1/*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <stdio.h>
11#include <time.h>
12#include "internal/cryptlib.h"
13#include <openssl/opensslconf.h>
14#include "crypto/rand.h"
15#include <openssl/engine.h>
16#include "internal/thread_once.h"
17#include "rand_local.h"
18#include "e_os.h"
19
20#ifndef OPENSSL_NO_ENGINE
21/* non-NULL if default_RAND_meth is ENGINE-provided */
22static ENGINE *funct_ref;
23static CRYPTO_RWLOCK *rand_engine_lock;
24#endif
25static CRYPTO_RWLOCK *rand_meth_lock;
26static const RAND_METHOD *default_RAND_meth;
27static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
28
29static CRYPTO_RWLOCK *rand_nonce_lock;
30static int rand_nonce_count;
31
32static int rand_inited = 0;
33
34#ifdef OPENSSL_RAND_SEED_RDTSC
35/*
36 * IMPORTANT NOTE:  It is not currently possible to use this code
37 * because we are not sure about the amount of randomness it provides.
38 * Some SP900 tests have been run, but there is internal skepticism.
39 * So for now this code is not used.
40 */
41# error "RDTSC enabled?  Should not be possible!"
42
43/*
44 * Acquire entropy from high-speed clock
45 *
46 * Since we get some randomness from the low-order bits of the
47 * high-speed clock, it can help.
48 *
49 * Returns the total entropy count, if it exceeds the requested
50 * entropy count. Otherwise, returns an entropy count of 0.
51 */
52size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
53{
54    unsigned char c;
55    int i;
56
57    if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
58        for (i = 0; i < TSC_READ_COUNT; i++) {
59            c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
60            rand_pool_add(pool, &c, 1, 4);
61        }
62    }
63    return rand_pool_entropy_available(pool);
64}
65#endif
66
67#ifdef OPENSSL_RAND_SEED_RDCPU
68size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
69size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);
70
71extern unsigned int OPENSSL_ia32cap_P[];
72
73/*
74 * Acquire entropy using Intel-specific cpu instructions
75 *
76 * Uses the RDSEED instruction if available, otherwise uses
77 * RDRAND if available.
78 *
79 * For the differences between RDSEED and RDRAND, and why RDSEED
80 * is the preferred choice, see https://goo.gl/oK3KcN
81 *
82 * Returns the total entropy count, if it exceeds the requested
83 * entropy count. Otherwise, returns an entropy count of 0.
84 */
85size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
86{
87    size_t bytes_needed;
88    unsigned char *buffer;
89
90    bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
91    if (bytes_needed > 0) {
92        buffer = rand_pool_add_begin(pool, bytes_needed);
93
94        if (buffer != NULL) {
95            /* Whichever comes first, use RDSEED, RDRAND or nothing */
96            if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
97                if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
98                    == bytes_needed) {
99                    rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
100                }
101            } else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
102                if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
103                    == bytes_needed) {
104                    rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
105                }
106            } else {
107                rand_pool_add_end(pool, 0, 0);
108            }
109        }
110    }
111
112    return rand_pool_entropy_available(pool);
113}
114#endif
115
116
117/*
118 * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
119 *
120 * If the DRBG has a parent, then the required amount of entropy input
121 * is fetched using the parent's RAND_DRBG_generate().
122 *
123 * Otherwise, the entropy is polled from the system entropy sources
124 * using rand_pool_acquire_entropy().
125 *
126 * If a random pool has been added to the DRBG using RAND_add(), then
127 * its entropy will be used up first.
128 */
129size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
130                             unsigned char **pout,
131                             int entropy, size_t min_len, size_t max_len,
132                             int prediction_resistance)
133{
134    size_t ret = 0;
135    size_t entropy_available = 0;
136    RAND_POOL *pool;
137
138    if (drbg->parent != NULL && drbg->strength > drbg->parent->strength) {
139        /*
140         * We currently don't support the algorithm from NIST SP 800-90C
141         * 10.1.2 to use a weaker DRBG as source
142         */
143        RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK);
144        return 0;
145    }
146
147    if (drbg->seed_pool != NULL) {
148        pool = drbg->seed_pool;
149        pool->entropy_requested = entropy;
150    } else {
151        pool = rand_pool_new(entropy, drbg->secure, min_len, max_len);
152        if (pool == NULL)
153            return 0;
154    }
155
156    if (drbg->parent != NULL) {
157        size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
158        unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);
159
160        if (buffer != NULL) {
161            size_t bytes = 0;
162
163            /*
164             * Get random data from parent. Include our address as additional input,
165             * in order to provide some additional distinction between different
166             * DRBG child instances.
