore define them to be in
1026 * terms of the statistic variable.  This assures that we are not introducing
1027 * the possibility of inconsistency by having shadow copies of the variables,
1028 * while still allowing the code to be readable.
1029 */
1030#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
1031#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
1032#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
1033#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
1034#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
1035#define	arc_dnode_limit	ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
1036#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
1037#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
1038#define	arc_dbuf_size	ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
1039#define	arc_dnode_size	ARCSTAT(arcstat_dnode_size) /* dnode metadata */
1040#define	arc_bonus_size	ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
1041
1042/* compressed size of entire arc */
1043#define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
1044/* uncompressed size of entire arc */
1045#define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
1046/* number of bytes in the arc from arc_buf_t's */
1047#define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
1048
1049/*
1050 * There are also some ARC variables that we want to export, but that are
1051 * updated so often that having the canonical representation be the statistic
1052 * variable causes a performance bottleneck. We want to use aggsum_t's for these
1053 * instead, but still be able to export the kstat in the same way as before.
1054 * The solution is to always use the aggsum version, except in the kstat update
1055 * callback.
1056 */
1057aggsum_t arc_size;
1058aggsum_t arc_meta_used;
1059aggsum_t astat_data_size;
1060aggsum_t astat_metadata_size;
1061aggsum_t astat_hdr_size;
1062aggsum_t astat_bonus_size;
1063aggsum_t astat_dnode_size;
1064aggsum_t astat_dbuf_size;
1065aggsum_t astat_l2_hdr_size;
1066
1067static list_t arc_prune_list;
1068static kmutex_t arc_prune_mtx;
1069static taskq_t *arc_prune_taskq;
1070
1071static int		arc_no_grow;	/* Don't try to grow cache size */
1072static hrtime_t		arc_growtime;
1073static uint64_t		arc_tempreserve;
1074static uint64_t		arc_loaned_bytes;
1075
1076typedef struct arc_callback arc_callback_t;
1077
1078struct arc_callback {
1079	void			*acb_private;
1080	arc_read_done_func_t	*acb_done;
1081	arc_buf_t		*acb_buf;
1082	boolean_t		acb_compressed;
1083	zio_t			*acb_zio_dummy;
1084	zio_t			*acb_zio_head;
1085	arc_callback_t		*acb_next;
1086};
1087
1088typedef struct arc_write_callback arc_write_callback_t;
1089
1090struct arc_write_callback {
1091	void			*awcb_private;
1092	arc_write_done_func_t	*awcb_ready;
1093	arc_write_done_func_t	*awcb_children_ready;
1094	arc_write_done_func_t	*awcb_physdone;
1095	arc_write_done_func_t	*awcb_done;
1096	arc_buf_t		*awcb_buf;
1097};
1098
1099/*
1100 * ARC buffers are separated into multiple structs as a memory saving measure:
1101 *   - Common fields struct, always defined, and embedded within it:
1102 *       - L2-only fields, always allocated but undefined when not in L2ARC
1103 *       - L1-only fields, only allocated when in L1ARC
1104 *
1105 *           Buffer in L1                     Buffer only in L2
1106 *    +------------------------+          +------------------------+
1107 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
1108 *    |                        |          |                        |
1109 *    |                        |          |                        |
1110 *    |                        |          |                        |
1111 *    +------------------------+          +------------------------+
1112 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
1113 *    | (undefined if L1-only) |          |                        |
1114 *    +------------------------+          +------------------------+
1115 *    | l1arc_buf_hdr_t        |
1116 *    |                        |
1117 *    |                        |
1118 *    |                        |
1119 *    |                        |
1120 *    +------------------------+
1121 *
1122 * Because it's possible for the L2ARC to become extremely large, we can wind
1123 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
1124 * is minimized by only allocating the fields necessary for an L1-cached buffer
1125 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
1126 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
1127 * words in pointers. arc_hdr_realloc() is used to switch a header between
1128 * these two allocation states.
1129 */
1130typedef struct l1arc_buf_hdr {
1131	kmutex_t		b_freeze_lock;
1132	zio_cksum_t		*b_freeze_cksum;
1133#ifdef ZFS_DEBUG
1134	/*
1135	 * Used for debugging with kmem_flags - by allocating and freeing
1136	 * b_thawed when the buffer is thawed, we get a record of the stack
1137	 * trace that thawed it.
1138	 */
1139	void			*b_thawed;
1140#endif
1141
1142	arc_buf_t		*b_buf;
1143	uint32_t		b_bufcnt;
1144	/* for waiting on writes to complete */
1145	kcondvar_t		b_cv;
1146	uint8_t			b_byteswap;
1147
1148	/* protected by arc state mutex */
1149	arc_state_t		*b_state;
1150	multilist_node_t	b_arc_node;
1151
1152	/* updated atomically */
1153	clock_t			b_arc_access;
1154	uint32_t		b_mru_hits;
1155	uint32_t		b_mru_ghost_hits;
1156	uint32_t		b_mfu_hits;
1157	uint32_t		b_mfu_ghost_hits;
1158	uint32_t		b_l2_hits;
1159
1160	/* self protecting */
1161	zfs_refcount_t		b_refcnt;
1162
1163	arc_callback_t		*b_acb;
1164	abd_t			*b_pabd;
1165} l1arc_buf_hdr_t;
1166
1167typedef struct l2arc_dev l2arc_dev_t;
1168
1169typedef struct l2arc_buf_hdr {
1170	/* protected by arc_buf_hdr mutex */
1171	l2arc_dev_t		*b_dev;		/* L2ARC device */
1172	uint64_t		b_daddr;	/* disk address, offset byte */
1173	uint32_t		b_hits;
1174
1175	list_node_t		b_l2node;
1176} l2arc_buf_hdr_t;
1177
1178struct arc_buf_hdr {
1179	/* protected by hash lock */
1180	dva_t			b_dva;
1181	uint64_t		b_birth;
1182
1183	arc_buf_contents_t	b_type;
1184	arc_buf_hdr_t		*b_hash_next;
1185	arc_flags_t		b_flags;
1186
1187	/*
1188	 * This field stores the size of the data buffer after
1189	 * compression, and is set in the arc's zio completion handlers.
1190	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
1191	 *
1192	 * While the block pointers can store up to 32MB in their psize
1193	 * field, we can only store up to 32MB minus 512B. This is due
1194	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
1195	 * a field of zeros represents 512B in the bp). We can't use a
1196	 * bias of 1 since we need to reserve a psize of zero, here, to
1197	 * represent holes and embedded blocks.
1198	 *
1199	 * This isn't a problem in practice, since the maximum size of a
1200	 * buffer is limited to 16MB, so we never need to store 32MB in
1201	 * this field. Even in the upstream illumos code base, the
1202	 * maximum size of a buffer is limited to 16MB.
1203	 */
1204	uint16_t		b_psize;
1205
1206	/*
1207	 * This field stores the size of the data buffer before
1208	 * compression, and cannot change once set. It is in units
1209	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1210	 */
1211	uint16_t		b_lsize;	/* immutable */
1212	uint64_t		b_spa;		/* immutable */
1213
1214	/* L2ARC fields. Undefined when not in L2ARC. */
1215	l2arc_buf_hdr_t		b_l2hdr;
1216	/* L1ARC fields. Undefined when in l2arc_only state */
1217	l1arc_buf_hdr_t		b_l1hdr;
1218};
1219
1220#if defined(__FreeBSD__) && defined(_KERNEL)
1221static int
1222sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
1223{
1224	uint64_t val;
1225	int err;
1226
1227	val = arc_meta_limit;
1228	err = sysctl_handle_64(oidp, &val, 0, req);
1229	if (err != 0 || req->newptr == NULL)
1230		return (err);
1231
1232        if (val <= 0 || val > arc_c_max)
1233		return (EINVAL);
1234
1235	arc_meta_limit = val;
1236
1237	mutex_enter(&arc_adjust_lock);
1238	arc_adjust_needed = B_TRUE;
1239	mutex_exit(&arc_adjust_lock);
1240	zthr_wakeup(arc_adjust_zthr);
1241
1242	return (0);
1243}
1244
1245static int
1246sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS)
1247{
1248	uint32_t val;
1249	int err;
1250
1251	val = arc_no_grow_shift;
1252	err = sysctl_handle_32(oidp, &val, 0, req);
1253	if (err != 0 || req->newptr == NULL)
1254		return (err);
1255
1256        if (val >= arc_shrink_shift)
1257		return (EINVAL);
1258
1259	arc_no_grow_shift = val;
1260	return (0);
1261}
1262
1263static int
1264sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
1265{
1266	uint64_t val;
1267	int err;
1268
1269	val = zfs_arc_max;
1270	err = sysctl_handle_64(oidp, &val, 0, req);
1271	if (err != 0 || req->newptr == NULL)
1272		return (err);
1273
1274	if (zfs_arc_max == 0) {
1275		/* Loader tunable so blindly set */
1276		zfs_arc_max = val;
1277		return (0);
1278	}
1279
1280	if (val < arc_abs_min || val > kmem_size())
1281		return (EINVAL);
1282	if (val < arc_c_min)
1283		return (EINVAL);
1284	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
1285		return (EINVAL);
1286
1287	arc_c_max = val;
1288
1289	arc_c = arc_c_max;
1290        arc_p = (arc_c >> 1);
1291
1292	if (zfs_arc_meta_limit == 0) {
1293		/* limit meta-data to 1/4 of the arc capacity */
1294		arc_meta_limit = arc_c_max / 4;
1295	}
1296
1297	/* if kmem_flags are set, lets try to use less memory */
1298	if (kmem_debugging())
1299		arc_c = arc_c / 2;
1300
1301	zfs_arc_max = arc_c;
1302
1303	mutex_enter(&arc_adjust_lock);
1304	arc_adjust_needed = B_TRUE;
1305	mutex_exit(&arc_adjust_lock);
1306	zthr_wakeup(arc_adjust_zthr);
1307
1308	return (0);
1309}
1310
1311static int
1312sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
1313{
1314	uint64_t val;
1315	int err;
1316
1317	val = zfs_arc_min;
1318	err = sysctl_handle_64(oidp, &val, 0, req);
1319	if (err != 0 || req->newptr == NULL)
1320		return (err);
1321
1322	if (zfs_arc_min == 0) {
1323		/* Loader tunable so blindly set */
1324		zfs_arc_min = val;
1325		return (0);
1326	}
1327
1328	if (val < arc_abs_min || val > arc_c_max)
1329		return (EINVAL);
1330
1331	arc_c_min = val;
1332
1333	if (zfs_arc_meta_min == 0)
1334                arc_meta_min = arc_c_min / 2;
1335
1336	if (arc_c < arc_c_min)
1337                arc_c = arc_c_min;
1338
1339	zfs_arc_min = arc_c_min;
1340
1341	return (0);
1342}
1343#endif
1344
1345#define	GHOST_STATE(state)	\
1346	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1347	(state) == arc_l2c_only)
1348
1349#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1350#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1351#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1352#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1353#define	HDR_PRESCIENT_PREFETCH(hdr)	\
1354	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
1355#define	HDR_COMPRESSION_ENABLED(hdr)	\
1356	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1357
1358#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1359#define	HDR_L2_READING(hdr)	\
1360	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1361	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1362#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1363#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1364#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1365#define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1366
1367#define	HDR_ISTYPE_METADATA(hdr)	\
1368	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1369#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1370
1371#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1372#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1373
1374/* For storing compression mode in b_flags */
1375#define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1376
1377#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1378	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1379#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1380	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1381
1382#define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1383#define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
1384#define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
1385
1386/*
1387 * Other sizes
1388 */
1389
1390#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1391#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1392
1393/*
1394 * Hash table routines
1395 */
1396
1397#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1398
1399struct ht_lock {
1400	kmutex_t	ht_lock;
1401#ifdef _KERNEL
1402	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1403#endif
1404};
1405
1406#define	BUF_LOCKS 256
1407typedef struct buf_hash_table {
1408	uint64_t ht_mask;
1409	arc_buf_hdr_t **ht_table;
1410	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1411} buf_hash_table_t;
1412
1413static buf_hash_table_t buf_hash_table;
1414
1415#define	BUF_HASH_INDEX(spa, dva, birth) \
1416	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1417#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1418#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1419#define	HDR_LOCK(hdr) \
1420	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1421
1422uint64_t zfs_crc64_table[256];
1423
1424/*
1425 * Level 2 ARC
1426 */
1427
1428#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1429#define	L2ARC_HEADROOM		2			/* num of writes */
1430/*
1431 * If we discover during ARC scan any buffers to be compressed, we boost
1432 * our headroom for the next scanning cycle by this percentage multiple.
1433 */
1434#define	L2ARC_HEADROOM_BOOST	200
1435#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1436#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1437
1438#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1439#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1440
1441/* L2ARC Performance Tunables */
1442uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1443uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1444uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1445uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1446uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1447uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1448boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1449boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1450boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1451
1452SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RWTUN,
1453    &l2arc_write_max, 0, "max write size");
1454SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RWTUN,
1455    &l2arc_write_boost, 0, "extra write during warmup");
1456SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RWTUN,
1457    &l2arc_headroom, 0, "number of dev writes");
1458SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RWTUN,
1459    &l2arc_feed_secs, 0, "interval seconds");
1460SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RWTUN,
1461    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1462
1463SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RWTUN,
1464    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1465SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RWTUN,
1466    &l2arc_feed_again, 0, "turbo warmup");
1467SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RWTUN,
1468    &l2arc_norw, 0, "no reads during writes");
1469
1470SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1471    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1472SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD,
1473    &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1474    "size of anonymous state");
1475SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD,
1476    &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1477    "size of anonymous state");
1478
1479SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1480    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1481SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD,
1482    &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1483    "size of metadata in mru state");
1484SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD,
1485    &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1486    "size of data in mru state");
1487
1488SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1489    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1490SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD,
1491    &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1492    "size of metadata in mru ghost state");
1493SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD,
1494    &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1495    "size of data in mru ghost state");
1496
1497SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1498    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1499SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD,
1500    &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1501    "size of metadata in mfu state");
1502SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD,
1503    &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1504    "size of data in mfu state");
1505
1506SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1507    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1508SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD,
1509    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1510    "size of metadata in mfu ghost state");
1511SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD,
1512    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1513    "size of data in mfu ghost state");
1514
1515SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1516    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1517
1518SYSCTL_UINT(_vfs_zfs, OID_AUTO, arc_min_prefetch_ms, CTLFLAG_RW,
1519    &zfs_arc_min_prefetch_ms, 0, "Min life of prefetch block in ms");
1520SYSCTL_UINT(_vfs_zfs, OID_AUTO, arc_min_prescient_prefetch_ms, CTLFLAG_RW,
1521    &zfs_arc_min_prescient_prefetch_ms, 0, "Min life of prescient prefetched block in ms");
1522
1523/*
1524 * L2ARC Internals
1525 */
1526struct l2arc_dev {
1527	vdev_t			*l2ad_vdev;	/* vdev */
1528	spa_t			*l2ad_spa;	/* spa */
1529	uint64_t		l2ad_hand;	/* next write location */
1530	uint64_t		l2ad_start;	/* first addr on device */
1531	uint64_t		l2ad_end;	/* last addr on device */
1532	boolean_t		l2ad_first;	/* first sweep through */
1533	boolean_t		l2ad_writing;	/* currently writing */
1534	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1535	list_t			l2ad_buflist;	/* buffer list */
1536	list_node_t		l2ad_node;	/* device list node */
1537	zfs_refcount_t		l2ad_alloc;	/* allocated bytes */
1538};
1539
1540static list_t L2ARC_dev_list;			/* device list */
1541static list_t *l2arc_dev_list;			/* device list pointer */
1542static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1543static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1544static list_t L2ARC_free_on_write;		/* free after write buf list */
1545static list_t *l2arc_free_on_write;		/* free after write list ptr */
1546static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1547static uint64_t l2arc_ndev;			/* number of devices */
1548
1549typedef struct l2arc_read_callback {
1550	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
1551	blkptr_t		l2rcb_bp;		/* original blkptr */
1552	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1553	int			l2rcb_flags;		/* original flags */
1554	abd_t			*l2rcb_abd;		/* temporary buffer */
1555} l2arc_read_callback_t;
1556
1557typedef struct l2arc_write_callback {
1558	l2arc_dev_t	*l2wcb_dev;		/* device info */
1559	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1560} l2arc_write_callback_t;
1561
1562typedef struct l2arc_data_free {
1563	/* protected by l2arc_free_on_write_mtx */
1564	abd_t		*l2df_abd;
1565	size_t		l2df_size;
1566	arc_buf_contents_t l2df_type;
1567	list_node_t	l2df_list_node;
1568} l2arc_data_free_t;
1569
1570static kmutex_t l2arc_feed_thr_lock;
1571static kcondvar_t l2arc_feed_thr_cv;
1572static uint8_t l2arc_thread_exit;
1573
1574static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
1575static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1576static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
1577static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1578static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1579static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1580static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1581static void arc_hdr_alloc_pabd(arc_buf_hdr_t *, boolean_t);
1582static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1583static boolean_t arc_is_overflowing();
1584static void arc_buf_watch(arc_buf_t *);
1585static void arc_prune_async(int64_t);
1586
1587static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1588static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1589static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1590static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1591
1592static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1593static void l2arc_read_done(zio_t *);
1594
1595static void
1596l2arc_trim(const arc_buf_hdr_t *hdr)
1597{
1598	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1599
1600	ASSERT(HDR_HAS_L2HDR(hdr));
1601	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1602
1603	if (HDR_GET_PSIZE(hdr) != 0) {
1604		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1605		    HDR_GET_PSIZE(hdr), 0);
1606	}
1607}
1608
1609/*
1610 * We use Cityhash for this. It's fast, and has good hash properties without
1611 * requiring any large static buffers.
1612 */
1613static uint64_t
1614buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1615{
1616	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1617}
1618
1619#define	HDR_EMPTY(hdr)						\
1620	((hdr)->b_dva.dva_word[0] == 0 &&			\
1621	(hdr)->b_dva.dva_word[1] == 0)
1622
1623#define	HDR_EQUAL(spa, dva, birth, hdr)				\
1624	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1625	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1626	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1627
1628static void
1629buf_discard_identity(arc_buf_hdr_t *hdr)
1630{
1631	hdr->b_dva.dva_word[0] = 0;
1632	hdr->b_dva.dva_word[1] = 0;
1633	hdr->b_birth = 0;
1634}
1635
1636static arc_buf_hdr_t *
1637buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1638{
1639	const dva_t *dva = BP_IDENTITY(bp);
1640	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1641	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1642	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1643	arc_buf_hdr_t *hdr;
1644
1645	mutex_enter(hash_lock);
1646	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1647	    hdr = hdr->b_hash_next) {
1648		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1649			*lockp = hash_lock;
1650			return (hdr);
1651		}
1652	}
1653	mutex_exit(hash_lock);
1654	*lockp = NULL;
1655	return (NULL);
1656}
1657
1658/*
1659 * Insert an entry into the hash table.  If there is already an element
1660 * equal to elem in the hash table, then the already existing element
1661 * will be returned and the new element will not be inserted.
1662 * Otherwise returns NULL.
1663 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1664 */
1665static arc_buf_hdr_t *
1666buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1667{
1668	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1669	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1670	arc_buf_hdr_t *fhdr;
1671	uint32_t i;
1672
1673	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1674	ASSERT(hdr->b_birth != 0);
1675	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1676
1677	if (lockp != NULL) {
1678		*lockp = hash_lock;
1679		mutex_enter(hash_lock);
1680	} else {
1681		ASSERT(MUTEX_HELD(hash_lock));
1682	}
1683
1684	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1685	    fhdr = fhdr->b_hash_next, i++) {
1686		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1687			return (fhdr);
1688	}
1689
1690	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1691	buf_hash_table.ht_table[idx] = hdr;
1692	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1693
1694	/* collect some hash table performance data */
1695	if (i > 0) {
1696		ARCSTAT_BUMP(arcstat_hash_collisions);
1697		if (i == 1)
1698			ARCSTAT_BUMP(arcstat_hash_chains);
1699
1700		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1701	}
1702
1703	ARCSTAT_BUMP(arcstat_hash_elements);
1704	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1705
1706	return (NULL);
1707}
1708
1709static void
1710buf_hash_remove(arc_buf_hdr_t *hdr)
1711{
1712	arc_buf_hdr_t *fhdr, **hdrp;
1713	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1714
1715	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1716	ASSERT(HDR_IN_HASH_TABLE(hdr));
1717
1718	hdrp = &buf_hash_table.ht_table[idx];
1719	while ((fhdr = *hdrp) != hdr) {
1720		ASSERT3P(fhdr, !=, NULL);
1721		hdrp = &fhdr->b_hash_next;
1722	}
1723	*hdrp = hdr->b_hash_next;
1724	hdr->b_hash_next = NULL;
1725	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1726
1727	/* collect some hash table performance data */
1728	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1729
1730	if (buf_hash_table.ht_table[idx] &&
1731	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1732		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1733}
1734
1735/*
1736 * Global data structures and functions for the buf kmem cache.
1737 */
1738static kmem_cache_t *hdr_full_cache;
1739static kmem_cache_t *hdr_l2only_cache;
1740static kmem_cache_t *buf_cache;
1741
1742static void
1743buf_fini(void)
1744{
1745	int i;
1746
1747	kmem_free(buf_hash_table.ht_table,
1748	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1749	for (i = 0; i < BUF_LOCKS; i++)
1750		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1751	kmem_cache_destroy(hdr_full_cache);
1752	kmem_cache_destroy(hdr_l2only_cache);
1753	kmem_cache_destroy(buf_cache);
1754}
1755
1756/*
1757 * Constructor callback - called when the cache is empty
1758 * and a new buf is requested.
1759 */
1760/* ARGSUSED */
1761static int
1762hdr_full_cons(void *vbuf, void *unused, int kmflag)
1763{
1764	arc_buf_hdr_t *hdr = vbuf;
1765
1766	bzero(hdr, HDR_FULL_SIZE);
1767	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1768	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1769	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1770	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1771	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1772
1773	return (0);
1774}
1775
1776/* ARGSUSED */
1777static int
1778hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1779{
1780	arc_buf_hdr_t *hdr = vbuf;
1781
1782	bzero(hdr, HDR_L2ONLY_SIZE);
1783	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1784
1785	return (0);
1786}
1787
1788/* ARGSUSED */
1789static int
1790buf_cons(void *vbuf, void *unused, int kmflag)
1791{
1792	arc_buf_t *buf = vbuf;
1793
1794	bzero(buf, sizeof (arc_buf_t));
1795	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1796	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1797
1798	return (0);
1799}
1800
1801/*
1802 * Destructor callback - called when a cached buf is
1803 * no longer required.
1804 */
1805/* ARGSUSED */
1806static void
1807hdr_full_dest(void *vbuf, void *unused)
1808{
1809	arc_buf_hdr_t *hdr = vbuf;
1810
1811	ASSERT(HDR_EMPTY(hdr));
1812	cv_destroy(&hdr->b_l1hdr.b_cv);
1813	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1814	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1815	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1816	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1817}
1818
1819/* ARGSUSED */
1820static void
1821hdr_l2only_dest(void *vbuf, void *unused)
1822{
1823	arc_buf_hdr_t *hdr = vbuf;
1824
1825	ASSERT(HDR_EMPTY(hdr));
1826	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1827}
1828
1829/* ARGSUSED */
1830static void
1831buf_dest(void *vbuf, void *unused)
1832{
1833	arc_buf_t *buf = vbuf;
1834
1835	mutex_destroy(&buf->b_evict_lock);
1836	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1837}
1838
1839/*
1840 * Reclaim callback -- invoked when memory is low.
1841 */
1842/* ARGSUSED */
1843static void
1844hdr_recl(void *unused)
1845{
1846	dprintf("hdr_recl called\n");
1847	/*
1848	 * umem calls the reclaim func when we destroy the buf cache,
1849	 * which is after we do arc_fini().
1850	 */
1851	if (arc_initialized)
1852		zthr_wakeup(arc_reap_zthr);
1853}
1854
1855static void
1856buf_init(void)
1857{
1858	uint64_t *ct;
1859	uint64_t hsize = 1ULL << 12;
1860	int i, j;
1861
1862	/*
1863	 * The hash table is big enough to fill all of physical memory
1864	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1865	 * By default, the table will take up
1866	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1867	 */
1868	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1869		hsize <<= 1;
1870retry:
1871	buf_hash_table.ht_mask = hsize - 1;
1872	buf_hash_table.ht_table =
1873	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1874	if (buf_hash_table.ht_table == NULL) {
1875		ASSERT(hsize > (1ULL << 8));
1876		hsize >>= 1;
1877		goto retry;
1878	}
1879
1880	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1881	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1882	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1883	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1884	    NULL, NULL, 0);
1885	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1886	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1887
1888	for (i = 0; i < 256; i++)
1889		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1890			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1891
1892	for (i = 0; i < BUF_LOCKS; i++) {
1893		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1894		    NULL, MUTEX_DEFAULT, NULL);
1895	}
1896}
1897
1898/*
1899 * This is the size that the buf occupies in memory. If the buf is compressed,
1900 * it will correspond to the compressed size. You should use this method of
1901 * getting the buf size unless you explicitly need the logical size.
1902 */
1903int32_t
1904arc_buf_size(arc_buf_t *buf)
1905{
1906	return (ARC_BUF_COMPRESSED(buf) ?
1907	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1908}
1909
1910int32_t
1911arc_buf_lsize(arc_buf_t *buf)
1912{
1913	return (HDR_GET_LSIZE(buf->b_hdr));
1914}
1915
1916enum zio_compress
1917arc_get_compression(arc_buf_t *buf)
1918{
1919	return (ARC_BUF_COMPRESSED(buf) ?
1920	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1921}
1922
1923#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1924
1925static inline boolean_t
1926arc_buf_is_shared(arc_buf_t *buf)
1927{
1928	boolean_t shared = (buf->b_data != NULL &&
1929	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1930	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1931	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1932	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1933	IMPLY(shared, ARC_BUF_SHARED(buf));
1934	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1935
1936	/*
1937	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1938	 * already being shared" requirement prevents us from doing that.
1939	 */
1940
1941	return (shared);
1942}
1943
1944/*
1945 * Free the checksum associated with this header. If there is no checksum, this
1946 * is a no-op.
1947 */
1948static inline void
1949arc_cksum_free(arc_buf_hdr_t *hdr)
1950{
1951	ASSERT(HDR_HAS_L1HDR(hdr));
1952	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1953	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1954		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1955		hdr->b_l1hdr.b_freeze_cksum = NULL;
1956	}
1957	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1958}
1959
1960/*
1961 * Return true iff at least one of the bufs on hdr is not compressed.
1962 */
1963static boolean_t
1964arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1965{
1966	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1967		if (!ARC_BUF_COMPRESSED(b)) {
1968			return (B_TRUE);
1969		}
1970	}
1971	return (B_FALSE);
1972}
1973
1974/*
1975 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1976 * matches the checksum that is stored in the hdr. If there is no checksum,
1977 * or if the buf is compressed, this is a no-op.
1978 */
1979static void
1980arc_cksum_verify(arc_buf_t *buf)
1981{
1982	arc_buf_hdr_t *hdr = buf->b_hdr;
1983	zio_cksum_t zc;
1984
1985	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1986		return;
1987
1988	if (ARC_BUF_COMPRESSED(buf)) {
1989		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1990		    arc_hdr_has_uncompressed_buf(hdr));
1991		return;
1992	}
1993
1994	ASSERT(HDR_HAS_L1HDR(hdr));
1995
1996	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1997	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1998		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1999		return;
2000	}
2001
2002	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
2003	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
2004		panic("buffer modified while frozen!");
2005	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2006}
2007
2008static boolean_t
2009arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
2010{
2011	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
2012	boolean_t valid_cksum;
2013
2014	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
2015	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
2016
2017	/*
2018	 * We rely on the blkptr's checksum to determine if the block
2019	 * is valid or not. When compressed arc is enabled, the l2arc
2020	 * writes the block to the l2arc just as it appears in the pool.
2021	 * This allows us to use the blkptr's checksum to validate the
2022	 * data that we just read off of the l2arc without having to store
2023	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
2024	 * arc is disabled, then the data written to the l2arc is always
2025	 * uncompressed and won't match the block as it exists in the main
2026	 * pool. When this is the case, we must first compress it if it is
2027	 * compressed on the main pool before we can validate the checksum.
2028	 */
2029	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
2030		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2031		uint64_t lsize = HDR_GET_LSIZE(hdr);
2032		uint64_t csize;
2033
2034		abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
2035		csize = zio_compress_data(compress, zio->io_abd,
2036		    abd_to_buf(cdata), lsize);
2037
2038		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
2039		if (csize < HDR_GET_PSIZE(hdr)) {
2040			/*
2041			 * Compressed blocks are always a multiple of the
2042			 * smallest ashift in the pool. Ideally, we would
2043			 * like to round up the csize to the next
2044			 * spa_min_ashift but that value may have changed
2045			 * since the block was last written. Instead,
2046			 * we rely on the fact that the hdr's psize
2047			 * was set to the psize of the block when it was
2048			 * last written. We set the csize to that value
2049			 * and zero out any part that should not contain
2050			 * data.
2051			 */
2052			abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
2053			csize = HDR_GET_PSIZE(hdr);
2054		}
2055		zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
2056	}
2057
2058	/*
2059	 * Block pointers always store the checksum for the logical data.
2060	 * If the block pointer has the gang bit set, then the checksum
2061	 * it represents is for the reconstituted data and not for an
2062	 * individual gang member. The zio pipeline, however, must be able to
2063	 * determine the checksum of each of the gang constituents so it
2064	 * treats the checksum comparison differently than what we need
2065	 * for l2arc blocks. This prevents us from using the
2066	 * zio_checksum_error() interface directly. Instead we must call the
2067	 * zio_checksum_error_impl() so that we can ensure the checksum is
2068	 * generated using the correct checksum algorithm and accounts for the
2069	 * logical I/O size and not just a gang fragment.
