1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1997, 1998 Kenneth D. Merry.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 *    derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD$");
33
34#include <sys/types.h>
35#include <sys/sysctl.h>
36#include <sys/errno.h>
37#include <sys/resource.h>
38#include <sys/queue.h>
39
40#include <ctype.h>
41#include <err.h>
42#include <fcntl.h>
43#include <limits.h>
44#include <stdio.h>
45#include <stdlib.h>
46#include <string.h>
47#include <stdarg.h>
48#include <kvm.h>
49#include <nlist.h>
50
51#include "devstat.h"
52
53int
54compute_stats(struct devstat *current, struct devstat *previous,
55	      long double etime, u_int64_t *total_bytes,
56	      u_int64_t *total_transfers, u_int64_t *total_blocks,
57	      long double *kb_per_transfer, long double *transfers_per_second,
58	      long double *mb_per_second, long double *blocks_per_second,
59	      long double *ms_per_transaction);
60
61typedef enum {
62	DEVSTAT_ARG_NOTYPE,
63	DEVSTAT_ARG_UINT64,
64	DEVSTAT_ARG_LD,
65	DEVSTAT_ARG_SKIP
66} devstat_arg_type;
67
68char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
69
70/*
71 * Table to match descriptive strings with device types.  These are in
72 * order from most common to least common to speed search time.
73 */
74struct devstat_match_table match_table[] = {
75	{"da",		DEVSTAT_TYPE_DIRECT,	DEVSTAT_MATCH_TYPE},
76	{"cd",		DEVSTAT_TYPE_CDROM,	DEVSTAT_MATCH_TYPE},
77	{"scsi",	DEVSTAT_TYPE_IF_SCSI,	DEVSTAT_MATCH_IF},
78	{"ide",		DEVSTAT_TYPE_IF_IDE,	DEVSTAT_MATCH_IF},
79	{"other",	DEVSTAT_TYPE_IF_OTHER,	DEVSTAT_MATCH_IF},
80	{"worm",	DEVSTAT_TYPE_WORM,	DEVSTAT_MATCH_TYPE},
81	{"sa",		DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
82	{"pass",	DEVSTAT_TYPE_PASS,	DEVSTAT_MATCH_PASS},
83	{"optical",	DEVSTAT_TYPE_OPTICAL,	DEVSTAT_MATCH_TYPE},
84	{"array",	DEVSTAT_TYPE_STORARRAY,	DEVSTAT_MATCH_TYPE},
85	{"changer",	DEVSTAT_TYPE_CHANGER,	DEVSTAT_MATCH_TYPE},
86	{"scanner",	DEVSTAT_TYPE_SCANNER,	DEVSTAT_MATCH_TYPE},
87	{"printer",	DEVSTAT_TYPE_PRINTER,	DEVSTAT_MATCH_TYPE},
88	{"floppy",	DEVSTAT_TYPE_FLOPPY,	DEVSTAT_MATCH_TYPE},
89	{"proc",	DEVSTAT_TYPE_PROCESSOR,	DEVSTAT_MATCH_TYPE},
90	{"comm",	DEVSTAT_TYPE_COMM,	DEVSTAT_MATCH_TYPE},
91	{"enclosure",	DEVSTAT_TYPE_ENCLOSURE,	DEVSTAT_MATCH_TYPE},
92	{NULL,		0,			0}
93};
94
95struct devstat_args {
96	devstat_metric 		metric;
97	devstat_arg_type	argtype;
98} devstat_arg_list[] = {
99	{ DSM_NONE, DEVSTAT_ARG_NOTYPE },
100	{ DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
101	{ DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
102	{ DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
103	{ DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
104	{ DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
105	{ DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
106	{ DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
107	{ DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
108	{ DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
109	{ DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
110	{ DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
111	{ DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
112	{ DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
113	{ DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
114	{ DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
115	{ DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
116	{ DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
117	{ DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
118	{ DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
119	{ DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
120	{ DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
121	{ DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
122	{ DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
123	{ DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
124	{ DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
125	{ DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
126	{ DSM_SKIP, DEVSTAT_ARG_SKIP },
127	{ DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
128	{ DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
129	{ DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
130	{ DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
131	{ DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132	{ DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
133	{ DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
134	{ DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
135	{ DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
136	{ DSM_BUSY_PCT, DEVSTAT_ARG_LD },
137	{ DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
138	{ DSM_TOTAL_DURATION, DEVSTAT_ARG_LD },
139	{ DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD },
140	{ DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD },
141	{ DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD },
142	{ DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD },
143	{ DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD },
144};
145
146static const char *namelist[] = {
147#define X_NUMDEVS	0
148	"_devstat_num_devs",
149#define X_GENERATION	1
150	"_devstat_generation",
151#define X_VERSION	2
152	"_devstat_version",
153#define X_DEVICE_STATQ	3
154	"_device_statq",
155#define X_TIME_UPTIME	4
156	"_time_uptime",
157#define X_END		5
158};
159
160/*
161 * Local function declarations.
162 */
163static int compare_select(const void *arg1, const void *arg2);
164static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
165static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
166static char *get_devstat_kvm(kvm_t *kd);
167
168#define KREADNL(kd, var, val) \
169	readkmem_nl(kd, namelist[var], &val, sizeof(val))
170
171int
172devstat_getnumdevs(kvm_t *kd)
173{
174	size_t numdevsize;
175	int numdevs;
176
177	numdevsize = sizeof(int);
178
179	/*
180	 * Find out how many devices we have in the system.
181	 */
182	if (kd == NULL) {
183		if (sysctlbyname("kern.devstat.numdevs", &numdevs,
184				 &numdevsize, NULL, 0) == -1) {
185			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
186				 "%s: error getting number of devices\n"
187				 "%s: %s", __func__, __func__,
188				 strerror(errno));
189			return(-1);
190		} else
191			return(numdevs);
192	} else {
193
194		if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
195			return(-1);
196		else
197			return(numdevs);
198	}
199}
200
201/*
202 * This is an easy way to get the generation number, but the generation is
203 * supplied in a more atmoic manner by the kern.devstat.all sysctl.
204 * Because this generation sysctl is separate from the statistics sysctl,
205 * the device list and the generation could change between the time that
206 * this function is called and the device list is retrieved.
207 */
208long
209devstat_getgeneration(kvm_t *kd)
210{
211	size_t gensize;
212	long generation;
213
214	gensize = sizeof(long);
215
216	/*
217	 * Get the current generation number.