167             * Our lock is already held, but we need to lock our parent before
168             * generating bits from it. (Note: taking the lock will be a no-op
169             * if locking if drbg->parent->lock == NULL.)
170             */
171            rand_drbg_lock(drbg->parent);
172            if (RAND_DRBG_generate(drbg->parent,
173                                   buffer, bytes_needed,
174                                   prediction_resistance,
175                                   (unsigned char *)&drbg, sizeof(drbg)) != 0)
176                bytes = bytes_needed;
177            rand_drbg_unlock(drbg->parent);
178
179            rand_pool_add_end(pool, bytes, 8 * bytes);
180            entropy_available = rand_pool_entropy_available(pool);
181        }
182
183    } else {
184        if (prediction_resistance) {
185            /*
186             * We don't have any entropy sources that comply with the NIST
187             * standard to provide prediction resistance (see NIST SP 800-90C,
188             * Section 5.4).
189             */
190            RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY,
191                    RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED);
192            goto err;
193        }
194
195        /* Get entropy by polling system entropy sources. */
196        entropy_available = rand_pool_acquire_entropy(pool);
197    }
198
199    if (entropy_available > 0) {
200        ret   = rand_pool_length(pool);
201        *pout = rand_pool_detach(pool);
202    }
203
204 err:
205    if (drbg->seed_pool == NULL)
206        rand_pool_free(pool);
207    return ret;
208}
209
210/*
211 * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
212 *
213 */
214void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
215                               unsigned char *out, size_t outlen)
216{
217    if (drbg->seed_pool == NULL) {
218        if (drbg->secure)
219            OPENSSL_secure_clear_free(out, outlen);
220        else
221            OPENSSL_clear_free(out, outlen);
222    }
223}
224
225
226/*
227 * Implements the get_nonce() callback (see RAND_DRBG_set_callbacks())
228 *
229 */
230size_t rand_drbg_get_nonce(RAND_DRBG *drbg,
231                           unsigned char **pout,
232                           int entropy, size_t min_len, size_t max_len)
233{
234    size_t ret = 0;
235    RAND_POOL *pool;
236
237    struct {
238        void * instance;
239        int count;
240    } data;
241
242    memset(&data, 0, sizeof(data));
243    pool = rand_pool_new(0, 0, min_len, max_len);
244    if (pool == NULL)
245        return 0;
246
247    if (rand_pool_add_nonce_data(pool) == 0)
248        goto err;
249
250    data.instance = drbg;
251    CRYPTO_atomic_add(&rand_nonce_count, 1, &data.count, rand_nonce_lock);
252
253    if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0)
254        goto err;
255
256    ret   = rand_pool_length(pool);
257    *pout = rand_pool_detach(pool);
258
259 err:
260    rand_pool_free(pool);
261
262    return ret;
263}
264
265/*
266 * Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks())
267 *
268 */
269void rand_drbg_cleanup_nonce(RAND_DRBG *drbg,
270                             unsigned char *out, size_t outlen)
271{
272    OPENSSL_clear_free(out, outlen);
273}
274
275/*
276 * Generate additional data that can be used for the drbg. The data does
277 * not need to contain entropy, but it's useful if it contains at least
278 * some bits that are unpredictable.
279 *
280 * Returns 0 on failure.
281 *
282 * On success it allocates a buffer at |*pout| and returns the length of
283 * the data. The buffer should get freed using OPENSSL_secure_clear_free().