2070	 */
2071	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
2072	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
2073	    zio->io_offset, NULL) == 0);
2074	zio_pop_transforms(zio);
2075	return (valid_cksum);
2076}
2077
2078/*
2079 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
2080 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
2081 * isn't modified later on. If buf is compressed or there is already a checksum
2082 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
2083 */
2084static void
2085arc_cksum_compute(arc_buf_t *buf)
2086{
2087	arc_buf_hdr_t *hdr = buf->b_hdr;
2088
2089	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
2090		return;
2091
2092	ASSERT(HDR_HAS_L1HDR(hdr));
2093
2094	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
2095	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
2096		ASSERT(arc_hdr_has_uncompressed_buf(hdr));
2097		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2098		return;
2099	} else if (ARC_BUF_COMPRESSED(buf)) {
2100		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2101		return;
2102	}
2103
2104	ASSERT(!ARC_BUF_COMPRESSED(buf));
2105	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
2106	    KM_SLEEP);
2107	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
2108	    hdr->b_l1hdr.b_freeze_cksum);
2109	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2110#ifdef illumos
2111	arc_buf_watch(buf);
2112#endif
2113}
2114
2115#ifdef illumos
2116#ifndef _KERNEL
2117typedef struct procctl {
2118	long cmd;
2119	prwatch_t prwatch;
2120} procctl_t;
2121#endif
2122
2123/* ARGSUSED */
2124static void
2125arc_buf_unwatch(arc_buf_t *buf)
2126{
2127#ifndef _KERNEL
2128	if (arc_watch) {
2129		int result;
2130		procctl_t ctl;
2131		ctl.cmd = PCWATCH;
2132		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
2133		ctl.prwatch.pr_size = 0;
2134		ctl.prwatch.pr_wflags = 0;
2135		result = write(arc_procfd, &ctl, sizeof (ctl));
2136		ASSERT3U(result, ==, sizeof (ctl));
2137	}
2138#endif
2139}
2140
2141/* ARGSUSED */
2142static void
2143arc_buf_watch(arc_buf_t *buf)
2144{
2145#ifndef _KERNEL
2146	if (arc_watch) {
2147		int result;
2148		procctl_t ctl;
2149		ctl.cmd = PCWATCH;
2150		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
2151		ctl.prwatch.pr_size = arc_buf_size(buf);
2152		ctl.prwatch.pr_wflags = WA_WRITE;
2153		result = write(arc_procfd, &ctl, sizeof (ctl));
2154		ASSERT3U(result, ==, sizeof (ctl));
2155	}
2156#endif
2157}
2158#endif /* illumos */
2159
2160static arc_buf_contents_t
2161arc_buf_type(arc_buf_hdr_t *hdr)
2162{
2163	arc_buf_contents_t type;
2164	if (HDR_ISTYPE_METADATA(hdr)) {
2165		type = ARC_BUFC_METADATA;
2166	} else {
2167		type = ARC_BUFC_DATA;
2168	}
2169	VERIFY3U(hdr->b_type, ==, type);
2170	return (type);
2171}
2172
2173boolean_t
2174arc_is_metadata(arc_buf_t *buf)
2175{
2176	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
2177}
2178
2179static uint32_t
2180arc_bufc_to_flags(arc_buf_contents_t type)
2181{
2182	switch (type) {
2183	case ARC_BUFC_DATA:
2184		/* metadata field is 0 if buffer contains normal data */
2185		return (0);
2186	case ARC_BUFC_METADATA:
2187		return (ARC_FLAG_BUFC_METADATA);
2188	default:
2189		break;
2190	}
2191	panic("undefined ARC buffer type!");
2192	return ((uint32_t)-1);
2193}
2194
2195void
2196arc_buf_thaw(arc_buf_t *buf)
2197{
2198	arc_buf_hdr_t *hdr = buf->b_hdr;
2199
2200	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2201	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2202
2203	arc_cksum_verify(buf);
2204
2205	/*
2206	 * Compressed buffers do not manipulate the b_freeze_cksum or
2207	 * allocate b_thawed.
2208	 */
2209	if (ARC_BUF_COMPRESSED(buf)) {
2210		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
2211		    arc_hdr_has_uncompressed_buf(hdr));
2212		return;
2213	}
2214
2215	ASSERT(HDR_HAS_L1HDR(hdr));
2216	arc_cksum_free(hdr);
2217
2218	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
2219#ifdef ZFS_DEBUG
2220	if (zfs_flags & ZFS_DEBUG_MODIFY) {
2221		if (hdr->b_l1hdr.b_thawed != NULL)
2222			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2223		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
2224	}
2225#endif
2226
2227	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2228
2229#ifdef illumos
2230	arc_buf_unwatch(buf);
2231#endif
2232}
2233
2234void
2235arc_buf_freeze(arc_buf_t *buf)
2236{
2237	arc_buf_hdr_t *hdr = buf->b_hdr;
2238	kmutex_t *hash_lock;
2239
2240	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
2241		return;
2242
2243	if (ARC_BUF_COMPRESSED(buf)) {
2244		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
2245		    arc_hdr_has_uncompressed_buf(hdr));
2246		return;
2247	}
2248
2249	hash_lock = HDR_LOCK(hdr);
2250	mutex_enter(hash_lock);
2251
2252	ASSERT(HDR_HAS_L1HDR(hdr));
2253	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
2254	    hdr->b_l1hdr.b_state == arc_anon);
2255	arc_cksum_compute(buf);
2256	mutex_exit(hash_lock);
2257}
2258
2259/*
2260 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
2261 * the following functions should be used to ensure that the flags are
2262 * updated in a thread-safe way. When manipulating the flags either
2263 * the hash_lock must be held or the hdr must be undiscoverable. This
2264 * ensures that we're not racing with any other threads when updating
2265 * the flags.
2266 */
2267static inline void
2268arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2269{
2270	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2271	hdr->b_flags |= flags;
2272}
2273
2274static inline void
2275arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2276{
2277	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2278	hdr->b_flags &= ~flags;
2279}
2280
2281/*
2282 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
2283 * done in a special way since we have to clear and set bits
2284 * at the same time. Consumers that wish to set the compression bits
2285 * must use this function to ensure that the flags are updated in
2286 * thread-safe manner.
2287 */
2288static void
2289arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
2290{
2291	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2292
2293	/*
2294	 * Holes and embedded blocks will always have a psize = 0 so
2295	 * we ignore the compression of the blkptr and set the
2296	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
2297	 * Holes and embedded blocks remain anonymous so we don't
2298	 * want to uncompress them. Mark them as uncompressed.
2299	 */
2300	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
2301		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2302		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
2303		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
2304		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2305	} else {
2306		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2307		HDR_SET_COMPRESS(hdr, cmp);
2308		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
2309		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
2310	}
2311}
2312
2313/*
2314 * Looks for another buf on the same hdr which has the data decompressed, copies
2315 * from it, and returns true. If no such buf exists, returns false.
2316 */
2317static boolean_t
2318arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
2319{
2320	arc_buf_hdr_t *hdr = buf->b_hdr;
2321	boolean_t copied = B_FALSE;
2322
2323	ASSERT(HDR_HAS_L1HDR(hdr));
2324	ASSERT3P(buf->b_data, !=, NULL);
2325	ASSERT(!ARC_BUF_COMPRESSED(buf));
2326
2327	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
2328	    from = from->b_next) {
2329		/* can't use our own data buffer */
2330		if (from == buf) {
2331			continue;
2332		}
2333
2334		if (!ARC_BUF_COMPRESSED(from)) {
2335			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
2336			copied = B_TRUE;
2337			break;
2338		}
2339	}
2340
2341	/*
2342	 * There were no decompressed bufs, so there should not be a
2343	 * checksum on the hdr either.
2344	 */
2345	EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
2346
2347	return (copied);
2348}
2349
2350/*
2351 * Given a buf that has a data buffer attached to it, this function will
2352 * efficiently fill the buf with data of the specified compression setting from
2353 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2354 * are already sharing a data buf, no copy is performed.
2355 *
2356 * If the buf is marked as compressed but uncompressed data was requested, this
2357 * will allocate a new data buffer for the buf, remove that flag, and fill the
2358 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2359 * uncompressed data, and (since we haven't added support for it yet) if you
2360 * want compressed data your buf must already be marked as compressed and have
2361 * the correct-sized data buffer.
2362 */
2363static int
2364arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
2365{
2366	arc_buf_hdr_t *hdr = buf->b_hdr;
2367	boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2368	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2369
2370	ASSERT3P(buf->b_data, !=, NULL);
2371	IMPLY(compressed, hdr_compressed);
2372	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2373
2374	if (hdr_compressed == compressed) {
2375		if (!arc_buf_is_shared(buf)) {
2376			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2377			    arc_buf_size(buf));
2378		}
2379	} else {
2380		ASSERT(hdr_compressed);
2381		ASSERT(!compressed);
2382		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2383
2384		/*
2385		 * If the buf is sharing its data with the hdr, unlink it and
2386		 * allocate a new data buffer for the buf.
2387		 */
2388		if (arc_buf_is_shared(buf)) {
2389			ASSERT(ARC_BUF_COMPRESSED(buf));
2390
2391			/* We need to give the buf it's own b_data */
2392			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2393			buf->b_data =
2394			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2395			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2396
2397			/* Previously overhead was 0; just add new overhead */
2398			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2399		} else if (ARC_BUF_COMPRESSED(buf)) {
2400			/* We need to reallocate the buf's b_data */
2401			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2402			    buf);
2403			buf->b_data =
2404			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2405
2406			/* We increased the size of b_data; update overhead */
2407			ARCSTAT_INCR(arcstat_overhead_size,
2408			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2409		}
2410
2411		/*
2412		 * Regardless of the buf's previous compression settings, it
2413		 * should not be compressed at the end of this function.
2414		 */
2415		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2416
2417		/*
2418		 * Try copying the data from another buf which already has a
2419		 * decompressed version. If that's not possible, it's time to
2420		 * bite the bullet and decompress the data from the hdr.
2421		 */
2422		if (arc_buf_try_copy_decompressed_data(buf)) {
2423			/* Skip byteswapping and checksumming (already done) */
2424			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2425			return (0);
2426		} else {
2427			int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2428			    hdr->b_l1hdr.b_pabd, buf->b_data,
2429			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2430
2431			/*
2432			 * Absent hardware errors or software bugs, this should
2433			 * be impossible, but log it anyway so we can debug it.
2434			 */
2435			if (error != 0) {
2436				zfs_dbgmsg(
2437				    "hdr %p, compress %d, psize %d, lsize %d",
2438				    hdr, HDR_GET_COMPRESS(hdr),
2439				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2440				return (SET_ERROR(EIO));
2441			}
2442		}
2443	}
2444
2445	/* Byteswap the buf's data if necessary */
2446	if (bswap != DMU_BSWAP_NUMFUNCS) {
2447		ASSERT(!HDR_SHARED_DATA(hdr));
2448		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2449		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2450	}
2451
2452	/* Compute the hdr's checksum if necessary */
2453	arc_cksum_compute(buf);
2454
2455	return (0);
2456}
2457
2458int
2459arc_decompress(arc_buf_t *buf)
2460{
2461	return (arc_buf_fill(buf, B_FALSE));
2462}
2463
2464/*
2465 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
2466 */
2467static uint64_t
2468arc_hdr_size(arc_buf_hdr_t *hdr)
2469{
2470	uint64_t size;
2471
2472	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2473	    HDR_GET_PSIZE(hdr) > 0) {
2474		size = HDR_GET_PSIZE(hdr);
2475	} else {
2476		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2477		size = HDR_GET_LSIZE(hdr);
2478	}
2479	return (size);
2480}
2481
2482/*
2483 * Increment the amount of evictable space in the arc_state_t's refcount.
2484 * We account for the space used by the hdr and the arc buf individually
2485 * so that we can add and remove them from the refcount individually.
2486 */
2487static void
2488arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2489{
2490	arc_buf_contents_t type = arc_buf_type(hdr);
2491
2492	ASSERT(HDR_HAS_L1HDR(hdr));
2493
2494	if (GHOST_STATE(state)) {
2495		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2496		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2497		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2498		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2499		    HDR_GET_LSIZE(hdr), hdr);
2500		return;
2501	}
2502
2503	ASSERT(!GHOST_STATE(state));
2504	if (hdr->b_l1hdr.b_pabd != NULL) {
2505		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2506		    arc_hdr_size(hdr), hdr);
2507	}
2508	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2509	    buf = buf->b_next) {
2510		if (arc_buf_is_shared(buf))
2511			continue;
2512		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2513		    arc_buf_size(buf), buf);
2514	}
2515}
2516
2517/*
2518 * Decrement the amount of evictable space in the arc_state_t's refcount.
2519 * We account for the space used by the hdr and the arc buf individually
2520 * so that we can add and remove them from the refcount individually.
2521 */
2522static void
2523arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2524{
2525	arc_buf_contents_t type = arc_buf_type(hdr);
2526
2527	ASSERT(HDR_HAS_L1HDR(hdr));
2528
2529	if (GHOST_STATE(state)) {
2530		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2531		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2532		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2533		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2534		    HDR_GET_LSIZE(hdr), hdr);
2535		return;
2536	}
2537
2538	ASSERT(!GHOST_STATE(state));
2539	if (hdr->b_l1hdr.b_pabd != NULL) {
2540		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2541		    arc_hdr_size(hdr), hdr);
2542	}
2543	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2544	    buf = buf->b_next) {
2545		if (arc_buf_is_shared(buf))
2546			continue;
2547		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2548		    arc_buf_size(buf), buf);
2549	}
2550}
2551
2552/*
2553 * Add a reference to this hdr indicating that someone is actively
2554 * referencing that memory. When the refcount transitions from 0 to 1,
2555 * we remove it from the respective arc_state_t list to indicate that
2556 * it is not evictable.
2557 */
2558static void
2559add_reference(arc_buf_hdr_t *hdr, void *tag)
2560{
2561	ASSERT(HDR_HAS_L1HDR(hdr));
2562	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2563		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2564		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2565		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2566	}
2567
2568	arc_state_t *state = hdr->b_l1hdr.b_state;
2569
2570	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2571	    (state != arc_anon)) {
2572		/* We don't use the L2-only state list. */
2573		if (state != arc_l2c_only) {
2574			multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2575			    hdr);
2576			arc_evictable_space_decrement(hdr, state);
2577		}
2578		/* remove the prefetch flag if we get a reference */
2579		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2580	}
2581}
2582
2583/*
2584 * Remove a reference from this hdr. When the reference transitions from
2585 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2586 * list making it eligible for eviction.
2587 */
2588static int
2589remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2590{
2591	int cnt;
2592	arc_state_t *state = hdr->b_l1hdr.b_state;
2593
2594	ASSERT(HDR_HAS_L1HDR(hdr));
2595	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2596	ASSERT(!GHOST_STATE(state));
2597
2598	/*
2599	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2600	 * check to prevent usage of the arc_l2c_only list.
2601	 */
2602	if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2603	    (state != arc_anon)) {
2604		multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2605		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2606		arc_evictable_space_increment(hdr, state);
2607	}
2608	return (cnt);
2609}
2610
2611/*
2612 * Returns detailed information about a specific arc buffer.  When the
2613 * state_index argument is set the function will calculate the arc header
2614 * list position for its arc state.  Since this requires a linear traversal
2615 * callers are strongly encourage not to do this.  However, it can be helpful
2616 * for targeted analysis so the functionality is provided.
2617 */
2618void
2619arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2620{
2621	arc_buf_hdr_t *hdr = ab->b_hdr;
2622	l1arc_buf_hdr_t *l1hdr = NULL;
2623	l2arc_buf_hdr_t *l2hdr = NULL;
2624	arc_state_t *state = NULL;
2625
2626	memset(abi, 0, sizeof (arc_buf_info_t));
2627
2628	if (hdr == NULL)
2629		return;
2630
2631	abi->abi_flags = hdr->b_flags;
2632
2633	if (HDR_HAS_L1HDR(hdr)) {
2634		l1hdr = &hdr->b_l1hdr;
2635		state = l1hdr->b_state;
2636	}
2637	if (HDR_HAS_L2HDR(hdr))
2638		l2hdr = &hdr->b_l2hdr;
2639
2640	if (l1hdr) {
2641		abi->abi_bufcnt = l1hdr->b_bufcnt;
2642		abi->abi_access = l1hdr->b_arc_access;
2643		abi->abi_mru_hits = l1hdr->b_mru_hits;
2644		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2645		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2646		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2647		abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2648	}
2649
2650	if (l2hdr) {
2651		abi->abi_l2arc_dattr = l2hdr->b_daddr;
2652		abi->abi_l2arc_hits = l2hdr->b_hits;
2653	}
2654
2655	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2656	abi->abi_state_contents = arc_buf_type(hdr);
2657	abi->abi_size = arc_hdr_size(hdr);
2658}
2659
2660/*
2661 * Move the supplied buffer to the indicated state. The hash lock
2662 * for the buffer must be held by the caller.
2663 */
2664static void
2665arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2666    kmutex_t *hash_lock)
2667{
2668	arc_state_t *old_state;
2669	int64_t refcnt;
2670	uint32_t bufcnt;
2671	boolean_t update_old, update_new;
2672	arc_buf_contents_t buftype = arc_buf_type(hdr);
2673
2674	/*
2675	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2676	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2677	 * L1 hdr doesn't always exist when we change state to arc_anon before
2678	 * destroying a header, in which case reallocating to add the L1 hdr is
2679	 * pointless.
2680	 */
2681	if (HDR_HAS_L1HDR(hdr)) {
2682		old_state = hdr->b_l1hdr.b_state;
2683		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2684		bufcnt = hdr->b_l1hdr.b_bufcnt;
2685		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2686	} else {
2687		old_state = arc_l2c_only;
2688		refcnt = 0;
2689		bufcnt = 0;
2690		update_old = B_FALSE;
2691	}
2692	update_new = update_old;
2693
2694	ASSERT(MUTEX_HELD(hash_lock));
2695	ASSERT3P(new_state, !=, old_state);
2696	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2697	ASSERT(old_state != arc_anon || bufcnt <= 1);
2698
2699	/*
2700	 * If this buffer is evictable, transfer it from the
2701	 * old state list to the new state list.
2702	 */
2703	if (refcnt == 0) {
2704		if (old_state != arc_anon && old_state != arc_l2c_only) {
2705			ASSERT(HDR_HAS_L1HDR(hdr));
2706			multilist_remove(old_state->arcs_list[buftype], hdr);
2707
2708			if (GHOST_STATE(old_state)) {
2709				ASSERT0(bufcnt);
2710				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2711				update_old = B_TRUE;
2712			}
2713			arc_evictable_space_decrement(hdr, old_state);
2714		}
2715		if (new_state != arc_anon && new_state != arc_l2c_only) {
2716
2717			/*
2718			 * An L1 header always exists here, since if we're
2719			 * moving to some L1-cached state (i.e. not l2c_only or
2720			 * anonymous), we realloc the header to add an L1hdr
2721			 * beforehand.
2722			 */
2723			ASSERT(HDR_HAS_L1HDR(hdr));
2724			multilist_insert(new_state->arcs_list[buftype], hdr);
2725
2726			if (GHOST_STATE(new_state)) {
2727				ASSERT0(bufcnt);
2728				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2729				update_new = B_TRUE;
2730			}
2731			arc_evictable_space_increment(hdr, new_state);
2732		}
2733	}
2734
2735	ASSERT(!HDR_EMPTY(hdr));
2736	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2737		buf_hash_remove(hdr);
2738
2739	/* adjust state sizes (ignore arc_l2c_only) */
2740
2741	if (update_new && new_state != arc_l2c_only) {
2742		ASSERT(HDR_HAS_L1HDR(hdr));
2743		if (GHOST_STATE(new_state)) {
2744			ASSERT0(bufcnt);
2745
2746			/*
2747			 * When moving a header to a ghost state, we first
2748			 * remove all arc buffers. Thus, we'll have a
2749			 * bufcnt of zero, and no arc buffer to use for
2750			 * the reference. As a result, we use the arc
2751			 * header pointer for the reference.
2752			 */
2753			(void) zfs_refcount_add_many(&new_state->arcs_size,
2754			    HDR_GET_LSIZE(hdr), hdr);
2755			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2756		} else {
2757			uint32_t buffers = 0;
2758
2759			/*
2760			 * Each individual buffer holds a unique reference,
2761			 * thus we must remove each of these references one
2762			 * at a time.
2763			 */
2764			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2765			    buf = buf->b_next) {
2766				ASSERT3U(bufcnt, !=, 0);
2767				buffers++;
2768
2769				/*
2770				 * When the arc_buf_t is sharing the data
2771				 * block with the hdr, the owner of the
2772				 * reference belongs to the hdr. Only
2773				 * add to the refcount if the arc_buf_t is
2774				 * not shared.
2775				 */
2776				if (arc_buf_is_shared(buf))
2777					continue;
2778
2779				(void) zfs_refcount_add_many(
2780				    &new_state->arcs_size,
2781				    arc_buf_size(buf), buf);
2782			}
2783			ASSERT3U(bufcnt, ==, buffers);
2784
2785			if (hdr->b_l1hdr.b_pabd != NULL) {
2786				(void) zfs_refcount_add_many(
2787				    &new_state->arcs_size,
2788				    arc_hdr_size(hdr), hdr);
2789			} else {
2790				ASSERT(GHOST_STATE(old_state));
2791			}
2792		}
2793	}
2794
2795	if (update_old && old_state != arc_l2c_only) {
2796		ASSERT(HDR_HAS_L1HDR(hdr));
2797		if (GHOST_STATE(old_state)) {
2798			ASSERT0(bufcnt);
2799			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2800
2801			/*
2802			 * When moving a header off of a ghost state,
2803			 * the header will not contain any arc buffers.
2804			 * We use the arc header pointer for the reference
2805			 * which is exactly what we did when we put the
2806			 * header on the ghost state.
2807			 */
2808
2809			(void) zfs_refcount_remove_many(&old_state->arcs_size,
2810			    HDR_GET_LSIZE(hdr), hdr);
2811		} else {
2812			uint32_t buffers = 0;
2813
2814			/*
2815			 * Each individual buffer holds a unique reference,
2816			 * thus we must remove each of these references one
2817			 * at a time.
2818			 */
2819			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2820			    buf = buf->b_next) {
2821				ASSERT3U(bufcnt, !=, 0);
2822				buffers++;
2823
2824				/*
2825				 * When the arc_buf_t is sharing the data
2826				 * block with the hdr, the owner of the
2827				 * reference belongs to the hdr. Only
2828				 * add to the refcount if the arc_buf_t is
2829				 * not shared.
2830				 */
2831				if (arc_buf_is_shared(buf))
2832					continue;
2833
2834				(void) zfs_refcount_remove_many(
2835				    &old_state->arcs_size, arc_buf_size(buf),
2836				    buf);
2837			}
2838			ASSERT3U(bufcnt, ==, buffers);
2839			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2840			(void) zfs_refcount_remove_many(
2841			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2842		}
2843	}
2844
2845	if (HDR_HAS_L1HDR(hdr))
2846		hdr->b_l1hdr.b_state = new_state;
2847
2848	/*
2849	 * L2 headers should never be on the L2 state list since they don't
2850	 * have L1 headers allocated.
2851	 */
2852	ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2853	    multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2854}
2855
2856void
2857arc_space_consume(uint64_t space, arc_space_type_t type)
2858{
2859	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2860
2861	switch (type) {
2862	case ARC_SPACE_DATA:
2863		aggsum_add(&astat_data_size, space);
2864		break;
2865	case ARC_SPACE_META:
2866		aggsum_add(&astat_metadata_size, space);
2867		break;
2868	case ARC_SPACE_BONUS:
2869		aggsum_add(&astat_bonus_size, space);
2870		break;
2871	case ARC_SPACE_DNODE:
2872		aggsum_add(&astat_dnode_size, space);
2873		break;
2874	case ARC_SPACE_DBUF:
2875		aggsum_add(&astat_dbuf_size, space);
2876		break;
2877	case ARC_SPACE_HDRS:
2878		aggsum_add(&astat_hdr_size, space);
2879		break;
2880	case ARC_SPACE_L2HDRS:
2881		aggsum_add(&astat_l2_hdr_size, space);
2882		break;
2883	}
2884
2885	if (type != ARC_SPACE_DATA)
2886		aggsum_add(&arc_meta_used, space);
2887
2888	aggsum_add(&arc_size, space);
2889}
2890
2891void
2892arc_space_return(uint64_t space, arc_space_type_t type)
2893{
2894	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2895
2896	switch (type) {
2897	case ARC_SPACE_DATA:
2898		aggsum_add(&astat_data_size, -space);
2899		break;
2900	case ARC_SPACE_META:
2901		aggsum_add(&astat_metadata_size, -space);
2902		break;
2903	case ARC_SPACE_BONUS:
2904		aggsum_add(&astat_bonus_size, -space);
2905		break;
2906	case ARC_SPACE_DNODE:
2907		aggsum_add(&astat_dnode_size, -space);
2908		break;
2909	case ARC_SPACE_DBUF:
2910		aggsum_add(&astat_dbuf_size, -space);
2911		break;
2912	case ARC_SPACE_HDRS:
2913		aggsum_add(&astat_hdr_size, -space);
2914		break;
2915	case ARC_SPACE_L2HDRS:
2916		aggsum_add(&astat_l2_hdr_size, -space);
2917		break;
2918	}
2919
2920	if (type != ARC_SPACE_DATA) {
2921		ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2922		/*
2923		 * We use the upper bound here rather than the precise value
2924		 * because the arc_meta_max value doesn't need to be
2925		 * precise. It's only consumed by humans via arcstats.
2926		 */
2927		if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2928			arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2929		aggsum_add(&arc_meta_used, -space);
2930	}
2931
2932	ASSERT(aggsum_compare(&arc_size, space) >= 0);
2933	aggsum_add(&arc_size, -space);
2934}
2935
2936/*
2937 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2938 * with the hdr's b_pabd.
2939 */
2940static boolean_t
2941arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2942{
2943	/*
2944	 * The criteria for sharing a hdr's data are:
2945	 * 1. the hdr's compression matches the buf's compression
2946	 * 2. the hdr doesn't need to be byteswapped
2947	 * 3. the hdr isn't already being shared
2948	 * 4. the buf is either compressed or it is the last buf in the hdr list
2949	 *
2950	 * Criterion #4 maintains the invariant that shared uncompressed
2951	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2952	 * might ask, "if a compressed buf is allocated first, won't that be the
2953	 * last thing in the list?", but in that case it's impossible to create
2954	 * a shared uncompressed buf anyway (because the hdr must be compressed
2955	 * to have the compressed buf). You might also think that #3 is
2956	 * sufficient to make this guarantee, however it's possible
2957	 * (specifically in the rare L2ARC write race mentioned in
2958	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2959	 * is sharable, but wasn't at the time of its allocation. Rather than
2960	 * allow a new shared uncompressed buf to be created and then shuffle
2961	 * the list around to make it the last element, this simply disallows
2962	 * sharing if the new buf isn't the first to be added.
2963	 */
2964	ASSERT3P(buf->b_hdr, ==, hdr);
2965	boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2966	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2967	return (buf_compressed == hdr_compressed &&
2968	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2969	    !HDR_SHARED_DATA(hdr) &&
2970	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2971}
2972
2973/*
2974 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2975 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2976 * copy was made successfully, or an error code otherwise.
2977 */
2978static int
2979arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2980    boolean_t fill, arc_buf_t **ret)
2981{
2982	arc_buf_t *buf;
2983
2984	ASSERT(HDR_HAS_L1HDR(hdr));
2985	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2986	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2987	    hdr->b_type == ARC_BUFC_METADATA);
2988	ASSERT3P(ret, !=, NULL);
2989	ASSERT3P(*ret, ==, NULL);
2990
2991	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2992	buf->b_hdr = hdr;
2993	buf->b_data = NULL;
2994	buf->b_next = hdr->b_l1hdr.b_buf;
2995	buf->b_flags = 0;
2996
2997	add_reference(hdr, tag);
2998
2999	/*
3000	 * We're about to change the hdr's b_flags. We must either
3001	 * hold the hash_lock or be undiscoverable.
3002	 */
3003	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3004
3005	/*
3006	 * Only honor requests for compressed bufs if the hdr is actually
3007	 * compressed.
3008	 */
3009	if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
3010		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
3011
3012	/*
3013	 * If the hdr's data can be shared then we share the data buffer and
3014	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
3015	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
3016	 * buffer to store the buf's data.
3017	 *
3018	 * There are two additional restrictions here because we're sharing
3019	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
3020	 * actively involved in an L2ARC write, because if this buf is used by
3021	 * an arc_write() then the hdr's data buffer will be released when the
3022	 * write completes, even though the L2ARC write might still be using it.
3023	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
3024	 * need to be ABD-aware.
3025	 */
3026	boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
3027	    abd_is_linear(hdr->b_l1hdr.b_pabd);
3028
3029	/* Set up b_data and sharing */
3030	if (can_share) {
3031		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
3032		buf->b_flags |= ARC_BUF_FLAG_SHARED;
3033		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3034	} else {
3035		buf->b_data =
3036		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
3037		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3038	}
3039	VERIFY3P(buf->b_data, !=, NULL);
3040
3041	hdr->b_l1hdr.b_buf = buf;
3042	hdr->b_l1hdr.b_bufcnt += 1;
3043
3044	/*
3045	 * If the user wants the data from the hdr, we need to either copy or
3046	 * decompress the data.
3047	 */
3048	if (fill) {
3049		return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
3050	}
3051
3052	return (0);
3053}
3054
3055static char *arc_onloan_tag = "onloan";
3056
3057static inline void
3058arc_loaned_bytes_update(int64_t delta)
3059{
3060	atomic_add_64(&arc_loaned_bytes, delta);
3061
3062	/* assert that it did not wrap around */
3063	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
3064}
3065
3066/*
3067 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
3068 * flight data by arc_tempreserve_space() until they are "returned". Loaned
3069 * buffers must be returned to the arc before they can be used by the DMU or
3070 * freed.
