1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD$");
28
29#include <lz4.h>
30
31static uint64_t zfs_crc64_table[256];
32
33#define	ECKSUM	666
34
35#define	ASSERT3S(x, y, z)	((void)0)
36#define	ASSERT3U(x, y, z)	((void)0)
37#define	ASSERT3P(x, y, z)	((void)0)
38#define	ASSERT0(x)		((void)0)
39#define	ASSERT(x)		((void)0)
40
41#define	panic(...)	do {						\
42	printf(__VA_ARGS__);						\
43	for (;;) ;							\
44} while (0)
45
46#define	kmem_alloc(size, flag)	zfs_alloc((size))
47#define	kmem_free(ptr, size)	zfs_free((ptr), (size))
48
49static void
50zfs_init_crc(void)
51{
52	int i, j;
53	uint64_t *ct;
54
55	/*
56	 * Calculate the crc64 table (used for the zap hash
57	 * function).
58	 */
59	if (zfs_crc64_table[128] != ZFS_CRC64_POLY) {
60		memset(zfs_crc64_table, 0, sizeof(zfs_crc64_table));
61		for (i = 0; i < 256; i++)
62			for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
63				*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
64	}
65}
66
67static void
68zio_checksum_off(const void *buf, uint64_t size,
69    const void *ctx_template, zio_cksum_t *zcp)
70{
71	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
72}
73
74/*
75 * Signature for checksum functions.
76 */
77typedef void zio_checksum_t(const void *data, uint64_t size,
78    const void *ctx_template, zio_cksum_t *zcp);
79typedef void *zio_checksum_tmpl_init_t(const zio_cksum_salt_t *salt);
80typedef void zio_checksum_tmpl_free_t(void *ctx_template);
81
82typedef enum zio_checksum_flags {
83	/* Strong enough for metadata? */
84	ZCHECKSUM_FLAG_METADATA = (1 << 1),
85	/* ZIO embedded checksum */
86	ZCHECKSUM_FLAG_EMBEDDED = (1 << 2),
87	/* Strong enough for dedup (without verification)? */
88	ZCHECKSUM_FLAG_DEDUP = (1 << 3),
89	/* Uses salt value */
90	ZCHECKSUM_FLAG_SALTED = (1 << 4),
91	/* Strong enough for nopwrite? */
92	ZCHECKSUM_FLAG_NOPWRITE = (1 << 5)
93} zio_checksum_flags_t;
94
95/*
96 * Information about each checksum function.
97 */
98typedef struct zio_checksum_info {
99	/* checksum function for each byteorder */
100	zio_checksum_t			*ci_func[2];
101	zio_checksum_tmpl_init_t	*ci_tmpl_init;
102	zio_checksum_tmpl_free_t	*ci_tmpl_free;
103	zio_checksum_flags_t		ci_flags;
104	const char			*ci_name;	/* descriptive name */
105} zio_checksum_info_t;
106
107#include "blkptr.c"
108
109#include "fletcher.c"
110#include "sha256.c"
111#include "skein_zfs.c"
112
113static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
114	{{NULL, NULL}, NULL, NULL, 0, "inherit"},
115	{{NULL, NULL}, NULL, NULL, 0, "on"},
116	{{zio_checksum_off,	zio_checksum_off}, NULL, NULL, 0, "off"},
117	{{zio_checksum_SHA256,	zio_checksum_SHA256}, NULL, NULL,
118	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, "label"},
119	{{zio_checksum_SHA256,	zio_checksum_SHA256}, NULL, NULL,
120	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED, "gang_header"},
121	{{fletcher_2_native,	fletcher_2_byteswap}, NULL, NULL,
122	    ZCHECKSUM_FLAG_EMBEDDED, "zilog"},
123	{{fletcher_2_native,	fletcher_2_byteswap}, NULL, NULL,
124	    0, "fletcher2"},
125	{{fletcher_4_native,	fletcher_4_byteswap}, NULL, NULL,
126	    ZCHECKSUM_FLAG_METADATA, "fletcher4"},
127	{{zio_checksum_SHA256,	zio_checksum_SHA256}, NULL, NULL,
128	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
129	    ZCHECKSUM_FLAG_NOPWRITE, "SHA256"},
130	{{fletcher_4_native,	fletcher_4_byteswap}, NULL, NULL,
131	    ZCHECKSUM_FLAG_EMBEDDED, "zillog2"},
132	{{zio_checksum_off,	zio_checksum_off}, NULL, NULL,
133	    0, "noparity"},
134	{{zio_checksum_SHA512_native,	zio_checksum_SHA512_byteswap},
135	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
136	    ZCHECKSUM_FLAG_NOPWRITE, "SHA512"},
137	{{zio_checksum_skein_native, zio_checksum_skein_byteswap},
138	    zio_checksum_skein_tmpl_init, zio_checksum_skein_tmpl_free,
139	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
140	    ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"},
141	/* no edonr for now */
142	{{NULL, NULL}, NULL, NULL, ZCHECKSUM_FLAG_METADATA |
143	    ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "edonr"}
144};
145
146/*
147 * Common signature for all zio compress/decompress functions.
148 */
149typedef size_t zio_compress_func_t(void *src, void *dst,
150    size_t s_len, size_t d_len, int);
151typedef int zio_decompress_func_t(void *src, void *dst,
152    size_t s_len, size_t d_len, int);
153
154/*
155 * Information about each compression function.
156 */
157typedef struct zio_compress_info {
158	zio_compress_func_t	*ci_compress;	/* compression function */
159	zio_decompress_func_t	*ci_decompress;	/* decompression function */
160	int			ci_level;	/* level parameter */
161	const char		*ci_name;	/* algorithm name */
162} zio_compress_info_t;
163
164#include "lzjb.c"
165#include "zle.c"
166
167/*
168 * Compression vectors.
169 */
170static zio_compress_info_t zio_compress_table[ZIO_COMPRESS_FUNCTIONS] = {
171	{NULL,			NULL,			0,	"inherit"},
172	{NULL,			NULL,			0,	"on"},
173	{NULL,			NULL,			0,	"uncompressed"},
174	{NULL,			lzjb_decompress,	0,	"lzjb"},
175	{NULL,			NULL,			0,	"empty"},
176	{NULL,			NULL,			1,	"gzip-1"},
177	{NULL,			NULL,			2,	"gzip-2"},
178	{NULL,			NULL,			3,	"gzip-3"},
179	{NULL,			NULL,			4,	"gzip-4"},
180	{NULL,			NULL,			5,	"gzip-5"},
181	{NULL,			NULL,			6,	"gzip-6"},
182	{NULL,			NULL,			7,	"gzip-7"},
183	{NULL,			NULL,			8,	"gzip-8"},
184	{NULL,			NULL,			9,	"gzip-9"},
185	{NULL,			zle_decompress,		64,	"zle"},
186	{NULL,			lz4_decompress,		0,	"lz4"},
187};
188
189static void
190byteswap_uint64_array(void *vbuf, size_t size)
191{
192	uint64_t *buf = vbuf;
193	size_t count = size >> 3;
194	int i;
195
196	ASSERT((size & 7) == 0);
197
198	for (i = 0; i < count; i++)
199		buf[i] = BSWAP_64(buf[i]);
200}
201
202/*
203 * Set the external verifier for a gang block based on <vdev, offset, txg>,
204 * a tuple which is guaranteed to be unique for the life of the pool.