218	 */
219	if (kd == NULL) {
220		if (sysctlbyname("kern.devstat.generation", &generation,
221				 &gensize, NULL, 0) == -1) {
222			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
223				 "%s: error getting devstat generation\n%s: %s",
224				 __func__, __func__, strerror(errno));
225			return(-1);
226		} else
227			return(generation);
228	} else {
229		if (KREADNL(kd, X_GENERATION, generation) == -1)
230			return(-1);
231		else
232			return(generation);
233	}
234}
235
236/*
237 * Get the current devstat version.  The return value of this function
238 * should be compared with DEVSTAT_VERSION, which is defined in
239 * sys/devicestat.h.  This will enable userland programs to determine
240 * whether they are out of sync with the kernel.
241 */
242int
243devstat_getversion(kvm_t *kd)
244{
245	size_t versize;
246	int version;
247
248	versize = sizeof(int);
249
250	/*
251	 * Get the current devstat version.
252	 */
253	if (kd == NULL) {
254		if (sysctlbyname("kern.devstat.version", &version, &versize,
255				 NULL, 0) == -1) {
256			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
257				 "%s: error getting devstat version\n%s: %s",
258				 __func__, __func__, strerror(errno));
259			return(-1);
260		} else
261			return(version);
262	} else {
263		if (KREADNL(kd, X_VERSION, version) == -1)
264			return(-1);
265		else
266			return(version);
267	}
268}
269
270/*
271 * Check the devstat version we know about against the devstat version the
272 * kernel knows about.  If they don't match, print an error into the
273 * devstat error buffer, and return -1.  If they match, return 0.
274 */
275int
276devstat_checkversion(kvm_t *kd)
277{
278	int buflen, res, retval = 0, version;
279
280	version = devstat_getversion(kd);
281
282	if (version != DEVSTAT_VERSION) {
283		/*
284		 * If getversion() returns an error (i.e. -1), then it
285		 * has printed an error message in the buffer.  Therefore,
286		 * we need to add a \n to the end of that message before we
287		 * print our own message in the buffer.
288		 */
289		if (version == -1)
290			buflen = strlen(devstat_errbuf);
291		else
292			buflen = 0;
293
294		res = snprintf(devstat_errbuf + buflen,
295			       DEVSTAT_ERRBUF_SIZE - buflen,
296			       "%s%s: userland devstat version %d is not "
297			       "the same as the kernel\n%s: devstat "
298			       "version %d\n", version == -1 ? "\n" : "",
299			       __func__, DEVSTAT_VERSION, __func__, version);
300
301		if (res < 0)
302			devstat_errbuf[buflen] = '\0';
303
304		buflen = strlen(devstat_errbuf);
305		if (version < DEVSTAT_VERSION)
306			res = snprintf(devstat_errbuf + buflen,
307				       DEVSTAT_ERRBUF_SIZE - buflen,
308				       "%s: libdevstat newer than kernel\n",
309				       __func__);
310		else
311			res = snprintf(devstat_errbuf + buflen,
312				       DEVSTAT_ERRBUF_SIZE - buflen,
313				       "%s: kernel newer than libdevstat\n",
314				       __func__);
315
316		if (res < 0)
317			devstat_errbuf[buflen] = '\0';
318
319		retval = -1;
320	}
321
322	return(retval);
323}
324
325/*
326 * Get the current list of devices and statistics, and the current
327 * generation number.
328 *
329 * Return values:
330 * -1  -- error
331 *  0  -- device list is unchanged
332 *  1  -- device list has changed
333 */
334int
335devstat_getdevs(kvm_t *kd, struct statinfo *stats)
336{
337	int error;
338	size_t dssize;
339	long oldgeneration;
340	int retval = 0;
341	struct devinfo *dinfo;
342	struct timespec ts;
343
344	dinfo = stats->dinfo;
345
346	if (dinfo == NULL) {
347		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
348			 "%s: stats->dinfo was NULL", __func__);
349		return(-1);
350	}
351
352	oldgeneration = dinfo->generation;
353
354	if (kd == NULL) {
355		clock_gettime(CLOCK_MONOTONIC, &ts);
356		stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
357
358		/* If this is our first time through, mem_ptr will be null. */
359		if (dinfo->mem_ptr == NULL) {
360			/*
361			 * Get the number of devices.  If it's negative, it's an
362			 * error.  Don't bother setting the error string, since
363			 * getnumdevs() has already done that for us.
364			 */
365			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
366				return(-1);
367
368			/*
369			 * The kern.devstat.all sysctl returns the current
370			 * generation number, as well as all the devices.
371			 * So we need four bytes more.
372			 */
373			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
374				 sizeof(long);
375			dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
376			if (dinfo->mem_ptr == NULL) {
377				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
378					 "%s: Cannot allocate memory for mem_ptr element",
379					 __func__);
380				return(-1);
381			}
382		} else
383			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
384				 sizeof(long);
385
386		/*
387		 * Request all of the devices.  We only really allow for one
388		 * ENOMEM failure.  It would, of course, be possible to just go
389		 * in a loop and keep reallocing the device structure until we
390		 * don't get ENOMEM back.  I'm not sure it's worth it, though.
391		 * If devices are being added to the system that quickly, maybe
392		 * the user can just wait until all devices are added.
393		 */
394		for (;;) {
395			error = sysctlbyname("kern.devstat.all",
396					     dinfo->mem_ptr,
397					     &dssize, NULL, 0);
398			if (error != -1 || errno != EBUSY)
399				break;
400		}
401		if (error == -1) {
402			/*
403			 * If we get ENOMEM back, that means that there are
404			 * more devices now, so we need to allocate more
405			 * space for the device array.
406			 */
407			if (errno == ENOMEM) {
408				/*
409				 * No need to set the error string here,
410				 * devstat_getnumdevs() will do that if it fails.
411				 */
412				if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
413					return(-1);
414
415				dssize = (dinfo->numdevs *
416					sizeof(struct devstat)) + sizeof(long);
417				dinfo->mem_ptr = (u_int8_t *)
418					realloc(dinfo->mem_ptr, dssize);
419				if ((error = sysctlbyname("kern.devstat.all",
420				    dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
421					snprintf(devstat_errbuf,
422						 sizeof(devstat_errbuf),
423					    	 "%s: error getting device "
424					    	 "stats\n%s: %s", __func__,
425					    	 __func__, strerror(errno));
426					return(-1);
427				}
428			} else {
429				snprintf(devstat_errbuf, sizeof(devstat_errbuf),
430					 "%s: error getting device stats\n"
431					 "%s: %s", __func__, __func__,
432					 strerror(errno));
433				return(-1);
434			}
435		}
436
437	} else {
438		if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1)
439			return(-1);
440		else
441			stats->snap_time = ts.tv_sec;
442
443		/*
444		 * This is of course non-atomic, but since we are working
445		 * on a core dump, the generation is unlikely to change
446		 */
447		if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
448			return(-1);
449		if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
450			return(-1);
451	}
452	/*
453	 * The sysctl spits out the generation as the first four bytes,
454	 * then all of the device statistics structures.