284 */
285size_t rand_drbg_get_additional_data(RAND_POOL *pool, unsigned char **pout)
286{
287    size_t ret = 0;
288
289    if (rand_pool_add_additional_data(pool) == 0)
290        goto err;
291
292    ret = rand_pool_length(pool);
293    *pout = rand_pool_detach(pool);
294
295 err:
296    return ret;
297}
298
299void rand_drbg_cleanup_additional_data(RAND_POOL *pool, unsigned char *out)
300{
301    rand_pool_reattach(pool, out);
302}
303
304DEFINE_RUN_ONCE_STATIC(do_rand_init)
305{
306#ifndef OPENSSL_NO_ENGINE
307    rand_engine_lock = CRYPTO_THREAD_lock_new();
308    if (rand_engine_lock == NULL)
309        return 0;
310#endif
311
312    rand_meth_lock = CRYPTO_THREAD_lock_new();
313    if (rand_meth_lock == NULL)
314        goto err1;
315
316    rand_nonce_lock = CRYPTO_THREAD_lock_new();
317    if (rand_nonce_lock == NULL)
318        goto err2;
319
320    if (!rand_pool_init())
321        goto err3;
322
323    rand_inited = 1;
324    return 1;
325
326err3:
327    CRYPTO_THREAD_lock_free(rand_nonce_lock);
328    rand_nonce_lock = NULL;
329err2:
330    CRYPTO_THREAD_lock_free(rand_meth_lock);
331    rand_meth_lock = NULL;
332err1:
333#ifndef OPENSSL_NO_ENGINE
334    CRYPTO_THREAD_lock_free(rand_engine_lock);
335    rand_engine_lock = NULL;
336#endif
337    return 0;
338}
339
340void rand_cleanup_int(void)
341{
342    const RAND_METHOD *meth = default_RAND_meth;
343
344    if (!rand_inited)
345        return;
346
347    if (meth != NULL && meth->cleanup != NULL)
348        meth->cleanup();
349    RAND_set_rand_method(NULL);
350    rand_pool_cleanup();
351#ifndef OPENSSL_NO_ENGINE
352    CRYPTO_THREAD_lock_free(rand_engine_lock);
353    rand_engine_lock = NULL;
354#endif
355    CRYPTO_THREAD_lock_free(rand_meth_lock);
356    rand_meth_lock = NULL;
357    CRYPTO_THREAD_lock_free(rand_nonce_lock);
358    rand_nonce_lock = NULL;
359    rand_inited = 0;
360}
361
362/*
363 * RAND_close_seed_files() ensures that any seed file descriptors are
364 * closed after use.
365 */
366void RAND_keep_random_devices_open(int keep)
367{
368    if (RUN_ONCE(&rand_init, do_rand_init))
369        rand_pool_keep_random_devices_open(keep);
370}
371
372/*
373 * RAND_poll() reseeds the default RNG using random input
374 *
375 * The random input is obtained from polling various entropy
376 * sources which depend on the operating system and are
377 * configurable via the --with-rand-seed configure option.
378 */
379int RAND_poll(void)
380{
381    int ret = 0;
382
383    RAND_POOL *pool = NULL;
384
385    const RAND_METHOD *meth = RAND_get_rand_method();
386
387    if (meth == NULL)
388        return 0;
389
390    if (meth == RAND_OpenSSL()) {
391        /* fill random pool and seed the master DRBG */
392        RAND_DRBG *drbg = RAND_DRBG_get0_master();
393
394        if (drbg == NULL)
395            return 0;
396
397        rand_drbg_lock(drbg);
398        ret = rand_drbg_restart(drbg, NULL, 0, 0);
399        rand_drbg_unlock(drbg);
400
401        return ret;
402
403    } else {
404        /* fill random pool and seed the current legacy RNG */
405        pool = rand_pool_new(RAND_DRBG_STRENGTH, 1,
406                             (RAND_DRBG_STRENGTH + 7) / 8,
407                             RAND_POOL_MAX_LENGTH);
408        if (pool == NULL)
409            return 0;
410
411        if (rand_pool_acquire_entropy(pool) == 0)
412            goto err;
413
414        if (meth->add == NULL
415            || meth->add(rand_pool_buffer(pool),
416                         rand_pool_length(pool),
417                         (rand_pool_entropy(pool) / 8.0)) == 0)
418            goto err;
419
420        ret = 1;
421    }
422
423err:
424    rand_pool_free(pool);
425    return ret;
426}
427
428/*
429 * Allocate memory and initialize a new random pool
430 */
431
432RAND_POOL *rand_pool_new(int entropy_requested, int secure,
433                         size_t min_len, size_t max_len)
434{
435    RAND_POOL *pool;
436    size_t min_alloc_size = RAND_POOL_MIN_ALLOCATION(secure);
437
438    if (!RUN_ONCE(&rand_init, do_rand_init))
439        return NULL;
440
441    pool = OPENSSL_zalloc(sizeof(*pool));
442    if (pool == NULL) {
443        RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
444        return NULL;
445    }
446
447    pool->min_len = min_len;
448    pool->max_len = (max_len > RAND_POOL_MAX_LENGTH) ?