205 */
206static void
207zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp)
208{
209	const dva_t *dva = BP_IDENTITY(bp);
210	uint64_t txg = BP_PHYSICAL_BIRTH(bp);
211
212	ASSERT(BP_IS_GANG(bp));
213
214	ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
215}
216
217/*
218 * Set the external verifier for a label block based on its offset.
219 * The vdev is implicit, and the txg is unknowable at pool open time --
220 * hence the logic in vdev_uberblock_load() to find the most recent copy.
221 */
222static void
223zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
224{
225	ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
226}
227
228/*
229 * Calls the template init function of a checksum which supports context
230 * templates and installs the template into the spa_t.
231 */
232static void
233zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa)
234{
235	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
236
237	if (ci->ci_tmpl_init == NULL)
238		return;
239
240	if (spa->spa_cksum_tmpls[checksum] != NULL)
241		return;
242
243	if (spa->spa_cksum_tmpls[checksum] == NULL) {
244		spa->spa_cksum_tmpls[checksum] =
245		    ci->ci_tmpl_init(&spa->spa_cksum_salt);
246	}
247}
248
249/*
250 * Called by a spa_t that's about to be deallocated. This steps through
251 * all of the checksum context templates and deallocates any that were
252 * initialized using the algorithm-specific template init function.
253 */
254static void __unused
255zio_checksum_templates_free(spa_t *spa)
256{
257	for (enum zio_checksum checksum = 0;
258	    checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) {
259		if (spa->spa_cksum_tmpls[checksum] != NULL) {
260			zio_checksum_info_t *ci = &zio_checksum_table[checksum];
261
262			ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]);
263			spa->spa_cksum_tmpls[checksum] = NULL;
264		}
265	}
266}
267
268static int
269zio_checksum_verify(const spa_t *spa, const blkptr_t *bp, void *data)
270{
271	uint64_t size;
272	unsigned int checksum;
273	zio_checksum_info_t *ci;
274	void *ctx = NULL;
275	zio_cksum_t actual_cksum, expected_cksum, verifier;
276	int byteswap;
277
278	checksum = BP_GET_CHECKSUM(bp);
279	size = BP_GET_PSIZE(bp);
280
281	if (checksum >= ZIO_CHECKSUM_FUNCTIONS)
282		return (EINVAL);
283	ci = &zio_checksum_table[checksum];
284	if (ci->ci_func[0] == NULL || ci->ci_func[1] == NULL)
285		return (EINVAL);
286
287	if (spa != NULL) {
288		zio_checksum_template_init(checksum, __DECONST(spa_t *,spa));
289		ctx = spa->spa_cksum_tmpls[checksum];
290	}
291
292	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
293		zio_eck_t *eck;
294
295		ASSERT(checksum == ZIO_CHECKSUM_GANG_HEADER ||
296		    checksum == ZIO_CHECKSUM_LABEL);
297
298		eck = (zio_eck_t *)((char *)data + size) - 1;
299
300		if (checksum == ZIO_CHECKSUM_GANG_HEADER)
301			zio_checksum_gang_verifier(&verifier, bp);
302		else if (checksum == ZIO_CHECKSUM_LABEL)
303			zio_checksum_label_verifier(&verifier,
304			    DVA_GET_OFFSET(BP_IDENTITY(bp)));
305		else
306			verifier = bp->blk_cksum;
307
308		byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
309
310		if (byteswap)
311			byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
312
313		expected_cksum = eck->zec_cksum;
314		eck->zec_cksum = verifier;
315		ci->ci_func[byteswap](data, size, ctx, &actual_cksum);
316		eck->zec_cksum = expected_cksum;
317
318		if (byteswap)
319			byteswap_uint64_array(&expected_cksum,
320			    sizeof (zio_cksum_t));
321	} else {
322		byteswap = BP_SHOULD_BYTESWAP(bp);
323		expected_cksum = bp->blk_cksum;
324		ci->ci_func[byteswap](data, size, ctx, &actual_cksum);
325	}
326
327	if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) {
328		/*printf("ZFS: read checksum %s failed\n", ci->ci_name);*/
329		return (EIO);
330	}
331
332	return (0);
333}
334
335static int
336zio_decompress_data(int cpfunc, void *src, uint64_t srcsize,
337	void *dest, uint64_t destsize)
338{
339	zio_compress_info_t *ci;
340
341	if (cpfunc >= ZIO_COMPRESS_FUNCTIONS) {
342		printf("ZFS: unsupported compression algorithm %u\n", cpfunc);
343		return (EIO);
344	}
345
346	ci = &zio_compress_table[cpfunc];
347	if (!ci->ci_decompress) {
348		printf("ZFS: unsupported compression algorithm %s\n",
349		    ci->ci_name);
350		return (EIO);
351	}
352
353	return (ci->ci_decompress(src, dest, srcsize, destsize, ci->ci_level));
354}
355
356static uint64_t
357zap_hash(uint64_t salt, const char *name)
358{
359	const uint8_t *cp;
360	uint8_t c;
361	uint64_t crc = salt;
362
363	ASSERT(crc != 0);
364	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
365	for (cp = (const uint8_t *)name; (c = *cp) != '\0'; cp++)
366		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ c) & 0xFF];
367
368	/*
369	 * Only use 28 bits, since we need 4 bits in the cookie for the
370	 * collision differentiator.  We MUST use the high bits, since
371	 * those are the onces that we first pay attention to when
372	 * chosing the bucket.
373	 */
374	crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
375
376	return (crc);
377}
378
379static void *zfs_alloc(size_t size);
380static void zfs_free(void *ptr, size_t size);
381
382typedef struct raidz_col {
383	uint64_t rc_devidx;		/* child device index for I/O */
384	uint64_t rc_offset;		/* device offset */
385	uint64_t rc_size;		/* I/O size */
386	void *rc_data;			/* I/O data */
387	int rc_error;			/* I/O error for this device */
388	uint8_t rc_tried;		/* Did we attempt this I/O column? */
389	uint8_t rc_skipped;		/* Did we skip this I/O column? */
390} raidz_col_t;
391
392typedef struct raidz_map {
393	uint64_t rm_cols;		/* Regular column count */
394	uint64_t rm_scols;		/* Count including skipped columns */
395	uint64_t rm_bigcols;		/* Number of oversized columns */
396	uint64_t rm_asize;		/* Actual total I/O size */
397	uint64_t rm_missingdata;	/* Count of missing data devices */
398	uint64_t rm_missingparity;	/* Count of missing parity devices */
399	uint64_t rm_firstdatacol;	/* First data column/parity count */
400	uint64_t rm_nskip;		/* Skipped sectors for padding */
401	uint64_t rm_skipstart;		/* Column index of padding start */
402	uintptr_t rm_reports;		/* # of referencing checksum reports */
403	uint8_t	rm_freed;		/* map no longer has referencing ZIO */
404	uint8_t	rm_ecksuminjected;	/* checksum error was injected */
405	raidz_col_t rm_col[1];		/* Flexible array of I/O columns */
406} raidz_map_t;
407
408#define	VDEV_RAIDZ_P		0
409#define	VDEV_RAIDZ_Q		1
410#define	VDEV_RAIDZ_R		2
411
412#define	VDEV_RAIDZ_MUL_2(x)	(((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
413#define	VDEV_RAIDZ_MUL_4(x)	(VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
414
415/*
416 * We provide a mechanism to perform the field multiplication operation on a
417 * 64-bit value all at once rather than a byte at a time. This works by
418 * creating a mask from the top bit in each byte and using that to
419 * conditionally apply the XOR of 0x1d.