455	 */
456	dinfo->generation = *(long *)dinfo->mem_ptr;
457
458	/*
459	 * If the generation has changed, and if the current number of
460	 * devices is not the same as the number of devices recorded in the
461	 * devinfo structure, it is likely that the device list has shrunk.
462	 * The reason that it is likely that the device list has shrunk in
463	 * this case is that if the device list has grown, the sysctl above
464	 * will return an ENOMEM error, and we will reset the number of
465	 * devices and reallocate the device array.  If the second sysctl
466	 * fails, we will return an error and therefore never get to this
467	 * point.  If the device list has shrunk, the sysctl will not
468	 * return an error since we have more space allocated than is
469	 * necessary.  So, in the shrinkage case, we catch it here and
470	 * reallocate the array so that we don't use any more space than is
471	 * necessary.
472	 */
473	if (oldgeneration != dinfo->generation) {
474		if (devstat_getnumdevs(kd) != dinfo->numdevs) {
475			if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
476				return(-1);
477			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
478				sizeof(long);
479			dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
480							     dssize);
481		}
482		retval = 1;
483	}
484
485	dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
486
487	return(retval);
488}
489
490/*
491 * selectdevs():
492 *
493 * Devices are selected/deselected based upon the following criteria:
494 * - devices specified by the user on the command line
495 * - devices matching any device type expressions given on the command line
496 * - devices with the highest I/O, if 'top' mode is enabled
497 * - the first n unselected devices in the device list, if maxshowdevs
498 *   devices haven't already been selected and if the user has not
499 *   specified any devices on the command line and if we're in "add" mode.
500 *
501 * Input parameters:
502 * - device selection list (dev_select)
503 * - current number of devices selected (num_selected)
504 * - total number of devices in the selection list (num_selections)
505 * - devstat generation as of the last time selectdevs() was called
506 *   (select_generation)
507 * - current devstat generation (current_generation)
508 * - current list of devices and statistics (devices)
509 * - number of devices in the current device list (numdevs)
510 * - compiled version of the command line device type arguments (matches)
511 *   - This is optional.  If the number of devices is 0, this will be ignored.
512 *   - The matching code pays attention to the current selection mode.  So
513 *     if you pass in a matching expression, it will be evaluated based
514 *     upon the selection mode that is passed in.  See below for details.
515 * - number of device type matching expressions (num_matches)
516 *   - Set to 0 to disable the matching code.
517 * - list of devices specified on the command line by the user (dev_selections)
518 * - number of devices selected on the command line by the user
519 *   (num_dev_selections)
520 * - Our selection mode.  There are four different selection modes:
521 *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
522 *        selected by the user or devices matching a pattern given by the
523 *        user will be selected in addition to devices that are already
524 *        selected.  Additional devices will be selected, up to maxshowdevs
525 *        number of devices.
526 *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
527 *        explicitly given by the user or devices matching a pattern
528 *        given by the user will be selected.  No other devices will be
529 *        selected.
530 *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
531 *        only.  Basically, this will not de-select any devices that are
532 *        current selected, as only mode would, but it will also not
533 *        gratuitously select up to maxshowdevs devices as add mode would.
534 *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
535 *        explicitly selected by the user or devices matching a pattern
536 *        given by the user will be de-selected.
537 * - maximum number of devices we can select (maxshowdevs)
538 * - flag indicating whether or not we're in 'top' mode (perf_select)
539 *
540 * Output data:
541 * - the device selection list may be modified and passed back out
542 * - the number of devices selected and the total number of items in the
543 *   device selection list may be changed
544 * - the selection generation may be changed to match the current generation
545 *
546 * Return values:
547 * -1  -- error
548 *  0  -- selected devices are unchanged
549 *  1  -- selected devices changed
550 */
551int
552devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
553		   int *num_selections, long *select_generation,
554		   long current_generation, struct devstat *devices,
555		   int numdevs, struct devstat_match *matches, int num_matches,
556		   char **dev_selections, int num_dev_selections,
557		   devstat_select_mode select_mode, int maxshowdevs,
558		   int perf_select)
559{
560	int i, j, k;
561	int init_selections = 0, init_selected_var = 0;
562	struct device_selection *old_dev_select = NULL;
563	int old_num_selections = 0, old_num_selected;
564	int selection_number = 0;
565	int changed = 0, found = 0;
566
567	if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
568		return(-1);
569
570	/*
571	 * We always want to make sure that we have as many dev_select
572	 * entries as there are devices.
573	 */
574	/*
575	 * In this case, we haven't selected devices before.
576	 */
577	if (*dev_select == NULL) {
578		*dev_select = (struct device_selection *)malloc(numdevs *
579			sizeof(struct device_selection));
580		*select_generation = current_generation;
581		init_selections = 1;
582		changed = 1;
583	/*
584	 * In this case, we have selected devices before, but the device
585	 * list has changed since we last selected devices, so we need to
586	 * either enlarge or reduce the size of the device selection list.
587	 * But delay the resizing until after copying the data to old_dev_select
588	 * as to not lose any data in the case of reducing the size.
589	 */
590	} else if (*num_selections != numdevs) {
591		*select_generation = current_generation;
592		init_selections = 1;
593	/*
594	 * In this case, we've selected devices before, and the selection
595	 * list is the same size as it was the last time, but the device
596	 * list has changed.
597	 */
598	} else if (*select_generation < current_generation) {
599		*select_generation = current_generation;
600		init_selections = 1;
601	}
602
603	if (*dev_select == NULL) {
604		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
605			 "%s: Cannot (re)allocate memory for dev_select argument",
606			 __func__);
607		return(-1);
608	}
609
610	/*
611	 * If we're in "only" mode, we want to clear out the selected
612	 * variable since we're going to select exactly what the user wants
613	 * this time through.
614	 */
615	if (select_mode == DS_SELECT_ONLY)
616		init_selected_var = 1;
617
618	/*
619	 * In all cases, we want to back up the number of selected devices.
620	 * It is a quick and accurate way to determine whether the selected
621	 * devices have changed.
622	 */
623	old_num_selected = *num_selected;
624
625	/*
626	 * We want to make a backup of the current selection list if
627	 * the list of devices has changed, or if we're in performance
628	 * selection mode.  In both cases, we don't want to make a backup
629	 * if we already know for sure that the list will be different.
630	 * This is certainly the case if this is our first time through the
631	 * selection code.