3071 */
3072arc_buf_t *
3073arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
3074{
3075	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
3076	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
3077
3078	arc_loaned_bytes_update(arc_buf_size(buf));
3079
3080	return (buf);
3081}
3082
3083arc_buf_t *
3084arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
3085    enum zio_compress compression_type)
3086{
3087	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
3088	    psize, lsize, compression_type);
3089
3090	arc_loaned_bytes_update(arc_buf_size(buf));
3091
3092	return (buf);
3093}
3094
3095
3096/*
3097 * Return a loaned arc buffer to the arc.
3098 */
3099void
3100arc_return_buf(arc_buf_t *buf, void *tag)
3101{
3102	arc_buf_hdr_t *hdr = buf->b_hdr;
3103
3104	ASSERT3P(buf->b_data, !=, NULL);
3105	ASSERT(HDR_HAS_L1HDR(hdr));
3106	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
3107	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
3108
3109	arc_loaned_bytes_update(-arc_buf_size(buf));
3110}
3111
3112/* Detach an arc_buf from a dbuf (tag) */
3113void
3114arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
3115{
3116	arc_buf_hdr_t *hdr = buf->b_hdr;
3117
3118	ASSERT3P(buf->b_data, !=, NULL);
3119	ASSERT(HDR_HAS_L1HDR(hdr));
3120	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
3121	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
3122
3123	arc_loaned_bytes_update(arc_buf_size(buf));
3124}
3125
3126static void
3127l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
3128{
3129	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
3130
3131	df->l2df_abd = abd;
3132	df->l2df_size = size;
3133	df->l2df_type = type;
3134	mutex_enter(&l2arc_free_on_write_mtx);
3135	list_insert_head(l2arc_free_on_write, df);
3136	mutex_exit(&l2arc_free_on_write_mtx);
3137}
3138
3139static void
3140arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
3141{
3142	arc_state_t *state = hdr->b_l1hdr.b_state;
3143	arc_buf_contents_t type = arc_buf_type(hdr);
3144	uint64_t size = arc_hdr_size(hdr);
3145
3146	/* protected by hash lock, if in the hash table */
3147	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3148		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3149		ASSERT(state != arc_anon && state != arc_l2c_only);
3150
3151		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
3152		    size, hdr);
3153	}
3154	(void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
3155	if (type == ARC_BUFC_METADATA) {
3156		arc_space_return(size, ARC_SPACE_META);
3157	} else {
3158		ASSERT(type == ARC_BUFC_DATA);
3159		arc_space_return(size, ARC_SPACE_DATA);
3160	}
3161
3162	l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
3163}
3164
3165/*
3166 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
3167 * data buffer, we transfer the refcount ownership to the hdr and update
3168 * the appropriate kstats.
3169 */
3170static void
3171arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3172{
3173	arc_state_t *state = hdr->b_l1hdr.b_state;
3174
3175	ASSERT(arc_can_share(hdr, buf));
3176	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3177	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3178
3179	/*
3180	 * Start sharing the data buffer. We transfer the
3181	 * refcount ownership to the hdr since it always owns
3182	 * the refcount whenever an arc_buf_t is shared.
3183	 */
3184	zfs_refcount_transfer_ownership(&state->arcs_size, buf, hdr);
3185	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3186	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3187	    HDR_ISTYPE_METADATA(hdr));
3188	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3189	buf->b_flags |= ARC_BUF_FLAG_SHARED;
3190
3191	/*
3192	 * Since we've transferred ownership to the hdr we need
3193	 * to increment its compressed and uncompressed kstats and
3194	 * decrement the overhead size.
3195	 */
3196	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3197	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3198	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3199}
3200
3201static void
3202arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3203{
3204	arc_state_t *state = hdr->b_l1hdr.b_state;
3205
3206	ASSERT(arc_buf_is_shared(buf));
3207	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3208	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3209
3210	/*
3211	 * We are no longer sharing this buffer so we need
3212	 * to transfer its ownership to the rightful owner.
3213	 */
3214	zfs_refcount_transfer_ownership(&state->arcs_size, hdr, buf);
3215	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3216	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3217	abd_put(hdr->b_l1hdr.b_pabd);
3218	hdr->b_l1hdr.b_pabd = NULL;
3219	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3220
3221	/*
3222	 * Since the buffer is no longer shared between
3223	 * the arc buf and the hdr, count it as overhead.
3224	 */
3225	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3226	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3227	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3228}
3229
3230/*
3231 * Remove an arc_buf_t from the hdr's buf list and return the last
3232 * arc_buf_t on the list. If no buffers remain on the list then return
3233 * NULL.
3234 */
3235static arc_buf_t *
3236arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3237{
3238	ASSERT(HDR_HAS_L1HDR(hdr));
3239	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3240
3241	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3242	arc_buf_t *lastbuf = NULL;
3243
3244	/*
3245	 * Remove the buf from the hdr list and locate the last
3246	 * remaining buffer on the list.
3247	 */
3248	while (*bufp != NULL) {
3249		if (*bufp == buf)
3250			*bufp = buf->b_next;
3251
3252		/*
3253		 * If we've removed a buffer in the middle of
3254		 * the list then update the lastbuf and update
3255		 * bufp.
3256		 */
3257		if (*bufp != NULL) {
3258			lastbuf = *bufp;
3259			bufp = &(*bufp)->b_next;
3260		}
3261	}
3262	buf->b_next = NULL;
3263	ASSERT3P(lastbuf, !=, buf);
3264	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3265	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3266	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3267
3268	return (lastbuf);
3269}
3270
3271/*
3272 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3273 * list and free it.
3274 */
3275static void
3276arc_buf_destroy_impl(arc_buf_t *buf)
3277{
3278	arc_buf_hdr_t *hdr = buf->b_hdr;
3279
3280	/*
3281	 * Free up the data associated with the buf but only if we're not
3282	 * sharing this with the hdr. If we are sharing it with the hdr, the
3283	 * hdr is responsible for doing the free.
3284	 */
3285	if (buf->b_data != NULL) {
3286		/*
3287		 * We're about to change the hdr's b_flags. We must either
3288		 * hold the hash_lock or be undiscoverable.
3289		 */
3290		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3291
3292		arc_cksum_verify(buf);
3293#ifdef illumos
3294		arc_buf_unwatch(buf);
3295#endif
3296
3297		if (arc_buf_is_shared(buf)) {
3298			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3299		} else {
3300			uint64_t size = arc_buf_size(buf);
3301			arc_free_data_buf(hdr, buf->b_data, size, buf);
3302			ARCSTAT_INCR(arcstat_overhead_size, -size);
3303		}
3304		buf->b_data = NULL;
3305
3306		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3307		hdr->b_l1hdr.b_bufcnt -= 1;
3308	}
3309
3310	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3311
3312	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3313		/*
3314		 * If the current arc_buf_t is sharing its data buffer with the
3315		 * hdr, then reassign the hdr's b_pabd to share it with the new
3316		 * buffer at the end of the list. The shared buffer is always
3317		 * the last one on the hdr's buffer list.
3318		 *
3319		 * There is an equivalent case for compressed bufs, but since
3320		 * they aren't guaranteed to be the last buf in the list and
3321		 * that is an exceedingly rare case, we just allow that space be
3322		 * wasted temporarily.
3323		 */
3324		if (lastbuf != NULL) {
3325			/* Only one buf can be shared at once */
3326			VERIFY(!arc_buf_is_shared(lastbuf));
3327			/* hdr is uncompressed so can't have compressed buf */
3328			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3329
3330			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3331			arc_hdr_free_pabd(hdr);
3332
3333			/*
3334			 * We must setup a new shared block between the
3335			 * last buffer and the hdr. The data would have
3336			 * been allocated by the arc buf so we need to transfer
3337			 * ownership to the hdr since it's now being shared.
3338			 */
3339			arc_share_buf(hdr, lastbuf);
3340		}
3341	} else if (HDR_SHARED_DATA(hdr)) {
3342		/*
3343		 * Uncompressed shared buffers are always at the end
3344		 * of the list. Compressed buffers don't have the
3345		 * same requirements. This makes it hard to
3346		 * simply assert that the lastbuf is shared so
3347		 * we rely on the hdr's compression flags to determine
3348		 * if we have a compressed, shared buffer.
3349		 */
3350		ASSERT3P(lastbuf, !=, NULL);
3351		ASSERT(arc_buf_is_shared(lastbuf) ||
3352		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
3353	}
3354
3355	/*
3356	 * Free the checksum if we're removing the last uncompressed buf from
3357	 * this hdr.
3358	 */
3359	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3360		arc_cksum_free(hdr);
3361	}
3362
3363	/* clean up the buf */
3364	buf->b_hdr = NULL;
3365	kmem_cache_free(buf_cache, buf);
3366}
3367
3368static void
3369arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr, boolean_t do_adapt)
3370{
3371	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3372	ASSERT(HDR_HAS_L1HDR(hdr));
3373	ASSERT(!HDR_SHARED_DATA(hdr));
3374
3375	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3376	hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, do_adapt);
3377	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3378	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3379
3380	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3381	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3382}
3383
3384static void
3385arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
3386{
3387	ASSERT(HDR_HAS_L1HDR(hdr));
3388	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3389
3390	/*
3391	 * If the hdr is currently being written to the l2arc then
3392	 * we defer freeing the data by adding it to the l2arc_free_on_write
3393	 * list. The l2arc will free the data once it's finished
3394	 * writing it to the l2arc device.
3395	 */
3396	if (HDR_L2_WRITING(hdr)) {
3397		arc_hdr_free_on_write(hdr);
3398		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3399	} else {
3400		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
3401		    arc_hdr_size(hdr), hdr);
3402	}
3403	hdr->b_l1hdr.b_pabd = NULL;
3404	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3405
3406	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3407	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3408}
3409
3410static arc_buf_hdr_t *
3411arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3412    enum zio_compress compression_type, arc_buf_contents_t type)
3413{
3414	arc_buf_hdr_t *hdr;
3415
3416	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3417
3418	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3419	ASSERT(HDR_EMPTY(hdr));
3420	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3421	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
3422	HDR_SET_PSIZE(hdr, psize);
3423	HDR_SET_LSIZE(hdr, lsize);
3424	hdr->b_spa = spa;
3425	hdr->b_type = type;
3426	hdr->b_flags = 0;
3427	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3428	arc_hdr_set_compress(hdr, compression_type);
3429
3430	hdr->b_l1hdr.b_state = arc_anon;
3431	hdr->b_l1hdr.b_arc_access = 0;
3432	hdr->b_l1hdr.b_bufcnt = 0;
3433	hdr->b_l1hdr.b_buf = NULL;
3434
3435	/*
3436	 * Allocate the hdr's buffer. This will contain either
3437	 * the compressed or uncompressed data depending on the block
3438	 * it references and compressed arc enablement.
3439	 */
3440	arc_hdr_alloc_pabd(hdr, B_TRUE);
3441	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3442
3443	return (hdr);
3444}
3445
3446/*
3447 * Transition between the two allocation states for the arc_buf_hdr struct.
3448 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3449 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3450 * version is used when a cache buffer is only in the L2ARC in order to reduce
3451 * memory usage.
3452 */
3453static arc_buf_hdr_t *
3454arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3455{
3456	ASSERT(HDR_HAS_L2HDR(hdr));
3457
3458	arc_buf_hdr_t *nhdr;
3459	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3460
3461	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3462	    (old == hdr_l2only_cache && new == hdr_full_cache));
3463
3464	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3465
3466	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3467	buf_hash_remove(hdr);
3468
3469	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3470
3471	if (new == hdr_full_cache) {
3472		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3473		/*
3474		 * arc_access and arc_change_state need to be aware that a
3475		 * header has just come out of L2ARC, so we set its state to
3476		 * l2c_only even though it's about to change.
3477		 */
3478		nhdr->b_l1hdr.b_state = arc_l2c_only;
3479
3480		/* Verify previous threads set to NULL before freeing */
3481		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3482	} else {
3483		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3484		ASSERT0(hdr->b_l1hdr.b_bufcnt);
3485		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3486
3487		/*
3488		 * If we've reached here, We must have been called from
3489		 * arc_evict_hdr(), as such we should have already been
3490		 * removed from any ghost list we were previously on
3491		 * (which protects us from racing with arc_evict_state),
3492		 * thus no locking is needed during this check.
3493		 */
3494		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3495
3496		/*
3497		 * A buffer must not be moved into the arc_l2c_only
3498		 * state if it's not finished being written out to the
3499		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3500		 * might try to be accessed, even though it was removed.
3501		 */
3502		VERIFY(!HDR_L2_WRITING(hdr));
3503		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3504
3505#ifdef ZFS_DEBUG
3506		if (hdr->b_l1hdr.b_thawed != NULL) {
3507			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3508			hdr->b_l1hdr.b_thawed = NULL;
3509		}
3510#endif
3511
3512		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3513	}
3514	/*
3515	 * The header has been reallocated so we need to re-insert it into any
3516	 * lists it was on.
3517	 */
3518	(void) buf_hash_insert(nhdr, NULL);
3519
3520	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3521
3522	mutex_enter(&dev->l2ad_mtx);
3523
3524	/*
3525	 * We must place the realloc'ed header back into the list at
3526	 * the same spot. Otherwise, if it's placed earlier in the list,
3527	 * l2arc_write_buffers() could find it during the function's
3528	 * write phase, and try to write it out to the l2arc.
3529	 */
3530	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3531	list_remove(&dev->l2ad_buflist, hdr);
3532
3533	mutex_exit(&dev->l2ad_mtx);
3534
3535	/*
3536	 * Since we're using the pointer address as the tag when
3537	 * incrementing and decrementing the l2ad_alloc refcount, we
3538	 * must remove the old pointer (that we're about to destroy) and
3539	 * add the new pointer to the refcount. Otherwise we'd remove
3540	 * the wrong pointer address when calling arc_hdr_destroy() later.
3541	 */
3542
3543	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3544	    hdr);
3545	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr),
3546	    nhdr);
3547
3548	buf_discard_identity(hdr);
3549	kmem_cache_free(old, hdr);
3550
3551	return (nhdr);
3552}
3553
3554/*
3555 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3556 * The buf is returned thawed since we expect the consumer to modify it.
3557 */
3558arc_buf_t *
3559arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3560{
3561	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3562	    ZIO_COMPRESS_OFF, type);
3563	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3564
3565	arc_buf_t *buf = NULL;
3566	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3567	arc_buf_thaw(buf);
3568
3569	return (buf);
3570}
3571
3572/*
3573 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3574 * for bufs containing metadata.
3575 */
3576arc_buf_t *
3577arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3578    enum zio_compress compression_type)
3579{
3580	ASSERT3U(lsize, >, 0);
3581	ASSERT3U(lsize, >=, psize);
3582	ASSERT(compression_type > ZIO_COMPRESS_OFF);
3583	ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3584
3585	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3586	    compression_type, ARC_BUFC_DATA);
3587	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3588
3589	arc_buf_t *buf = NULL;
3590	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3591	arc_buf_thaw(buf);
3592	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3593
3594	if (!arc_buf_is_shared(buf)) {
3595		/*
3596		 * To ensure that the hdr has the correct data in it if we call
3597		 * arc_decompress() on this buf before it's been written to
3598		 * disk, it's easiest if we just set up sharing between the
3599		 * buf and the hdr.
3600		 */
3601		ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3602		arc_hdr_free_pabd(hdr);
3603		arc_share_buf(hdr, buf);
3604	}
3605
3606	return (buf);
3607}
3608
3609static void
3610arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3611{
3612	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3613	l2arc_dev_t *dev = l2hdr->b_dev;
3614	uint64_t psize = arc_hdr_size(hdr);
3615
3616	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3617	ASSERT(HDR_HAS_L2HDR(hdr));
3618
3619	list_remove(&dev->l2ad_buflist, hdr);
3620
3621	ARCSTAT_INCR(arcstat_l2_psize, -psize);
3622	ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3623
3624	vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3625
3626	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3627	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3628}
3629
3630static void
3631arc_hdr_destroy(arc_buf_hdr_t *hdr)
3632{
3633	if (HDR_HAS_L1HDR(hdr)) {
3634		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3635		    hdr->b_l1hdr.b_bufcnt > 0);
3636		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3637		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3638	}
3639	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3640	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3641
3642	if (!HDR_EMPTY(hdr))
3643		buf_discard_identity(hdr);
3644
3645	if (HDR_HAS_L2HDR(hdr)) {
3646		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3647		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3648
3649		if (!buflist_held)
3650			mutex_enter(&dev->l2ad_mtx);
3651
3652		/*
3653		 * Even though we checked this conditional above, we
3654		 * need to check this again now that we have the
3655		 * l2ad_mtx. This is because we could be racing with
3656		 * another thread calling l2arc_evict() which might have
3657		 * destroyed this header's L2 portion as we were waiting
3658		 * to acquire the l2ad_mtx. If that happens, we don't
3659		 * want to re-destroy the header's L2 portion.
3660		 */
3661		if (HDR_HAS_L2HDR(hdr)) {
3662			l2arc_trim(hdr);
3663			arc_hdr_l2hdr_destroy(hdr);
3664		}
3665
3666		if (!buflist_held)
3667			mutex_exit(&dev->l2ad_mtx);
3668	}
3669
3670	if (HDR_HAS_L1HDR(hdr)) {
3671		arc_cksum_free(hdr);
3672
3673		while (hdr->b_l1hdr.b_buf != NULL)
3674			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3675
3676#ifdef ZFS_DEBUG
3677		if (hdr->b_l1hdr.b_thawed != NULL) {
3678			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3679			hdr->b_l1hdr.b_thawed = NULL;
3680		}
3681#endif
3682
3683		if (hdr->b_l1hdr.b_pabd != NULL) {
3684			arc_hdr_free_pabd(hdr);
3685		}
3686	}
3687
3688	ASSERT3P(hdr->b_hash_next, ==, NULL);
3689	if (HDR_HAS_L1HDR(hdr)) {
3690		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3691		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3692		kmem_cache_free(hdr_full_cache, hdr);
3693	} else {
3694		kmem_cache_free(hdr_l2only_cache, hdr);
3695	}
3696}
3697
3698void
3699arc_buf_destroy(arc_buf_t *buf, void* tag)
3700{
3701	arc_buf_hdr_t *hdr = buf->b_hdr;
3702	kmutex_t *hash_lock = HDR_LOCK(hdr);
3703
3704	if (hdr->b_l1hdr.b_state == arc_anon) {
3705		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3706		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3707		VERIFY0(remove_reference(hdr, NULL, tag));
3708		arc_hdr_destroy(hdr);
3709		return;
3710	}
3711
3712	mutex_enter(hash_lock);
3713	ASSERT3P(hdr, ==, buf->b_hdr);
3714	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3715	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3716	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3717	ASSERT3P(buf->b_data, !=, NULL);
3718
3719	(void) remove_reference(hdr, hash_lock, tag);
3720	arc_buf_destroy_impl(buf);
3721	mutex_exit(hash_lock);
3722}
3723
3724/*
3725 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3726 * state of the header is dependent on its state prior to entering this
3727 * function. The following transitions are possible:
3728 *
3729 *    - arc_mru -> arc_mru_ghost
3730 *    - arc_mfu -> arc_mfu_ghost
3731 *    - arc_mru_ghost -> arc_l2c_only
3732 *    - arc_mru_ghost -> deleted
3733 *    - arc_mfu_ghost -> arc_l2c_only
3734 *    - arc_mfu_ghost -> deleted
3735 */
3736static int64_t
3737arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3738{
3739	arc_state_t *evicted_state, *state;
3740	int64_t bytes_evicted = 0;
3741	int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3742	    zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms;
3743
3744	ASSERT(MUTEX_HELD(hash_lock));
3745	ASSERT(HDR_HAS_L1HDR(hdr));
3746
3747	state = hdr->b_l1hdr.b_state;
3748	if (GHOST_STATE(state)) {
3749		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3750		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3751
3752		/*
3753		 * l2arc_write_buffers() relies on a header's L1 portion
3754		 * (i.e. its b_pabd field) during it's write phase.
3755		 * Thus, we cannot push a header onto the arc_l2c_only
3756		 * state (removing it's L1 piece) until the header is
3757		 * done being written to the l2arc.
3758		 */
3759		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3760			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3761			return (bytes_evicted);
3762		}
3763
3764		ARCSTAT_BUMP(arcstat_deleted);
3765		bytes_evicted += HDR_GET_LSIZE(hdr);
3766
3767		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3768
3769		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3770		if (HDR_HAS_L2HDR(hdr)) {
3771			/*
3772			 * This buffer is cached on the 2nd Level ARC;
3773			 * don't destroy the header.
3774			 */
3775			arc_change_state(arc_l2c_only, hdr, hash_lock);
3776			/*
3777			 * dropping from L1+L2 cached to L2-only,
3778			 * realloc to remove the L1 header.
3779			 */
3780			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3781			    hdr_l2only_cache);
3782		} else {
3783			arc_change_state(arc_anon, hdr, hash_lock);
3784			arc_hdr_destroy(hdr);
3785		}
3786		return (bytes_evicted);
3787	}
3788
3789	ASSERT(state == arc_mru || state == arc_mfu);
3790	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3791
3792	/* prefetch buffers have a minimum lifespan */
3793	if (HDR_IO_IN_PROGRESS(hdr) ||
3794	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3795	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) {
3796		ARCSTAT_BUMP(arcstat_evict_skip);
3797		return (bytes_evicted);
3798	}
3799
3800	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3801	while (hdr->b_l1hdr.b_buf) {
3802		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3803		if (!mutex_tryenter(&buf->b_evict_lock)) {
3804			ARCSTAT_BUMP(arcstat_mutex_miss);
3805			break;
3806		}
3807		if (buf->b_data != NULL)
3808			bytes_evicted += HDR_GET_LSIZE(hdr);
3809		mutex_exit(&buf->b_evict_lock);
3810		arc_buf_destroy_impl(buf);
3811	}
3812
3813	if (HDR_HAS_L2HDR(hdr)) {
3814		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3815	} else {
3816		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3817			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3818			    HDR_GET_LSIZE(hdr));
3819		} else {
3820			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3821			    HDR_GET_LSIZE(hdr));
3822		}
3823	}
3824
3825	if (hdr->b_l1hdr.b_bufcnt == 0) {
3826		arc_cksum_free(hdr);
3827
3828		bytes_evicted += arc_hdr_size(hdr);
3829
3830		/*
3831		 * If this hdr is being evicted and has a compressed
3832		 * buffer then we discard it here before we change states.
3833		 * This ensures that the accounting is updated correctly
3834		 * in arc_free_data_impl().
3835		 */
3836		arc_hdr_free_pabd(hdr);
3837
3838		arc_change_state(evicted_state, hdr, hash_lock);
3839		ASSERT(HDR_IN_HASH_TABLE(hdr));
3840		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3841		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3842	}
3843
3844	return (bytes_evicted);
3845}
3846
3847static uint64_t
3848arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3849    uint64_t spa, int64_t bytes)
3850{
3851	multilist_sublist_t *mls;
3852	uint64_t bytes_evicted = 0;
3853	arc_buf_hdr_t *hdr;
3854	kmutex_t *hash_lock;
3855	int evict_count = 0;
3856
3857	ASSERT3P(marker, !=, NULL);
3858	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3859
3860	mls = multilist_sublist_lock(ml, idx);
3861
3862	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3863	    hdr = multilist_sublist_prev(mls, marker)) {
3864		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3865		    (evict_count >= zfs_arc_evict_batch_limit))
3866			break;
3867
3868		/*
3869		 * To keep our iteration location, move the marker
3870		 * forward. Since we're not holding hdr's hash lock, we
3871		 * must be very careful and not remove 'hdr' from the
3872		 * sublist. Otherwise, other consumers might mistake the
3873		 * 'hdr' as not being on a sublist when they call the
3874		 * multilist_link_active() function (they all rely on
3875		 * the hash lock protecting concurrent insertions and
3876		 * removals). multilist_sublist_move_forward() was
3877		 * specifically implemented to ensure this is the case
3878		 * (only 'marker' will be removed and re-inserted).
3879		 */
3880		multilist_sublist_move_forward(mls, marker);
3881
3882		/*
3883		 * The only case where the b_spa field should ever be
3884		 * zero, is the marker headers inserted by
3885		 * arc_evict_state(). It's possible for multiple threads
3886		 * to be calling arc_evict_state() concurrently (e.g.
3887		 * dsl_pool_close() and zio_inject_fault()), so we must
3888		 * skip any markers we see from these other threads.
3889		 */
3890		if (hdr->b_spa == 0)
3891			continue;
3892
3893		/* we're only interested in evicting buffers of a certain spa */
3894		if (spa != 0 && hdr->b_spa != spa) {
3895			ARCSTAT_BUMP(arcstat_evict_skip);
3896			continue;
3897		}
3898
3899		hash_lock = HDR_LOCK(hdr);
3900
3901		/*
3902		 * We aren't calling this function from any code path
3903		 * that would already be holding a hash lock, so we're
3904		 * asserting on this assumption to be defensive in case
3905		 * this ever changes. Without this check, it would be
3906		 * possible to incorrectly increment arcstat_mutex_miss
3907		 * below (e.g. if the code changed such that we called
3908		 * this function with a hash lock held).
3909		 */
3910		ASSERT(!MUTEX_HELD(hash_lock));
3911
3912		if (mutex_tryenter(hash_lock)) {
3913			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3914			mutex_exit(hash_lock);
3915
3916			bytes_evicted += evicted;
3917
3918			/*
3919			 * If evicted is zero, arc_evict_hdr() must have
3920			 * decided to skip this header, don't increment
3921			 * evict_count in this case.
3922			 */
3923			if (evicted != 0)
3924				evict_count++;
3925
3926			/*
3927			 * If arc_size isn't overflowing, signal any
3928			 * threads that might happen to be waiting.
3929			 *
3930			 * For each header evicted, we wake up a single
3931			 * thread. If we used cv_broadcast, we could
3932			 * wake up "too many" threads causing arc_size
3933			 * to significantly overflow arc_c; since
3934			 * arc_get_data_impl() doesn't check for overflow
3935			 * when it's woken up (it doesn't because it's
3936			 * possible for the ARC to be overflowing while
3937			 * full of un-evictable buffers, and the
3938			 * function should proceed in this case).
3939			 *
3940			 * If threads are left sleeping, due to not
3941			 * using cv_broadcast here, they will be woken
3942			 * up via cv_broadcast in arc_adjust_cb() just
3943			 * before arc_adjust_zthr sleeps.
3944			 */
3945			mutex_enter(&arc_adjust_lock);
3946			if (!arc_is_overflowing())
3947				cv_signal(&arc_adjust_waiters_cv);
3948			mutex_exit(&arc_adjust_lock);
3949		} else {
3950			ARCSTAT_BUMP(arcstat_mutex_miss);
3951		}
3952	}
3953
3954	multilist_sublist_unlock(mls);
3955
3956	return (bytes_evicted);
3957}
3958
3959/*
3960 * Evict buffers from the given arc state, until we've removed the
3961 * specified number of bytes. Move the removed buffers to the
3962 * appropriate evict state.
3963 *
3964 * This function makes a "best effort". It skips over any buffers
3965 * it can't get a hash_lock on, and so, may not catch all candidates.
3966 * It may also return without evicting as much space as requested.
3967 *
3968 * If bytes is specified using the special value ARC_EVICT_ALL, this
3969 * will evict all available (i.e. unlocked and evictable) buffers from
3970 * the given arc state; which is used by arc_flush().
3971 */
3972static uint64_t
3973arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3974    arc_buf_contents_t type)
3975{
3976	uint64_t total_evicted = 0;
3977	multilist_t *ml = state->arcs_list[type];
3978	int num_sublists;
3979	arc_buf_hdr_t **markers;
3980
3981	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3982
3983	num_sublists = multilist_get_num_sublists(ml);
3984
3985	/*
3986	 * If we've tried to evict from each sublist, made some
3987	 * progress, but still have not hit the target number of bytes
3988	 * to evict, we want to keep trying. The markers allow us to
3989	 * pick up where we left off for each individual sublist, rather
3990	 * than starting from the tail each time.
3991	 */
3992	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3993	for (int i = 0; i < num_sublists; i++) {
3994		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3995
3996		/*
3997		 * A b_spa of 0 is used to indicate that this header is
3998		 * a marker. This fact is used in arc_adjust_type() and
3999		 * arc_evict_state_impl().
4000		 */
4001		markers[i]->b_spa = 0;
4002
4003		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4004		multilist_sublist_insert_tail(mls, markers[i]);
4005		multilist_sublist_unlock(mls);
4006	}
4007
4008	/*
4009	 * While we haven't hit our target number of bytes to evict, or
4010	 * we're evicting all available buffers.
4011	 */
4012	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
4013		int sublist_idx = multilist_get_random_index(ml);
4014		uint64_t scan_evicted = 0;
4015
4016		/*
4017		 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4018		 * Request that 10% of the LRUs be scanned by the superblock
4019		 * shrinker.
4020		 */
4021		if (type == ARC_BUFC_DATA && aggsum_compare(&astat_dnode_size,
4022		    arc_dnode_limit) > 0) {
4023			arc_prune_async((aggsum_upper_bound(&astat_dnode_size) -
4024			    arc_dnode_limit) / sizeof (dnode_t) /
4025			    zfs_arc_dnode_reduce_percent);
4026		}
4027
4028		/*
4029		 * Start eviction using a randomly selected sublist,
4030		 * this is to try and evenly balance eviction across all
4031		 * sublists. Always starting at the same sublist
4032		 * (e.g. index 0) would cause evictions to favor certain
4033		 * sublists over others.