420 */
421#define	VDEV_RAIDZ_64MUL_2(x, mask) \
422{ \
423	(mask) = (x) & 0x8080808080808080ULL; \
424	(mask) = ((mask) << 1) - ((mask) >> 7); \
425	(x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
426	    ((mask) & 0x1d1d1d1d1d1d1d1dULL); \
427}
428
429#define	VDEV_RAIDZ_64MUL_4(x, mask) \
430{ \
431	VDEV_RAIDZ_64MUL_2((x), mask); \
432	VDEV_RAIDZ_64MUL_2((x), mask); \
433}
434
435/*
436 * These two tables represent powers and logs of 2 in the Galois field defined
437 * above. These values were computed by repeatedly multiplying by 2 as above.
438 */
439static const uint8_t vdev_raidz_pow2[256] = {
440	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
441	0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26,
442	0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9,
443	0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0,
444	0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35,
445	0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23,
446	0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0,
447	0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1,
448	0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc,
449	0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0,
450	0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f,
451	0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2,
452	0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88,
453	0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce,
454	0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93,
455	0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc,
456	0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9,
457	0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54,
458	0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa,
459	0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73,
460	0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e,
461	0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff,
462	0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4,
463	0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41,
464	0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e,
465	0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6,
466	0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef,
467	0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09,
468	0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5,
469	0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16,
470	0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83,
471	0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x01
472};
473static const uint8_t vdev_raidz_log2[256] = {
474	0x00, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6,
475	0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b,
476	0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81,
477	0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71,
478	0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21,
479	0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45,
480	0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9,
481	0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6,
482	0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd,
483	0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88,
484	0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd,
485	0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40,
486	0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e,
487	0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d,
488	0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b,
489	0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57,
490	0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d,
491	0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18,
492	0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c,
493	0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e,
494	0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd,
495	0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61,
496	0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e,
497	0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2,
498	0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76,
499	0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6,
500	0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa,
501	0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a,
502	0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51,
503	0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7,
504	0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8,
505	0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf,
506};
507
508/*
509 * Multiply a given number by 2 raised to the given power.
510 */
511static uint8_t
512vdev_raidz_exp2(uint8_t a, int exp)
513{
514	if (a == 0)
515		return (0);
516
517	ASSERT(exp >= 0);
518	ASSERT(vdev_raidz_log2[a] > 0 || a == 1);
519
520	exp += vdev_raidz_log2[a];
521	if (exp > 255)
522		exp -= 255;
523
524	return (vdev_raidz_pow2[exp]);
525}
526
527static void
528vdev_raidz_generate_parity_p(raidz_map_t *rm)
529{
530	uint64_t *p, *src, pcount, ccount, i;
531	int c;
532
533	pcount = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
534
535	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
536		src = rm->rm_col[c].rc_data;
537		p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
538		ccount = rm->rm_col[c].rc_size / sizeof (src[0]);
539
540		if (c == rm->rm_firstdatacol) {
541			ASSERT(ccount == pcount);
542			for (i = 0; i < ccount; i++, src++, p++) {
543				*p = *src;
544			}
545		} else {
546			ASSERT(ccount <= pcount);
547			for (i = 0; i < ccount; i++, src++, p++) {
548				*p ^= *src;
549			}
550		}
551	}
552}
553
554static void
555vdev_raidz_generate_parity_pq(raidz_map_t *rm)
556{
557	uint64_t *p, *q, *src, pcnt, ccnt, mask, i;
558	int c;
559
560	pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
561	ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
562	    rm->rm_col[VDEV_RAIDZ_Q].rc_size);
563
564	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
565		src = rm->rm_col[c].rc_data;
566		p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
567		q = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
568
569		ccnt = rm->rm_col[c].rc_size / sizeof (src[0]);
570
571		if (c == rm->rm_firstdatacol) {
572			ASSERT(ccnt == pcnt || ccnt == 0);
573			for (i = 0; i < ccnt; i++, src++, p++, q++) {
574				*p = *src;
575				*q = *src;
576			}
577			for (; i < pcnt; i++, src++, p++, q++) {
578				*p = 0;
579				*q = 0;
580			}
581		} else {
582			ASSERT(ccnt <= pcnt);
583
584			/*
585			 * Apply the algorithm described above by multiplying
586			 * the previous result and adding in the new value.
587			 */
588			for (i = 0; i < ccnt; i++, src++, p++, q++) {
589				*p ^= *src;
590
591				VDEV_RAIDZ_64MUL_2(*q, mask);
592				*q ^= *src;
593			}
594
595			/*
596			 * Treat short columns as though they are full of 0s.
597			 * Note that there's therefore nothing needed for P.
598			 */
599			for (; i < pcnt; i++, q++) {
600				VDEV_RAIDZ_64MUL_2(*q, mask);
601			}
602		}
603	}
604}
605
606static void
607vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
608{
609	uint64_t *p, *q, *r, *src, pcnt, ccnt, mask, i;
610	int c;
611
612	pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
613	ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
614	    rm->rm_col[VDEV_RAIDZ_Q].rc_size);
615	ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
616	    rm->rm_col[VDEV_RAIDZ_R].rc_size);
617
618	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
619		src = rm->rm_col[c].rc_data;
620		p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
621		q = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
622		r = rm->rm_col[VDEV_RAIDZ_R].rc_data;
623
624		ccnt = rm->rm_col[c].rc_size / sizeof (src[0]);
625
626		if (c == rm->rm_firstdatacol) {
627			ASSERT(ccnt == pcnt || ccnt == 0);
628			for (i = 0; i < ccnt; i++, src++, p++, q++, r++) {
629				*p = *src;
630				*q = *src;
631				*r = *src;
632			}
633			for (; i < pcnt; i++, src++, p++, q++, r++) {
634				*p = 0;
635				*q = 0;
636				*r = 0;
637			}
638		} else {
639			ASSERT(ccnt <= pcnt);
640
641			/*
642			 * Apply the algorithm described above by multiplying
643			 * the previous result and adding in the new value.
644			 */
645			for (i = 0; i < ccnt; i++, src++, p++, q++, r++) {
646				*p ^= *src;
647
648				VDEV_RAIDZ_64MUL_2(*q, mask);
649				*q ^= *src;
650
651				VDEV_RAIDZ_64MUL_4(*r, mask);
652				*r ^= *src;
653			}
654
655			/*
656			 * Treat short columns as though they are full of 0s.
657			 * Note that there's therefore nothing needed for P.
658			 */
659			for (; i < pcnt; i++, q++, r++) {
660				VDEV_RAIDZ_64MUL_2(*q, mask);
661				VDEV_RAIDZ_64MUL_4(*r, mask);
662			}
663		}
664	}
665}
666
667/*
668 * Generate RAID parity in the first virtual columns according to the number of
669 * parity columns available.
670 */
671static void
672vdev_raidz_generate_parity(raidz_map_t *rm)
673{
674	switch (rm->rm_firstdatacol) {
675	case 1:
676		vdev_raidz_generate_parity_p(rm);
677		break;
678	case 2:
679		vdev_raidz_generate_parity_pq(rm);
680		break;
681	case 3:
682		vdev_raidz_generate_parity_pqr(rm);
683		break;
684	default:
685		panic("invalid RAID-Z configuration");
686	}
687}
688
689/* BEGIN CSTYLED */
690/*
691 * In the general case of reconstruction, we must solve the system of linear
692 * equations defined by the coeffecients used to generate parity as well as
693 * the contents of the data and parity disks. This can be expressed with
694 * vectors for the original data (D) and the actual data (d) and parity (p)
695 * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
696 *
697 *            __   __                     __     __
698 *            |     |         __     __   |  p_0  |
699 *            |  V  |         |  D_0  |   | p_m-1 |
700 *            |     |    x    |   :   | = |  d_0  |
701 *            |  I  |         | D_n-1 |   |   :   |
702 *            |     |         ~~     ~~   | d_n-1 |
703 *            ~~   ~~                     ~~     ~~
704 *
705 * I is simply a square identity matrix of size n, and V is a vandermonde
706 * matrix defined by the coeffecients we chose for the various parity columns
707 * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
708 * computation as well as linear separability.