632	 */
633	if (((init_selected_var != 0) || (init_selections != 0)
634	 || (perf_select != 0)) && (changed == 0)){
635		old_dev_select = (struct device_selection *)malloc(
636		    *num_selections * sizeof(struct device_selection));
637		if (old_dev_select == NULL) {
638			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
639				 "%s: Cannot allocate memory for selection list backup",
640				 __func__);
641			return(-1);
642		}
643		old_num_selections = *num_selections;
644		bcopy(*dev_select, old_dev_select,
645		    sizeof(struct device_selection) * *num_selections);
646	}
647
648	if (!changed && *num_selections != numdevs) {
649		*dev_select = (struct device_selection *)reallocf(*dev_select,
650			numdevs * sizeof(struct device_selection));
651	}
652
653	if (init_selections != 0) {
654		bzero(*dev_select, sizeof(struct device_selection) * numdevs);
655
656		for (i = 0; i < numdevs; i++) {
657			(*dev_select)[i].device_number =
658				devices[i].device_number;
659			strncpy((*dev_select)[i].device_name,
660				devices[i].device_name,
661				DEVSTAT_NAME_LEN);
662			(*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
663			(*dev_select)[i].unit_number = devices[i].unit_number;
664			(*dev_select)[i].position = i;
665		}
666		*num_selections = numdevs;
667	} else if (init_selected_var != 0) {
668		for (i = 0; i < numdevs; i++)
669			(*dev_select)[i].selected = 0;
670	}
671
672	/* we haven't gotten around to selecting anything yet.. */
673	if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
674	 || (init_selected_var != 0))
675		*num_selected = 0;
676
677	/*
678	 * Look through any devices the user specified on the command line
679	 * and see if they match known devices.  If so, select them.
680	 */
681	for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
682		char tmpstr[80];
683
684		snprintf(tmpstr, sizeof(tmpstr), "%s%d",
685			 (*dev_select)[i].device_name,
686			 (*dev_select)[i].unit_number);
687		for (j = 0; j < num_dev_selections; j++) {
688			if (strcmp(tmpstr, dev_selections[j]) == 0) {
689				/*
690				 * Here we do different things based on the
691				 * mode we're in.  If we're in add or
692				 * addonly mode, we only select this device
693				 * if it hasn't already been selected.
694				 * Otherwise, we would be unnecessarily
695				 * changing the selection order and
696				 * incrementing the selection count.  If
697				 * we're in only mode, we unconditionally
698				 * select this device, since in only mode
699				 * any previous selections are erased and
700				 * manually specified devices are the first
701				 * ones to be selected.  If we're in remove
702				 * mode, we de-select the specified device and
703				 * decrement the selection count.
704				 */
705				switch(select_mode) {
706				case DS_SELECT_ADD:
707				case DS_SELECT_ADDONLY:
708					if ((*dev_select)[i].selected)
709						break;
710					/* FALLTHROUGH */
711				case DS_SELECT_ONLY:
712					(*dev_select)[i].selected =
713						++selection_number;
714					(*num_selected)++;
715					break;
716				case DS_SELECT_REMOVE:
717					(*dev_select)[i].selected = 0;
718					(*num_selected)--;
719					/*
720					 * This isn't passed back out, we
721					 * just use it to keep track of
722					 * how many devices we've removed.
723					 */
724					num_dev_selections--;
725					break;
726				}
727				break;
728			}
729		}
730	}
731
732	/*
733	 * Go through the user's device type expressions and select devices
734	 * accordingly.  We only do this if the number of devices already
735	 * selected is less than the maximum number we can show.
736	 */
737	for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
738		/* We should probably indicate some error here */
739		if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
740		 || (matches[i].num_match_categories <= 0))
741			continue;
742
743		for (j = 0; j < numdevs; j++) {
744			int num_match_categories;
745
746			num_match_categories = matches[i].num_match_categories;
747
748			/*
749			 * Determine whether or not the current device
750			 * matches the given matching expression.  This if
751			 * statement consists of three components:
752			 *   - the device type check
753			 *   - the device interface check
754			 *   - the passthrough check
755			 * If a the matching test is successful, it
756			 * decrements the number of matching categories,
757			 * and if we've reached the last element that
758			 * needed to be matched, the if statement succeeds.
759			 *
760			 */
761			if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
762			  && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
763			        (matches[i].device_type & DEVSTAT_TYPE_MASK))
764			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
765			   || (((matches[i].match_fields &
766				DEVSTAT_MATCH_PASS) == 0)
767			    && ((devices[j].device_type &
768			        DEVSTAT_TYPE_PASS) == 0)))
769			  && (--num_match_categories == 0))
770			 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
771			  && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
772			        (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
773			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
774			   || (((matches[i].match_fields &
775				DEVSTAT_MATCH_PASS) == 0)
776			    && ((devices[j].device_type &
777				DEVSTAT_TYPE_PASS) == 0)))
778			  && (--num_match_categories == 0))
779			 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
780			  && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
781			  && (--num_match_categories == 0))) {
782
783				/*
784				 * This is probably a non-optimal solution
785				 * to the problem that the devices in the
786				 * device list will not be in the same
787				 * order as the devices in the selection
788				 * array.
789				 */
790				for (k = 0; k < numdevs; k++) {
791					if ((*dev_select)[k].position == j) {
792						found = 1;
793						break;
794					}
795				}
796
797				/*
798				 * There shouldn't be a case where a device
799				 * in the device list is not in the
800				 * selection list...but it could happen.
801				 */
802				if (found != 1) {
803					fprintf(stderr, "selectdevs: couldn't"
804						" find %s%d in selection "
805						"list\n",
806						devices[j].device_name,
807						devices[j].unit_number);
808					break;
809				}
810
811				/*
812				 * We do different things based upon the
813				 * mode we're in.  If we're in add or only
814				 * mode, we go ahead and select this device
815				 * if it hasn't already been selected.  If
816				 * it has already been selected, we leave
817				 * it alone so we don't mess up the
818				 * selection ordering.  Manually specified
819				 * devices have already been selected, and
820				 * they have higher priority than pattern
821				 * matched devices.  If we're in remove
822				 * mode, we de-select the given device and
823				 * decrement the selected count.
824				 */
825				switch(select_mode) {
826				case DS_SELECT_ADD:
827				case DS_SELECT_ADDONLY:
828				case DS_SELECT_ONLY:
829					if ((*dev_select)[k].selected != 0)
830						break;
831					(*dev_select)[k].selected =
832						++selection_number;
833					(*num_selected)++;
834					break;
835				case DS_SELECT_REMOVE:
836					(*dev_select)[k].selected = 0;
837					(*num_selected)--;
838					break;
839				}
840			}
841		}
842	}
843
844	/*
845	 * Here we implement "top" mode.  Devices are sorted in the
846	 * selection array based on two criteria:  whether or not they are
847	 * selected (not selection number, just the fact that they are
848	 * selected!) and the number of bytes in the "bytes" field of the
849	 * selection structure.  The bytes field generally must be kept up
850	 * by the user.  In the future, it may be maintained by library
851	 * functions, but for now the user has to do the work.