4034		 */
4035		for (int i = 0; i < num_sublists; i++) {
4036			uint64_t bytes_remaining;
4037			uint64_t bytes_evicted;
4038
4039			if (bytes == ARC_EVICT_ALL)
4040				bytes_remaining = ARC_EVICT_ALL;
4041			else if (total_evicted < bytes)
4042				bytes_remaining = bytes - total_evicted;
4043			else
4044				break;
4045
4046			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4047			    markers[sublist_idx], spa, bytes_remaining);
4048
4049			scan_evicted += bytes_evicted;
4050			total_evicted += bytes_evicted;
4051
4052			/* we've reached the end, wrap to the beginning */
4053			if (++sublist_idx >= num_sublists)
4054				sublist_idx = 0;
4055		}
4056
4057		/*
4058		 * If we didn't evict anything during this scan, we have
4059		 * no reason to believe we'll evict more during another
4060		 * scan, so break the loop.
4061		 */
4062		if (scan_evicted == 0) {
4063			/* This isn't possible, let's make that obvious */
4064			ASSERT3S(bytes, !=, 0);
4065
4066			/*
4067			 * When bytes is ARC_EVICT_ALL, the only way to
4068			 * break the loop is when scan_evicted is zero.
4069			 * In that case, we actually have evicted enough,
4070			 * so we don't want to increment the kstat.
4071			 */
4072			if (bytes != ARC_EVICT_ALL) {
4073				ASSERT3S(total_evicted, <, bytes);
4074				ARCSTAT_BUMP(arcstat_evict_not_enough);
4075			}
4076
4077			break;
4078		}
4079	}
4080
4081	for (int i = 0; i < num_sublists; i++) {
4082		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4083		multilist_sublist_remove(mls, markers[i]);
4084		multilist_sublist_unlock(mls);
4085
4086		kmem_cache_free(hdr_full_cache, markers[i]);
4087	}
4088	kmem_free(markers, sizeof (*markers) * num_sublists);
4089
4090	return (total_evicted);
4091}
4092
4093/*
4094 * Flush all "evictable" data of the given type from the arc state
4095 * specified. This will not evict any "active" buffers (i.e. referenced).
4096 *
4097 * When 'retry' is set to B_FALSE, the function will make a single pass
4098 * over the state and evict any buffers that it can. Since it doesn't
4099 * continually retry the eviction, it might end up leaving some buffers
4100 * in the ARC due to lock misses.
4101 *
4102 * When 'retry' is set to B_TRUE, the function will continually retry the
4103 * eviction until *all* evictable buffers have been removed from the
4104 * state. As a result, if concurrent insertions into the state are
4105 * allowed (e.g. if the ARC isn't shutting down), this function might
4106 * wind up in an infinite loop, continually trying to evict buffers.
4107 */
4108static uint64_t
4109arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4110    boolean_t retry)
4111{
4112	uint64_t evicted = 0;
4113
4114	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4115		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4116
4117		if (!retry)
4118			break;
4119	}
4120
4121	return (evicted);
4122}
4123
4124/*
4125 * Helper function for arc_prune_async() it is responsible for safely
4126 * handling the execution of a registered arc_prune_func_t.
4127 */
4128static void
4129arc_prune_task(void *ptr)
4130{
4131	arc_prune_t *ap = (arc_prune_t *)ptr;
4132	arc_prune_func_t *func = ap->p_pfunc;
4133
4134	if (func != NULL)
4135		func(ap->p_adjust, ap->p_private);
4136
4137	zfs_refcount_remove(&ap->p_refcnt, func);
4138}
4139
4140/*
4141 * Notify registered consumers they must drop holds on a portion of the ARC
4142 * buffered they reference.  This provides a mechanism to ensure the ARC can
4143 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers.  This
4144 * is analogous to dnlc_reduce_cache() but more generic.
4145 *
4146 * This operation is performed asynchronously so it may be safely called
4147 * in the context of the arc_reclaim_thread().  A reference is taken here
4148 * for each registered arc_prune_t and the arc_prune_task() is responsible
4149 * for releasing it once the registered arc_prune_func_t has completed.
4150 */
4151static void
4152arc_prune_async(int64_t adjust)
4153{
4154	arc_prune_t *ap;
4155
4156	mutex_enter(&arc_prune_mtx);
4157	for (ap = list_head(&arc_prune_list); ap != NULL;
4158	    ap = list_next(&arc_prune_list, ap)) {
4159
4160		if (zfs_refcount_count(&ap->p_refcnt) >= 2)
4161			continue;
4162
4163		zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
4164		ap->p_adjust = adjust;
4165		if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
4166		    ap, TQ_SLEEP) == TASKQID_INVALID) {
4167			zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
4168			continue;
4169		}
4170		ARCSTAT_BUMP(arcstat_prune);
4171	}
4172	mutex_exit(&arc_prune_mtx);
4173}
4174
4175/*
4176 * Evict the specified number of bytes from the state specified,
4177 * restricting eviction to the spa and type given. This function
4178 * prevents us from trying to evict more from a state's list than
4179 * is "evictable", and to skip evicting altogether when passed a
4180 * negative value for "bytes". In contrast, arc_evict_state() will
4181 * evict everything it can, when passed a negative value for "bytes".
4182 */
4183static uint64_t
4184arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4185    arc_buf_contents_t type)
4186{
4187	int64_t delta;
4188
4189	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4190		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4191		    bytes);
4192		return (arc_evict_state(state, spa, delta, type));
4193	}
4194
4195	return (0);
4196}
4197
4198/*
4199 * The goal of this function is to evict enough meta data buffers from the
4200 * ARC in order to enforce the arc_meta_limit.  Achieving this is slightly
4201 * more complicated than it appears because it is common for data buffers
4202 * to have holds on meta data buffers.  In addition, dnode meta data buffers
4203 * will be held by the dnodes in the block preventing them from being freed.
4204 * This means we can't simply traverse the ARC and expect to always find
4205 * enough unheld meta data buffer to release.
4206 *
4207 * Therefore, this function has been updated to make alternating passes
4208 * over the ARC releasing data buffers and then newly unheld meta data
4209 * buffers.  This ensures forward progress is maintained and meta_used
4210 * will decrease.  Normally this is sufficient, but if required the ARC
4211 * will call the registered prune callbacks causing dentry and inodes to
4212 * be dropped from the VFS cache.  This will make dnode meta data buffers
4213 * available for reclaim.
4214 */
4215static uint64_t
4216arc_adjust_meta_balanced(uint64_t meta_used)
4217{
4218	int64_t delta, prune = 0, adjustmnt;
4219	uint64_t total_evicted = 0;
4220	arc_buf_contents_t type = ARC_BUFC_DATA;
4221	int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
4222
4223restart:
4224	/*
4225	 * This slightly differs than the way we evict from the mru in
4226	 * arc_adjust because we don't have a "target" value (i.e. no
4227	 * "meta" arc_p). As a result, I think we can completely
4228	 * cannibalize the metadata in the MRU before we evict the
4229	 * metadata from the MFU. I think we probably need to implement a
4230	 * "metadata arc_p" value to do this properly.
4231	 */
4232	adjustmnt = meta_used - arc_meta_limit;
4233
4234	if (adjustmnt > 0 &&
4235	    zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4236		delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]),
4237		    adjustmnt);
4238		total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
4239		adjustmnt -= delta;
4240	}
4241
4242	/*
4243	 * We can't afford to recalculate adjustmnt here. If we do,
4244	 * new metadata buffers can sneak into the MRU or ANON lists,
4245	 * thus penalize the MFU metadata. Although the fudge factor is
4246	 * small, it has been empirically shown to be significant for
4247	 * certain workloads (e.g. creating many empty directories). As
4248	 * such, we use the original calculation for adjustmnt, and
4249	 * simply decrement the amount of data evicted from the MRU.
4250	 */
4251
4252	if (adjustmnt > 0 &&
4253	    zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4254		delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]),
4255		    adjustmnt);
4256		total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
4257	}
4258
4259	adjustmnt = meta_used - arc_meta_limit;
4260
4261	if (adjustmnt > 0 &&
4262	    zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
4263		delta = MIN(adjustmnt,
4264		    zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]));
4265		total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
4266		adjustmnt -= delta;
4267	}
4268
4269	if (adjustmnt > 0 &&
4270	    zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
4271		delta = MIN(adjustmnt,
4272		    zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]));
4273		total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
4274	}
4275
4276	/*
4277	 * If after attempting to make the requested adjustment to the ARC
4278	 * the meta limit is still being exceeded then request that the
4279	 * higher layers drop some cached objects which have holds on ARC
4280	 * meta buffers.  Requests to the upper layers will be made with
4281	 * increasingly large scan sizes until the ARC is below the limit.
4282	 */
4283	if (meta_used > arc_meta_limit) {
4284		if (type == ARC_BUFC_DATA) {
4285			type = ARC_BUFC_METADATA;
4286		} else {
4287			type = ARC_BUFC_DATA;
4288
4289			if (zfs_arc_meta_prune) {
4290				prune += zfs_arc_meta_prune;
4291				arc_prune_async(prune);
4292			}
4293		}
4294
4295		if (restarts > 0) {
4296			restarts--;
4297			goto restart;
4298		}
4299	}
4300	return (total_evicted);
4301}
4302
4303/*
4304 * Evict metadata buffers from the cache, such that arc_meta_used is
4305 * capped by the arc_meta_limit tunable.
4306 */
4307static uint64_t
4308arc_adjust_meta_only(uint64_t meta_used)
4309{
4310	uint64_t total_evicted = 0;
4311	int64_t target;
4312
4313	/*
4314	 * If we're over the meta limit, we want to evict enough
4315	 * metadata to get back under the meta limit. We don't want to
4316	 * evict so much that we drop the MRU below arc_p, though. If
4317	 * we're over the meta limit more than we're over arc_p, we
4318	 * evict some from the MRU here, and some from the MFU below.
4319	 */
4320	target = MIN((int64_t)(meta_used - arc_meta_limit),
4321	    (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4322	    zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
4323
4324	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4325
4326	/*
4327	 * Similar to the above, we want to evict enough bytes to get us
4328	 * below the meta limit, but not so much as to drop us below the
4329	 * space allotted to the MFU (which is defined as arc_c - arc_p).
4330	 */
4331	target = MIN((int64_t)(meta_used - arc_meta_limit),
4332	    (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
4333	    (arc_c - arc_p)));
4334
4335	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4336
4337	return (total_evicted);
4338}
4339
4340static uint64_t
4341arc_adjust_meta(uint64_t meta_used)
4342{
4343	if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
4344		return (arc_adjust_meta_only(meta_used));
4345	else
4346		return (arc_adjust_meta_balanced(meta_used));
4347}
4348
4349/*
4350 * Return the type of the oldest buffer in the given arc state
4351 *
4352 * This function will select a random sublist of type ARC_BUFC_DATA and
4353 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4354 * is compared, and the type which contains the "older" buffer will be
4355 * returned.
4356 */
4357static arc_buf_contents_t
4358arc_adjust_type(arc_state_t *state)
4359{
4360	multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4361	multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4362	int data_idx = multilist_get_random_index(data_ml);
4363	int meta_idx = multilist_get_random_index(meta_ml);
4364	multilist_sublist_t *data_mls;
4365	multilist_sublist_t *meta_mls;
4366	arc_buf_contents_t type;
4367	arc_buf_hdr_t *data_hdr;
4368	arc_buf_hdr_t *meta_hdr;
4369
4370	/*
4371	 * We keep the sublist lock until we're finished, to prevent
4372	 * the headers from being destroyed via arc_evict_state().
4373	 */
4374	data_mls = multilist_sublist_lock(data_ml, data_idx);
4375	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4376
4377	/*
4378	 * These two loops are to ensure we skip any markers that
4379	 * might be at the tail of the lists due to arc_evict_state().
4380	 */
4381
4382	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4383	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4384		if (data_hdr->b_spa != 0)
4385			break;
4386	}
4387
4388	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4389	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4390		if (meta_hdr->b_spa != 0)
4391			break;
4392	}
4393
4394	if (data_hdr == NULL && meta_hdr == NULL) {
4395		type = ARC_BUFC_DATA;
4396	} else if (data_hdr == NULL) {
4397		ASSERT3P(meta_hdr, !=, NULL);
4398		type = ARC_BUFC_METADATA;
4399	} else if (meta_hdr == NULL) {
4400		ASSERT3P(data_hdr, !=, NULL);
4401		type = ARC_BUFC_DATA;
4402	} else {
4403		ASSERT3P(data_hdr, !=, NULL);
4404		ASSERT3P(meta_hdr, !=, NULL);
4405
4406		/* The headers can't be on the sublist without an L1 header */
4407		ASSERT(HDR_HAS_L1HDR(data_hdr));
4408		ASSERT(HDR_HAS_L1HDR(meta_hdr));
4409
4410		if (data_hdr->b_l1hdr.b_arc_access <
4411		    meta_hdr->b_l1hdr.b_arc_access) {
4412			type = ARC_BUFC_DATA;
4413		} else {
4414			type = ARC_BUFC_METADATA;
4415		}
4416	}
4417
4418	multilist_sublist_unlock(meta_mls);
4419	multilist_sublist_unlock(data_mls);
4420
4421	return (type);
4422}
4423
4424/*
4425 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4426 */
4427static uint64_t
4428arc_adjust(void)
4429{
4430	uint64_t total_evicted = 0;
4431	uint64_t bytes;
4432	int64_t target;
4433	uint64_t asize = aggsum_value(&arc_size);
4434	uint64_t ameta = aggsum_value(&arc_meta_used);
4435
4436	/*
4437	 * If we're over arc_meta_limit, we want to correct that before
4438	 * potentially evicting data buffers below.
4439	 */
4440	total_evicted += arc_adjust_meta(ameta);
4441
4442	/*
4443	 * Adjust MRU size
4444	 *
4445	 * If we're over the target cache size, we want to evict enough
4446	 * from the list to get back to our target size. We don't want
4447	 * to evict too much from the MRU, such that it drops below
4448	 * arc_p. So, if we're over our target cache size more than
4449	 * the MRU is over arc_p, we'll evict enough to get back to
4450	 * arc_p here, and then evict more from the MFU below.
4451	 */
4452	target = MIN((int64_t)(asize - arc_c),
4453	    (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4454	    zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4455
4456	/*
4457	 * If we're below arc_meta_min, always prefer to evict data.
4458	 * Otherwise, try to satisfy the requested number of bytes to
4459	 * evict from the type which contains older buffers; in an
4460	 * effort to keep newer buffers in the cache regardless of their
4461	 * type. If we cannot satisfy the number of bytes from this
4462	 * type, spill over into the next type.
4463	 */
4464	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4465	    ameta > arc_meta_min) {
4466		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4467		total_evicted += bytes;
4468
4469		/*
4470		 * If we couldn't evict our target number of bytes from
4471		 * metadata, we try to get the rest from data.
4472		 */
4473		target -= bytes;
4474
4475		total_evicted +=
4476		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4477	} else {
4478		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4479		total_evicted += bytes;
4480
4481		/*
4482		 * If we couldn't evict our target number of bytes from
4483		 * data, we try to get the rest from metadata.
4484		 */
4485		target -= bytes;
4486
4487		total_evicted +=
4488		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4489	}
4490
4491	/*
4492	 * Re-sum ARC stats after the first round of evictions.
4493	 */
4494	asize = aggsum_value(&arc_size);
4495	ameta = aggsum_value(&arc_meta_used);
4496
4497	/*
4498	 * Adjust MFU size
4499	 *
4500	 * Now that we've tried to evict enough from the MRU to get its
4501	 * size back to arc_p, if we're still above the target cache
4502	 * size, we evict the rest from the MFU.
4503	 */
4504	target = asize - arc_c;
4505
4506	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4507	    ameta > arc_meta_min) {
4508		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4509		total_evicted += bytes;
4510
4511		/*
4512		 * If we couldn't evict our target number of bytes from
4513		 * metadata, we try to get the rest from data.
4514		 */
4515		target -= bytes;
4516
4517		total_evicted +=
4518		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4519	} else {
4520		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4521		total_evicted += bytes;
4522
4523		/*
4524		 * If we couldn't evict our target number of bytes from
4525		 * data, we try to get the rest from data.
4526		 */
4527		target -= bytes;
4528
4529		total_evicted +=
4530		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4531	}
4532
4533	/*
4534	 * Adjust ghost lists
4535	 *
4536	 * In addition to the above, the ARC also defines target values
4537	 * for the ghost lists. The sum of the mru list and mru ghost
4538	 * list should never exceed the target size of the cache, and
4539	 * the sum of the mru list, mfu list, mru ghost list, and mfu
4540	 * ghost list should never exceed twice the target size of the
4541	 * cache. The following logic enforces these limits on the ghost
4542	 * caches, and evicts from them as needed.
4543	 */
4544	target = zfs_refcount_count(&arc_mru->arcs_size) +
4545	    zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4546
4547	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4548	total_evicted += bytes;
4549
4550	target -= bytes;
4551
4552	total_evicted +=
4553	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4554
4555	/*
4556	 * We assume the sum of the mru list and mfu list is less than
4557	 * or equal to arc_c (we enforced this above), which means we
4558	 * can use the simpler of the two equations below:
4559	 *
4560	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4561	 *		    mru ghost + mfu ghost <= arc_c
4562	 */
4563	target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4564	    zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4565
4566	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4567	total_evicted += bytes;
4568
4569	target -= bytes;
4570
4571	total_evicted +=
4572	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4573
4574	return (total_evicted);
4575}
4576
4577void
4578arc_flush(spa_t *spa, boolean_t retry)
4579{
4580	uint64_t guid = 0;
4581
4582	/*
4583	 * If retry is B_TRUE, a spa must not be specified since we have
4584	 * no good way to determine if all of a spa's buffers have been
4585	 * evicted from an arc state.
4586	 */
4587	ASSERT(!retry || spa == 0);
4588
4589	if (spa != NULL)
4590		guid = spa_load_guid(spa);
4591
4592	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4593	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4594
4595	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4596	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4597
4598	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4599	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4600
4601	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4602	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4603}
4604
4605static void
4606arc_reduce_target_size(int64_t to_free)
4607{
4608	uint64_t asize = aggsum_value(&arc_size);
4609	if (arc_c > arc_c_min) {
4610		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
4611			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
4612		if (arc_c > arc_c_min + to_free)
4613			atomic_add_64(&arc_c, -to_free);
4614		else
4615			arc_c = arc_c_min;
4616
4617		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4618		if (asize < arc_c)
4619			arc_c = MAX(asize, arc_c_min);
4620		if (arc_p > arc_c)
4621			arc_p = (arc_c >> 1);
4622
4623		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
4624			arc_p);
4625
4626		ASSERT(arc_c >= arc_c_min);
4627		ASSERT((int64_t)arc_p >= 0);
4628	}
4629
4630	if (asize > arc_c) {
4631		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, asize,
4632			uint64_t, arc_c);
4633		/* See comment in arc_adjust_cb_check() on why lock+flag */
4634		mutex_enter(&arc_adjust_lock);
4635		arc_adjust_needed = B_TRUE;
4636		mutex_exit(&arc_adjust_lock);
4637		zthr_wakeup(arc_adjust_zthr);
4638	}
4639}
4640
4641typedef enum free_memory_reason_t {
4642	FMR_UNKNOWN,
4643	FMR_NEEDFREE,
4644	FMR_LOTSFREE,
4645	FMR_SWAPFS_MINFREE,
4646	FMR_PAGES_PP_MAXIMUM,
4647	FMR_HEAP_ARENA,
4648	FMR_ZIO_ARENA,
4649} free_memory_reason_t;
4650
4651int64_t last_free_memory;
4652free_memory_reason_t last_free_reason;
4653
4654/*
4655 * Additional reserve of pages for pp_reserve.
4656 */
4657int64_t arc_pages_pp_reserve = 64;
4658
4659/*
4660 * Additional reserve of pages for swapfs.
4661 */
4662int64_t arc_swapfs_reserve = 64;
4663
4664/*
4665 * Return the amount of memory that can be consumed before reclaim will be
4666 * needed.  Positive if there is sufficient free memory, negative indicates
4667 * the amount of memory that needs to be freed up.
4668 */
4669static int64_t
4670arc_available_memory(void)
4671{
4672	int64_t lowest = INT64_MAX;
4673	int64_t n;
4674	free_memory_reason_t r = FMR_UNKNOWN;
4675
4676#ifdef _KERNEL
4677#ifdef __FreeBSD__
4678	/*
4679	 * Cooperate with pagedaemon when it's time for it to scan
4680	 * and reclaim some pages.
4681	 */
4682	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
4683	if (n < lowest) {
4684		lowest = n;
4685		r = FMR_LOTSFREE;
4686	}
4687
4688#else
4689	if (needfree > 0) {
4690		n = PAGESIZE * (-needfree);
4691		if (n < lowest) {
4692			lowest = n;
4693			r = FMR_NEEDFREE;
4694		}
4695	}
4696
4697	/*
4698	 * check that we're out of range of the pageout scanner.  It starts to
4699	 * schedule paging if freemem is less than lotsfree and needfree.
4700	 * lotsfree is the high-water mark for pageout, and needfree is the
4701	 * number of needed free pages.  We add extra pages here to make sure
4702	 * the scanner doesn't start up while we're freeing memory.
4703	 */
4704	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4705	if (n < lowest) {
4706		lowest = n;
4707		r = FMR_LOTSFREE;
4708	}
4709
4710	/*
4711	 * check to make sure that swapfs has enough space so that anon
4712	 * reservations can still succeed. anon_resvmem() checks that the
4713	 * availrmem is greater than swapfs_minfree, and the number of reserved
4714	 * swap pages.  We also add a bit of extra here just to prevent
4715	 * circumstances from getting really dire.
4716	 */
4717	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4718	    desfree - arc_swapfs_reserve);
4719	if (n < lowest) {
4720		lowest = n;
4721		r = FMR_SWAPFS_MINFREE;
4722	}
4723
4724
4725	/*
4726	 * Check that we have enough availrmem that memory locking (e.g., via
4727	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4728	 * stores the number of pages that cannot be locked; when availrmem
4729	 * drops below pages_pp_maximum, page locking mechanisms such as
4730	 * page_pp_lock() will fail.)
4731	 */
4732	n = PAGESIZE * (availrmem - pages_pp_maximum -
4733	    arc_pages_pp_reserve);
4734	if (n < lowest) {
4735		lowest = n;
4736		r = FMR_PAGES_PP_MAXIMUM;
4737	}
4738
4739#endif	/* __FreeBSD__ */
4740#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
4741	/*
4742	 * If we're on an i386 platform, it's possible that we'll exhaust the
4743	 * kernel heap space before we ever run out of available physical
4744	 * memory.  Most checks of the size of the heap_area compare against
4745	 * tune.t_minarmem, which is the minimum available real memory that we
4746	 * can have in the system.  However, this is generally fixed at 25 pages
4747	 * which is so low that it's useless.  In this comparison, we seek to
4748	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4749	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4750	 * free)
4751	 */
4752	n = uma_avail() - (long)(uma_limit() / 4);
4753	if (n < lowest) {
4754		lowest = n;
4755		r = FMR_HEAP_ARENA;
4756	}
4757#endif
4758
4759	/*
4760	 * If zio data pages are being allocated out of a separate heap segment,
4761	 * then enforce that the size of available vmem for this arena remains
4762	 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4763	 *
4764	 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4765	 * memory (in the zio_arena) free, which can avoid memory
4766	 * fragmentation issues.
4767	 */
4768	if (zio_arena != NULL) {
4769		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4770		    (vmem_size(zio_arena, VMEM_ALLOC) >>
4771		    arc_zio_arena_free_shift);
4772		if (n < lowest) {
4773			lowest = n;
4774			r = FMR_ZIO_ARENA;
4775		}
4776	}
4777
4778#else	/* _KERNEL */
4779	/* Every 100 calls, free a small amount */
4780	if (spa_get_random(100) == 0)
4781		lowest = -1024;
4782#endif	/* _KERNEL */
4783
4784	last_free_memory = lowest;
4785	last_free_reason = r;
4786	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
4787	return (lowest);
4788}
4789
4790
4791/*
4792 * Determine if the system is under memory pressure and is asking
4793 * to reclaim memory. A return value of B_TRUE indicates that the system
4794 * is under memory pressure and that the arc should adjust accordingly.
4795 */
4796static boolean_t
4797arc_reclaim_needed(void)
4798{
4799	return (arc_available_memory() < 0);
4800}
4801
4802extern kmem_cache_t	*zio_buf_cache[];
4803extern kmem_cache_t	*zio_data_buf_cache[];
4804extern kmem_cache_t	*range_seg_cache;
4805extern kmem_cache_t	*abd_chunk_cache;
4806
4807static __noinline void
4808arc_kmem_reap_soon(void)
4809{
4810	size_t			i;
4811	kmem_cache_t		*prev_cache = NULL;
4812	kmem_cache_t		*prev_data_cache = NULL;
4813
4814	DTRACE_PROBE(arc__kmem_reap_start);
4815#ifdef _KERNEL
4816	if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4817		/*
4818		 * We are exceeding our meta-data cache limit.
4819		 * Purge some DNLC entries to release holds on meta-data.
4820		 */
4821		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4822	}
4823#if defined(__i386)
4824	/*
4825	 * Reclaim unused memory from all kmem caches.
4826	 */
4827	kmem_reap();
4828#endif
4829#endif
4830
4831	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4832		if (zio_buf_cache[i] != prev_cache) {
4833			prev_cache = zio_buf_cache[i];
4834			kmem_cache_reap_soon(zio_buf_cache[i]);
4835		}
4836		if (zio_data_buf_cache[i] != prev_data_cache) {
4837			prev_data_cache = zio_data_buf_cache[i];
4838			kmem_cache_reap_soon(zio_data_buf_cache[i]);
4839		}
4840	}
4841	kmem_cache_reap_soon(abd_chunk_cache);
4842	kmem_cache_reap_soon(buf_cache);
4843	kmem_cache_reap_soon(hdr_full_cache);
4844	kmem_cache_reap_soon(hdr_l2only_cache);
4845	kmem_cache_reap_soon(range_seg_cache);
4846
4847#ifdef illumos
4848	if (zio_arena != NULL) {
4849		/*
4850		 * Ask the vmem arena to reclaim unused memory from its
4851		 * quantum caches.
4852		 */
4853		vmem_qcache_reap(zio_arena);
4854	}
4855#endif
4856	DTRACE_PROBE(arc__kmem_reap_end);
4857}
4858
4859/* ARGSUSED */
4860static boolean_t
4861arc_adjust_cb_check(void *arg, zthr_t *zthr)
4862{
4863	/*
4864	 * This is necessary in order for the mdb ::arc dcmd to
4865	 * show up to date information. Since the ::arc command
4866	 * does not call the kstat's update function, without
4867	 * this call, the command may show stale stats for the
4868	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4869	 * with this change, the data might be up to 1 second
4870	 * out of date(the arc_adjust_zthr has a maximum sleep
4871	 * time of 1 second); but that should suffice.  The
4872	 * arc_state_t structures can be queried directly if more
4873	 * accurate information is needed.
4874	 */
4875	if (arc_ksp != NULL)
4876		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4877
4878	/*
4879	 * We have to rely on arc_get_data_impl() to tell us when to adjust,
4880	 * rather than checking if we are overflowing here, so that we are
4881	 * sure to not leave arc_get_data_impl() waiting on
4882	 * arc_adjust_waiters_cv.  If we have become "not overflowing" since
4883	 * arc_get_data_impl() checked, we need to wake it up.  We could
4884	 * broadcast the CV here, but arc_get_data_impl() may have not yet
4885	 * gone to sleep.  We would need to use a mutex to ensure that this
4886	 * function doesn't broadcast until arc_get_data_impl() has gone to
4887	 * sleep (e.g. the arc_adjust_lock).  However, the lock ordering of
4888	 * such a lock would necessarily be incorrect with respect to the
4889	 * zthr_lock, which is held before this function is called, and is
4890	 * held by arc_get_data_impl() when it calls zthr_wakeup().
4891	 */
4892	return (arc_adjust_needed);
4893}
4894
4895/*
4896 * Keep arc_size under arc_c by running arc_adjust which evicts data
4897 * from the ARC. */
4898/* ARGSUSED */
4899static void
4900arc_adjust_cb(void *arg, zthr_t *zthr)
4901{
4902	uint64_t evicted = 0;
4903
4904	/* Evict from cache */
4905	evicted = arc_adjust();
4906
4907	/*
4908	 * If evicted is zero, we couldn't evict anything
4909	 * via arc_adjust(). This could be due to hash lock
4910	 * collisions, but more likely due to the majority of
4911	 * arc buffers being unevictable. Therefore, even if
4912	 * arc_size is above arc_c, another pass is unlikely to
4913	 * be helpful and could potentially cause us to enter an
4914	 * infinite loop.  Additionally, zthr_iscancelled() is
4915	 * checked here so that if the arc is shutting down, the
4916	 * broadcast will wake any remaining arc adjust waiters.
4917	 */
4918	mutex_enter(&arc_adjust_lock);
4919	arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
4920	    evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
4921	if (!arc_adjust_needed) {
4922		/*
4923		 * We're either no longer overflowing, or we
4924		 * can't evict anything more, so we should wake
4925		 * up any waiters.
4926		 */
4927		cv_broadcast(&arc_adjust_waiters_cv);
4928	}
4929	mutex_exit(&arc_adjust_lock);
4930}
4931
4932/* ARGSUSED */
4933static boolean_t
4934arc_reap_cb_check(void *arg, zthr_t *zthr)
4935{
4936	int64_t free_memory = arc_available_memory();
4937
4938	/*
4939	 * If a kmem reap is already active, don't schedule more.  We must
4940	 * check for this because kmem_cache_reap_soon() won't actually
4941	 * block on the cache being reaped (this is to prevent callers from
4942	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4943	 * on a system with many, many full magazines, can take minutes).
4944	 */
4945	if (!kmem_cache_reap_active() &&
4946	    free_memory < 0) {
4947		arc_no_grow = B_TRUE;
4948		arc_warm = B_TRUE;
4949		/*
4950		 * Wait at least zfs_grow_retry (default 60) seconds
4951		 * before considering growing.