709 *
710 *      __               __               __     __
711 *      |   1   ..  1 1 1 |               |  p_0  |
712 *      | 2^n-1 ..  4 2 1 |   __     __   |   :   |
713 *      | 4^n-1 .. 16 4 1 |   |  D_0  |   | p_m-1 |
714 *      |   1   ..  0 0 0 |   |  D_1  |   |  d_0  |
715 *      |   0   ..  0 0 0 | x |  D_2  | = |  d_1  |
716 *      |   :       : : : |   |   :   |   |  d_2  |
717 *      |   0   ..  1 0 0 |   | D_n-1 |   |   :   |
718 *      |   0   ..  0 1 0 |   ~~     ~~   |   :   |
719 *      |   0   ..  0 0 1 |               | d_n-1 |
720 *      ~~               ~~               ~~     ~~
721 *
722 * Note that I, V, d, and p are known. To compute D, we must invert the
723 * matrix and use the known data and parity values to reconstruct the unknown
724 * data values. We begin by removing the rows in V|I and d|p that correspond
725 * to failed or missing columns; we then make V|I square (n x n) and d|p
726 * sized n by removing rows corresponding to unused parity from the bottom up
727 * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
728 * using Gauss-Jordan elimination. In the example below we use m=3 parity
729 * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
730 *           __                               __
731 *           |  1   1   1   1   1   1   1   1  |
732 *           | 128  64  32  16  8   4   2   1  | <-----+-+-- missing disks
733 *           |  19 205 116  29  64  16  4   1  |      / /
734 *           |  1   0   0   0   0   0   0   0  |     / /
735 *           |  0   1   0   0   0   0   0   0  | <--' /
736 *  (V|I)  = |  0   0   1   0   0   0   0   0  | <---'
737 *           |  0   0   0   1   0   0   0   0  |
738 *           |  0   0   0   0   1   0   0   0  |
739 *           |  0   0   0   0   0   1   0   0  |
740 *           |  0   0   0   0   0   0   1   0  |
741 *           |  0   0   0   0   0   0   0   1  |
742 *           ~~                               ~~
743 *           __                               __
744 *           |  1   1   1   1   1   1   1   1  |
745 *           | 128  64  32  16  8   4   2   1  |
746 *           |  19 205 116  29  64  16  4   1  |
747 *           |  1   0   0   0   0   0   0   0  |
748 *           |  0   1   0   0   0   0   0   0  |
749 *  (V|I)' = |  0   0   1   0   0   0   0   0  |
750 *           |  0   0   0   1   0   0   0   0  |
751 *           |  0   0   0   0   1   0   0   0  |
752 *           |  0   0   0   0   0   1   0   0  |
753 *           |  0   0   0   0   0   0   1   0  |
754 *           |  0   0   0   0   0   0   0   1  |
755 *           ~~                               ~~
756 *
757 * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
758 * have carefully chosen the seed values 1, 2, and 4 to ensure that this
759 * matrix is not singular.
760 * __                                                                 __
761 * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
762 * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
763 * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
764 * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
765 * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
766 * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
767 * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
768 * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
769 * ~~                                                                 ~~
770 * __                                                                 __
771 * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
772 * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
773 * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
774 * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
775 * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
776 * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
777 * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
778 * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
779 * ~~                                                                 ~~
780 * __                                                                 __
781 * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
782 * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
783 * |  0  205 116  0   0   0   0   0     0   1   19  29  64  16  4   1  |
784 * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
785 * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
786 * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
787 * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
788 * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
789 * ~~                                                                 ~~
790 * __                                                                 __
791 * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
792 * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
793 * |  0   0  185  0   0   0   0   0    205  1  222 208 141 221 201 204 |
794 * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
795 * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
796 * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
797 * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
798 * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
799 * ~~                                                                 ~~
800 * __                                                                 __
801 * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
802 * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
803 * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
804 * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
805 * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
806 * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
807 * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
808 * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
809 * ~~                                                                 ~~
810 * __                                                                 __
811 * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
812 * |  0   1   0   0   0   0   0   0    167 100  5   41 159 169 217 208 |
813 * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
814 * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
815 * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
816 * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
817 * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
818 * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
819 * ~~                                                                 ~~
820 *                   __                               __
821 *                   |  0   0   1   0   0   0   0   0  |
822 *                   | 167 100  5   41 159 169 217 208 |
823 *                   | 166 100  4   40 158 168 216 209 |
824 *       (V|I)'^-1 = |  0   0   0   1   0   0   0   0  |
825 *                   |  0   0   0   0   1   0   0   0  |
826 *                   |  0   0   0   0   0   1   0   0  |
827 *                   |  0   0   0   0   0   0   1   0  |
828 *                   |  0   0   0   0   0   0   0   1  |
829 *                   ~~                               ~~
830 *
831 * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
832 * of the missing data.
833 *
834 * As is apparent from the example above, the only non-trivial rows in the
835 * inverse matrix correspond to the data disks that we're trying to
836 * reconstruct. Indeed, those are the only rows we need as the others would
837 * only be useful for reconstructing data known or assumed to be valid. For
838 * that reason, we only build the coefficients in the rows that correspond to
839 * targeted columns.
840 */
841/* END CSTYLED */
842
843static void
844vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
845    uint8_t **rows)
846{
847	int i, j;
848	int pow;
849
850	ASSERT(n == rm->rm_cols - rm->rm_firstdatacol);
851
852	/*
853	 * Fill in the missing rows of interest.
854	 */
855	for (i = 0; i < nmap; i++) {
856		ASSERT3S(0, <=, map[i]);
857		ASSERT3S(map[i], <=, 2);
858
859		pow = map[i] * n;
860		if (pow > 255)
861			pow -= 255;
862		ASSERT(pow <= 255);
863
864		for (j = 0; j < n; j++) {
865			pow -= map[i];
866			if (pow < 0)
867				pow += 255;
868			rows[i][j] = vdev_raidz_pow2[pow];
869		}
870	}
871}
872
873static void
874vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
875    uint8_t **rows, uint8_t **invrows, const uint8_t *used)
876{
877	int i, j, ii, jj;
878	uint8_t log;
879
880	/*
881	 * Assert that the first nmissing entries from the array of used
882	 * columns correspond to parity columns and that subsequent entries
883	 * correspond to data columns.
884	 */
885	for (i = 0; i < nmissing; i++) {
886		ASSERT3S(used[i], <, rm->rm_firstdatacol);
887	}
888	for (; i < n; i++) {
889		ASSERT3S(used[i], >=, rm->rm_firstdatacol);
890	}
891
892	/*
893	 * First initialize the storage where we'll compute the inverse rows.
894	 */
895	for (i = 0; i < nmissing; i++) {
896		for (j = 0; j < n; j++) {
897			invrows[i][j] = (i == j) ? 1 : 0;
898		}
899	}
900
901	/*
902	 * Subtract all trivial rows from the rows of consequence.