852	 *
853	 * At first glance, it may seem wrong that we don't go through and
854	 * select every device in the case where the user hasn't specified
855	 * any devices or patterns.  In fact, though, it won't make any
856	 * difference in the device sorting.  In that particular case (i.e.
857	 * when we're in "add" or "only" mode, and the user hasn't
858	 * specified anything) the first time through no devices will be
859	 * selected, so the only criterion used to sort them will be their
860	 * performance.  The second time through, and every time thereafter,
861	 * all devices will be selected, so again selection won't matter.
862	 */
863	if (perf_select != 0) {
864
865		/* Sort the device array by throughput  */
866		qsort(*dev_select, *num_selections,
867		      sizeof(struct device_selection),
868		      compare_select);
869
870		if (*num_selected == 0) {
871			/*
872			 * Here we select every device in the array, if it
873			 * isn't already selected.  Because the 'selected'
874			 * variable in the selection array entries contains
875			 * the selection order, the devstats routine can show
876			 * the devices that were selected first.
877			 */
878			for (i = 0; i < *num_selections; i++) {
879				if ((*dev_select)[i].selected == 0) {
880					(*dev_select)[i].selected =
881						++selection_number;
882					(*num_selected)++;
883				}
884			}
885		} else {
886			selection_number = 0;
887			for (i = 0; i < *num_selections; i++) {
888				if ((*dev_select)[i].selected != 0) {
889					(*dev_select)[i].selected =
890						++selection_number;
891				}
892			}
893		}
894	}
895
896	/*
897	 * If we're in the "add" selection mode and if we haven't already
898	 * selected maxshowdevs number of devices, go through the array and
899	 * select any unselected devices.  If we're in "only" mode, we
900	 * obviously don't want to select anything other than what the user
901	 * specifies.  If we're in "remove" mode, it probably isn't a good
902	 * idea to go through and select any more devices, since we might
903	 * end up selecting something that the user wants removed.  Through
904	 * more complicated logic, we could actually figure this out, but
905	 * that would probably require combining this loop with the various
906	 * selections loops above.
907	 */
908	if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
909		for (i = 0; i < *num_selections; i++)
910			if ((*dev_select)[i].selected == 0) {
911				(*dev_select)[i].selected = ++selection_number;
912				(*num_selected)++;
913			}
914	}
915
916	/*
917	 * Look at the number of devices that have been selected.  If it
918	 * has changed, set the changed variable.  Otherwise, if we've
919	 * made a backup of the selection list, compare it to the current
920	 * selection list to see if the selected devices have changed.
921	 */
922	if ((changed == 0) && (old_num_selected != *num_selected))
923		changed = 1;
924	else if ((changed == 0) && (old_dev_select != NULL)) {
925		/*
926		 * Now we go through the selection list and we look at
927		 * it three different ways.
928		 */
929		for (i = 0; (i < *num_selections) && (changed == 0) &&
930		     (i < old_num_selections); i++) {
931			/*
932			 * If the device at index i in both the new and old
933			 * selection arrays has the same device number and
934			 * selection status, it hasn't changed.  We
935			 * continue on to the next index.
936			 */
937			if (((*dev_select)[i].device_number ==
938			     old_dev_select[i].device_number)
939			 && ((*dev_select)[i].selected ==
940			     old_dev_select[i].selected))
941				continue;
942
943			/*
944			 * Now, if we're still going through the if
945			 * statement, the above test wasn't true.  So we
946			 * check here to see if the device at index i in
947			 * the current array is the same as the device at
948			 * index i in the old array.  If it is, that means
949			 * that its selection number has changed.  Set
950			 * changed to 1 and exit the loop.
951			 */
952			else if ((*dev_select)[i].device_number ==
953			          old_dev_select[i].device_number) {
954				changed = 1;
955				break;
956			}
957			/*
958			 * If we get here, then the device at index i in
959			 * the current array isn't the same device as the
960			 * device at index i in the old array.
961			 */
962			else {
963				found = 0;
964
965				/*
966				 * Search through the old selection array
967				 * looking for a device with the same
968				 * device number as the device at index i
969				 * in the current array.  If the selection
970				 * status is the same, then we mark it as
971				 * found.  If the selection status isn't
972				 * the same, we break out of the loop.
973				 * Since found isn't set, changed will be
974				 * set to 1 below.
975				 */
976				for (j = 0; j < old_num_selections; j++) {
977					if (((*dev_select)[i].device_number ==
978					      old_dev_select[j].device_number)
979					 && ((*dev_select)[i].selected ==
980					      old_dev_select[j].selected)){
981						found = 1;
982						break;
983					}
984					else if ((*dev_select)[i].device_number
985					    == old_dev_select[j].device_number)
986						break;
987				}
988				if (found == 0)
989					changed = 1;
990			}
991		}
992	}
993	if (old_dev_select != NULL)
994		free(old_dev_select);
995
996	return(changed);
997}
998
999/*
1000 * Comparison routine for qsort() above.  Note that the comparison here is
1001 * backwards -- generally, it should return a value to indicate whether
1002 * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
1003 * it returns the opposite is so that the selection array will be sorted in
1004 * order of decreasing performance.  We sort on two parameters.  The first
1005 * sort key is whether or not one or the other of the devices in question
1006 * has been selected.  If one of them has, and the other one has not, the
1007 * selected device is automatically more important than the unselected
1008 * device.  If neither device is selected, we judge the devices based upon
1009 * performance.
1010 */
1011static int
1012compare_select(const void *arg1, const void *arg2)
1013{
1014	if ((((const struct device_selection *)arg1)->selected)
1015	 && (((const struct device_selection *)arg2)->selected == 0))
1016		return(-1);
1017	else if ((((const struct device_selection *)arg1)->selected == 0)
1018	      && (((const struct device_selection *)arg2)->selected))
1019		return(1);
1020	else if (((const struct device_selection *)arg2)->bytes <
1021	         ((const struct device_selection *)arg1)->bytes)
1022		return(-1);
1023	else if (((const struct device_selection *)arg2)->bytes >
1024		 ((const struct device_selection *)arg1)->bytes)
1025		return(1);
1026	else
1027		return(0);
1028}
1029
1030/*
1031 * Take a string with the general format "arg1,arg2,arg3", and build a
1032 * device matching expression from it.