4952		 */
4953		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4954		return (B_TRUE);
4955	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4956		arc_no_grow = B_TRUE;
4957	} else if (gethrtime() >= arc_growtime) {
4958		arc_no_grow = B_FALSE;
4959	}
4960
4961	return (B_FALSE);
4962}
4963
4964/*
4965 * Keep enough free memory in the system by reaping the ARC's kmem
4966 * caches.  To cause more slabs to be reapable, we may reduce the
4967 * target size of the cache (arc_c), causing the arc_adjust_cb()
4968 * to free more buffers.
4969 */
4970/* ARGSUSED */
4971static void
4972arc_reap_cb(void *arg, zthr_t *zthr)
4973{
4974	int64_t free_memory;
4975
4976	/*
4977	 * Kick off asynchronous kmem_reap()'s of all our caches.
4978	 */
4979	arc_kmem_reap_soon();
4980
4981	/*
4982	 * Wait at least arc_kmem_cache_reap_retry_ms between
4983	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4984	 * end up in a situation where we spend lots of time reaping
4985	 * caches, while we're near arc_c_min.  Waiting here also gives the
4986	 * subsequent free memory check a chance of finding that the
4987	 * asynchronous reap has already freed enough memory, and we don't
4988	 * need to call arc_reduce_target_size().
4989	 */
4990	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4991
4992	/*
4993	 * Reduce the target size as needed to maintain the amount of free
4994	 * memory in the system at a fraction of the arc_size (1/128th by
4995	 * default).  If oversubscribed (free_memory < 0) then reduce the
4996	 * target arc_size by the deficit amount plus the fractional
4997	 * amount.  If free memory is positive but less then the fractional
4998	 * amount, reduce by what is needed to hit the fractional amount.
4999	 */
5000	free_memory = arc_available_memory();
5001
5002	int64_t to_free =
5003	    (arc_c >> arc_shrink_shift) - free_memory;
5004	if (to_free > 0) {
5005#ifdef _KERNEL
5006#ifdef illumos
5007		to_free = MAX(to_free, ptob(needfree));
5008#endif
5009#endif
5010		arc_reduce_target_size(to_free);
5011	}
5012}
5013
5014static u_int arc_dnlc_evicts_arg;
5015extern struct vfsops zfs_vfsops;
5016
5017static void
5018arc_dnlc_evicts_thread(void *dummy __unused)
5019{
5020	callb_cpr_t cpr;
5021	u_int percent;
5022
5023	CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG);
5024
5025	mutex_enter(&arc_dnlc_evicts_lock);
5026	while (!arc_dnlc_evicts_thread_exit) {
5027		CALLB_CPR_SAFE_BEGIN(&cpr);
5028		(void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
5029		CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock);
5030		if (arc_dnlc_evicts_arg != 0) {
5031			percent = arc_dnlc_evicts_arg;
5032			mutex_exit(&arc_dnlc_evicts_lock);
5033#ifdef _KERNEL
5034			vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops);
5035#endif
5036			mutex_enter(&arc_dnlc_evicts_lock);
5037			/*
5038			 * Clear our token only after vnlru_free()
5039			 * pass is done, to avoid false queueing of
5040			 * the requests.
5041			 */
5042			arc_dnlc_evicts_arg = 0;
5043		}
5044	}
5045	arc_dnlc_evicts_thread_exit = FALSE;
5046	cv_broadcast(&arc_dnlc_evicts_cv);
5047	CALLB_CPR_EXIT(&cpr);
5048	thread_exit();
5049}
5050
5051void
5052dnlc_reduce_cache(void *arg)
5053{
5054	u_int percent;
5055
5056	percent = (u_int)(uintptr_t)arg;
5057	mutex_enter(&arc_dnlc_evicts_lock);
5058	if (arc_dnlc_evicts_arg == 0) {
5059		arc_dnlc_evicts_arg = percent;
5060		cv_broadcast(&arc_dnlc_evicts_cv);
5061	}
5062	mutex_exit(&arc_dnlc_evicts_lock);
5063}
5064
5065/*
5066 * Adapt arc info given the number of bytes we are trying to add and
5067 * the state that we are comming from.  This function is only called
5068 * when we are adding new content to the cache.
5069 */
5070static void
5071arc_adapt(int bytes, arc_state_t *state)
5072{
5073	int mult;
5074	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
5075	int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
5076	int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
5077
5078	if (state == arc_l2c_only)
5079		return;
5080
5081	ASSERT(bytes > 0);
5082	/*
5083	 * Adapt the target size of the MRU list:
5084	 *	- if we just hit in the MRU ghost list, then increase
5085	 *	  the target size of the MRU list.
5086	 *	- if we just hit in the MFU ghost list, then increase
5087	 *	  the target size of the MFU list by decreasing the
5088	 *	  target size of the MRU list.
5089	 */
5090	if (state == arc_mru_ghost) {
5091		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
5092		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
5093
5094		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
5095	} else if (state == arc_mfu_ghost) {
5096		uint64_t delta;
5097
5098		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
5099		mult = MIN(mult, 10);
5100
5101		delta = MIN(bytes * mult, arc_p);
5102		arc_p = MAX(arc_p_min, arc_p - delta);
5103	}
5104	ASSERT((int64_t)arc_p >= 0);
5105
5106	/*
5107	 * Wake reap thread if we do not have any available memory
5108	 */
5109	if (arc_reclaim_needed()) {
5110		zthr_wakeup(arc_reap_zthr);
5111		return;
5112	}
5113
5114	if (arc_no_grow)
5115		return;
5116
5117	if (arc_c >= arc_c_max)
5118		return;
5119
5120	/*
5121	 * If we're within (2 * maxblocksize) bytes of the target
5122	 * cache size, increment the target cache size
5123	 */
5124	if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
5125	    0) {
5126		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
5127		atomic_add_64(&arc_c, (int64_t)bytes);
5128		if (arc_c > arc_c_max)
5129			arc_c = arc_c_max;
5130		else if (state == arc_anon)
5131			atomic_add_64(&arc_p, (int64_t)bytes);
5132		if (arc_p > arc_c)
5133			arc_p = arc_c;
5134	}
5135	ASSERT((int64_t)arc_p >= 0);
5136}
5137
5138/*
5139 * Check if arc_size has grown past our upper threshold, determined by
5140 * zfs_arc_overflow_shift.
5141 */
5142static boolean_t
5143arc_is_overflowing(void)
5144{
5145	/* Always allow at least one block of overflow */
5146	int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5147	    arc_c >> zfs_arc_overflow_shift);
5148
5149	/*
5150	 * We just compare the lower bound here for performance reasons. Our
5151	 * primary goals are to make sure that the arc never grows without
5152	 * bound, and that it can reach its maximum size. This check
5153	 * accomplishes both goals. The maximum amount we could run over by is
5154	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5155	 * in the ARC. In practice, that's in the tens of MB, which is low
5156	 * enough to be safe.
5157	 */
5158	return (aggsum_lower_bound(&arc_size) >= (int64_t)arc_c + overflow);
5159}
5160
5161static abd_t *
5162arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, boolean_t do_adapt)
5163{
5164	arc_buf_contents_t type = arc_buf_type(hdr);
5165
5166	arc_get_data_impl(hdr, size, tag, do_adapt);
5167	if (type == ARC_BUFC_METADATA) {
5168		return (abd_alloc(size, B_TRUE));
5169	} else {
5170		ASSERT(type == ARC_BUFC_DATA);
5171		return (abd_alloc(size, B_FALSE));
5172	}
5173}
5174
5175static void *
5176arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5177{
5178	arc_buf_contents_t type = arc_buf_type(hdr);
5179
5180	arc_get_data_impl(hdr, size, tag, B_TRUE);
5181	if (type == ARC_BUFC_METADATA) {
5182		return (zio_buf_alloc(size));
5183	} else {
5184		ASSERT(type == ARC_BUFC_DATA);
5185		return (zio_data_buf_alloc(size));
5186	}
5187}
5188
5189/*
5190 * Allocate a block and return it to the caller. If we are hitting the
5191 * hard limit for the cache size, we must sleep, waiting for the eviction
5192 * thread to catch up. If we're past the target size but below the hard
5193 * limit, we'll only signal the reclaim thread and continue on.
5194 */
5195static void
5196arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, boolean_t do_adapt)
5197{
5198	arc_state_t *state = hdr->b_l1hdr.b_state;
5199	arc_buf_contents_t type = arc_buf_type(hdr);
5200
5201	if (do_adapt)
5202		arc_adapt(size, state);
5203
5204	/*
5205	 * If arc_size is currently overflowing, and has grown past our
5206	 * upper limit, we must be adding data faster than the evict
5207	 * thread can evict. Thus, to ensure we don't compound the
5208	 * problem by adding more data and forcing arc_size to grow even
5209	 * further past it's target size, we halt and wait for the
5210	 * eviction thread to catch up.
5211	 *
5212	 * It's also possible that the reclaim thread is unable to evict
5213	 * enough buffers to get arc_size below the overflow limit (e.g.
5214	 * due to buffers being un-evictable, or hash lock collisions).
5215	 * In this case, we want to proceed regardless if we're
5216	 * overflowing; thus we don't use a while loop here.
5217	 */
5218	if (arc_is_overflowing()) {
5219		mutex_enter(&arc_adjust_lock);
5220
5221		/*
5222		 * Now that we've acquired the lock, we may no longer be
5223		 * over the overflow limit, lets check.
5224		 *
5225		 * We're ignoring the case of spurious wake ups. If that
5226		 * were to happen, it'd let this thread consume an ARC
5227		 * buffer before it should have (i.e. before we're under
5228		 * the overflow limit and were signalled by the reclaim
5229		 * thread). As long as that is a rare occurrence, it
5230		 * shouldn't cause any harm.
5231		 */
5232		if (arc_is_overflowing()) {
5233			arc_adjust_needed = B_TRUE;
5234			zthr_wakeup(arc_adjust_zthr);
5235			(void) cv_wait(&arc_adjust_waiters_cv,
5236			    &arc_adjust_lock);
5237		}
5238		mutex_exit(&arc_adjust_lock);
5239	}
5240
5241	VERIFY3U(hdr->b_type, ==, type);
5242	if (type == ARC_BUFC_METADATA) {
5243		arc_space_consume(size, ARC_SPACE_META);
5244	} else {
5245		arc_space_consume(size, ARC_SPACE_DATA);
5246	}
5247
5248	/*
5249	 * Update the state size.  Note that ghost states have a
5250	 * "ghost size" and so don't need to be updated.
5251	 */
5252	if (!GHOST_STATE(state)) {
5253
5254		(void) zfs_refcount_add_many(&state->arcs_size, size, tag);
5255
5256		/*
5257		 * If this is reached via arc_read, the link is
5258		 * protected by the hash lock. If reached via
5259		 * arc_buf_alloc, the header should not be accessed by
5260		 * any other thread. And, if reached via arc_read_done,
5261		 * the hash lock will protect it if it's found in the
5262		 * hash table; otherwise no other thread should be
5263		 * trying to [add|remove]_reference it.
5264		 */
5265		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5266			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5267			(void) zfs_refcount_add_many(&state->arcs_esize[type],
5268			    size, tag);
5269		}
5270
5271		/*
5272		 * If we are growing the cache, and we are adding anonymous
5273		 * data, and we have outgrown arc_p, update arc_p
5274		 */
5275		if (aggsum_upper_bound(&arc_size) < arc_c &&
5276		    hdr->b_l1hdr.b_state == arc_anon &&
5277		    (zfs_refcount_count(&arc_anon->arcs_size) +
5278		    zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
5279			arc_p = MIN(arc_c, arc_p + size);
5280	}
5281	ARCSTAT_BUMP(arcstat_allocated);
5282}
5283
5284static void
5285arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5286{
5287	arc_free_data_impl(hdr, size, tag);
5288	abd_free(abd);
5289}
5290
5291static void
5292arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5293{
5294	arc_buf_contents_t type = arc_buf_type(hdr);
5295
5296	arc_free_data_impl(hdr, size, tag);
5297	if (type == ARC_BUFC_METADATA) {
5298		zio_buf_free(buf, size);
5299	} else {
5300		ASSERT(type == ARC_BUFC_DATA);
5301		zio_data_buf_free(buf, size);
5302	}
5303}
5304
5305/*
5306 * Free the arc data buffer.
5307 */
5308static void
5309arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5310{
5311	arc_state_t *state = hdr->b_l1hdr.b_state;
5312	arc_buf_contents_t type = arc_buf_type(hdr);
5313
5314	/* protected by hash lock, if in the hash table */
5315	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5316		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5317		ASSERT(state != arc_anon && state != arc_l2c_only);
5318
5319		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
5320		    size, tag);
5321	}
5322	(void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
5323
5324	VERIFY3U(hdr->b_type, ==, type);
5325	if (type == ARC_BUFC_METADATA) {
5326		arc_space_return(size, ARC_SPACE_META);
5327	} else {
5328		ASSERT(type == ARC_BUFC_DATA);
5329		arc_space_return(size, ARC_SPACE_DATA);
5330	}
5331}
5332
5333/*
5334 * This routine is called whenever a buffer is accessed.
5335 * NOTE: the hash lock is dropped in this function.
5336 */
5337static void
5338arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5339{
5340	clock_t now;
5341
5342	ASSERT(MUTEX_HELD(hash_lock));
5343	ASSERT(HDR_HAS_L1HDR(hdr));
5344
5345	if (hdr->b_l1hdr.b_state == arc_anon) {
5346		/*
5347		 * This buffer is not in the cache, and does not
5348		 * appear in our "ghost" list.  Add the new buffer
5349		 * to the MRU state.
5350		 */
5351
5352		ASSERT0(hdr->b_l1hdr.b_arc_access);
5353		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5354		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5355		arc_change_state(arc_mru, hdr, hash_lock);
5356
5357	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5358		now = ddi_get_lbolt();
5359
5360		/*
5361		 * If this buffer is here because of a prefetch, then either:
5362		 * - clear the flag if this is a "referencing" read
5363		 *   (any subsequent access will bump this into the MFU state).
5364		 * or
5365		 * - move the buffer to the head of the list if this is
5366		 *   another prefetch (to make it less likely to be evicted).
5367		 */
5368		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5369			if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5370				/* link protected by hash lock */
5371				ASSERT(multilist_link_active(
5372				    &hdr->b_l1hdr.b_arc_node));
5373			} else {
5374				arc_hdr_clear_flags(hdr,
5375				    ARC_FLAG_PREFETCH |
5376				    ARC_FLAG_PRESCIENT_PREFETCH);
5377				ARCSTAT_BUMP(arcstat_mru_hits);
5378			}
5379			hdr->b_l1hdr.b_arc_access = now;
5380			return;
5381		}
5382
5383		/*
5384		 * This buffer has been "accessed" only once so far,
5385		 * but it is still in the cache. Move it to the MFU
5386		 * state.
5387		 */
5388		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
5389			/*
5390			 * More than 125ms have passed since we
5391			 * instantiated this buffer.  Move it to the
5392			 * most frequently used state.
5393			 */
5394			hdr->b_l1hdr.b_arc_access = now;
5395			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5396			arc_change_state(arc_mfu, hdr, hash_lock);
5397		}
5398		atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
5399		ARCSTAT_BUMP(arcstat_mru_hits);
5400	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5401		arc_state_t	*new_state;
5402		/*
5403		 * This buffer has been "accessed" recently, but
5404		 * was evicted from the cache.  Move it to the
5405		 * MFU state.
5406		 */
5407
5408		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5409			new_state = arc_mru;
5410			if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5411				arc_hdr_clear_flags(hdr,
5412				    ARC_FLAG_PREFETCH |
5413				    ARC_FLAG_PRESCIENT_PREFETCH);
5414			}
5415			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5416		} else {
5417			new_state = arc_mfu;
5418			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5419		}
5420
5421		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5422		arc_change_state(new_state, hdr, hash_lock);
5423
5424		atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
5425		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5426	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5427		/*
5428		 * This buffer has been accessed more than once and is
5429		 * still in the cache.  Keep it in the MFU state.
5430		 *
5431		 * NOTE: an add_reference() that occurred when we did
5432		 * the arc_read() will have kicked this off the list.
5433		 * If it was a prefetch, we will explicitly move it to
5434		 * the head of the list now.
5435		 */
5436
5437		atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
5438		ARCSTAT_BUMP(arcstat_mfu_hits);
5439		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5440	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5441		arc_state_t	*new_state = arc_mfu;
5442		/*
5443		 * This buffer has been accessed more than once but has
5444		 * been evicted from the cache.  Move it back to the
5445		 * MFU state.
5446		 */
5447
5448		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5449			/*
5450			 * This is a prefetch access...
5451			 * move this block back to the MRU state.
5452			 */
5453			new_state = arc_mru;
5454		}
5455
5456		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5457		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5458		arc_change_state(new_state, hdr, hash_lock);
5459
5460		atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
5461		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5462	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5463		/*
5464		 * This buffer is on the 2nd Level ARC.
5465		 */
5466
5467		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5468		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5469		arc_change_state(arc_mfu, hdr, hash_lock);
5470	} else {
5471		ASSERT(!"invalid arc state");
5472	}
5473}
5474
5475/*
5476 * This routine is called by dbuf_hold() to update the arc_access() state
5477 * which otherwise would be skipped for entries in the dbuf cache.
5478 */
5479void
5480arc_buf_access(arc_buf_t *buf)
5481{
5482	mutex_enter(&buf->b_evict_lock);
5483	arc_buf_hdr_t *hdr = buf->b_hdr;
5484
5485	/*
5486	 * Avoid taking the hash_lock when possible as an optimization.
5487	 * The header must be checked again under the hash_lock in order
5488	 * to handle the case where it is concurrently being released.
5489	 */
5490	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5491		mutex_exit(&buf->b_evict_lock);
5492		ARCSTAT_BUMP(arcstat_access_skip);
5493		return;
5494	}
5495
5496	kmutex_t *hash_lock = HDR_LOCK(hdr);
5497	mutex_enter(hash_lock);
5498
5499	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5500		mutex_exit(hash_lock);
5501		mutex_exit(&buf->b_evict_lock);
5502		ARCSTAT_BUMP(arcstat_access_skip);
5503		return;
5504	}
5505
5506	mutex_exit(&buf->b_evict_lock);
5507
5508	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5509	    hdr->b_l1hdr.b_state == arc_mfu);
5510
5511	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5512	arc_access(hdr, hash_lock);
5513	mutex_exit(hash_lock);
5514
5515	ARCSTAT_BUMP(arcstat_hits);
5516	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5517	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5518}
5519
5520/* a generic arc_read_done_func_t which you can use */
5521/* ARGSUSED */
5522void
5523arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5524    arc_buf_t *buf, void *arg)
5525{
5526	if (buf == NULL)
5527		return;
5528
5529	bcopy(buf->b_data, arg, arc_buf_size(buf));
5530	arc_buf_destroy(buf, arg);
5531}
5532
5533/* a generic arc_read_done_func_t */
5534/* ARGSUSED */
5535void
5536arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5537    arc_buf_t *buf, void *arg)
5538{
5539	arc_buf_t **bufp = arg;
5540	if (buf == NULL) {
5541		ASSERT(zio == NULL || zio->io_error != 0);
5542		*bufp = NULL;
5543	} else {
5544		ASSERT(zio == NULL || zio->io_error == 0);
5545		*bufp = buf;
5546		ASSERT(buf->b_data != NULL);
5547	}
5548}
5549
5550static void
5551arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5552{
5553	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5554		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5555		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
5556	} else {
5557		if (HDR_COMPRESSION_ENABLED(hdr)) {
5558			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
5559			    BP_GET_COMPRESS(bp));
5560		}
5561		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5562		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5563	}
5564}
5565
5566static void
5567arc_read_done(zio_t *zio)
5568{
5569	arc_buf_hdr_t	*hdr = zio->io_private;
5570	kmutex_t	*hash_lock = NULL;
5571	arc_callback_t	*callback_list;
5572	arc_callback_t	*acb;
5573	boolean_t	freeable = B_FALSE;
5574	boolean_t	no_zio_error = (zio->io_error == 0);
5575
5576	/*
5577	 * The hdr was inserted into hash-table and removed from lists
5578	 * prior to starting I/O.  We should find this header, since
5579	 * it's in the hash table, and it should be legit since it's
5580	 * not possible to evict it during the I/O.  The only possible
5581	 * reason for it not to be found is if we were freed during the
5582	 * read.
5583	 */
5584	if (HDR_IN_HASH_TABLE(hdr)) {
5585		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5586		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5587		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5588		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5589		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5590
5591		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
5592		    &hash_lock);
5593
5594		ASSERT((found == hdr &&
5595		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5596		    (found == hdr && HDR_L2_READING(hdr)));
5597		ASSERT3P(hash_lock, !=, NULL);
5598	}
5599
5600	if (no_zio_error) {
5601		/* byteswap if necessary */
5602		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5603			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5604				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5605			} else {
5606				hdr->b_l1hdr.b_byteswap =
5607				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5608			}
5609		} else {
5610			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5611		}
5612	}
5613
5614	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5615	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5616		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5617
5618	callback_list = hdr->b_l1hdr.b_acb;
5619	ASSERT3P(callback_list, !=, NULL);
5620
5621	if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
5622		/*
5623		 * Only call arc_access on anonymous buffers.  This is because
5624		 * if we've issued an I/O for an evicted buffer, we've already
5625		 * called arc_access (to prevent any simultaneous readers from
5626		 * getting confused).
5627		 */
5628		arc_access(hdr, hash_lock);
5629	}
5630
5631	/*
5632	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5633	 * make a buf containing the data according to the parameters which were
5634	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5635	 * aren't needlessly decompressing the data multiple times.
5636	 */
5637	int callback_cnt = 0;
5638	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5639		if (!acb->acb_done)
5640			continue;
5641
5642		callback_cnt++;
5643
5644		if (no_zio_error) {
5645			int error = arc_buf_alloc_impl(hdr, acb->acb_private,
5646			    acb->acb_compressed, zio->io_error == 0,
5647			    &acb->acb_buf);
5648			if (error != 0) {
5649				/*
5650				 * Decompression failed.  Set io_error
5651				 * so that when we call acb_done (below),
5652				 * we will indicate that the read failed.
5653				 * Note that in the unusual case where one
5654				 * callback is compressed and another
5655				 * uncompressed, we will mark all of them
5656				 * as failed, even though the uncompressed
5657				 * one can't actually fail.  In this case,
5658				 * the hdr will not be anonymous, because
5659				 * if there are multiple callbacks, it's
5660				 * because multiple threads found the same
5661				 * arc buf in the hash table.
5662				 */
5663				zio->io_error = error;
5664			}
5665		}
5666	}
5667	/*
5668	 * If there are multiple callbacks, we must have the hash lock,
5669	 * because the only way for multiple threads to find this hdr is
5670	 * in the hash table.  This ensures that if there are multiple
5671	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5672	 * we couldn't use arc_buf_destroy() in the error case below.
5673	 */
5674	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5675
5676	hdr->b_l1hdr.b_acb = NULL;
5677	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5678	if (callback_cnt == 0) {
5679		ASSERT(HDR_PREFETCH(hdr));
5680		ASSERT0(hdr->b_l1hdr.b_bufcnt);
5681		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5682	}
5683
5684	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5685	    callback_list != NULL);
5686
5687	if (no_zio_error) {
5688		arc_hdr_verify(hdr, zio->io_bp);
5689	} else {
5690		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5691		if (hdr->b_l1hdr.b_state != arc_anon)
5692			arc_change_state(arc_anon, hdr, hash_lock);
5693		if (HDR_IN_HASH_TABLE(hdr))
5694			buf_hash_remove(hdr);
5695		freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5696	}
5697
5698	/*
5699	 * Broadcast before we drop the hash_lock to avoid the possibility
5700	 * that the hdr (and hence the cv) might be freed before we get to
5701	 * the cv_broadcast().
5702	 */
5703	cv_broadcast(&hdr->b_l1hdr.b_cv);
5704
5705	if (hash_lock != NULL) {
5706		mutex_exit(hash_lock);
5707	} else {
5708		/*
5709		 * This block was freed while we waited for the read to
5710		 * complete.  It has been removed from the hash table and
5711		 * moved to the anonymous state (so that it won't show up
5712		 * in the cache).
5713		 */
5714		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5715		freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5716	}
5717
5718	/* execute each callback and free its structure */
5719	while ((acb = callback_list) != NULL) {
5720		if (acb->acb_done != NULL) {
5721			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5722				/*
5723				 * If arc_buf_alloc_impl() fails during
5724				 * decompression, the buf will still be
5725				 * allocated, and needs to be freed here.
5726				 */
5727				arc_buf_destroy(acb->acb_buf, acb->acb_private);
5728				acb->acb_buf = NULL;
5729			}
5730			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5731			    acb->acb_buf, acb->acb_private);
5732		}
5733
5734		if (acb->acb_zio_dummy != NULL) {
5735			acb->acb_zio_dummy->io_error = zio->io_error;
5736			zio_nowait(acb->acb_zio_dummy);
5737		}
5738
5739		callback_list = acb->acb_next;
5740		kmem_free(acb, sizeof (arc_callback_t));
5741	}
5742
5743	if (freeable)
5744		arc_hdr_destroy(hdr);
5745}
5746
5747/*
5748 * "Read" the block at the specified DVA (in bp) via the
5749 * cache.  If the block is found in the cache, invoke the provided
5750 * callback immediately and return.  Note that the `zio' parameter
5751 * in the callback will be NULL in this case, since no IO was
5752 * required.  If the block is not in the cache pass the read request
5753 * on to the spa with a substitute callback function, so that the
5754 * requested block will be added to the cache.
5755 *
5756 * If a read request arrives for a block that has a read in-progress,
5757 * either wait for the in-progress read to complete (and return the
5758 * results); or, if this is a read with a "done" func, add a record
5759 * to the read to invoke the "done" func when the read completes,
5760 * and return; or just return.
5761 *
5762 * arc_read_done() will invoke all the requested "done" functions
5763 * for readers of this block.
5764 */
5765int
5766arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done,
5767    void *private, zio_priority_t priority, int zio_flags,
5768    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5769{
5770	arc_buf_hdr_t *hdr = NULL;
5771	kmutex_t *hash_lock = NULL;
5772	zio_t *rzio;
5773	uint64_t guid = spa_load_guid(spa);
5774	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
5775	int rc = 0;
5776
5777	ASSERT(!BP_IS_EMBEDDED(bp) ||
5778	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5779
5780top:
5781	if (!BP_IS_EMBEDDED(bp)) {
5782		/*
5783		 * Embedded BP's have no DVA and require no I/O to "read".
5784		 * Create an anonymous arc buf to back it.
5785		 */
5786		hdr = buf_hash_find(guid, bp, &hash_lock);
5787	}
5788
5789	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
5790		arc_buf_t *buf = NULL;
5791		*arc_flags |= ARC_FLAG_CACHED;
5792
5793		if (HDR_IO_IN_PROGRESS(hdr)) {
5794			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5795
5796			ASSERT3P(head_zio, !=, NULL);
5797			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5798			    priority == ZIO_PRIORITY_SYNC_READ) {
5799				/*
5800				 * This is a sync read that needs to wait for
5801				 * an in-flight async read. Request that the
5802				 * zio have its priority upgraded.
5803				 */
5804				zio_change_priority(head_zio, priority);
5805				DTRACE_PROBE1(arc__async__upgrade__sync,
5806				    arc_buf_hdr_t *, hdr);
5807				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5808			}
5809			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5810				arc_hdr_clear_flags(hdr,
5811				    ARC_FLAG_PREDICTIVE_PREFETCH);
5812			}
5813
5814			if (*arc_flags & ARC_FLAG_WAIT) {
5815				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5816				mutex_exit(hash_lock);
5817				goto top;
5818			}
5819			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5820
5821			if (done) {
5822				arc_callback_t *acb = NULL;
5823
5824				acb = kmem_zalloc(sizeof (arc_callback_t),
5825				    KM_SLEEP);
5826				acb->acb_done = done;
5827				acb->acb_private = private;
5828				acb->acb_compressed = compressed_read;
5829				if (pio != NULL)
5830					acb->acb_zio_dummy = zio_null(pio,
5831					    spa, NULL, NULL, NULL, zio_flags);
5832
5833				ASSERT3P(acb->acb_done, !=, NULL);
5834				acb->acb_zio_head = head_zio;
5835				acb->acb_next = hdr->b_l1hdr.b_acb;
5836				hdr->b_l1hdr.b_acb = acb;
5837				mutex_exit(hash_lock);
5838				return (0);
5839			}
5840			mutex_exit(hash_lock);
5841			return (0);
5842		}
5843
5844		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5845		    hdr->b_l1hdr.b_state == arc_mfu);
5846
5847		if (done) {
5848			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5849				/*
5850				 * This is a demand read which does not have to
5851				 * wait for i/o because we did a predictive
5852				 * prefetch i/o for it, which has completed.