903	 */
904	for (i = 0; i < nmissing; i++) {
905		for (j = nmissing; j < n; j++) {
906			ASSERT3U(used[j], >=, rm->rm_firstdatacol);
907			jj = used[j] - rm->rm_firstdatacol;
908			ASSERT3S(jj, <, n);
909			invrows[i][j] = rows[i][jj];
910			rows[i][jj] = 0;
911		}
912	}
913
914	/*
915	 * For each of the rows of interest, we must normalize it and subtract
916	 * a multiple of it from the other rows.
917	 */
918	for (i = 0; i < nmissing; i++) {
919		for (j = 0; j < missing[i]; j++) {
920			ASSERT3U(rows[i][j], ==, 0);
921		}
922		ASSERT3U(rows[i][missing[i]], !=, 0);
923
924		/*
925		 * Compute the inverse of the first element and multiply each
926		 * element in the row by that value.
927		 */
928		log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
929
930		for (j = 0; j < n; j++) {
931			rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
932			invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
933		}
934
935		for (ii = 0; ii < nmissing; ii++) {
936			if (i == ii)
937				continue;
938
939			ASSERT3U(rows[ii][missing[i]], !=, 0);
940
941			log = vdev_raidz_log2[rows[ii][missing[i]]];
942
943			for (j = 0; j < n; j++) {
944				rows[ii][j] ^=
945				    vdev_raidz_exp2(rows[i][j], log);
946				invrows[ii][j] ^=
947				    vdev_raidz_exp2(invrows[i][j], log);
948			}
949		}
950	}
951
952	/*
953	 * Verify that the data that is left in the rows are properly part of
954	 * an identity matrix.
955	 */
956	for (i = 0; i < nmissing; i++) {
957		for (j = 0; j < n; j++) {
958			if (j == missing[i]) {
959				ASSERT3U(rows[i][j], ==, 1);
960			} else {
961				ASSERT3U(rows[i][j], ==, 0);
962			}
963		}
964	}
965}
966
967static void
968vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
969    int *missing, uint8_t **invrows, const uint8_t *used)
970{
971	int i, j, x, cc, c;
972	uint8_t *src;
973	uint64_t ccount;
974	uint8_t *dst[VDEV_RAIDZ_MAXPARITY];
975	uint64_t dcount[VDEV_RAIDZ_MAXPARITY];
976	uint8_t log, val;
977	int ll;
978	uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
979	uint8_t *p, *pp;
980	size_t psize;
981
982	log = 0;	/* gcc */
983	psize = sizeof (invlog[0][0]) * n * nmissing;
984	p = zfs_alloc(psize);
985
986	for (pp = p, i = 0; i < nmissing; i++) {
987		invlog[i] = pp;
988		pp += n;
989	}
990
991	for (i = 0; i < nmissing; i++) {
992		for (j = 0; j < n; j++) {
993			ASSERT3U(invrows[i][j], !=, 0);
994			invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
995		}
996	}
997
998	for (i = 0; i < n; i++) {
999		c = used[i];
1000		ASSERT3U(c, <, rm->rm_cols);
1001
1002		src = rm->rm_col[c].rc_data;
1003		ccount = rm->rm_col[c].rc_size;
1004		for (j = 0; j < nmissing; j++) {
1005			cc = missing[j] + rm->rm_firstdatacol;
1006			ASSERT3U(cc, >=, rm->rm_firstdatacol);
1007			ASSERT3U(cc, <, rm->rm_cols);
1008			ASSERT3U(cc, !=, c);
1009
1010			dst[j] = rm->rm_col[cc].rc_data;
1011			dcount[j] = rm->rm_col[cc].rc_size;
1012		}
1013
1014		ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0);
1015
1016		for (x = 0; x < ccount; x++, src++) {
1017			if (*src != 0)
1018				log = vdev_raidz_log2[*src];
1019
1020			for (cc = 0; cc < nmissing; cc++) {
1021				if (x >= dcount[cc])
1022					continue;
1023
1024				if (*src == 0) {
1025					val = 0;
1026				} else {
1027					if ((ll = log + invlog[cc][i]) >= 255)
1028						ll -= 255;
1029					val = vdev_raidz_pow2[ll];
1030				}
1031
1032				if (i == 0)
1033					dst[cc][x] = val;
1034				else
1035					dst[cc][x] ^= val;
1036			}
1037		}
1038	}
1039
1040	zfs_free(p, psize);
1041}
1042
1043static int
1044vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
1045{
1046	int n, i, c, t, tt;
1047	int nmissing_rows;
1048	int missing_rows[VDEV_RAIDZ_MAXPARITY];
1049	int parity_map[VDEV_RAIDZ_MAXPARITY];
1050
1051	uint8_t *p, *pp;
1052	size_t psize;
1053
1054	uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
1055	uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
1056	uint8_t *used;
1057
1058	int code = 0;
1059
1060
1061	n = rm->rm_cols - rm->rm_firstdatacol;
1062
1063	/*
1064	 * Figure out which data columns are missing.
1065	 */
1066	nmissing_rows = 0;
1067	for (t = 0; t < ntgts; t++) {
1068		if (tgts[t] >= rm->rm_firstdatacol) {
1069			missing_rows[nmissing_rows++] =
1070			    tgts[t] - rm->rm_firstdatacol;
1071		}
1072	}
1073
1074	/*
1075	 * Figure out which parity columns to use to help generate the missing
1076	 * data columns.
1077	 */
1078	for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
1079		ASSERT(tt < ntgts);
1080		ASSERT(c < rm->rm_firstdatacol);
1081
1082		/*
1083		 * Skip any targeted parity columns.
1084		 */
1085		if (c == tgts[tt]) {
1086			tt++;
1087			continue;
1088		}
1089
1090		code |= 1 << c;
1091
1092		parity_map[i] = c;
1093		i++;
1094	}
1095
1096	ASSERT(code != 0);
1097	ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY);
1098
1099	psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
1100	    nmissing_rows * n + sizeof (used[0]) * n;
1101	p = kmem_alloc(psize, KM_SLEEP);
1102
1103	for (pp = p, i = 0; i < nmissing_rows; i++) {
1104		rows[i] = pp;
1105		pp += n;
1106		invrows[i] = pp;
1107		pp += n;
1108	}
1109	used = pp;
1110
1111	for (i = 0; i < nmissing_rows; i++) {
1112		used[i] = parity_map[i];
1113	}
1114
1115	for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1116		if (tt < nmissing_rows &&
1117		    c == missing_rows[tt] + rm->rm_firstdatacol) {
1118			tt++;
1119			continue;
1120		}
1121
1122		ASSERT3S(i, <, n);
1123		used[i] = c;
1124		i++;
1125	}
1126
1127	/*
1128	 * Initialize the interesting rows of the matrix.
1129	 */
1130	vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows);
1131
1132	/*
1133	 * Invert the matrix.
1134	 */
1135	vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows,
1136	    invrows, used);
1137
1138	/*
1139	 * Reconstruct the missing data using the generated matrix.
1140	 */
1141	vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows,
1142	    invrows, used);
1143
1144	kmem_free(p, psize);
1145
1146	return (code);
1147}
1148
1149static int
1150vdev_raidz_reconstruct(raidz_map_t *rm, int *t, int nt)
1151{
1152	int tgts[VDEV_RAIDZ_MAXPARITY];
1153	int ntgts;
1154	int i, c;
1155	int code;
1156	int nbadparity, nbaddata;
1157
1158	/*
1159	 * The tgts list must already be sorted.
