1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include <fenv.h>
33#include <float.h>
34#include <math.h>
35
36#include "fpmath.h"
37
38/*
39 * A struct dd represents a floating-point number with twice the precision
40 * of a long double.  We maintain the invariant that "hi" stores the high-order
41 * bits of the result.
42 */
43struct dd {
44	long double hi;
45	long double lo;
46};
47
48/*
49 * Compute a+b exactly, returning the exact result in a struct dd.  We assume
50 * that both a and b are finite, but make no assumptions about their relative
51 * magnitudes.
52 */
53static inline struct dd
54dd_add(long double a, long double b)
55{
56	struct dd ret;
57	long double s;
58
59	ret.hi = a + b;
60	s = ret.hi - a;
61	ret.lo = (a - (ret.hi - s)) + (b - s);
62	return (ret);
63}
64
65/*
66 * Compute a+b, with a small tweak:  The least significant bit of the
67 * result is adjusted into a sticky bit summarizing all the bits that
68 * were lost to rounding.  This adjustment negates the effects of double
69 * rounding when the result is added to another number with a higher
70 * exponent.  For an explanation of round and sticky bits, see any reference
71 * on FPU design, e.g.,
72 *
73 *     J. Coonen.  An Implementation Guide to a Proposed Standard for
74 *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
75 */
76static inline long double
77add_adjusted(long double a, long double b)
78{
79	struct dd sum;
80	union IEEEl2bits u;
81
82	sum = dd_add(a, b);
83	if (sum.lo != 0) {
84		u.e = sum.hi;
85		if ((u.bits.manl & 1) == 0)
86			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
87	}
88	return (sum.hi);
89}
90
91/*
92 * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
93 * that the result will be subnormal, and care is taken to ensure that
94 * double rounding does not occur.
95 */
96static inline long double
97add_and_denormalize(long double a, long double b, int scale)
98{
99	struct dd sum;
100	int bits_lost;
101	union IEEEl2bits u;
102
103	sum = dd_add(a, b);
104
105	/*
106	 * If we are losing at least two bits of accuracy to denormalization,
107	 * then the first lost bit becomes a round bit, and we adjust the
108	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
109	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
110	 * break any ties in the correct direction.
111	 *
112	 * If we are losing only one bit to denormalization, however, we must
113	 * break the ties manually.
114	 */
115	if (sum.lo != 0) {
116		u.e = sum.hi;
117		bits_lost = -u.bits.exp - scale + 1;
118		if ((bits_lost != 1) ^ (int)(u.bits.manl & 1))
119			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
120	}
121	return (ldexp(sum.hi, scale));
122}
123
124/*
125 * Compute a*b exactly, returning the exact result in a struct dd.  We assume
126 * that both a and b are normalized, so no underflow or overflow will occur.
127 * The current rounding mode must be round-to-nearest.
128 */
129static inline struct dd
130dd_mul(long double a, long double b)
131{
132#if LDBL_MANT_DIG == 64
133	static const long double split = 0x1p32L + 1.0;
134#elif LDBL_MANT_DIG == 113
135	static const long double split = 0x1p57L + 1.0;
136#endif
137	struct dd ret;
138	long double ha, hb, la, lb, p, q;
139
140	p = a * split;
141	ha = a - p;
142	ha += p;
143	la = a - ha;
144
145	p = b * split;
146	hb = b - p;
147	hb += p;
148	lb = b - hb;
149
150	p = ha * hb;
151	q = ha * lb + la * hb;
152
153	ret.hi = p + q;
154	ret.lo = p - ret.hi + q + la * lb;
155	return (ret);
156}
157
158/*
159 * Fused multiply-add: Compute x * y + z with a single rounding error.
160 *
161 * We use scaling to avoid overflow/underflow, along with the
162 * canonical precision-doubling technique adapted from:
163 *
164 *	Dekker, T.  A Floating-Point Technique for Extending the
165 *	Available Precision.  Numer. Math. 18, 224-242 (1971).
166 */
167long double
168fmal(long double x, long double y, long double z)
169{
170	long double xs, ys, zs, adj;
171	struct dd xy, r;
172	int oround;
173	int ex, ey, ez;
174	int spread;
175
176	/*
177	 * Handle special cases. The order of operations and the particular
178	 * return values here are crucial in handling special cases involving
179	 * infinities, NaNs, overflows, and signed zeroes correctly.
180	 */
181	if (x == 0.0 || y == 0.0)
182		return (x * y + z);
183	if (z == 0.0)
184		return (x * y);
185	if (!isfinite(x) || !isfinite(y))
186		return (x * y + z);
187	if (!isfinite(z))
188		return (z);
189
190	xs = frexpl(x, &ex);
191	ys = frexpl(y, &ey);
192	zs = frexpl(z, &ez);
193	oround = fegetround();
194	spread = ex + ey - ez;
195
196	/*
197	 * If x * y and z are many orders of magnitude apart, the scaling
198	 * will overflow, so we handle these cases specially.  Rounding
199	 * modes other than FE_TONEAREST are painful.
200	 */
201	if (spread < -LDBL_MANT_DIG) {
202		feraiseexcept(FE_INEXACT);
203		if (!isnormal(z))
204			feraiseexcept(FE_UNDERFLOW);
205		switch (oround) {
206		case FE_TONEAREST:
207			return (z);
208		case FE_TOWARDZERO:
209			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
210				return (z);
211			else
212				return (nextafterl(z, 0));
213		case FE_DOWNWARD:
214			if (x > 0.0 ^ y < 0.0)
215				return (z);
216			else
217				return (nextafterl(z, -INFINITY));
218		default:	/* FE_UPWARD */
219			if (x > 0.0 ^ y < 0.0)
220				return (nextafterl(z, INFINITY));
221			else
222				return (z);
223		}
224	}
225	if (spread <= LDBL_MANT_DIG * 2)
226		zs = ldexpl(zs, -spread);
227	else
228		zs = copysignl(LDBL_MIN, zs);
229
230	fesetround(FE_TONEAREST);
231	/* work around clang bug 8100 */
232	volatile long double vxs = xs;
233
234	/*
235	 * Basic approach for round-to-nearest:
236	 *
237	 *     (xy.hi, xy.lo) = x * y		(exact)
238	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
239	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
240	 *     result = r.hi + adj		(correctly rounded)
241	 */
242	xy = dd_mul(vxs, ys);
243	r = dd_add(xy.hi, zs);
244
245	spread = ex + ey;
246
247	if (r.hi == 0.0) {
248		/*
249		 * When the addends cancel to 0, ensure that the result has
250		 * the correct sign.
251		 */
252		fesetround(oround);
253		volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
254		return (xy.hi + vzs + ldexpl(xy.lo, spread));
255	}
256
257	if (oround != FE_TONEAREST) {
258		/*
259		 * There is no need to worry about double rounding in directed
260		 * rounding modes.
261		 */
262		fesetround(oround);
263		/* work around clang bug 8100 */
264		volatile long double vrlo = r.lo;
265		adj = vrlo + xy.lo;
266		return (ldexpl(r.hi + adj, spread));
267	}
268
269	adj = add_adjusted(r.lo, xy.lo);
270	if (spread + ilogbl(r.hi) > -16383)
271		return (ldexpl(r.hi + adj, spread));
272	else
273		return (add_and_denormalize(r.hi, adj, spread));
274}
275