5853				 */
5854				DTRACE_PROBE1(
5855				    arc__demand__hit__predictive__prefetch,
5856				    arc_buf_hdr_t *, hdr);
5857				ARCSTAT_BUMP(
5858				    arcstat_demand_hit_predictive_prefetch);
5859				arc_hdr_clear_flags(hdr,
5860				    ARC_FLAG_PREDICTIVE_PREFETCH);
5861			}
5862
5863			if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5864				ARCSTAT_BUMP(
5865                                    arcstat_demand_hit_prescient_prefetch);
5866				arc_hdr_clear_flags(hdr,
5867                                    ARC_FLAG_PRESCIENT_PREFETCH);
5868			}
5869
5870			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5871			/* Get a buf with the desired data in it. */
5872			rc = arc_buf_alloc_impl(hdr, private,
5873			   compressed_read, B_TRUE, &buf);
5874			if (rc != 0) {
5875				arc_buf_destroy(buf, private);
5876				buf = NULL;
5877			}
5878			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5879                            rc == 0 || rc != ENOENT);
5880		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
5881		    zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5882			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5883		}
5884		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5885		arc_access(hdr, hash_lock);
5886		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5887                        arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5888		if (*arc_flags & ARC_FLAG_L2CACHE)
5889			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5890		mutex_exit(hash_lock);
5891		ARCSTAT_BUMP(arcstat_hits);
5892		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5893		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5894		    data, metadata, hits);
5895
5896		if (done)
5897			done(NULL, zb, bp, buf, private);
5898	} else {
5899		uint64_t lsize = BP_GET_LSIZE(bp);
5900		uint64_t psize = BP_GET_PSIZE(bp);
5901		arc_callback_t *acb;
5902		vdev_t *vd = NULL;
5903		uint64_t addr = 0;
5904		boolean_t devw = B_FALSE;
5905		uint64_t size;
5906
5907		if (hdr == NULL) {
5908			/* this block is not in the cache */
5909			arc_buf_hdr_t *exists = NULL;
5910			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5911			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5912			    BP_GET_COMPRESS(bp), type);
5913
5914			if (!BP_IS_EMBEDDED(bp)) {
5915				hdr->b_dva = *BP_IDENTITY(bp);
5916				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5917				exists = buf_hash_insert(hdr, &hash_lock);
5918			}
5919			if (exists != NULL) {
5920				/* somebody beat us to the hash insert */
5921				mutex_exit(hash_lock);
5922				buf_discard_identity(hdr);
5923				arc_hdr_destroy(hdr);
5924				goto top; /* restart the IO request */
5925			}
5926		} else {
5927			/*
5928			 * This block is in the ghost cache. If it was L2-only
5929			 * (and thus didn't have an L1 hdr), we realloc the
5930			 * header to add an L1 hdr.
5931			 */
5932			if (!HDR_HAS_L1HDR(hdr)) {
5933				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5934				    hdr_full_cache);
5935			}
5936			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5937			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5938			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5939			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5940			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5941			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5942
5943			/*
5944			 * This is a delicate dance that we play here.
5945			 * This hdr is in the ghost list so we access it
5946			 * to move it out of the ghost list before we
5947			 * initiate the read. If it's a prefetch then
5948			 * it won't have a callback so we'll remove the
5949			 * reference that arc_buf_alloc_impl() created. We
5950			 * do this after we've called arc_access() to
5951			 * avoid hitting an assert in remove_reference().
5952			 */
5953			arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state);
5954			arc_access(hdr, hash_lock);
5955			arc_hdr_alloc_pabd(hdr, B_FALSE);
5956		}
5957		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5958		size = arc_hdr_size(hdr);
5959
5960		/*
5961		 * If compression is enabled on the hdr, then will do
5962		 * RAW I/O and will store the compressed data in the hdr's
5963		 * data block. Otherwise, the hdr's data block will contain
5964		 * the uncompressed data.
5965		 */
5966		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5967			zio_flags |= ZIO_FLAG_RAW;
5968		}
5969
5970		if (*arc_flags & ARC_FLAG_PREFETCH)
5971			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5972		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
5973			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5974
5975		if (*arc_flags & ARC_FLAG_L2CACHE)
5976			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5977		if (BP_GET_LEVEL(bp) > 0)
5978			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5979		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5980			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5981		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5982
5983		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5984		acb->acb_done = done;
5985		acb->acb_private = private;
5986		acb->acb_compressed = compressed_read;
5987
5988		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5989		hdr->b_l1hdr.b_acb = acb;
5990		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5991
5992		if (HDR_HAS_L2HDR(hdr) &&
5993		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5994			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5995			addr = hdr->b_l2hdr.b_daddr;
5996			/*
5997			 * Lock out L2ARC device removal.
5998			 */
5999			if (vdev_is_dead(vd) ||
6000			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6001				vd = NULL;
6002		}
6003
6004		/*
6005		 * We count both async reads and scrub IOs as asynchronous so
6006		 * that both can be upgraded in the event of a cache hit while
6007		 * the read IO is still in-flight.
6008		 */
6009		if (priority == ZIO_PRIORITY_ASYNC_READ ||
6010		    priority == ZIO_PRIORITY_SCRUB)
6011			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6012		else
6013			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6014
6015		/*
6016		 * At this point, we have a level 1 cache miss.  Try again in
6017		 * L2ARC if possible.
6018		 */
6019		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6020
6021		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
6022		    uint64_t, lsize, zbookmark_phys_t *, zb);
6023		ARCSTAT_BUMP(arcstat_misses);
6024		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6025		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6026		    data, metadata, misses);
6027#ifdef _KERNEL
6028#ifdef RACCT
6029		if (racct_enable) {
6030			PROC_LOCK(curproc);
6031			racct_add_force(curproc, RACCT_READBPS, size);
6032			racct_add_force(curproc, RACCT_READIOPS, 1);
6033			PROC_UNLOCK(curproc);
6034		}
6035#endif /* RACCT */
6036		curthread->td_ru.ru_inblock++;
6037#endif
6038
6039		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
6040			/*
6041			 * Read from the L2ARC if the following are true:
6042			 * 1. The L2ARC vdev was previously cached.
6043			 * 2. This buffer still has L2ARC metadata.
6044			 * 3. This buffer isn't currently writing to the L2ARC.
6045			 * 4. The L2ARC entry wasn't evicted, which may
6046			 *    also have invalidated the vdev.
6047			 * 5. This isn't prefetch and l2arc_noprefetch is set.
6048			 */
6049			if (HDR_HAS_L2HDR(hdr) &&
6050			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6051			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
6052				l2arc_read_callback_t *cb;
6053				abd_t *abd;
6054				uint64_t asize;
6055
6056				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6057				ARCSTAT_BUMP(arcstat_l2_hits);
6058				atomic_inc_32(&hdr->b_l2hdr.b_hits);
6059
6060				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6061				    KM_SLEEP);
6062				cb->l2rcb_hdr = hdr;
6063				cb->l2rcb_bp = *bp;
6064				cb->l2rcb_zb = *zb;
6065				cb->l2rcb_flags = zio_flags;
6066
6067				asize = vdev_psize_to_asize(vd, size);
6068				if (asize != size) {
6069					abd = abd_alloc_for_io(asize,
6070					    HDR_ISTYPE_METADATA(hdr));
6071					cb->l2rcb_abd = abd;
6072				} else {
6073					abd = hdr->b_l1hdr.b_pabd;
6074				}
6075
6076				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6077				    addr + asize <= vd->vdev_psize -
6078				    VDEV_LABEL_END_SIZE);
6079
6080				/*
6081				 * l2arc read.  The SCL_L2ARC lock will be
6082				 * released by l2arc_read_done().
6083				 * Issue a null zio if the underlying buffer
6084				 * was squashed to zero size by compression.
6085				 */
6086				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
6087				    ZIO_COMPRESS_EMPTY);
6088				rzio = zio_read_phys(pio, vd, addr,
6089				    asize, abd,
6090				    ZIO_CHECKSUM_OFF,
6091				    l2arc_read_done, cb, priority,
6092				    zio_flags | ZIO_FLAG_DONT_CACHE |
6093				    ZIO_FLAG_CANFAIL |
6094				    ZIO_FLAG_DONT_PROPAGATE |
6095				    ZIO_FLAG_DONT_RETRY, B_FALSE);
6096				acb->acb_zio_head = rzio;
6097
6098				if (hash_lock != NULL)
6099					mutex_exit(hash_lock);
6100
6101				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6102				    zio_t *, rzio);
6103				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
6104
6105				if (*arc_flags & ARC_FLAG_NOWAIT) {
6106					zio_nowait(rzio);
6107					return (0);
6108				}
6109
6110				ASSERT(*arc_flags & ARC_FLAG_WAIT);
6111				if (zio_wait(rzio) == 0)
6112					return (0);
6113
6114				/* l2arc read error; goto zio_read() */
6115				if (hash_lock != NULL)
6116					mutex_enter(hash_lock);
6117			} else {
6118				DTRACE_PROBE1(l2arc__miss,
6119				    arc_buf_hdr_t *, hdr);
6120				ARCSTAT_BUMP(arcstat_l2_misses);
6121				if (HDR_L2_WRITING(hdr))
6122					ARCSTAT_BUMP(arcstat_l2_rw_clash);
6123				spa_config_exit(spa, SCL_L2ARC, vd);
6124			}
6125		} else {
6126			if (vd != NULL)
6127				spa_config_exit(spa, SCL_L2ARC, vd);
6128			if (l2arc_ndev != 0) {
6129				DTRACE_PROBE1(l2arc__miss,
6130				    arc_buf_hdr_t *, hdr);
6131				ARCSTAT_BUMP(arcstat_l2_misses);
6132			}
6133		}
6134
6135		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
6136		    arc_read_done, hdr, priority, zio_flags, zb);
6137		acb->acb_zio_head = rzio;
6138
6139		if (hash_lock != NULL)
6140			mutex_exit(hash_lock);
6141
6142		if (*arc_flags & ARC_FLAG_WAIT)
6143			return (zio_wait(rzio));
6144
6145		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6146		zio_nowait(rzio);
6147	}
6148	return (0);
6149}
6150
6151arc_prune_t *
6152arc_add_prune_callback(arc_prune_func_t *func, void *private)
6153{
6154	arc_prune_t *p;
6155
6156	p = kmem_alloc(sizeof (*p), KM_SLEEP);
6157	p->p_pfunc = func;
6158	p->p_private = private;
6159	list_link_init(&p->p_node);
6160	zfs_refcount_create(&p->p_refcnt);
6161
6162	mutex_enter(&arc_prune_mtx);
6163	zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6164	list_insert_head(&arc_prune_list, p);
6165	mutex_exit(&arc_prune_mtx);
6166
6167	return (p);
6168}
6169
6170void
6171arc_remove_prune_callback(arc_prune_t *p)
6172{
6173	boolean_t wait = B_FALSE;
6174	mutex_enter(&arc_prune_mtx);
6175	list_remove(&arc_prune_list, p);
6176	if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6177		wait = B_TRUE;
6178	mutex_exit(&arc_prune_mtx);
6179
6180	/* wait for arc_prune_task to finish */
6181	if (wait)
6182		taskq_wait(arc_prune_taskq);
6183	ASSERT0(zfs_refcount_count(&p->p_refcnt));
6184	zfs_refcount_destroy(&p->p_refcnt);
6185	kmem_free(p, sizeof (*p));
6186}
6187
6188/*
6189 * Notify the arc that a block was freed, and thus will never be used again.
6190 */
6191void
6192arc_freed(spa_t *spa, const blkptr_t *bp)
6193{
6194	arc_buf_hdr_t *hdr;
6195	kmutex_t *hash_lock;
6196	uint64_t guid = spa_load_guid(spa);
6197
6198	ASSERT(!BP_IS_EMBEDDED(bp));
6199
6200	hdr = buf_hash_find(guid, bp, &hash_lock);
6201	if (hdr == NULL)
6202		return;
6203
6204	/*
6205	 * We might be trying to free a block that is still doing I/O
6206	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6207	 * dmu_sync-ed block). If this block is being prefetched, then it
6208	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6209	 * until the I/O completes. A block may also have a reference if it is
6210	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6211	 * have written the new block to its final resting place on disk but
6212	 * without the dedup flag set. This would have left the hdr in the MRU
6213	 * state and discoverable. When the txg finally syncs it detects that
6214	 * the block was overridden in open context and issues an override I/O.
6215	 * Since this is a dedup block, the override I/O will determine if the
6216	 * block is already in the DDT. If so, then it will replace the io_bp
6217	 * with the bp from the DDT and allow the I/O to finish. When the I/O
6218	 * reaches the done callback, dbuf_write_override_done, it will
6219	 * check to see if the io_bp and io_bp_override are identical.
6220	 * If they are not, then it indicates that the bp was replaced with
6221	 * the bp in the DDT and the override bp is freed. This allows
6222	 * us to arrive here with a reference on a block that is being
6223	 * freed. So if we have an I/O in progress, or a reference to
6224	 * this hdr, then we don't destroy the hdr.
6225	 */
6226	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6227	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6228		arc_change_state(arc_anon, hdr, hash_lock);
6229		arc_hdr_destroy(hdr);
6230		mutex_exit(hash_lock);
6231	} else {
6232		mutex_exit(hash_lock);
6233	}
6234
6235}
6236
6237/*
6238 * Release this buffer from the cache, making it an anonymous buffer.  This
6239 * must be done after a read and prior to modifying the buffer contents.
6240 * If the buffer has more than one reference, we must make
6241 * a new hdr for the buffer.
6242 */
6243void
6244arc_release(arc_buf_t *buf, void *tag)
6245{
6246	arc_buf_hdr_t *hdr = buf->b_hdr;
6247
6248	/*
6249	 * It would be nice to assert that if it's DMU metadata (level >
6250	 * 0 || it's the dnode file), then it must be syncing context.
6251	 * But we don't know that information at this level.
6252	 */
6253
6254	mutex_enter(&buf->b_evict_lock);
6255
6256	ASSERT(HDR_HAS_L1HDR(hdr));
6257
6258	/*
6259	 * We don't grab the hash lock prior to this check, because if
6260	 * the buffer's header is in the arc_anon state, it won't be
6261	 * linked into the hash table.
6262	 */
6263	if (hdr->b_l1hdr.b_state == arc_anon) {
6264		mutex_exit(&buf->b_evict_lock);
6265		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6266		ASSERT(!HDR_IN_HASH_TABLE(hdr));
6267		ASSERT(!HDR_HAS_L2HDR(hdr));
6268		ASSERT(HDR_EMPTY(hdr));
6269		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6270		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6271		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6272
6273		hdr->b_l1hdr.b_arc_access = 0;
6274
6275		/*
6276		 * If the buf is being overridden then it may already
6277		 * have a hdr that is not empty.
6278		 */
6279		buf_discard_identity(hdr);
6280		arc_buf_thaw(buf);
6281
6282		return;
6283	}
6284
6285	kmutex_t *hash_lock = HDR_LOCK(hdr);
6286	mutex_enter(hash_lock);
6287
6288	/*
6289	 * This assignment is only valid as long as the hash_lock is
6290	 * held, we must be careful not to reference state or the
6291	 * b_state field after dropping the lock.
6292	 */
6293	arc_state_t *state = hdr->b_l1hdr.b_state;
6294	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6295	ASSERT3P(state, !=, arc_anon);
6296
6297	/* this buffer is not on any list */
6298	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6299
6300	if (HDR_HAS_L2HDR(hdr)) {
6301		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6302
6303		/*
6304		 * We have to recheck this conditional again now that
6305		 * we're holding the l2ad_mtx to prevent a race with
6306		 * another thread which might be concurrently calling
6307		 * l2arc_evict(). In that case, l2arc_evict() might have
6308		 * destroyed the header's L2 portion as we were waiting
6309		 * to acquire the l2ad_mtx.
6310		 */
6311		if (HDR_HAS_L2HDR(hdr)) {
6312			l2arc_trim(hdr);
6313			arc_hdr_l2hdr_destroy(hdr);
6314		}
6315
6316		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6317	}
6318
6319	/*
6320	 * Do we have more than one buf?
6321	 */
6322	if (hdr->b_l1hdr.b_bufcnt > 1) {
6323		arc_buf_hdr_t *nhdr;
6324		uint64_t spa = hdr->b_spa;
6325		uint64_t psize = HDR_GET_PSIZE(hdr);
6326		uint64_t lsize = HDR_GET_LSIZE(hdr);
6327		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
6328		arc_buf_contents_t type = arc_buf_type(hdr);
6329		VERIFY3U(hdr->b_type, ==, type);
6330
6331		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6332		(void) remove_reference(hdr, hash_lock, tag);
6333
6334		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6335			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6336			ASSERT(ARC_BUF_LAST(buf));
6337		}
6338
6339		/*
6340		 * Pull the data off of this hdr and attach it to
6341		 * a new anonymous hdr. Also find the last buffer
6342		 * in the hdr's buffer list.
6343		 */
6344		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6345		ASSERT3P(lastbuf, !=, NULL);
6346
6347		/*
6348		 * If the current arc_buf_t and the hdr are sharing their data
6349		 * buffer, then we must stop sharing that block.
6350		 */
6351		if (arc_buf_is_shared(buf)) {
6352			VERIFY(!arc_buf_is_shared(lastbuf));
6353
6354			/*
6355			 * First, sever the block sharing relationship between
6356			 * buf and the arc_buf_hdr_t.
6357			 */
6358			arc_unshare_buf(hdr, buf);
6359
6360			/*
6361			 * Now we need to recreate the hdr's b_pabd. Since we
6362			 * have lastbuf handy, we try to share with it, but if
6363			 * we can't then we allocate a new b_pabd and copy the
6364			 * data from buf into it.
6365			 */
6366			if (arc_can_share(hdr, lastbuf)) {
6367				arc_share_buf(hdr, lastbuf);
6368			} else {
6369				arc_hdr_alloc_pabd(hdr, B_TRUE);
6370				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6371				    buf->b_data, psize);
6372			}
6373			VERIFY3P(lastbuf->b_data, !=, NULL);
6374		} else if (HDR_SHARED_DATA(hdr)) {
6375			/*
6376			 * Uncompressed shared buffers are always at the end
6377			 * of the list. Compressed buffers don't have the
6378			 * same requirements. This makes it hard to
6379			 * simply assert that the lastbuf is shared so
6380			 * we rely on the hdr's compression flags to determine
6381			 * if we have a compressed, shared buffer.
6382			 */
6383			ASSERT(arc_buf_is_shared(lastbuf) ||
6384			    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
6385			ASSERT(!ARC_BUF_SHARED(buf));
6386		}
6387		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6388		ASSERT3P(state, !=, arc_l2c_only);
6389
6390		(void) zfs_refcount_remove_many(&state->arcs_size,
6391		    arc_buf_size(buf), buf);
6392
6393		if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6394			ASSERT3P(state, !=, arc_l2c_only);
6395			(void) zfs_refcount_remove_many(
6396			    &state->arcs_esize[type],
6397			    arc_buf_size(buf), buf);
6398		}
6399
6400		hdr->b_l1hdr.b_bufcnt -= 1;
6401		arc_cksum_verify(buf);
6402#ifdef illumos
6403		arc_buf_unwatch(buf);
6404#endif
6405
6406		mutex_exit(hash_lock);
6407
6408		/*
6409		 * Allocate a new hdr. The new hdr will contain a b_pabd
6410		 * buffer which will be freed in arc_write().
6411		 */
6412		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
6413		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6414		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6415		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6416		VERIFY3U(nhdr->b_type, ==, type);
6417		ASSERT(!HDR_SHARED_DATA(nhdr));
6418
6419		nhdr->b_l1hdr.b_buf = buf;
6420		nhdr->b_l1hdr.b_bufcnt = 1;
6421		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6422		buf->b_hdr = nhdr;
6423
6424		mutex_exit(&buf->b_evict_lock);
6425		(void) zfs_refcount_add_many(&arc_anon->arcs_size,
6426		    arc_buf_size(buf), buf);
6427	} else {
6428		mutex_exit(&buf->b_evict_lock);
6429		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6430		/* protected by hash lock, or hdr is on arc_anon */
6431		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6432		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6433		arc_change_state(arc_anon, hdr, hash_lock);
6434		hdr->b_l1hdr.b_arc_access = 0;
6435		mutex_exit(hash_lock);
6436
6437		buf_discard_identity(hdr);
6438		arc_buf_thaw(buf);
6439	}
6440}
6441
6442int
6443arc_released(arc_buf_t *buf)
6444{
6445	int released;
6446
6447	mutex_enter(&buf->b_evict_lock);
6448	released = (buf->b_data != NULL &&
6449	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6450	mutex_exit(&buf->b_evict_lock);
6451	return (released);
6452}
6453
6454#ifdef ZFS_DEBUG
6455int
6456arc_referenced(arc_buf_t *buf)
6457{
6458	int referenced;
6459
6460	mutex_enter(&buf->b_evict_lock);
6461	referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6462	mutex_exit(&buf->b_evict_lock);
6463	return (referenced);
6464}
6465#endif
6466
6467static void
6468arc_write_ready(zio_t *zio)
6469{
6470	arc_write_callback_t *callback = zio->io_private;
6471	arc_buf_t *buf = callback->awcb_buf;
6472	arc_buf_hdr_t *hdr = buf->b_hdr;
6473	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
6474
6475	ASSERT(HDR_HAS_L1HDR(hdr));
6476	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6477	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6478
6479	/*
6480	 * If we're reexecuting this zio because the pool suspended, then
6481	 * cleanup any state that was previously set the first time the
6482	 * callback was invoked.
6483	 */
6484	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6485		arc_cksum_free(hdr);
6486#ifdef illumos
6487		arc_buf_unwatch(buf);
6488#endif
6489		if (hdr->b_l1hdr.b_pabd != NULL) {
6490			if (arc_buf_is_shared(buf)) {
6491				arc_unshare_buf(hdr, buf);
6492			} else {
6493				arc_hdr_free_pabd(hdr);
6494			}
6495		}
6496	}
6497	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6498	ASSERT(!HDR_SHARED_DATA(hdr));
6499	ASSERT(!arc_buf_is_shared(buf));
6500
6501	callback->awcb_ready(zio, buf, callback->awcb_private);
6502
6503	if (HDR_IO_IN_PROGRESS(hdr))
6504		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6505
6506	arc_cksum_compute(buf);
6507	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6508
6509	enum zio_compress compress;
6510	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6511		compress = ZIO_COMPRESS_OFF;
6512	} else {
6513		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
6514		compress = BP_GET_COMPRESS(zio->io_bp);
6515	}
6516	HDR_SET_PSIZE(hdr, psize);
6517	arc_hdr_set_compress(hdr, compress);
6518
6519
6520	/*
6521	 * Fill the hdr with data. If the hdr is compressed, the data we want
6522	 * is available from the zio, otherwise we can take it from the buf.
6523	 *
6524	 * We might be able to share the buf's data with the hdr here. However,
6525	 * doing so would cause the ARC to be full of linear ABDs if we write a
6526	 * lot of shareable data. As a compromise, we check whether scattered
6527	 * ABDs are allowed, and assume that if they are then the user wants
6528	 * the ARC to be primarily filled with them regardless of the data being
6529	 * written. Therefore, if they're allowed then we allocate one and copy
6530	 * the data into it; otherwise, we share the data directly if we can.
6531	 */
6532	if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6533		arc_hdr_alloc_pabd(hdr, B_TRUE);
6534
6535		/*
6536		 * Ideally, we would always copy the io_abd into b_pabd, but the
6537		 * user may have disabled compressed ARC, thus we must check the
6538		 * hdr's compression setting rather than the io_bp's.
6539		 */
6540		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
6541			ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
6542			    ZIO_COMPRESS_OFF);
6543			ASSERT3U(psize, >, 0);
6544
6545			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6546		} else {
6547			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6548
6549			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6550			    arc_buf_size(buf));
6551		}
6552	} else {
6553		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6554		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6555		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6556
6557		arc_share_buf(hdr, buf);
6558	}
6559
6560	arc_hdr_verify(hdr, zio->io_bp);
6561}
6562
6563static void
6564arc_write_children_ready(zio_t *zio)
6565{
6566	arc_write_callback_t *callback = zio->io_private;
6567	arc_buf_t *buf = callback->awcb_buf;
6568
6569	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6570}
6571
6572/*
6573 * The SPA calls this callback for each physical write that happens on behalf
6574 * of a logical write.  See the comment in dbuf_write_physdone() for details.
6575 */
6576static void
6577arc_write_physdone(zio_t *zio)
6578{
6579	arc_write_callback_t *cb = zio->io_private;
6580	if (cb->awcb_physdone != NULL)
6581		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6582}
6583
6584static void
6585arc_write_done(zio_t *zio)
6586{
6587	arc_write_callback_t *callback = zio->io_private;
6588	arc_buf_t *buf = callback->awcb_buf;
6589	arc_buf_hdr_t *hdr = buf->b_hdr;
6590
6591	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6592
6593	if (zio->io_error == 0) {
6594		arc_hdr_verify(hdr, zio->io_bp);
6595
6596		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6597			buf_discard_identity(hdr);
6598		} else {
6599			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6600			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6601		}
6602	} else {
6603		ASSERT(HDR_EMPTY(hdr));
6604	}
6605
6606	/*
6607	 * If the block to be written was all-zero or compressed enough to be
6608	 * embedded in the BP, no write was performed so there will be no
6609	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6610	 * (and uncached).
6611	 */
6612	if (!HDR_EMPTY(hdr)) {
6613		arc_buf_hdr_t *exists;
6614		kmutex_t *hash_lock;
6615
6616		ASSERT3U(zio->io_error, ==, 0);
6617
6618		arc_cksum_verify(buf);
6619
6620		exists = buf_hash_insert(hdr, &hash_lock);
6621		if (exists != NULL) {
6622			/*
6623			 * This can only happen if we overwrite for
6624			 * sync-to-convergence, because we remove
6625			 * buffers from the hash table when we arc_free().
6626			 */
6627			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6628				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6629					panic("bad overwrite, hdr=%p exists=%p",
6630					    (void *)hdr, (void *)exists);
6631				ASSERT(zfs_refcount_is_zero(
6632				    &exists->b_l1hdr.b_refcnt));
6633				arc_change_state(arc_anon, exists, hash_lock);
6634				mutex_exit(hash_lock);
6635				arc_hdr_destroy(exists);
6636				exists = buf_hash_insert(hdr, &hash_lock);
6637				ASSERT3P(exists, ==, NULL);
6638			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6639				/* nopwrite */
6640				ASSERT(zio->io_prop.zp_nopwrite);
6641				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6642					panic("bad nopwrite, hdr=%p exists=%p",
6643					    (void *)hdr, (void *)exists);
6644			} else {
6645				/* Dedup */
6646				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6647				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6648				ASSERT(BP_GET_DEDUP(zio->io_bp));
6649				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6650			}
6651		}
6652		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6653		/* if it's not anon, we are doing a scrub */
6654		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6655			arc_access(hdr, hash_lock);
6656		mutex_exit(hash_lock);
6657	} else {
6658		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6659	}
6660
6661	ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6662	callback->awcb_done(zio, buf, callback->awcb_private);
6663
6664	abd_put(zio->io_abd);
6665	kmem_free(callback, sizeof (arc_write_callback_t));
6666}
6667
6668zio_t *
6669arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
6670    boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready,
6671    arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6672    arc_write_done_func_t *done, void *private, zio_priority_t priority,
6673    int zio_flags, const zbookmark_phys_t *zb)
6674{
6675	arc_buf_hdr_t *hdr = buf->b_hdr;
6676	arc_write_callback_t *callback;
6677	zio_t *zio;
6678	zio_prop_t localprop = *zp;
6679
6680	ASSERT3P(ready, !=, NULL);
6681	ASSERT3P(done, !=, NULL);
6682	ASSERT(!HDR_IO_ERROR(hdr));
6683	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6684	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6685	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6686	if (l2arc)
6687		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6688	if (ARC_BUF_COMPRESSED(buf)) {
6689		/*
6690		 * We're writing a pre-compressed buffer.  Make the
6691		 * compression algorithm requested by the zio_prop_t match
6692		 * the pre-compressed buffer's compression algorithm.
6693		 */
6694		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6695
6696		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6697		zio_flags |= ZIO_FLAG_RAW;
6698	}
6699	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6700	callback->awcb_ready = ready;
6701	callback->awcb_children_ready = children_ready;
6702	callback->awcb_physdone = physdone;
6703	callback->awcb_done = done;
6704	callback->awcb_private = private;
6705	callback->awcb_buf = buf;
6706
6707	/*
6708	 * The hdr's b_pabd is now stale, free it now. A new data block
6709	 * will be allocated when the zio pipeline calls arc_write_ready().
6710	 */
6711	if (hdr->b_l1hdr.b_pabd != NULL) {
6712		/*
6713		 * If the buf is currently sharing the data block with
6714		 * the hdr then we need to break that relationship here.
6715		 * The hdr will remain with a NULL data pointer and the
6716		 * buf will take sole ownership of the block.
6717		 */
6718		if (arc_buf_is_shared(buf)) {
6719			arc_unshare_buf(hdr, buf);
6720		} else {
6721			arc_hdr_free_pabd(hdr);
6722		}
6723		VERIFY3P(buf->b_data, !=, NULL);
6724		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6725	}
6726	ASSERT(!arc_buf_is_shared(buf));
6727	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6728
6729	zio = zio_write(pio, spa, txg, bp,
6730	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6731	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6732	    (children_ready != NULL) ? arc_write_children_ready : NULL,
6733	    arc_write_physdone, arc_write_done, callback,
6734	    priority, zio_flags, zb);
6735
6736	return (zio);
6737}
6738
6739static int
6740arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
6741{
6742#ifdef _KERNEL
6743	uint64_t available_memory = ptob(freemem);
6744
6745#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
6746	available_memory = MIN(available_memory, uma_avail());
6747#endif
6748
6749	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
6750		return (0);
6751
6752	if (txg > spa->spa_lowmem_last_txg) {
6753		spa->spa_lowmem_last_txg = txg;
6754		spa->spa_lowmem_page_load = 0;
6755	}
6756	/*
6757	 * If we are in pageout, we know that memory is already tight,
6758	 * the arc is already going to be evicting, so we just want to
6759	 * continue to let page writes occur as quickly as possible.
6760	 */
6761	if (curproc == pageproc) {
6762		if (spa->spa_lowmem_page_load >
6763		    MAX(ptob(minfree), available_memory) / 4)
6764			return (SET_ERROR(ERESTART));
6765		/* Note: reserve is inflated, so we deflate */
6766		atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
6767		return (0);
6768	} else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
6769		/* memory is low, delay before restarting */
6770		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6771		return (SET_ERROR(EAGAIN));
6772	}
6773	spa->spa_lowmem_page_load = 0;
6774#endif /* _KERNEL */
6775	return (0);
6776}
6777
6778void
6779arc_tempreserve_clear(uint64_t reserve)
6780{
6781	atomic_add_64(&arc_tempreserve, -reserve);
6782	ASSERT((int64_t)arc_tempreserve >= 0);
6783}
6784
6785int
6786arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6787{
6788	int error;
6789	uint64_t anon_size;
6790
6791	if (reserve > arc_c/4 && !arc_no_grow) {
6792		arc_c = MIN(arc_c_max, reserve * 4);
6793		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
6794	}
6795	if (reserve > arc_c)
6796		return (SET_ERROR(ENOMEM));
6797
6798	/*
6799	 * Don't count loaned bufs as in flight dirty data to prevent long
6800	 * network delays from blocking transactions that are ready to be
6801	 * assigned to a txg.