1160	 */
1161	for (i = 1; i < nt; i++) {
1162		ASSERT(t[i] > t[i - 1]);
1163	}
1164
1165	nbadparity = rm->rm_firstdatacol;
1166	nbaddata = rm->rm_cols - nbadparity;
1167	ntgts = 0;
1168	for (i = 0, c = 0; c < rm->rm_cols; c++) {
1169		if (i < nt && c == t[i]) {
1170			tgts[ntgts++] = c;
1171			i++;
1172		} else if (rm->rm_col[c].rc_error != 0) {
1173			tgts[ntgts++] = c;
1174		} else if (c >= rm->rm_firstdatacol) {
1175			nbaddata--;
1176		} else {
1177			nbadparity--;
1178		}
1179	}
1180
1181	ASSERT(ntgts >= nt);
1182	ASSERT(nbaddata >= 0);
1183	ASSERT(nbaddata + nbadparity == ntgts);
1184
1185	code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);
1186	ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY));
1187	ASSERT(code > 0);
1188	return (code);
1189}
1190
1191static raidz_map_t *
1192vdev_raidz_map_alloc(void *data, off_t offset, size_t size, uint64_t unit_shift,
1193    uint64_t dcols, uint64_t nparity)
1194{
1195	raidz_map_t *rm;
1196	uint64_t b = offset >> unit_shift;
1197	uint64_t s = size >> unit_shift;
1198	uint64_t f = b % dcols;
1199	uint64_t o = (b / dcols) << unit_shift;
1200	uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
1201
1202	q = s / (dcols - nparity);
1203	r = s - q * (dcols - nparity);
1204	bc = (r == 0 ? 0 : r + nparity);
1205	tot = s + nparity * (q + (r == 0 ? 0 : 1));
1206
1207	if (q == 0) {
1208		acols = bc;
1209		scols = MIN(dcols, roundup(bc, nparity + 1));
1210	} else {
1211		acols = dcols;
1212		scols = dcols;
1213	}
1214
1215	ASSERT3U(acols, <=, scols);
1216
1217	rm = zfs_alloc(offsetof(raidz_map_t, rm_col[scols]));
1218
1219	rm->rm_cols = acols;
1220	rm->rm_scols = scols;
1221	rm->rm_bigcols = bc;
1222	rm->rm_skipstart = bc;
1223	rm->rm_missingdata = 0;
1224	rm->rm_missingparity = 0;
1225	rm->rm_firstdatacol = nparity;
1226	rm->rm_reports = 0;
1227	rm->rm_freed = 0;
1228	rm->rm_ecksuminjected = 0;
1229
1230	asize = 0;
1231
1232	for (c = 0; c < scols; c++) {
1233		col = f + c;
1234		coff = o;
1235		if (col >= dcols) {
1236			col -= dcols;
1237			coff += 1ULL << unit_shift;
1238		}
1239		rm->rm_col[c].rc_devidx = col;
1240		rm->rm_col[c].rc_offset = coff;
1241		rm->rm_col[c].rc_data = NULL;
1242		rm->rm_col[c].rc_error = 0;
1243		rm->rm_col[c].rc_tried = 0;
1244		rm->rm_col[c].rc_skipped = 0;
1245
1246		if (c >= acols)
1247			rm->rm_col[c].rc_size = 0;
1248		else if (c < bc)
1249			rm->rm_col[c].rc_size = (q + 1) << unit_shift;
1250		else
1251			rm->rm_col[c].rc_size = q << unit_shift;
1252
1253		asize += rm->rm_col[c].rc_size;
1254	}
1255
1256	ASSERT3U(asize, ==, tot << unit_shift);
1257	rm->rm_asize = roundup(asize, (nparity + 1) << unit_shift);
1258	rm->rm_nskip = roundup(tot, nparity + 1) - tot;
1259	ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << unit_shift);
1260	ASSERT3U(rm->rm_nskip, <=, nparity);
1261
1262	for (c = 0; c < rm->rm_firstdatacol; c++)
1263		rm->rm_col[c].rc_data = zfs_alloc(rm->rm_col[c].rc_size);
1264
1265	rm->rm_col[c].rc_data = data;
1266
1267	for (c = c + 1; c < acols; c++)
1268		rm->rm_col[c].rc_data = (char *)rm->rm_col[c - 1].rc_data +
1269		    rm->rm_col[c - 1].rc_size;
1270
1271	/*
1272	 * If all data stored spans all columns, there's a danger that parity
1273	 * will always be on the same device and, since parity isn't read
1274	 * during normal operation, that that device's I/O bandwidth won't be
1275	 * used effectively. We therefore switch the parity every 1MB.
1276	 *
1277	 * ... at least that was, ostensibly, the theory. As a practical
1278	 * matter unless we juggle the parity between all devices evenly, we
1279	 * won't see any benefit. Further, occasional writes that aren't a
1280	 * multiple of the LCM of the number of children and the minimum
1281	 * stripe width are sufficient to avoid pessimal behavior.
1282	 * Unfortunately, this decision created an implicit on-disk format
1283	 * requirement that we need to support for all eternity, but only
1284	 * for single-parity RAID-Z.
1285	 *
1286	 * If we intend to skip a sector in the zeroth column for padding
1287	 * we must make sure to note this swap. We will never intend to
1288	 * skip the first column since at least one data and one parity
1289	 * column must appear in each row.
1290	 */
1291	ASSERT(rm->rm_cols >= 2);
1292	ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);
1293
1294	if (rm->rm_firstdatacol == 1 && (offset & (1ULL << 20))) {
1295		devidx = rm->rm_col[0].rc_devidx;
1296		o = rm->rm_col[0].rc_offset;
1297		rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
1298		rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
1299		rm->rm_col[1].rc_devidx = devidx;
1300		rm->rm_col[1].rc_offset = o;
1301
1302		if (rm->rm_skipstart == 0)
1303			rm->rm_skipstart = 1;
1304	}
1305
1306	return (rm);
1307}
1308
1309static void
1310vdev_raidz_map_free(raidz_map_t *rm)
1311{
1312	int c;
1313
1314	for (c = rm->rm_firstdatacol - 1; c >= 0; c--)
1315		zfs_free(rm->rm_col[c].rc_data, rm->rm_col[c].rc_size);
1316
1317	zfs_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols]));
1318}
1319
1320static vdev_t *
1321vdev_child(vdev_t *pvd, uint64_t devidx)
1322{
1323	vdev_t *cvd;
1324
1325	STAILQ_FOREACH(cvd, &pvd->v_children, v_childlink) {
1326		if (cvd->v_id == devidx)
1327			break;
1328	}
1329
1330	return (cvd);
1331}
1332
1333/*
1334 * We keep track of whether or not there were any injected errors, so that
1335 * any ereports we generate can note it.
1336 */
1337static int
1338raidz_checksum_verify(const spa_t *spa, const blkptr_t *bp, void *data,
1339    uint64_t size)
1340{
1341	return (zio_checksum_verify(spa, bp, data));
1342}
1343
1344/*
1345 * Generate the parity from the data columns. If we tried and were able to
1346 * read the parity without error, verify that the generated parity matches the
1347 * data we read. If it doesn't, we fire off a checksum error. Return the
1348 * number such failures.