449        RAND_POOL_MAX_LENGTH : max_len;
450    pool->alloc_len = min_len < min_alloc_size ? min_alloc_size : min_len;
451    if (pool->alloc_len > pool->max_len)
452        pool->alloc_len = pool->max_len;
453
454    if (secure)
455        pool->buffer = OPENSSL_secure_zalloc(pool->alloc_len);
456    else
457        pool->buffer = OPENSSL_zalloc(pool->alloc_len);
458
459    if (pool->buffer == NULL) {
460        RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
461        goto err;
462    }
463
464    pool->entropy_requested = entropy_requested;
465    pool->secure = secure;
466
467    return pool;
468
469err:
470    OPENSSL_free(pool);
471    return NULL;
472}
473
474/*
475 * Attach new random pool to the given buffer
476 *
477 * This function is intended to be used only for feeding random data
478 * provided by RAND_add() and RAND_seed() into the <master> DRBG.
479 */
480RAND_POOL *rand_pool_attach(const unsigned char *buffer, size_t len,
481                            size_t entropy)
482{
483    RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
484
485    if (pool == NULL) {
486        RANDerr(RAND_F_RAND_POOL_ATTACH, ERR_R_MALLOC_FAILURE);
487        return NULL;
488    }
489
490    /*
491     * The const needs to be cast away, but attached buffers will not be
492     * modified (in contrary to allocated buffers which are zeroed and
493     * freed in the end).
494     */
495    pool->buffer = (unsigned char *) buffer;
496    pool->len = len;
497
498    pool->attached = 1;
499
500    pool->min_len = pool->max_len = pool->alloc_len = pool->len;
501    pool->entropy = entropy;
502
503    return pool;
504}
505
506/*
507 * Free |pool|, securely erasing its buffer.
508 */
509void rand_pool_free(RAND_POOL *pool)
510{
511    if (pool == NULL)
512        return;
513
514    /*
515     * Although it would be advisable from a cryptographical viewpoint,
516     * we are not allowed to clear attached buffers, since they are passed
517     * to rand_pool_attach() as `const unsigned char*`.
518     * (see corresponding comment in rand_pool_attach()).
519     */
520    if (!pool->attached) {
521        if (pool->secure)
522            OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len);
523        else
524            OPENSSL_clear_free(pool->buffer, pool->alloc_len);
525    }
526
527    OPENSSL_free(pool);
528}
529
530/*
531 * Return the |pool|'s buffer to the caller (readonly).
532 */
533const unsigned char *rand_pool_buffer(RAND_POOL *pool)
534{
535    return pool->buffer;
536}
537
538/*
539 * Return the |pool|'s entropy to the caller.
540 */
541size_t rand_pool_entropy(RAND_POOL *pool)
542{
543    return pool->entropy;
544}
545
546/*
547 * Return the |pool|'s buffer length to the caller.
548 */
549size_t rand_pool_length(RAND_POOL *pool)
550{
551    return pool->len;
552}
553
554/*
555 * Detach the |pool| buffer and return it to the caller.
556 * It's the responsibility of the caller to free the buffer
557 * using OPENSSL_secure_clear_free() or to re-attach it
558 * again to the pool using rand_pool_reattach().
559 */
560unsigned char *rand_pool_detach(RAND_POOL *pool)
561{
562    unsigned char *ret = pool->buffer;
563    pool->buffer = NULL;
564    pool->entropy = 0;
565    return ret;
566}
567
568/*
569 * Re-attach the |pool| buffer. It is only allowed to pass
570 * the |buffer| which was previously detached from the same pool.
571 */
572void rand_pool_reattach(RAND_POOL *pool, unsigned char *buffer)
573{
574    pool->buffer = buffer;
575    OPENSSL_cleanse(pool->buffer, pool->len);
576    pool->len = 0;
577}
578
579/*
580 * If |entropy_factor| bits contain 1 bit of entropy, how many bytes does one
581 * need to obtain at least |bits| bits of entropy?
582 */
583#define ENTROPY_TO_BYTES(bits, entropy_factor) \
584    (((bits) * (entropy_factor) + 7) / 8)
585
586
587/*
588 * Checks whether the |pool|'s entropy is available to the caller.
589 * This is the case when entropy count and buffer length are high enough.