6802	 */
6803
6804	/* assert that it has not wrapped around */
6805	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6806
6807	anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
6808	    arc_loaned_bytes), 0);
6809
6810	/*
6811	 * Writes will, almost always, require additional memory allocations
6812	 * in order to compress/encrypt/etc the data.  We therefore need to
6813	 * make sure that there is sufficient available memory for this.
6814	 */
6815	error = arc_memory_throttle(spa, reserve, txg);
6816	if (error != 0)
6817		return (error);
6818
6819	/*
6820	 * Throttle writes when the amount of dirty data in the cache
6821	 * gets too large.  We try to keep the cache less than half full
6822	 * of dirty blocks so that our sync times don't grow too large.
6823	 *
6824	 * In the case of one pool being built on another pool, we want
6825	 * to make sure we don't end up throttling the lower (backing)
6826	 * pool when the upper pool is the majority contributor to dirty
6827	 * data. To insure we make forward progress during throttling, we
6828	 * also check the current pool's net dirty data and only throttle
6829	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6830	 * data in the cache.
6831	 *
6832	 * Note: if two requests come in concurrently, we might let them
6833	 * both succeed, when one of them should fail.  Not a huge deal.
6834	 */
6835	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
6836	uint64_t spa_dirty_anon = spa_dirty_data(spa);
6837
6838	if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
6839	    anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
6840	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
6841		uint64_t meta_esize =
6842		    zfs_refcount_count(
6843		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6844		uint64_t data_esize =
6845		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6846		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6847		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6848		    arc_tempreserve >> 10, meta_esize >> 10,
6849		    data_esize >> 10, reserve >> 10, arc_c >> 10);
6850		return (SET_ERROR(ERESTART));
6851	}
6852	atomic_add_64(&arc_tempreserve, reserve);
6853	return (0);
6854}
6855
6856static void
6857arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6858    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6859{
6860	size->value.ui64 = zfs_refcount_count(&state->arcs_size);
6861	evict_data->value.ui64 =
6862	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6863	evict_metadata->value.ui64 =
6864	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6865}
6866
6867static int
6868arc_kstat_update(kstat_t *ksp, int rw)
6869{
6870	arc_stats_t *as = ksp->ks_data;
6871
6872	if (rw == KSTAT_WRITE) {
6873		return (EACCES);
6874	} else {
6875		arc_kstat_update_state(arc_anon,
6876		    &as->arcstat_anon_size,
6877		    &as->arcstat_anon_evictable_data,
6878		    &as->arcstat_anon_evictable_metadata);
6879		arc_kstat_update_state(arc_mru,
6880		    &as->arcstat_mru_size,
6881		    &as->arcstat_mru_evictable_data,
6882		    &as->arcstat_mru_evictable_metadata);
6883		arc_kstat_update_state(arc_mru_ghost,
6884		    &as->arcstat_mru_ghost_size,
6885		    &as->arcstat_mru_ghost_evictable_data,
6886		    &as->arcstat_mru_ghost_evictable_metadata);
6887		arc_kstat_update_state(arc_mfu,
6888		    &as->arcstat_mfu_size,
6889		    &as->arcstat_mfu_evictable_data,
6890		    &as->arcstat_mfu_evictable_metadata);
6891		arc_kstat_update_state(arc_mfu_ghost,
6892		    &as->arcstat_mfu_ghost_size,
6893		    &as->arcstat_mfu_ghost_evictable_data,
6894		    &as->arcstat_mfu_ghost_evictable_metadata);
6895
6896		ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
6897		ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
6898		ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
6899		ARCSTAT(arcstat_metadata_size) =
6900		    aggsum_value(&astat_metadata_size);
6901		ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
6902		ARCSTAT(arcstat_bonus_size) = aggsum_value(&astat_bonus_size);
6903		ARCSTAT(arcstat_dnode_size) = aggsum_value(&astat_dnode_size);
6904		ARCSTAT(arcstat_dbuf_size) = aggsum_value(&astat_dbuf_size);
6905#if defined(__FreeBSD__) && defined(COMPAT_FREEBSD11)
6906		ARCSTAT(arcstat_other_size) = aggsum_value(&astat_bonus_size) +
6907		    aggsum_value(&astat_dnode_size) +
6908		    aggsum_value(&astat_dbuf_size);
6909#endif
6910		ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
6911	}
6912
6913	return (0);
6914}
6915
6916/*
6917 * This function *must* return indices evenly distributed between all
6918 * sublists of the multilist. This is needed due to how the ARC eviction
6919 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6920 * distributed between all sublists and uses this assumption when
6921 * deciding which sublist to evict from and how much to evict from it.
6922 */
6923unsigned int
6924arc_state_multilist_index_func(multilist_t *ml, void *obj)
6925{
6926	arc_buf_hdr_t *hdr = obj;
6927
6928	/*
6929	 * We rely on b_dva to generate evenly distributed index
6930	 * numbers using buf_hash below. So, as an added precaution,
6931	 * let's make sure we never add empty buffers to the arc lists.
6932	 */
6933	ASSERT(!HDR_EMPTY(hdr));
6934
6935	/*
6936	 * The assumption here, is the hash value for a given
6937	 * arc_buf_hdr_t will remain constant throughout it's lifetime
6938	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
6939	 * Thus, we don't need to store the header's sublist index
6940	 * on insertion, as this index can be recalculated on removal.
6941	 *
6942	 * Also, the low order bits of the hash value are thought to be
6943	 * distributed evenly. Otherwise, in the case that the multilist
6944	 * has a power of two number of sublists, each sublists' usage
6945	 * would not be evenly distributed.
6946	 */
6947	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6948	    multilist_get_num_sublists(ml));
6949}
6950
6951#ifdef _KERNEL
6952static eventhandler_tag arc_event_lowmem = NULL;
6953
6954static void
6955arc_lowmem(void *arg __unused, int howto __unused)
6956{
6957	int64_t free_memory, to_free;
6958
6959	arc_no_grow = B_TRUE;
6960	arc_warm = B_TRUE;
6961	arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
6962	free_memory = arc_available_memory();
6963	to_free = (arc_c >> arc_shrink_shift) - MIN(free_memory, 0);
6964	DTRACE_PROBE2(arc__needfree, int64_t, free_memory, int64_t, to_free);
6965	arc_reduce_target_size(to_free);
6966
6967	mutex_enter(&arc_adjust_lock);
6968	arc_adjust_needed = B_TRUE;
6969	zthr_wakeup(arc_adjust_zthr);
6970
6971	/*
6972	 * It is unsafe to block here in arbitrary threads, because we can come
6973	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
6974	 * with ARC reclaim thread.
6975	 */
6976	if (curproc == pageproc)
6977		(void) cv_wait(&arc_adjust_waiters_cv, &arc_adjust_lock);
6978	mutex_exit(&arc_adjust_lock);
6979}
6980#endif
6981
6982static void
6983arc_state_init(void)
6984{
6985	arc_anon = &ARC_anon;
6986	arc_mru = &ARC_mru;
6987	arc_mru_ghost = &ARC_mru_ghost;
6988	arc_mfu = &ARC_mfu;
6989	arc_mfu_ghost = &ARC_mfu_ghost;
6990	arc_l2c_only = &ARC_l2c_only;
6991
6992	arc_mru->arcs_list[ARC_BUFC_METADATA] =
6993	    multilist_create(sizeof (arc_buf_hdr_t),
6994	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6995	    arc_state_multilist_index_func);
6996	arc_mru->arcs_list[ARC_BUFC_DATA] =
6997	    multilist_create(sizeof (arc_buf_hdr_t),
6998	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6999	    arc_state_multilist_index_func);
7000	arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
7001	    multilist_create(sizeof (arc_buf_hdr_t),
7002	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7003	    arc_state_multilist_index_func);
7004	arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
7005	    multilist_create(sizeof (arc_buf_hdr_t),
7006	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7007	    arc_state_multilist_index_func);
7008	arc_mfu->arcs_list[ARC_BUFC_METADATA] =
7009	    multilist_create(sizeof (arc_buf_hdr_t),
7010	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7011	    arc_state_multilist_index_func);
7012	arc_mfu->arcs_list[ARC_BUFC_DATA] =
7013	    multilist_create(sizeof (arc_buf_hdr_t),
7014	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7015	    arc_state_multilist_index_func);
7016	arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7017	    multilist_create(sizeof (arc_buf_hdr_t),
7018	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7019	    arc_state_multilist_index_func);
7020	arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7021	    multilist_create(sizeof (arc_buf_hdr_t),
7022	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7023	    arc_state_multilist_index_func);
7024	arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7025	    multilist_create(sizeof (arc_buf_hdr_t),
7026	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7027	    arc_state_multilist_index_func);
7028	arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7029	    multilist_create(sizeof (arc_buf_hdr_t),
7030	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7031	    arc_state_multilist_index_func);
7032
7033	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7034	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7035	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7036	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7037	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7038	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7039	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7040	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7041	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7042	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7043	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7044	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7045
7046	zfs_refcount_create(&arc_anon->arcs_size);
7047	zfs_refcount_create(&arc_mru->arcs_size);
7048	zfs_refcount_create(&arc_mru_ghost->arcs_size);
7049	zfs_refcount_create(&arc_mfu->arcs_size);
7050	zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7051	zfs_refcount_create(&arc_l2c_only->arcs_size);
7052
7053	aggsum_init(&arc_meta_used, 0);
7054	aggsum_init(&arc_size, 0);
7055	aggsum_init(&astat_data_size, 0);
7056	aggsum_init(&astat_metadata_size, 0);
7057	aggsum_init(&astat_hdr_size, 0);
7058	aggsum_init(&astat_bonus_size, 0);
7059	aggsum_init(&astat_dnode_size, 0);
7060	aggsum_init(&astat_dbuf_size, 0);
7061	aggsum_init(&astat_l2_hdr_size, 0);
7062}
7063
7064static void
7065arc_state_fini(void)
7066{
7067	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7068	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7069	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7070	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7071	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7072	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7073	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7074	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7075	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7076	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7077	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7078	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7079
7080	zfs_refcount_destroy(&arc_anon->arcs_size);
7081	zfs_refcount_destroy(&arc_mru->arcs_size);
7082	zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7083	zfs_refcount_destroy(&arc_mfu->arcs_size);
7084	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7085	zfs_refcount_destroy(&arc_l2c_only->arcs_size);
7086
7087	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7088	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7089	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7090	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7091	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7092	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7093	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7094	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7095
7096	aggsum_fini(&arc_meta_used);
7097	aggsum_fini(&arc_size);
7098	aggsum_fini(&astat_data_size);
7099	aggsum_fini(&astat_metadata_size);
7100	aggsum_fini(&astat_hdr_size);
7101	aggsum_fini(&astat_bonus_size);
7102	aggsum_fini(&astat_dnode_size);
7103	aggsum_fini(&astat_dbuf_size);
7104	aggsum_fini(&astat_l2_hdr_size);
7105}
7106
7107uint64_t
7108arc_max_bytes(void)
7109{
7110	return (arc_c_max);
7111}
7112
7113void
7114arc_init(void)
7115{
7116	int i, prefetch_tunable_set = 0;
7117
7118	/*
7119	 * allmem is "all memory that we could possibly use".
7120	 */
7121#ifdef illumos
7122#ifdef _KERNEL
7123	uint64_t allmem = ptob(physmem - swapfs_minfree);
7124#else
7125	uint64_t allmem = (physmem * PAGESIZE) / 2;
7126#endif
7127#else
7128	uint64_t allmem = kmem_size();
7129#endif
7130	mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
7131	cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
7132
7133	mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
7134	cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL);
7135
7136	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
7137	arc_c_min = MAX(allmem / 32, arc_abs_min);
7138	/* set max to 5/8 of all memory, or all but 1GB, whichever is more */
7139	if (allmem >= 1 << 30)
7140		arc_c_max = allmem - (1 << 30);
7141	else
7142		arc_c_max = arc_c_min;
7143	arc_c_max = MAX(allmem * 5 / 8, arc_c_max);
7144
7145	/*
7146	 * In userland, there's only the memory pressure that we artificially
7147	 * create (see arc_available_memory()).  Don't let arc_c get too
7148	 * small, because it can cause transactions to be larger than
7149	 * arc_c, causing arc_tempreserve_space() to fail.
7150	 */
7151#ifndef _KERNEL
7152	arc_c_min = arc_c_max / 2;
7153#endif
7154
7155#ifdef _KERNEL
7156	/*
7157	 * Allow the tunables to override our calculations if they are
7158	 * reasonable.
7159	 */
7160	if (zfs_arc_max > arc_abs_min && zfs_arc_max < allmem) {
7161		arc_c_max = zfs_arc_max;
7162		arc_c_min = MIN(arc_c_min, arc_c_max);
7163	}
7164	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
7165		arc_c_min = zfs_arc_min;
7166#endif
7167
7168	arc_c = arc_c_max;
7169	arc_p = (arc_c >> 1);
7170
7171	/* limit meta-data to 1/4 of the arc capacity */
7172	arc_meta_limit = arc_c_max / 4;
7173
7174#ifdef _KERNEL
7175	/*
7176	 * Metadata is stored in the kernel's heap.  Don't let us
7177	 * use more than half the heap for the ARC.
7178	 */
7179#ifdef __FreeBSD__
7180	arc_meta_limit = MIN(arc_meta_limit, uma_limit() / 2);
7181	arc_dnode_limit = arc_meta_limit / 10;
7182#else
7183	arc_meta_limit = MIN(arc_meta_limit,
7184	    vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
7185#endif
7186#endif
7187
7188	/* Allow the tunable to override if it is reasonable */
7189	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
7190		arc_meta_limit = zfs_arc_meta_limit;
7191
7192	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
7193		arc_c_min = arc_meta_limit / 2;
7194
7195	if (zfs_arc_meta_min > 0) {
7196		arc_meta_min = zfs_arc_meta_min;
7197	} else {
7198		arc_meta_min = arc_c_min / 2;
7199	}
7200
7201	/* Valid range: <arc_meta_min> - <arc_c_max> */
7202	if ((zfs_arc_dnode_limit) && (zfs_arc_dnode_limit != arc_dnode_limit) &&
7203	    (zfs_arc_dnode_limit >= zfs_arc_meta_min) &&
7204	    (zfs_arc_dnode_limit <= arc_c_max))
7205		arc_dnode_limit = zfs_arc_dnode_limit;
7206
7207	if (zfs_arc_grow_retry > 0)
7208		arc_grow_retry = zfs_arc_grow_retry;
7209
7210	if (zfs_arc_shrink_shift > 0)
7211		arc_shrink_shift = zfs_arc_shrink_shift;
7212
7213	if (zfs_arc_no_grow_shift > 0)
7214		arc_no_grow_shift = zfs_arc_no_grow_shift;
7215	/*
7216	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
7217	 */
7218	if (arc_no_grow_shift >= arc_shrink_shift)
7219		arc_no_grow_shift = arc_shrink_shift - 1;
7220
7221	if (zfs_arc_p_min_shift > 0)
7222		arc_p_min_shift = zfs_arc_p_min_shift;
7223
7224	/* if kmem_flags are set, lets try to use less memory */
7225	if (kmem_debugging())
7226		arc_c = arc_c / 2;
7227	if (arc_c < arc_c_min)
7228		arc_c = arc_c_min;
7229
7230	zfs_arc_min = arc_c_min;
7231	zfs_arc_max = arc_c_max;
7232
7233	arc_state_init();
7234
7235	/*
7236	 * The arc must be "uninitialized", so that hdr_recl() (which is
7237	 * registered by buf_init()) will not access arc_reap_zthr before
7238	 * it is created.
7239	 */
7240	ASSERT(!arc_initialized);
7241	buf_init();
7242
7243	list_create(&arc_prune_list, sizeof (arc_prune_t),
7244	    offsetof(arc_prune_t, p_node));
7245	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7246
7247	arc_prune_taskq = taskq_create("arc_prune", max_ncpus, minclsyspri,
7248	    max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7249
7250	arc_dnlc_evicts_thread_exit = FALSE;
7251
7252	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7253	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7254
7255	if (arc_ksp != NULL) {
7256		arc_ksp->ks_data = &arc_stats;
7257		arc_ksp->ks_update = arc_kstat_update;
7258		kstat_install(arc_ksp);
7259	}
7260
7261	arc_adjust_zthr = zthr_create_timer(arc_adjust_cb_check,
7262	    arc_adjust_cb, NULL, SEC2NSEC(1));
7263	arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
7264	    arc_reap_cb, NULL, SEC2NSEC(1));
7265
7266#ifdef _KERNEL
7267	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
7268	    EVENTHANDLER_PRI_FIRST);
7269#endif
7270
7271	(void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0,
7272	    TS_RUN, minclsyspri);
7273
7274	arc_initialized = B_TRUE;
7275	arc_warm = B_FALSE;
7276
7277	/*
7278	 * Calculate maximum amount of dirty data per pool.
7279	 *
7280	 * If it has been set by /etc/system, take that.
7281	 * Otherwise, use a percentage of physical memory defined by
7282	 * zfs_dirty_data_max_percent (default 10%) with a cap at
7283	 * zfs_dirty_data_max_max (default 4GB).
7284	 */
7285	if (zfs_dirty_data_max == 0) {
7286		zfs_dirty_data_max = ptob(physmem) *
7287		    zfs_dirty_data_max_percent / 100;
7288		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7289		    zfs_dirty_data_max_max);
7290	}
7291
7292#ifdef _KERNEL
7293	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
7294		prefetch_tunable_set = 1;
7295
7296#ifdef __i386__
7297	if (prefetch_tunable_set == 0) {
7298		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
7299		    "-- to enable,\n");
7300		printf("            add \"vfs.zfs.prefetch_disable=0\" "
7301		    "to /boot/loader.conf.\n");
7302		zfs_prefetch_disable = 1;
7303	}
7304#else
7305	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
7306	    prefetch_tunable_set == 0) {
7307		printf("ZFS NOTICE: Prefetch is disabled by default if less "
7308		    "than 4GB of RAM is present;\n"
7309		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
7310		    "to /boot/loader.conf.\n");
7311		zfs_prefetch_disable = 1;
7312	}
7313#endif
7314	/* Warn about ZFS memory and address space requirements. */
7315	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
7316		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
7317		    "expect unstable behavior.\n");
7318	}
7319	if (allmem < 512 * (1 << 20)) {
7320		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
7321		    "expect unstable behavior.\n");
7322		printf("             Consider tuning vm.kmem_size and "
7323		    "vm.kmem_size_max\n");
7324		printf("             in /boot/loader.conf.\n");
7325	}
7326#endif
7327}
7328
7329void
7330arc_fini(void)
7331{
7332	arc_prune_t *p;
7333
7334#ifdef _KERNEL
7335	if (arc_event_lowmem != NULL)
7336		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
7337#endif
7338
7339	/* Use B_TRUE to ensure *all* buffers are evicted */
7340	arc_flush(NULL, B_TRUE);
7341
7342	mutex_enter(&arc_dnlc_evicts_lock);
7343	arc_dnlc_evicts_thread_exit = TRUE;
7344	/*
7345	 * The user evicts thread will set arc_user_evicts_thread_exit
7346	 * to FALSE when it is finished exiting; we're waiting for that.
7347	 */
7348	while (arc_dnlc_evicts_thread_exit) {
7349		cv_signal(&arc_dnlc_evicts_cv);
7350		cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
7351	}
7352	mutex_exit(&arc_dnlc_evicts_lock);
7353
7354	arc_initialized = B_FALSE;
7355
7356	if (arc_ksp != NULL) {
7357		kstat_delete(arc_ksp);
7358		arc_ksp = NULL;
7359	}
7360
7361	taskq_wait(arc_prune_taskq);
7362	taskq_destroy(arc_prune_taskq);
7363
7364	mutex_enter(&arc_prune_mtx);
7365	while ((p = list_head(&arc_prune_list)) != NULL) {
7366		list_remove(&arc_prune_list, p);
7367		zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
7368		zfs_refcount_destroy(&p->p_refcnt);
7369		kmem_free(p, sizeof (*p));
7370	}
7371	mutex_exit(&arc_prune_mtx);
7372
7373	list_destroy(&arc_prune_list);
7374	mutex_destroy(&arc_prune_mtx);
7375
7376	(void) zthr_cancel(arc_adjust_zthr);
7377	zthr_destroy(arc_adjust_zthr);
7378
7379	mutex_destroy(&arc_dnlc_evicts_lock);
7380	cv_destroy(&arc_dnlc_evicts_cv);
7381
7382	(void) zthr_cancel(arc_reap_zthr);
7383	zthr_destroy(arc_reap_zthr);
7384
7385	mutex_destroy(&arc_adjust_lock);
7386	cv_destroy(&arc_adjust_waiters_cv);
7387
7388	/*
7389	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7390	 * trigger the release of kmem magazines, which can callback to
7391	 * arc_space_return() which accesses aggsums freed in act_state_fini().
7392	 */
7393	buf_fini();
7394	arc_state_fini();
7395
7396	ASSERT0(arc_loaned_bytes);
7397}
7398
7399/*
7400 * Level 2 ARC
7401 *
7402 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7403 * It uses dedicated storage devices to hold cached data, which are populated
7404 * using large infrequent writes.  The main role of this cache is to boost
7405 * the performance of random read workloads.  The intended L2ARC devices
7406 * include short-stroked disks, solid state disks, and other media with
7407 * substantially faster read latency than disk.
7408 *
7409 *                 +-----------------------+
7410 *                 |         ARC           |
7411 *                 +-----------------------+
7412 *                    |         ^     ^
7413 *                    |         |     |
7414 *      l2arc_feed_thread()    arc_read()
7415 *                    |         |     |
7416 *                    |  l2arc read   |
7417 *                    V         |     |
7418 *               +---------------+    |
7419 *               |     L2ARC     |    |
7420 *               +---------------+    |
7421 *                   |    ^           |
7422 *          l2arc_write() |           |
7423 *                   |    |           |
7424 *                   V    |           |
7425 *                 +-------+      +-------+
7426 *                 | vdev  |      | vdev  |
7427 *                 | cache |      | cache |
7428 *                 +-------+      +-------+
7429 *                 +=========+     .-----.
7430 *                 :  L2ARC  :    |-_____-|
7431 *                 : devices :    | Disks |
7432 *                 +=========+    `-_____-'
7433 *
7434 * Read requests are satisfied from the following sources, in order:
7435 *
7436 *	1) ARC
7437 *	2) vdev cache of L2ARC devices
7438 *	3) L2ARC devices
7439 *	4) vdev cache of disks
7440 *	5) disks
7441 *
7442 * Some L2ARC device types exhibit extremely slow write performance.
7443 * To accommodate for this there are some significant differences between
7444 * the L2ARC and traditional cache design:
7445 *
7446 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
7447 * the ARC behave as usual, freeing buffers and placing headers on ghost
7448 * lists.  The ARC does not send buffers to the L2ARC during eviction as
7449 * this would add inflated write latencies for all ARC memory pressure.
7450 *
7451 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7452 * It does this by periodically scanning buffers from the eviction-end of
7453 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7454 * not already there. It scans until a headroom of buffers is satisfied,
7455 * which itself is a buffer for ARC eviction. If a compressible buffer is
7456 * found during scanning and selected for writing to an L2ARC device, we
7457 * temporarily boost scanning headroom during the next scan cycle to make
7458 * sure we adapt to compression effects (which might significantly reduce
7459 * the data volume we write to L2ARC). The thread that does this is
7460 * l2arc_feed_thread(), illustrated below; example sizes are included to
7461 * provide a better sense of ratio than this diagram:
7462 *
7463 *	       head -->                        tail
7464 *	        +---------------------+----------+
7465 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
7466 *	        +---------------------+----------+   |   o L2ARC eligible
7467 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
7468 *	        +---------------------+----------+   |
7469 *	             15.9 Gbytes      ^ 32 Mbytes    |
7470 *	                           headroom          |
7471 *	                                      l2arc_feed_thread()
7472 *	                                             |
7473 *	                 l2arc write hand <--[oooo]--'
7474 *	                         |           8 Mbyte
7475 *	                         |          write max
7476 *	                         V
7477 *		  +==============================+
7478 *	L2ARC dev |####|#|###|###|    |####| ... |
7479 *	          +==============================+
7480 *	                     32 Gbytes
7481 *
7482 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7483 * evicted, then the L2ARC has cached a buffer much sooner than it probably
7484 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7485 * safe to say that this is an uncommon case, since buffers at the end of
7486 * the ARC lists have moved there due to inactivity.
7487 *
7488 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7489 * then the L2ARC simply misses copying some buffers.  This serves as a
7490 * pressure valve to prevent heavy read workloads from both stalling the ARC
7491 * with waits and clogging the L2ARC with writes.  This also helps prevent
7492 * the potential for the L2ARC to churn if it attempts to cache content too
7493 * quickly, such as during backups of the entire pool.
7494 *
7495 * 5. After system boot and before the ARC has filled main memory, there are
7496 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7497 * lists can remain mostly static.  Instead of searching from tail of these
7498 * lists as pictured, the l2arc_feed_thread() will search from the list heads
7499 * for eligible buffers, greatly increasing its chance of finding them.
7500 *
7501 * The L2ARC device write speed is also boosted during this time so that
7502 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7503 * there are no L2ARC reads, and no fear of degrading read performance
7504 * through increased writes.
7505 *
7506 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7507 * the vdev queue can aggregate them into larger and fewer writes.  Each
7508 * device is written to in a rotor fashion, sweeping writes through
7509 * available space then repeating.
7510 *
7511 * 7. The L2ARC does not store dirty content.  It never needs to flush
7512 * write buffers back to disk based storage.
7513 *
7514 * 8. If an ARC buffer is written (and dirtied) which also exists in the
7515 * L2ARC, the now stale L2ARC buffer is immediately dropped.
7516 *
7517 * The performance of the L2ARC can be tweaked by a number of tunables, which
7518 * may be necessary for different workloads:
7519 *
7520 *	l2arc_write_max		max write bytes per interval
7521 *	l2arc_write_boost	extra write bytes during device warmup
7522 *	l2arc_noprefetch	skip caching prefetched buffers
7523 *	l2arc_headroom		number of max device writes to precache
7524 *	l2arc_headroom_boost	when we find compressed buffers during ARC
7525 *				scanning, we multiply headroom by this
7526 *				percentage factor for the next scan cycle,
7527 *				since more compressed buffers are likely to
7528 *				be present
7529 *	l2arc_feed_secs		seconds between L2ARC writing
7530 *
7531 * Tunables may be removed or added as future performance improvements are
7532 * integrated, and also may become zpool properties.
7533 *
7534 * There are three key functions that control how the L2ARC warms up:
7535 *
7536 *	l2arc_write_eligible()	check if a buffer is eligible to cache
7537 *	l2arc_write_size()	calculate how much to write
7538 *	l2arc_write_interval()	calculate sleep delay between writes
7539 *
7540 * These three functions determine what to write, how much, and how quickly
7541 * to send writes.
7542 */
7543
7544static boolean_t
7545l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7546{
7547	/*
7548	 * A buffer is *not* eligible for the L2ARC if it:
7549	 * 1. belongs to a different spa.
7550	 * 2. is already cached on the L2ARC.
7551	 * 3. has an I/O in progress (it may be an incomplete read).
7552	 * 4. is flagged not eligible (zfs property).
7553	 */
7554	if (hdr->b_spa != spa_guid) {
7555		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
7556		return (B_FALSE);
7557	}
7558	if (HDR_HAS_L2HDR(hdr)) {
7559		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
7560		return (B_FALSE);
7561	}
7562	if (HDR_IO_IN_PROGRESS(hdr)) {
7563		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
7564		return (B_FALSE);
7565	}
7566	if (!HDR_L2CACHE(hdr)) {
7567		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
7568		return (B_FALSE);
7569	}
7570
7571	return (B_TRUE);
7572}
7573
7574static uint64_t
7575l2arc_write_size(void)
7576{
7577	uint64_t size;
7578
7579	/*
7580	 * Make sure our globals have meaningful values in case the user
7581	 * altered them.
7582	 */
7583	size = l2arc_write_max;
7584	if (size == 0) {
7585		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7586		    "be greater than zero, resetting it to the default (%d)",
7587		    L2ARC_WRITE_SIZE);
7588		size = l2arc_write_max = L2ARC_WRITE_SIZE;
7589	}
7590
7591	if (arc_warm == B_FALSE)
7592		size += l2arc_write_boost;
7593
7594	return (size);
7595
7596}
7597
7598static clock_t
7599l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7600{
7601	clock_t interval, next, now;
7602
7603	/*
7604	 * If the ARC lists are busy, increase our write rate; if the
7605	 * lists are stale, idle back.  This is achieved by checking
7606	 * how much we previously wrote - if it was more than half of
7607	 * what we wanted, schedule the next write much sooner.
7608	 */
7609	if (l2arc_feed_again && wrote > (wanted / 2))
7610		interval = (hz * l2arc_feed_min_ms) / 1000;
7611	else
7612		interval = hz * l2arc_feed_secs;
7613
7614	now = ddi_get_lbolt();
7615	next = MAX(now, MIN(now + interval, began + interval));
7616
7617	return (next);
7618}
7619
7620/*
7621 * Cycle through L2ARC devices.  This is how L2ARC load balances.
7622 * If a device is returned, this also returns holding the spa config lock.
7623 */
7624static l2arc_dev_t *
7625l2arc_dev_get_next(void)
7626{
7627	l2arc_dev_t *first, *next = NULL;
7628
7629	/*
7630	 * Lock out the removal of spas (spa_namespace_lock), then removal
7631	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
7632	 * both locks will be dropped and a spa config lock held instead.