1349 */
1350static int
1351raidz_parity_verify(raidz_map_t *rm)
1352{
1353	void *orig[VDEV_RAIDZ_MAXPARITY];
1354	int c, ret = 0;
1355	raidz_col_t *rc;
1356
1357	for (c = 0; c < rm->rm_firstdatacol; c++) {
1358		rc = &rm->rm_col[c];
1359		if (!rc->rc_tried || rc->rc_error != 0)
1360			continue;
1361		orig[c] = zfs_alloc(rc->rc_size);
1362		bcopy(rc->rc_data, orig[c], rc->rc_size);
1363	}
1364
1365	vdev_raidz_generate_parity(rm);
1366
1367	for (c = rm->rm_firstdatacol - 1; c >= 0; c--) {
1368		rc = &rm->rm_col[c];
1369		if (!rc->rc_tried || rc->rc_error != 0)
1370			continue;
1371		if (bcmp(orig[c], rc->rc_data, rc->rc_size) != 0) {
1372			rc->rc_error = ECKSUM;
1373			ret++;
1374		}
1375		zfs_free(orig[c], rc->rc_size);
1376	}
1377
1378	return (ret);
1379}
1380
1381/*
1382 * Iterate over all combinations of bad data and attempt a reconstruction.
1383 * Note that the algorithm below is non-optimal because it doesn't take into
1384 * account how reconstruction is actually performed. For example, with
1385 * triple-parity RAID-Z the reconstruction procedure is the same if column 4
1386 * is targeted as invalid as if columns 1 and 4 are targeted since in both
1387 * cases we'd only use parity information in column 0.
1388 */
1389static int
1390vdev_raidz_combrec(const spa_t *spa, raidz_map_t *rm, const blkptr_t *bp,
1391    void *data, off_t offset, uint64_t bytes, int total_errors, int data_errors)
1392{
1393	raidz_col_t *rc;
1394	void *orig[VDEV_RAIDZ_MAXPARITY];
1395	int tstore[VDEV_RAIDZ_MAXPARITY + 2];
1396	int *tgts = &tstore[1];
1397	int current, next, i, c, n;
1398	int code, ret = 0;
1399
1400	ASSERT(total_errors < rm->rm_firstdatacol);
1401
1402	/*
1403	 * This simplifies one edge condition.
1404	 */
1405	tgts[-1] = -1;
1406
1407	for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) {
1408		/*
1409		 * Initialize the targets array by finding the first n columns
1410		 * that contain no error.
1411		 *
1412		 * If there were no data errors, we need to ensure that we're
1413		 * always explicitly attempting to reconstruct at least one
1414		 * data column. To do this, we simply push the highest target
1415		 * up into the data columns.
1416		 */
1417		for (c = 0, i = 0; i < n; i++) {
1418			if (i == n - 1 && data_errors == 0 &&
1419			    c < rm->rm_firstdatacol) {
1420				c = rm->rm_firstdatacol;
1421			}
1422
1423			while (rm->rm_col[c].rc_error != 0) {
1424				c++;
1425				ASSERT3S(c, <, rm->rm_cols);
1426			}
1427
1428			tgts[i] = c++;
1429		}
1430
1431		/*
1432		 * Setting tgts[n] simplifies the other edge condition.
1433		 */
1434		tgts[n] = rm->rm_cols;
1435
1436		/*
1437		 * These buffers were allocated in previous iterations.
1438		 */
1439		for (i = 0; i < n - 1; i++) {
1440			ASSERT(orig[i] != NULL);
1441		}
1442
1443		orig[n - 1] = zfs_alloc(rm->rm_col[0].rc_size);
1444
1445		current = 0;
1446		next = tgts[current];
1447
1448		while (current != n) {
1449			tgts[current] = next;
1450			current = 0;
1451
1452			/*
1453			 * Save off the original data that we're going to
1454			 * attempt to reconstruct.
1455			 */
1456			for (i = 0; i < n; i++) {
1457				ASSERT(orig[i] != NULL);
1458				c = tgts[i];
1459				ASSERT3S(c, >=, 0);
1460				ASSERT3S(c, <, rm->rm_cols);
1461				rc = &rm->rm_col[c];
1462				bcopy(rc->rc_data, orig[i], rc->rc_size);
1463			}
1464
1465			/*
1466			 * Attempt a reconstruction and exit the outer loop on
1467			 * success.
1468			 */
1469			code = vdev_raidz_reconstruct(rm, tgts, n);
1470			if (raidz_checksum_verify(spa, bp, data, bytes) == 0) {
1471				for (i = 0; i < n; i++) {
1472					c = tgts[i];
1473					rc = &rm->rm_col[c];
1474					ASSERT(rc->rc_error == 0);
1475					rc->rc_error = ECKSUM;
1476				}
1477
1478				ret = code;
1479				goto done;
1480			}
1481
1482			/*
1483			 * Restore the original data.
1484			 */
1485			for (i = 0; i < n; i++) {
1486				c = tgts[i];
1487				rc = &rm->rm_col[c];
1488				bcopy(orig[i], rc->rc_data, rc->rc_size);
1489			}
1490
1491			do {
1492				/*
1493				 * Find the next valid column after the current
1494				 * position..
1495				 */
1496				for (next = tgts[current] + 1;
1497				    next < rm->rm_cols &&
1498				    rm->rm_col[next].rc_error != 0; next++)
1499					continue;
1500
1501				ASSERT(next <= tgts[current + 1]);
1502
1503				/*
1504				 * If that spot is available, we're done here.
1505				 */
1506				if (next != tgts[current + 1])
1507					break;
1508
1509				/*
1510				 * Otherwise, find the next valid column after
1511				 * the previous position.
1512				 */
1513				for (c = tgts[current - 1] + 1;
1514				    rm->rm_col[c].rc_error != 0; c++)
1515					continue;
1516
1517				tgts[current] = c;
1518				current++;
1519
1520			} while (current != n);
1521		}
1522	}
1523	n--;
1524done:
1525	for (i = n - 1; i >= 0; i--) {
1526		zfs_free(orig[i], rm->rm_col[0].rc_size);
1527	}
1528
1529	return (ret);
1530}
1531
1532static int
1533vdev_raidz_read(vdev_t *vd, const blkptr_t *bp, void *data,
1534    off_t offset, size_t bytes)
1535{
1536	vdev_t *tvd = vd->v_top;
1537	vdev_t *cvd;
1538	raidz_map_t *rm;
1539	raidz_col_t *rc;
1540	int c, error;
1541	int unexpected_errors;
1542	int parity_errors;
1543	int parity_untried;
1544	int data_errors;
1545	int total_errors;
1546	int n;
1547	int tgts[VDEV_RAIDZ_MAXPARITY];
1548	int code;
1549
1550	rc = NULL;	/* gcc */
1551	error = 0;
1552
1553	rm = vdev_raidz_map_alloc(data, offset, bytes, tvd->v_ashift,
1554	    vd->v_nchildren, vd->v_nparity);
1555
1556	/*
1557	 * Iterate over the columns in reverse order so that we hit the parity
1558	 * last -- any errors along the way will force us to read the parity.