1033 */
1034int
1035devstat_buildmatch(char *match_str, struct devstat_match **matches,
1036		   int *num_matches)
1037{
1038	char *tstr[5];
1039	char **tempstr;
1040	int num_args;
1041	int i, j;
1042
1043	/* We can't do much without a string to parse */
1044	if (match_str == NULL) {
1045		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1046			 "%s: no match expression", __func__);
1047		return(-1);
1048	}
1049
1050	/*
1051	 * Break the (comma delimited) input string out into separate strings.
1052	 */
1053	for (tempstr = tstr, num_args  = 0;
1054	     (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);)
1055		if (**tempstr != '\0') {
1056			num_args++;
1057			if (++tempstr >= &tstr[5])
1058				break;
1059		}
1060
1061	/* The user gave us too many type arguments */
1062	if (num_args > 3) {
1063		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1064			 "%s: too many type arguments", __func__);
1065		return(-1);
1066	}
1067
1068	if (*num_matches == 0)
1069		*matches = NULL;
1070
1071	*matches = (struct devstat_match *)reallocf(*matches,
1072		  sizeof(struct devstat_match) * (*num_matches + 1));
1073
1074	if (*matches == NULL) {
1075		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1076			 "%s: Cannot allocate memory for matches list", __func__);
1077		return(-1);
1078	}
1079
1080	/* Make sure the current entry is clear */
1081	bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1082
1083	/*
1084	 * Step through the arguments the user gave us and build a device
1085	 * matching expression from them.
1086	 */
1087	for (i = 0; i < num_args; i++) {
1088		char *tempstr2, *tempstr3;
1089
1090		/*
1091		 * Get rid of leading white space.
1092		 */
1093		tempstr2 = tstr[i];
1094		while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1095			tempstr2++;
1096
1097		/*
1098		 * Get rid of trailing white space.
1099		 */
1100		tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1101
1102		while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1103		    && (isspace(*tempstr3))) {
1104			*tempstr3 = '\0';
1105			tempstr3--;
1106		}
1107
1108		/*
1109		 * Go through the match table comparing the user's
1110		 * arguments to known device types, interfaces, etc.
1111		 */
1112		for (j = 0; match_table[j].match_str != NULL; j++) {
1113			/*
1114			 * We do case-insensitive matching, in case someone
1115			 * wants to enter "SCSI" instead of "scsi" or
1116			 * something like that.  Only compare as many
1117			 * characters as are in the string in the match
1118			 * table.  This should help if someone tries to use
1119			 * a super-long match expression.
1120			 */
1121			if (strncasecmp(tempstr2, match_table[j].match_str,
1122			    strlen(match_table[j].match_str)) == 0) {
1123				/*
1124				 * Make sure the user hasn't specified two
1125				 * items of the same type, like "da" and
1126				 * "cd".  One device cannot be both.
1127				 */
1128				if (((*matches)[*num_matches].match_fields &
1129				    match_table[j].match_field) != 0) {
1130					snprintf(devstat_errbuf,
1131						 sizeof(devstat_errbuf),
1132						 "%s: cannot have more than "
1133						 "one match item in a single "
1134						 "category", __func__);
1135					return(-1);
1136				}
1137				/*
1138				 * If we've gotten this far, we have a
1139				 * winner.  Set the appropriate fields in
1140				 * the match entry.
1141				 */
1142				(*matches)[*num_matches].match_fields |=
1143					match_table[j].match_field;
1144				(*matches)[*num_matches].device_type |=
1145					match_table[j].type;
1146				(*matches)[*num_matches].num_match_categories++;
1147				break;
1148			}
1149		}
1150		/*
1151		 * We should have found a match in the above for loop.  If
1152		 * not, that means the user entered an invalid device type
1153		 * or interface.
1154		 */
1155		if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1156			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1157				 "%s: unknown match item \"%s\"", __func__,
1158				 tstr[i]);
1159			return(-1);
1160		}
1161	}
1162
1163	(*num_matches)++;
1164
1165	return(0);
1166}
1167
1168/*
1169 * Compute a number of device statistics.  Only one field is mandatory, and
1170 * that is "current".  Everything else is optional.  The caller passes in
1171 * pointers to variables to hold the various statistics he desires.  If he
1172 * doesn't want a particular staistic, he should pass in a NULL pointer.
1173 * Return values:
1174 * 0   -- success
1175 * -1  -- failure
1176 */
1177int
1178compute_stats(struct devstat *current, struct devstat *previous,
1179	      long double etime, u_int64_t *total_bytes,
1180	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1181	      long double *kb_per_transfer, long double *transfers_per_second,
1182	      long double *mb_per_second, long double *blocks_per_second,
1183	      long double *ms_per_transaction)
1184{
1185	return(devstat_compute_statistics(current, previous, etime,
1186	       total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1187	       total_bytes,
1188	       total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1189	       total_transfers,
1190	       total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1191	       total_blocks,
1192	       kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1193	       kb_per_transfer,
1194	       transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1195	       transfers_per_second,
1196	       mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1197	       mb_per_second,
1198	       blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1199	       blocks_per_second,
1200	       ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1201	       ms_per_transaction,
1202	       DSM_NONE));
1203}
1204
1205
1206/* This is 1/2^64 */
1207#define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1208
1209long double
1210devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1211{
1212	long double etime;
1213
1214	etime = cur_time->sec;
1215	etime += cur_time->frac * BINTIME_SCALE;
1216	if (prev_time != NULL) {
1217		etime -= prev_time->sec;
1218		etime -= prev_time->frac * BINTIME_SCALE;
1219	}
1220	return(etime);
1221}
1222
1223#define DELTA(field, index)				\
1224	(current->field[(index)] - (previous ? previous->field[(index)] : 0))
1225
1226#define DELTA_T(field)					\
1227	devstat_compute_etime(&current->field,  	\
1228	(previous ? &previous->field : NULL))
1229
1230int
1231devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1232			   long double etime, ...)
1233{
1234	u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1235	u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1236	u_int64_t totaltransfersother, totalblocks, totalblocksread;
1237	u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1238	long double totalduration, totaldurationread, totaldurationwrite;
1239	long double totaldurationfree, totaldurationother;
1240	va_list ap;
1241	devstat_metric metric;
1242	u_int64_t *destu64;
1243	long double *destld;
1244	int retval;
1245
1246	retval = 0;
1247
1248	/*
1249	 * current is the only mandatory field.