7633	 */
7634	mutex_enter(&spa_namespace_lock);
7635	mutex_enter(&l2arc_dev_mtx);
7636
7637	/* if there are no vdevs, there is nothing to do */
7638	if (l2arc_ndev == 0)
7639		goto out;
7640
7641	first = NULL;
7642	next = l2arc_dev_last;
7643	do {
7644		/* loop around the list looking for a non-faulted vdev */
7645		if (next == NULL) {
7646			next = list_head(l2arc_dev_list);
7647		} else {
7648			next = list_next(l2arc_dev_list, next);
7649			if (next == NULL)
7650				next = list_head(l2arc_dev_list);
7651		}
7652
7653		/* if we have come back to the start, bail out */
7654		if (first == NULL)
7655			first = next;
7656		else if (next == first)
7657			break;
7658
7659	} while (vdev_is_dead(next->l2ad_vdev));
7660
7661	/* if we were unable to find any usable vdevs, return NULL */
7662	if (vdev_is_dead(next->l2ad_vdev))
7663		next = NULL;
7664
7665	l2arc_dev_last = next;
7666
7667out:
7668	mutex_exit(&l2arc_dev_mtx);
7669
7670	/*
7671	 * Grab the config lock to prevent the 'next' device from being
7672	 * removed while we are writing to it.
7673	 */
7674	if (next != NULL)
7675		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7676	mutex_exit(&spa_namespace_lock);
7677
7678	return (next);
7679}
7680
7681/*
7682 * Free buffers that were tagged for destruction.
7683 */
7684static void
7685l2arc_do_free_on_write()
7686{
7687	list_t *buflist;
7688	l2arc_data_free_t *df, *df_prev;
7689
7690	mutex_enter(&l2arc_free_on_write_mtx);
7691	buflist = l2arc_free_on_write;
7692
7693	for (df = list_tail(buflist); df; df = df_prev) {
7694		df_prev = list_prev(buflist, df);
7695		ASSERT3P(df->l2df_abd, !=, NULL);
7696		abd_free(df->l2df_abd);
7697		list_remove(buflist, df);
7698		kmem_free(df, sizeof (l2arc_data_free_t));
7699	}
7700
7701	mutex_exit(&l2arc_free_on_write_mtx);
7702}
7703
7704/*
7705 * A write to a cache device has completed.  Update all headers to allow
7706 * reads from these buffers to begin.
7707 */
7708static void
7709l2arc_write_done(zio_t *zio)
7710{
7711	l2arc_write_callback_t *cb;
7712	l2arc_dev_t *dev;
7713	list_t *buflist;
7714	arc_buf_hdr_t *head, *hdr, *hdr_prev;
7715	kmutex_t *hash_lock;
7716	int64_t bytes_dropped = 0;
7717
7718	cb = zio->io_private;
7719	ASSERT3P(cb, !=, NULL);
7720	dev = cb->l2wcb_dev;
7721	ASSERT3P(dev, !=, NULL);
7722	head = cb->l2wcb_head;
7723	ASSERT3P(head, !=, NULL);
7724	buflist = &dev->l2ad_buflist;
7725	ASSERT3P(buflist, !=, NULL);
7726	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7727	    l2arc_write_callback_t *, cb);
7728
7729	if (zio->io_error != 0)
7730		ARCSTAT_BUMP(arcstat_l2_writes_error);
7731
7732	/*
7733	 * All writes completed, or an error was hit.
7734	 */
7735top:
7736	mutex_enter(&dev->l2ad_mtx);
7737	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7738		hdr_prev = list_prev(buflist, hdr);
7739
7740		hash_lock = HDR_LOCK(hdr);
7741
7742		/*
7743		 * We cannot use mutex_enter or else we can deadlock
7744		 * with l2arc_write_buffers (due to swapping the order
7745		 * the hash lock and l2ad_mtx are taken).
7746		 */
7747		if (!mutex_tryenter(hash_lock)) {
7748			/*
7749			 * Missed the hash lock. We must retry so we
7750			 * don't leave the ARC_FLAG_L2_WRITING bit set.
7751			 */
7752			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7753
7754			/*
7755			 * We don't want to rescan the headers we've
7756			 * already marked as having been written out, so
7757			 * we reinsert the head node so we can pick up
7758			 * where we left off.
7759			 */
7760			list_remove(buflist, head);
7761			list_insert_after(buflist, hdr, head);
7762
7763			mutex_exit(&dev->l2ad_mtx);
7764
7765			/*
7766			 * We wait for the hash lock to become available
7767			 * to try and prevent busy waiting, and increase
7768			 * the chance we'll be able to acquire the lock
7769			 * the next time around.
7770			 */
7771			mutex_enter(hash_lock);
7772			mutex_exit(hash_lock);
7773			goto top;
7774		}
7775
7776		/*
7777		 * We could not have been moved into the arc_l2c_only
7778		 * state while in-flight due to our ARC_FLAG_L2_WRITING
7779		 * bit being set. Let's just ensure that's being enforced.
7780		 */
7781		ASSERT(HDR_HAS_L1HDR(hdr));
7782
7783		if (zio->io_error != 0) {
7784			/*
7785			 * Error - drop L2ARC entry.
7786			 */
7787			list_remove(buflist, hdr);
7788			l2arc_trim(hdr);
7789			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7790
7791			ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
7792			ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
7793
7794			bytes_dropped += arc_hdr_size(hdr);
7795			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
7796			    arc_hdr_size(hdr), hdr);
7797		}
7798
7799		/*
7800		 * Allow ARC to begin reads and ghost list evictions to
7801		 * this L2ARC entry.
7802		 */
7803		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7804
7805		mutex_exit(hash_lock);
7806	}
7807
7808	atomic_inc_64(&l2arc_writes_done);
7809	list_remove(buflist, head);
7810	ASSERT(!HDR_HAS_L1HDR(head));
7811	kmem_cache_free(hdr_l2only_cache, head);
7812	mutex_exit(&dev->l2ad_mtx);
7813
7814	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7815
7816	l2arc_do_free_on_write();
7817
7818	kmem_free(cb, sizeof (l2arc_write_callback_t));
7819}
7820
7821/*
7822 * A read to a cache device completed.  Validate buffer contents before
7823 * handing over to the regular ARC routines.
7824 */
7825static void
7826l2arc_read_done(zio_t *zio)
7827{
7828	l2arc_read_callback_t *cb;
7829	arc_buf_hdr_t *hdr;
7830	kmutex_t *hash_lock;
7831	boolean_t valid_cksum;
7832
7833	ASSERT3P(zio->io_vd, !=, NULL);
7834	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7835
7836	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7837
7838	cb = zio->io_private;
7839	ASSERT3P(cb, !=, NULL);
7840	hdr = cb->l2rcb_hdr;
7841	ASSERT3P(hdr, !=, NULL);
7842
7843	hash_lock = HDR_LOCK(hdr);
7844	mutex_enter(hash_lock);
7845	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7846
7847	/*
7848	 * If the data was read into a temporary buffer,
7849	 * move it and free the buffer.
7850	 */
7851	if (cb->l2rcb_abd != NULL) {
7852		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
7853		if (zio->io_error == 0) {
7854			abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
7855			    arc_hdr_size(hdr));
7856		}
7857
7858		/*
7859		 * The following must be done regardless of whether
7860		 * there was an error:
7861		 * - free the temporary buffer
7862		 * - point zio to the real ARC buffer
7863		 * - set zio size accordingly
7864		 * These are required because zio is either re-used for
7865		 * an I/O of the block in the case of the error
7866		 * or the zio is passed to arc_read_done() and it
7867		 * needs real data.
7868		 */
7869		abd_free(cb->l2rcb_abd);
7870		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
7871		zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
7872	}
7873
7874	ASSERT3P(zio->io_abd, !=, NULL);
7875
7876	/*
7877	 * Check this survived the L2ARC journey.
7878	 */
7879	ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
7880	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
7881	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
7882
7883	valid_cksum = arc_cksum_is_equal(hdr, zio);
7884	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
7885		mutex_exit(hash_lock);
7886		zio->io_private = hdr;
7887		arc_read_done(zio);
7888	} else {
7889		/*
7890		 * Buffer didn't survive caching.  Increment stats and
7891		 * reissue to the original storage device.
7892		 */
7893		if (zio->io_error != 0) {
7894			ARCSTAT_BUMP(arcstat_l2_io_error);
7895		} else {
7896			zio->io_error = SET_ERROR(EIO);
7897		}
7898		if (!valid_cksum)
7899			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7900
7901		/*
7902		 * If there's no waiter, issue an async i/o to the primary
7903		 * storage now.  If there *is* a waiter, the caller must
7904		 * issue the i/o in a context where it's OK to block.
7905		 */
7906		if (zio->io_waiter == NULL) {
7907			zio_t *pio = zio_unique_parent(zio);
7908
7909			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7910
7911			zio = zio_read(pio, zio->io_spa, zio->io_bp,
7912			    hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
7913			    hdr, zio->io_priority, cb->l2rcb_flags,
7914			    &cb->l2rcb_zb);
7915			for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
7916			    acb != NULL; acb = acb->acb_next)
7917				acb->acb_zio_head = zio;
7918			mutex_exit(hash_lock);
7919			zio_nowait(zio);
7920		} else
7921			mutex_exit(hash_lock);
7922	}
7923
7924	kmem_free(cb, sizeof (l2arc_read_callback_t));
7925}
7926
7927/*
7928 * This is the list priority from which the L2ARC will search for pages to
7929 * cache.  This is used within loops (0..3) to cycle through lists in the
7930 * desired order.  This order can have a significant effect on cache
7931 * performance.
7932 *
7933 * Currently the metadata lists are hit first, MFU then MRU, followed by
7934 * the data lists.  This function returns a locked list, and also returns
7935 * the lock pointer.
7936 */
7937static multilist_sublist_t *
7938l2arc_sublist_lock(int list_num)
7939{
7940	multilist_t *ml = NULL;
7941	unsigned int idx;
7942
7943	ASSERT(list_num >= 0 && list_num <= 3);
7944
7945	switch (list_num) {
7946	case 0:
7947		ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
7948		break;
7949	case 1:
7950		ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
7951		break;
7952	case 2:
7953		ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
7954		break;
7955	case 3:
7956		ml = arc_mru->arcs_list[ARC_BUFC_DATA];
7957		break;
7958	}
7959
7960	/*
7961	 * Return a randomly-selected sublist. This is acceptable
7962	 * because the caller feeds only a little bit of data for each
7963	 * call (8MB). Subsequent calls will result in different
7964	 * sublists being selected.
7965	 */
7966	idx = multilist_get_random_index(ml);
7967	return (multilist_sublist_lock(ml, idx));
7968}
7969
7970/*
7971 * Evict buffers from the device write hand to the distance specified in
7972 * bytes.  This distance may span populated buffers, it may span nothing.
7973 * This is clearing a region on the L2ARC device ready for writing.
7974 * If the 'all' boolean is set, every buffer is evicted.
7975 */
7976static void
7977l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
7978{
7979	list_t *buflist;
7980	arc_buf_hdr_t *hdr, *hdr_prev;
7981	kmutex_t *hash_lock;
7982	uint64_t taddr;
7983
7984	buflist = &dev->l2ad_buflist;
7985
7986	if (!all && dev->l2ad_first) {
7987		/*
7988		 * This is the first sweep through the device.  There is
7989		 * nothing to evict.
7990		 */
7991		return;
7992	}
7993
7994	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
7995		/*
7996		 * When nearing the end of the device, evict to the end
7997		 * before the device write hand jumps to the start.
7998		 */
7999		taddr = dev->l2ad_end;
8000	} else {
8001		taddr = dev->l2ad_hand + distance;
8002	}
8003	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8004	    uint64_t, taddr, boolean_t, all);
8005
8006top:
8007	mutex_enter(&dev->l2ad_mtx);
8008	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8009		hdr_prev = list_prev(buflist, hdr);
8010
8011		hash_lock = HDR_LOCK(hdr);
8012
8013		/*
8014		 * We cannot use mutex_enter or else we can deadlock
8015		 * with l2arc_write_buffers (due to swapping the order
8016		 * the hash lock and l2ad_mtx are taken).
8017		 */
8018		if (!mutex_tryenter(hash_lock)) {
8019			/*
8020			 * Missed the hash lock.  Retry.
8021			 */
8022			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8023			mutex_exit(&dev->l2ad_mtx);
8024			mutex_enter(hash_lock);
8025			mutex_exit(hash_lock);
8026			goto top;
8027		}
8028
8029		/*
8030		 * A header can't be on this list if it doesn't have L2 header.
8031		 */
8032		ASSERT(HDR_HAS_L2HDR(hdr));
8033
8034		/* Ensure this header has finished being written. */
8035		ASSERT(!HDR_L2_WRITING(hdr));
8036		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8037
8038		if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
8039		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8040			/*
8041			 * We've evicted to the target address,
8042			 * or the end of the device.
8043			 */
8044			mutex_exit(hash_lock);
8045			break;
8046		}
8047
8048		if (!HDR_HAS_L1HDR(hdr)) {
8049			ASSERT(!HDR_L2_READING(hdr));
8050			/*
8051			 * This doesn't exist in the ARC.  Destroy.
8052			 * arc_hdr_destroy() will call list_remove()
8053			 * and decrement arcstat_l2_lsize.
8054			 */
8055			arc_change_state(arc_anon, hdr, hash_lock);
8056			arc_hdr_destroy(hdr);
8057		} else {
8058			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8059			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8060			/*
8061			 * Invalidate issued or about to be issued
8062			 * reads, since we may be about to write
8063			 * over this location.
8064			 */
8065			if (HDR_L2_READING(hdr)) {
8066				ARCSTAT_BUMP(arcstat_l2_evict_reading);
8067				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8068			}
8069
8070			arc_hdr_l2hdr_destroy(hdr);
8071		}
8072		mutex_exit(hash_lock);
8073	}
8074	mutex_exit(&dev->l2ad_mtx);
8075}
8076
8077/*
8078 * Find and write ARC buffers to the L2ARC device.
8079 *
8080 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8081 * for reading until they have completed writing.
8082 * The headroom_boost is an in-out parameter used to maintain headroom boost
8083 * state between calls to this function.
8084 *
8085 * Returns the number of bytes actually written (which may be smaller than
8086 * the delta by which the device hand has changed due to alignment).
8087 */
8088static uint64_t
8089l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
8090{
8091	arc_buf_hdr_t *hdr, *hdr_prev, *head;
8092	uint64_t write_asize, write_psize, write_lsize, headroom;
8093	boolean_t full;
8094	l2arc_write_callback_t *cb;
8095	zio_t *pio, *wzio;
8096	uint64_t guid = spa_load_guid(spa);
8097	int try;
8098
8099	ASSERT3P(dev->l2ad_vdev, !=, NULL);
8100
8101	pio = NULL;
8102	write_lsize = write_asize = write_psize = 0;
8103	full = B_FALSE;
8104	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
8105	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
8106
8107	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
8108	/*
8109	 * Copy buffers for L2ARC writing.
8110	 */
8111	for (try = 0; try <= 3; try++) {
8112		multilist_sublist_t *mls = l2arc_sublist_lock(try);
8113		uint64_t passed_sz = 0;
8114
8115		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
8116
8117		/*
8118		 * L2ARC fast warmup.
8119		 *
8120		 * Until the ARC is warm and starts to evict, read from the
8121		 * head of the ARC lists rather than the tail.
8122		 */
8123		if (arc_warm == B_FALSE)
8124			hdr = multilist_sublist_head(mls);
8125		else
8126			hdr = multilist_sublist_tail(mls);
8127		if (hdr == NULL)
8128			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
8129
8130		headroom = target_sz * l2arc_headroom;
8131		if (zfs_compressed_arc_enabled)
8132			headroom = (headroom * l2arc_headroom_boost) / 100;
8133
8134		for (; hdr; hdr = hdr_prev) {
8135			kmutex_t *hash_lock;
8136
8137			if (arc_warm == B_FALSE)
8138				hdr_prev = multilist_sublist_next(mls, hdr);
8139			else
8140				hdr_prev = multilist_sublist_prev(mls, hdr);
8141			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned,
8142			    HDR_GET_LSIZE(hdr));
8143
8144			hash_lock = HDR_LOCK(hdr);
8145			if (!mutex_tryenter(hash_lock)) {
8146				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
8147				/*
8148				 * Skip this buffer rather than waiting.
8149				 */
8150				continue;
8151			}
8152
8153			passed_sz += HDR_GET_LSIZE(hdr);
8154			if (passed_sz > headroom) {
8155				/*
8156				 * Searched too far.
8157				 */
8158				mutex_exit(hash_lock);
8159				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
8160				break;
8161			}
8162
8163			if (!l2arc_write_eligible(guid, hdr)) {
8164				mutex_exit(hash_lock);
8165				continue;
8166			}
8167
8168			/*
8169			 * We rely on the L1 portion of the header below, so
8170			 * it's invalid for this header to have been evicted out
8171			 * of the ghost cache, prior to being written out. The
8172			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8173			 */
8174			ASSERT(HDR_HAS_L1HDR(hdr));
8175
8176			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8177			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8178			ASSERT3U(arc_hdr_size(hdr), >, 0);
8179			uint64_t psize = arc_hdr_size(hdr);
8180			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8181			    psize);
8182
8183			if ((write_asize + asize) > target_sz) {
8184				full = B_TRUE;
8185				mutex_exit(hash_lock);
8186				ARCSTAT_BUMP(arcstat_l2_write_full);
8187				break;
8188			}
8189
8190			if (pio == NULL) {
8191				/*
8192				 * Insert a dummy header on the buflist so
8193				 * l2arc_write_done() can find where the
8194				 * write buffers begin without searching.
8195				 */
8196				mutex_enter(&dev->l2ad_mtx);
8197				list_insert_head(&dev->l2ad_buflist, head);
8198				mutex_exit(&dev->l2ad_mtx);
8199
8200				cb = kmem_alloc(
8201				    sizeof (l2arc_write_callback_t), KM_SLEEP);
8202				cb->l2wcb_dev = dev;
8203				cb->l2wcb_head = head;
8204				pio = zio_root(spa, l2arc_write_done, cb,
8205				    ZIO_FLAG_CANFAIL);
8206				ARCSTAT_BUMP(arcstat_l2_write_pios);
8207			}
8208
8209			hdr->b_l2hdr.b_dev = dev;
8210			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
8211			arc_hdr_set_flags(hdr,
8212			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
8213
8214			mutex_enter(&dev->l2ad_mtx);
8215			list_insert_head(&dev->l2ad_buflist, hdr);
8216			mutex_exit(&dev->l2ad_mtx);
8217
8218			(void) zfs_refcount_add_many(&dev->l2ad_alloc, psize,
8219			    hdr);
8220
8221			/*
8222			 * Normally the L2ARC can use the hdr's data, but if
8223			 * we're sharing data between the hdr and one of its
8224			 * bufs, L2ARC needs its own copy of the data so that
8225			 * the ZIO below can't race with the buf consumer.
8226			 * Another case where we need to create a copy of the
8227			 * data is when the buffer size is not device-aligned
8228			 * and we need to pad the block to make it such.
8229			 * That also keeps the clock hand suitably aligned.
8230			 *
8231			 * To ensure that the copy will be available for the
8232			 * lifetime of the ZIO and be cleaned up afterwards, we
8233			 * add it to the l2arc_free_on_write queue.
8234			 */
8235			abd_t *to_write;
8236			if (!HDR_SHARED_DATA(hdr) && psize == asize) {
8237				to_write = hdr->b_l1hdr.b_pabd;
8238			} else {
8239				to_write = abd_alloc_for_io(asize,
8240				    HDR_ISTYPE_METADATA(hdr));
8241				abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
8242				if (asize != psize) {
8243					abd_zero_off(to_write, psize,
8244					    asize - psize);
8245				}
8246				l2arc_free_abd_on_write(to_write, asize,
8247				    arc_buf_type(hdr));
8248			}
8249			wzio = zio_write_phys(pio, dev->l2ad_vdev,
8250			    hdr->b_l2hdr.b_daddr, asize, to_write,
8251			    ZIO_CHECKSUM_OFF, NULL, hdr,
8252			    ZIO_PRIORITY_ASYNC_WRITE,
8253			    ZIO_FLAG_CANFAIL, B_FALSE);
8254
8255			write_lsize += HDR_GET_LSIZE(hdr);
8256			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
8257			    zio_t *, wzio);
8258
8259			write_psize += psize;
8260			write_asize += asize;
8261			dev->l2ad_hand += asize;
8262
8263			mutex_exit(hash_lock);
8264
8265			(void) zio_nowait(wzio);
8266		}
8267
8268		multilist_sublist_unlock(mls);
8269
8270		if (full == B_TRUE)
8271			break;
8272	}
8273
8274	/* No buffers selected for writing? */
8275	if (pio == NULL) {
8276		ASSERT0(write_lsize);
8277		ASSERT(!HDR_HAS_L1HDR(head));
8278		kmem_cache_free(hdr_l2only_cache, head);
8279		return (0);
8280	}
8281
8282	ASSERT3U(write_psize, <=, target_sz);
8283	ARCSTAT_BUMP(arcstat_l2_writes_sent);
8284	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
8285	ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
8286	ARCSTAT_INCR(arcstat_l2_psize, write_psize);
8287	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
8288
8289	/*
8290	 * Bump device hand to the device start if it is approaching the end.
8291	 * l2arc_evict() will already have evicted ahead for this case.
8292	 */
8293	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
8294		dev->l2ad_hand = dev->l2ad_start;
8295		dev->l2ad_first = B_FALSE;
8296	}
8297
8298	dev->l2ad_writing = B_TRUE;
8299	(void) zio_wait(pio);
8300	dev->l2ad_writing = B_FALSE;
8301
8302	return (write_asize);
8303}
8304
8305/*
8306 * This thread feeds the L2ARC at regular intervals.  This is the beating
8307 * heart of the L2ARC.
8308 */
8309/* ARGSUSED */
8310static void
8311l2arc_feed_thread(void *unused __unused)
8312{
8313	callb_cpr_t cpr;
8314	l2arc_dev_t *dev;
8315	spa_t *spa;
8316	uint64_t size, wrote;
8317	clock_t begin, next = ddi_get_lbolt();
8318
8319	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
8320
8321	mutex_enter(&l2arc_feed_thr_lock);
8322
8323	while (l2arc_thread_exit == 0) {
8324		CALLB_CPR_SAFE_BEGIN(&cpr);
8325		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
8326		    next - ddi_get_lbolt());
8327		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
8328		next = ddi_get_lbolt() + hz;
8329
8330		/*
8331		 * Quick check for L2ARC devices.
8332		 */
8333		mutex_enter(&l2arc_dev_mtx);
8334		if (l2arc_ndev == 0) {
8335			mutex_exit(&l2arc_dev_mtx);
8336			continue;
8337		}
8338		mutex_exit(&l2arc_dev_mtx);
8339		begin = ddi_get_lbolt();
8340
8341		/*
8342		 * This selects the next l2arc device to write to, and in
8343		 * doing so the next spa to feed from: dev->l2ad_spa.   This
8344		 * will return NULL if there are now no l2arc devices or if
8345		 * they are all faulted.
8346		 *
8347		 * If a device is returned, its spa's config lock is also
8348		 * held to prevent device removal.  l2arc_dev_get_next()
8349		 * will grab and release l2arc_dev_mtx.
8350		 */
8351		if ((dev = l2arc_dev_get_next()) == NULL)
8352			continue;
8353
8354		spa = dev->l2ad_spa;
8355		ASSERT3P(spa, !=, NULL);
8356
8357		/*
8358		 * If the pool is read-only then force the feed thread to
8359		 * sleep a little longer.
8360		 */
8361		if (!spa_writeable(spa)) {
8362			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
8363			spa_config_exit(spa, SCL_L2ARC, dev);
8364			continue;
8365		}
8366
8367		/*
8368		 * Avoid contributing to memory pressure.
8369		 */
8370		if (arc_reclaim_needed()) {
8371			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
8372			spa_config_exit(spa, SCL_L2ARC, dev);
8373			continue;
8374		}
8375
8376		ARCSTAT_BUMP(arcstat_l2_feeds);
8377
8378		size = l2arc_write_size();
8379
8380		/*
8381		 * Evict L2ARC buffers that will be overwritten.
8382		 */
8383		l2arc_evict(dev, size, B_FALSE);
8384
8385		/*
8386		 * Write ARC buffers.
8387		 */
8388		wrote = l2arc_write_buffers(spa, dev, size);
8389
8390		/*
8391		 * Calculate interval between writes.
8392		 */
8393		next = l2arc_write_interval(begin, size, wrote);
8394		spa_config_exit(spa, SCL_L2ARC, dev);
8395	}
8396
8397	l2arc_thread_exit = 0;
8398	cv_broadcast(&l2arc_feed_thr_cv);
8399	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
8400	thread_exit();
8401}
8402
8403boolean_t
8404l2arc_vdev_present(vdev_t *vd)
8405{
8406	l2arc_dev_t *dev;
8407
8408	mutex_enter(&l2arc_dev_mtx);
8409	for (dev = list_head(l2arc_dev_list); dev != NULL;
8410	    dev = list_next(l2arc_dev_list, dev)) {
8411		if (dev->l2ad_vdev == vd)
8412			break;
8413	}
8414	mutex_exit(&l2arc_dev_mtx);
8415
8416	return (dev != NULL);
8417}
8418
8419/*
8420 * Add a vdev for use by the L2ARC.  By this point the spa has already
8421 * validated the vdev and opened it.
8422 */
8423void
8424l2arc_add_vdev(spa_t *spa, vdev_t *vd)
8425{
8426	l2arc_dev_t *adddev;
8427
8428	ASSERT(!l2arc_vdev_present(vd));
8429
8430	vdev_ashift_optimize(vd);
8431
8432	/*
8433	 * Create a new l2arc device entry.
8434	 */
8435	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
8436	adddev->l2ad_spa = spa;
8437	adddev->l2ad_vdev = vd;
8438	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
8439	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
8440	adddev->l2ad_hand = adddev->l2ad_start;
8441	adddev->l2ad_first = B_TRUE;
8442	adddev->l2ad_writing = B_FALSE;
8443
8444	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
8445	/*
8446	 * This is a list of all ARC buffers that are still valid on the
8447	 * device.
8448	 */
8449	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
8450	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
8451
8452	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
8453	zfs_refcount_create(&adddev->l2ad_alloc);
8454
8455	/*
8456	 * Add device to global list
8457	 */
8458	mutex_enter(&l2arc_dev_mtx);
8459	list_insert_head(l2arc_dev_list, adddev);
8460	atomic_inc_64(&l2arc_ndev);
8461	mutex_exit(&l2arc_dev_mtx);
8462}
8463
8464/*
8465 * Remove a vdev from the L2ARC.
8466 */
8467void
8468l2arc_remove_vdev(vdev_t *vd)
8469{
8470	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
8471
8472	/*
8473	 * Find the device by vdev
8474	 */
8475	mutex_enter(&l2arc_dev_mtx);
8476	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
8477		nextdev = list_next(l2arc_dev_list, dev);
8478		if (vd == dev->l2ad_vdev) {
8479			remdev = dev;
8480			break;
8481		}
8482	}
8483	ASSERT3P(remdev, !=, NULL);
8484
8485	/*
8486	 * Remove device from global list
8487	 */
8488	list_remove(l2arc_dev_list, remdev);
8489	l2arc_dev_last = NULL;		/* may have been invalidated */
8490	atomic_dec_64(&l2arc_ndev);
8491	mutex_exit(&l2arc_dev_mtx);
8492
8493	/*
8494	 * Clear all buflists and ARC references.  L2ARC device flush.
8495	 */
8496	l2arc_evict(remdev, 0, B_TRUE);
8497	list_destroy(&remdev->l2ad_buflist);
8498	mutex_destroy(&remdev->l2ad_mtx);
8499	zfs_refcount_destroy(&remdev->l2ad_alloc);
8500	kmem_free(remdev, sizeof (l2arc_dev_t));
8501}
8502
8503void
8504l2arc_init(void)
8505{
8506	l2arc_thread_exit = 0;
8507	l2arc_ndev = 0;
8508	l2arc_writes_sent = 0;
8509	l2arc_writes_done = 0;
8510
8511	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
8512	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
8513	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
8514	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
8515
8516	l2arc_dev_list = &L2ARC_dev_list;
8517	l2arc_free_on_write = &L2ARC_free_on_write;
8518	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
8519	    offsetof(l2arc_dev_t, l2ad_node));
8520	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
8521	    offsetof(l2arc_data_free_t, l2df_list_node));
8522}
8523
8524void
8525l2arc_fini(void)
8526{
8527	/*
8528	 * This is called from dmu_fini(), which is called from spa_fini();
8529	 * Because of this, we can assume that all l2arc devices have
8530	 * already been removed when the pools themselves were removed.
8531	 */
8532
8533	l2arc_do_free_on_write();
8534
8535	mutex_destroy(&l2arc_feed_thr_lock);
8536	cv_destroy(&l2arc_feed_thr_cv);
8537	mutex_destroy(&l2arc_dev_mtx);
8538	mutex_destroy(&l2arc_free_on_write_mtx);
8539
8540	list_destroy(l2arc_dev_list);
8541	list_destroy(l2arc_free_on_write);
8542}
8543
8544void
8545l2arc_start(void)
8546{
8547	if (!(spa_mode_global & FWRITE))
8548		return;
8549
8550	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
8551	    TS_RUN, minclsyspri);
8552}
8553
8554void
8555l2arc_stop(void)
8556{
8557	if (!(spa_mode_global & FWRITE))
8558		return;
8559
8560	mutex_enter(&l2arc_feed_thr_lock);
8561	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
8562	l2arc_thread_exit = 1;
8563	while (l2arc_thread_exit != 0)
8564		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
8565	mutex_exit(&l2arc_feed_thr_lock);
8566}
8567