1559	 */
1560	for (c = rm->rm_cols - 1; c >= 0; c--) {
1561		rc = &rm->rm_col[c];
1562		cvd = vdev_child(vd, rc->rc_devidx);
1563		if (cvd == NULL || cvd->v_state != VDEV_STATE_HEALTHY) {
1564			if (c >= rm->rm_firstdatacol)
1565				rm->rm_missingdata++;
1566			else
1567				rm->rm_missingparity++;
1568			rc->rc_error = ENXIO;
1569			rc->rc_tried = 1;	/* don't even try */
1570			rc->rc_skipped = 1;
1571			continue;
1572		}
1573#if 0		/* XXX: Too hard for the boot code. */
1574		if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
1575			if (c >= rm->rm_firstdatacol)
1576				rm->rm_missingdata++;
1577			else
1578				rm->rm_missingparity++;
1579			rc->rc_error = ESTALE;
1580			rc->rc_skipped = 1;
1581			continue;
1582		}
1583#endif
1584		if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0) {
1585			rc->rc_error = cvd->v_read(cvd, NULL, rc->rc_data,
1586			    rc->rc_offset, rc->rc_size);
1587			rc->rc_tried = 1;
1588			rc->rc_skipped = 0;
1589		}
1590	}
1591
1592reconstruct:
1593	unexpected_errors = 0;
1594	parity_errors = 0;
1595	parity_untried = 0;
1596	data_errors = 0;
1597	total_errors = 0;
1598
1599	ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
1600	ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);
1601
1602	for (c = 0; c < rm->rm_cols; c++) {
1603		rc = &rm->rm_col[c];
1604
1605		if (rc->rc_error) {
1606			ASSERT(rc->rc_error != ECKSUM);	/* child has no bp */
1607
1608			if (c < rm->rm_firstdatacol)
1609				parity_errors++;
1610			else
1611				data_errors++;
1612
1613			if (!rc->rc_skipped)
1614				unexpected_errors++;
1615
1616			total_errors++;
1617		} else if (c < rm->rm_firstdatacol && !rc->rc_tried) {
1618			parity_untried++;
1619		}
1620	}
1621
1622	/*
1623	 * There are three potential phases for a read:
1624	 *	1. produce valid data from the columns read
1625	 *	2. read all disks and try again
1626	 *	3. perform combinatorial reconstruction
1627	 *
1628	 * Each phase is progressively both more expensive and less likely to
1629	 * occur. If we encounter more errors than we can repair or all phases
1630	 * fail, we have no choice but to return an error.
1631	 */
1632
1633	/*
1634	 * If the number of errors we saw was correctable -- less than or equal
1635	 * to the number of parity disks read -- attempt to produce data that
1636	 * has a valid checksum. Naturally, this case applies in the absence of
1637	 * any errors.
1638	 */
1639	if (total_errors <= rm->rm_firstdatacol - parity_untried) {
1640		int rv;
1641
1642		if (data_errors == 0) {
1643			rv = raidz_checksum_verify(vd->v_spa, bp, data, bytes);
1644			if (rv == 0) {
1645				/*
1646				 * If we read parity information (unnecessarily
1647				 * as it happens since no reconstruction was
1648				 * needed) regenerate and verify the parity.
1649				 * We also regenerate parity when resilvering
1650				 * so we can write it out to the failed device
1651				 * later.
1652				 */
1653				if (parity_errors + parity_untried <
1654				    rm->rm_firstdatacol) {
1655					n = raidz_parity_verify(rm);
1656					unexpected_errors += n;
1657					ASSERT(parity_errors + n <=
1658					    rm->rm_firstdatacol);
1659				}
1660				goto done;
1661			}
1662		} else {
1663			/*
1664			 * We either attempt to read all the parity columns or
1665			 * none of them. If we didn't try to read parity, we
1666			 * wouldn't be here in the correctable case. There must
1667			 * also have been fewer parity errors than parity
1668			 * columns or, again, we wouldn't be in this code path.
1669			 */
1670			ASSERT(parity_untried == 0);
1671			ASSERT(parity_errors < rm->rm_firstdatacol);
1672
1673			/*
1674			 * Identify the data columns that reported an error.
1675			 */
1676			n = 0;
1677			for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
1678				rc = &rm->rm_col[c];
1679				if (rc->rc_error != 0) {
1680					ASSERT(n < VDEV_RAIDZ_MAXPARITY);
1681					tgts[n++] = c;
1682				}
1683			}
1684
1685			ASSERT(rm->rm_firstdatacol >= n);
1686
1687			code = vdev_raidz_reconstruct(rm, tgts, n);
1688
1689			rv = raidz_checksum_verify(vd->v_spa, bp, data, bytes);
1690			if (rv == 0) {
1691				/*
1692				 * If we read more parity disks than were used
1693				 * for reconstruction, confirm that the other
1694				 * parity disks produced correct data. This
1695				 * routine is suboptimal in that it regenerates
1696				 * the parity that we already used in addition
1697				 * to the parity that we're attempting to
1698				 * verify, but this should be a relatively
1699				 * uncommon case, and can be optimized if it
1700				 * becomes a problem. Note that we regenerate
1701				 * parity when resilvering so we can write it
1702				 * out to failed devices later.
1703				 */
1704				if (parity_errors < rm->rm_firstdatacol - n) {
1705					n = raidz_parity_verify(rm);
1706					unexpected_errors += n;
1707					ASSERT(parity_errors + n <=
1708					    rm->rm_firstdatacol);
1709				}
1710
1711				goto done;
1712			}
1713		}
1714	}
1715
1716	/*
1717	 * This isn't a typical situation -- either we got a read
1718	 * error or a child silently returned bad data. Read every
1719	 * block so we can try again with as much data and parity as
1720	 * we can track down. If we've already been through once
1721	 * before, all children will be marked as tried so we'll
1722	 * proceed to combinatorial reconstruction.
1723	 */
1724	unexpected_errors = 1;
1725	rm->rm_missingdata = 0;
1726	rm->rm_missingparity = 0;
1727
1728	n = 0;
1729	for (c = 0; c < rm->rm_cols; c++) {
1730		rc = &rm->rm_col[c];
1731
1732		if (rc->rc_tried)
1733			continue;
1734
1735		cvd = vdev_child(vd, rc->rc_devidx);
1736		ASSERT(cvd != NULL);
1737		rc->rc_error = cvd->v_read(cvd, NULL,
1738		    rc->rc_data, rc->rc_offset, rc->rc_size);
1739		if (rc->rc_error == 0)
1740			n++;
1741		rc->rc_tried = 1;
1742		rc->rc_skipped = 0;
1743	}
1744	/*
1745	 * If we managed to read anything more, retry the
1746	 * reconstruction.
1747	 */
1748	if (n > 0)
1749		goto reconstruct;
1750
1751	/*
1752	 * At this point we've attempted to reconstruct the data given the
1753	 * errors we detected, and we've attempted to read all columns. There
1754	 * must, therefore, be one or more additional problems -- silent errors
1755	 * resulting in invalid data rather than explicit I/O errors resulting
1756	 * in absent data. We check if there is enough additional data to
1757	 * possibly reconstruct the data and then perform combinatorial
1758	 * reconstruction over all possible combinations. If that fails,
1759	 * we're cooked.
1760	 */
1761	if (total_errors > rm->rm_firstdatacol) {
1762		error = EIO;
1763	} else if (total_errors < rm->rm_firstdatacol &&
1764	    (code = vdev_raidz_combrec(vd->v_spa, rm, bp, data, offset, bytes,
1765	     total_errors, data_errors)) != 0) {
1766		/*
1767		 * If we didn't use all the available parity for the
1768		 * combinatorial reconstruction, verify that the remaining
1769		 * parity is correct.
1770		 */
1771		if (code != (1 << rm->rm_firstdatacol) - 1)
1772			(void) raidz_parity_verify(rm);
1773	} else {
1774		/*
1775		 * We're here because either:
1776		 *
1777		 *	total_errors == rm_first_datacol, or
1778		 *	vdev_raidz_combrec() failed
1779		 *
1780		 * In either case, there is enough bad data to prevent
1781		 * reconstruction.
1782		 *
1783		 * Start checksum ereports for all children which haven't
1784		 * failed, and the IO wasn't speculative.
1785		 */
1786		error = ECKSUM;
1787	}
1788
1789done:
1790	vdev_raidz_map_free(rm);
1791
1792	return (error);
1793}
1794