1250	 */
1251	if (current == NULL) {
1252		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1253			 "%s: current stats structure was NULL", __func__);
1254		return(-1);
1255	}
1256
1257	totalbytesread = DELTA(bytes, DEVSTAT_READ);
1258	totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1259	totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1260	totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1261
1262	totaltransfersread = DELTA(operations, DEVSTAT_READ);
1263	totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1264	totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1265	totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1266	totaltransfers = totaltransfersread + totaltransferswrite +
1267			 totaltransfersother + totaltransfersfree;
1268
1269	totalblocks = totalbytes;
1270	totalblocksread = totalbytesread;
1271	totalblockswrite = totalbyteswrite;
1272	totalblocksfree = totalbytesfree;
1273
1274	if (current->block_size > 0) {
1275		totalblocks /= current->block_size;
1276		totalblocksread /= current->block_size;
1277		totalblockswrite /= current->block_size;
1278		totalblocksfree /= current->block_size;
1279	} else {
1280		totalblocks /= 512;
1281		totalblocksread /= 512;
1282		totalblockswrite /= 512;
1283		totalblocksfree /= 512;
1284	}
1285
1286	totaldurationread = DELTA_T(duration[DEVSTAT_READ]);
1287	totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]);
1288	totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]);
1289	totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]);
1290	totalduration = totaldurationread + totaldurationwrite +
1291	    totaldurationfree + totaldurationother;
1292
1293	va_start(ap, etime);
1294
1295	while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1296
1297		if (metric == DSM_NONE)
1298			break;
1299
1300		if (metric >= DSM_MAX) {
1301			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1302				 "%s: metric %d is out of range", __func__,
1303				 metric);
1304			retval = -1;
1305			goto bailout;
1306		}
1307
1308		switch (devstat_arg_list[metric].argtype) {
1309		case DEVSTAT_ARG_UINT64:
1310			destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1311			break;
1312		case DEVSTAT_ARG_LD:
1313			destld = (long double *)va_arg(ap, long double *);
1314			break;
1315		case DEVSTAT_ARG_SKIP:
1316			destld = (long double *)va_arg(ap, long double *);
1317			break;
1318		default:
1319			retval = -1;
1320			goto bailout;
1321			break; /* NOTREACHED */
1322		}
1323
1324		if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1325			continue;
1326
1327		switch (metric) {
1328		case DSM_TOTAL_BYTES:
1329			*destu64 = totalbytes;
1330			break;
1331		case DSM_TOTAL_BYTES_READ:
1332			*destu64 = totalbytesread;
1333			break;
1334		case DSM_TOTAL_BYTES_WRITE:
1335			*destu64 = totalbyteswrite;
1336			break;
1337		case DSM_TOTAL_BYTES_FREE:
1338			*destu64 = totalbytesfree;
1339			break;
1340		case DSM_TOTAL_TRANSFERS:
1341			*destu64 = totaltransfers;
1342			break;
1343		case DSM_TOTAL_TRANSFERS_READ:
1344			*destu64 = totaltransfersread;
1345			break;
1346		case DSM_TOTAL_TRANSFERS_WRITE:
1347			*destu64 = totaltransferswrite;
1348			break;
1349		case DSM_TOTAL_TRANSFERS_FREE:
1350			*destu64 = totaltransfersfree;
1351			break;
1352		case DSM_TOTAL_TRANSFERS_OTHER:
1353			*destu64 = totaltransfersother;
1354			break;
1355		case DSM_TOTAL_BLOCKS:
1356			*destu64 = totalblocks;
1357			break;
1358		case DSM_TOTAL_BLOCKS_READ:
1359			*destu64 = totalblocksread;
1360			break;
1361		case DSM_TOTAL_BLOCKS_WRITE:
1362			*destu64 = totalblockswrite;
1363			break;
1364		case DSM_TOTAL_BLOCKS_FREE:
1365			*destu64 = totalblocksfree;
1366			break;
1367		case DSM_KB_PER_TRANSFER:
1368			*destld = totalbytes;
1369			*destld /= 1024;
1370			if (totaltransfers > 0)
1371				*destld /= totaltransfers;
1372			else
1373				*destld = 0.0;
1374			break;
1375		case DSM_KB_PER_TRANSFER_READ:
1376			*destld = totalbytesread;
1377			*destld /= 1024;
1378			if (totaltransfersread > 0)
1379				*destld /= totaltransfersread;
1380			else
1381				*destld = 0.0;
1382			break;
1383		case DSM_KB_PER_TRANSFER_WRITE:
1384			*destld = totalbyteswrite;
1385			*destld /= 1024;
1386			if (totaltransferswrite > 0)
1387				*destld /= totaltransferswrite;
1388			else
1389				*destld = 0.0;
1390			break;
1391		case DSM_KB_PER_TRANSFER_FREE:
1392			*destld = totalbytesfree;
1393			*destld /= 1024;
1394			if (totaltransfersfree > 0)
1395				*destld /= totaltransfersfree;
1396			else
1397				*destld = 0.0;
1398			break;
1399		case DSM_TRANSFERS_PER_SECOND:
1400			if (etime > 0.0) {
1401				*destld = totaltransfers;
1402				*destld /= etime;
1403			} else
1404				*destld = 0.0;
1405			break;
1406		case DSM_TRANSFERS_PER_SECOND_READ:
1407			if (etime > 0.0) {
1408				*destld = totaltransfersread;
1409				*destld /= etime;
1410			} else
1411				*destld = 0.0;
1412			break;
1413		case DSM_TRANSFERS_PER_SECOND_WRITE:
1414			if (etime > 0.0) {
1415				*destld = totaltransferswrite;
1416				*destld /= etime;
1417			} else
1418				*destld = 0.0;
1419			break;
1420		case DSM_TRANSFERS_PER_SECOND_FREE:
1421			if (etime > 0.0) {
1422				*destld = totaltransfersfree;
1423				*destld /= etime;
1424			} else
1425				*destld = 0.0;
1426			break;
1427		case DSM_TRANSFERS_PER_SECOND_OTHER:
1428			if (etime > 0.0) {
1429				*destld = totaltransfersother;
1430				*destld /= etime;
1431			} else
1432				*destld = 0.0;
1433			break;
1434		case DSM_MB_PER_SECOND:
1435			*destld = totalbytes;
1436			*destld /= 1024 * 1024;
1437			if (etime > 0.0)
1438				*destld /= etime;
1439			else
1440				*destld = 0.0;
1441			break;
1442		case DSM_MB_PER_SECOND_READ:
1443			*destld = totalbytesread;
1444			*destld /= 1024 * 1024;
1445			if (etime > 0.0)
1446				*destld /= etime;
1447			else
1448				*destld = 0.0;
1449			break;
1450		case DSM_MB_PER_SECOND_WRITE:
1451			*destld = totalbyteswrite;
1452			*destld /= 1024 * 1024;
1453			if (etime > 0.0)
1454				*destld /= etime;
1455			else
1456				*destld = 0.0;
1457			break;
1458		case DSM_MB_PER_SECOND_FREE:
1459			*destld = totalbytesfree;
1460			*destld /= 1024 * 1024;
1461			if (etime > 0.0)
1462				*destld /= etime;
1463			else
1464				*destld = 0.0;
1465			break;
1466		case DSM_BLOCKS_PER_SECOND:
1467			*destld = totalblocks;
1468			if (etime > 0.0)
1469				*destld /= etime;
1470			else
1471				*destld = 0.0;
1472			break;
1473		case DSM_BLOCKS_PER_SECOND_READ:
1474			*destld = totalblocksread;
1475			if (etime > 0.0)
1476				*destld /= etime;
1477			else
1478				*destld = 0.0;
1479			break;
1480		case DSM_BLOCKS_PER_SECOND_WRITE:
1481			*destld = totalblockswrite;
1482			if (etime > 0.0)
1483				*destld /= etime;
1484			else
1485				*destld = 0.0;
1486			break;
1487		case DSM_BLOCKS_PER_SECOND_FREE:
1488			*destld = totalblocksfree;
1489			if (etime > 0.0)
1490				*destld /= etime;
1491			else
1492				*destld = 0.0;
1493			break;
1494		/*
1495		 * Some devstat callers update the duration and some don't.
1496		 * So this will only be accurate if they provide the
1497		 * duration.
1498		 */
1499		case DSM_MS_PER_TRANSACTION:
1500			if (totaltransfers > 0) {
1501				*destld = totalduration;
1502				*destld /= totaltransfers;
1503				*destld *= 1000;
1504			} else
1505				*destld = 0.0;
1506			break;
1507		case DSM_MS_PER_TRANSACTION_READ:
1508			if (totaltransfersread > 0) {
1509				*destld = totaldurationread;
1510				*destld /= totaltransfersread;
1511				*destld *= 1000;
1512			} else
1513				*destld = 0.0;
1514			break;
1515		case DSM_MS_PER_TRANSACTION_WRITE:
1516			if (totaltransferswrite > 0) {
1517				*destld = totaldurationwrite;
1518				*destld /= totaltransferswrite;
1519				*destld *= 1000;
1520			} else
1521				*destld = 0.0;
1522			break;
1523		case DSM_MS_PER_TRANSACTION_FREE:
1524			if (totaltransfersfree > 0) {
1525				*destld = totaldurationfree;
1526				*destld /= totaltransfersfree;
1527				*destld *= 1000;
1528			} else
1529				*destld = 0.0;
1530			break;
1531		case DSM_MS_PER_TRANSACTION_OTHER:
1532			if (totaltransfersother > 0) {
1533				*destld = totaldurationother;
1534				*destld /= totaltransfersother;
1535				*destld *= 1000;
1536			} else
1537				*destld = 0.0;
1538			break;
1539		case DSM_BUSY_PCT:
1540			*destld = DELTA_T(busy_time);
1541			if (*destld < 0)
1542				*destld = 0;
1543			*destld /= etime;
1544			*destld *= 100;
1545			if (*destld < 0)
1546				*destld = 0;
1547			break;
1548		case DSM_QUEUE_LENGTH:
1549			*destu64 = current->start_count - current->end_count;
1550			break;
1551		case DSM_TOTAL_DURATION:
1552			*destld = totalduration;
1553			break;
1554		case DSM_TOTAL_DURATION_READ:
1555			*destld = totaldurationread;
1556			break;
1557		case DSM_TOTAL_DURATION_WRITE:
1558			*destld = totaldurationwrite;
1559			break;
1560		case DSM_TOTAL_DURATION_FREE:
1561			*destld = totaldurationfree;
1562			break;
1563		case DSM_TOTAL_DURATION_OTHER:
1564			*destld = totaldurationother;
1565			break;
1566		case DSM_TOTAL_BUSY_TIME:
1567			*destld = DELTA_T(busy_time);
1568			break;
1569/*
1570 * XXX: comment out the default block to see if any case's are missing.
1571 */
1572#if 1
1573		default:
1574			/*
1575			 * This shouldn't happen, since we should have
1576			 * caught any out of range metrics at the top of
1577			 * the loop.
1578			 */
1579			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1580				 "%s: unknown metric %d", __func__, metric);
1581			retval = -1;
1582			goto bailout;
1583			break; /* NOTREACHED */
1584#endif
1585		}
1586	}
1587
1588bailout:
1589
1590	va_end(ap);
1591	return(retval);
1592}
1593
1594static int
1595readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1596{
1597
1598	if (kvm_read(kd, addr, buf, nbytes) == -1) {
1599		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1600			 "%s: error reading value (kvm_read): %s", __func__,
1601			 kvm_geterr(kd));
1602		return(-1);
1603	}
1604	return(0);
1605}
1606
1607static int
1608readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1609{
1610	struct nlist nl[2];
1611
1612	nl[0].n_name = (char *)name;
1613	nl[1].n_name = NULL;
1614
1615	if (kvm_nlist(kd, nl) == -1) {
1616		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1617			 "%s: error getting name list (kvm_nlist): %s",
1618			 __func__, kvm_geterr(kd));
1619		return(-1);
1620	}
1621	return(readkmem(kd, nl[0].n_value, buf, nbytes));
1622}
1623
1624/*
1625 * This duplicates the functionality of the kernel sysctl handler for poking
1626 * through crash dumps.
1627 */
1628static char *
1629get_devstat_kvm(kvm_t *kd)
1630{
1631	int i, wp;
1632	long gen;
1633	struct devstat *nds;
1634	struct devstat ds;
1635	struct devstatlist dhead;
1636	int num_devs;
1637	char *rv = NULL;
1638
1639	if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1640		return(NULL);
1641	if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1642		return(NULL);
1643
1644	nds = STAILQ_FIRST(&dhead);
1645
1646	if ((rv = malloc(sizeof(gen))) == NULL) {
1647		snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1648			 "%s: out of memory (initial malloc failed)",
1649			 __func__);
1650		return(NULL);
1651	}
1652	gen = devstat_getgeneration(kd);
1653	memcpy(rv, &gen, sizeof(gen));
1654	wp = sizeof(gen);
1655	/*
1656	 * Now push out all the devices.
1657	 */
1658	for (i = 0; (nds != NULL) && (i < num_devs);
1659	     nds = STAILQ_NEXT(nds, dev_links), i++) {
1660		if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1661			free(rv);
1662			return(NULL);
1663		}
1664		nds = &ds;
1665		rv = (char *)reallocf(rv, sizeof(gen) +
1666				      sizeof(ds) * (i + 1));
1667		if (rv == NULL) {
1668			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1669				 "%s: out of memory (malloc failed)",
1670				 __func__);
1671			return(NULL);
1672		}
1673		memcpy(rv + wp, &ds, sizeof(ds));
1674		wp += sizeof(ds);
1675	}
1676	return(rv);
1677}
1678