590 * Returns
591 *
592 *  |entropy|  if the entropy count and buffer size is large enough
593 *      0      otherwise
594 */
595size_t rand_pool_entropy_available(RAND_POOL *pool)
596{
597    if (pool->entropy < pool->entropy_requested)
598        return 0;
599
600    if (pool->len < pool->min_len)
601        return 0;
602
603    return pool->entropy;
604}
605
606/*
607 * Returns the (remaining) amount of entropy needed to fill
608 * the random pool.
609 */
610
611size_t rand_pool_entropy_needed(RAND_POOL *pool)
612{
613    if (pool->entropy < pool->entropy_requested)
614        return pool->entropy_requested - pool->entropy;
615
616    return 0;
617}
618
619/* Increase the allocation size -- not usable for an attached pool */
620static int rand_pool_grow(RAND_POOL *pool, size_t len)
621{
622    if (len > pool->alloc_len - pool->len) {
623        unsigned char *p;
624        const size_t limit = pool->max_len / 2;
625        size_t newlen = pool->alloc_len;
626
627        if (pool->attached || len > pool->max_len - pool->len) {
628            RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_INTERNAL_ERROR);
629            return 0;
630        }
631
632        do
633            newlen = newlen < limit ? newlen * 2 : pool->max_len;
634        while (len > newlen - pool->len);
635
636        if (pool->secure)
637            p = OPENSSL_secure_zalloc(newlen);
638        else
639            p = OPENSSL_zalloc(newlen);
640        if (p == NULL) {
641            RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_MALLOC_FAILURE);
642            return 0;
643        }
644        memcpy(p, pool->buffer, pool->len);
645        if (pool->secure)
646            OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len);
647        else
648            OPENSSL_clear_free(pool->buffer, pool->alloc_len);
649        pool->buffer = p;
650        pool->alloc_len = newlen;
651    }
652    return 1;
653}
654
655/*
656 * Returns the number of bytes needed to fill the pool, assuming
657 * the input has 1 / |entropy_factor| entropy bits per data bit.
658 * In case of an error, 0 is returned.
659 */
660
661size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_factor)
662{
663    size_t bytes_needed;
664    size_t entropy_needed = rand_pool_entropy_needed(pool);
665
666    if (entropy_factor < 1) {
667        RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE);
668        return 0;
669    }
670
671    bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_factor);
672
673    if (bytes_needed > pool->max_len - pool->len) {
674        /* not enough space left */
675        RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW);
676        return 0;
677    }
678
679    if (pool->len < pool->min_len &&
680        bytes_needed < pool->min_len - pool->len)
681        /* to meet the min_len requirement */
682        bytes_needed = pool->min_len - pool->len;
683
684    /*
685     * Make sure the buffer is large enough for the requested amount
686     * of data. This guarantees that existing code patterns where
687     * rand_pool_add_begin, rand_pool_add_end or rand_pool_add
688     * are used to collect entropy data without any error handling
689     * whatsoever, continue to be valid.
690     * Furthermore if the allocation here fails once, make sure that
691     * we don't fall back to a less secure or even blocking random source,
692     * as that could happen by the existing code patterns.
693     * This is not a concern for additional data, therefore that
694     * is not needed if rand_pool_grow fails in other places.
695     */
696    if (!rand_pool_grow(pool, bytes_needed)) {
697        /* persistent error for this pool */
698        pool->max_len = pool->len = 0;
699        return 0;
700    }
701
702    return bytes_needed;
703}
704
705/* Returns the remaining number of bytes available */
706size_t rand_pool_bytes_remaining(RAND_POOL *pool)
707{
708    return pool->max_len - pool->len;
709}
710
711/*
712 * Add random bytes to the random pool.
713 *
714 * It is expected that the |buffer| contains |len| bytes of
715 * random input which contains at least |entropy| bits of
716 * randomness.
717 *
718 * Returns 1 if the added amount is adequate, otherwise 0
719 */
720int rand_pool_add(RAND_POOL *pool,
721                  const unsigned char *buffer, size_t len, size_t entropy)
722{
723    if (len > pool->max_len - pool->len) {
724        RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG);
725        return 0;
726    }
727
728    if (pool->buffer == NULL) {
729        RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR);
730        return 0;
731    }
732
733    if (len > 0) {
734        /*
735         * This is to protect us from accidentally passing the buffer
736         * returned from rand_pool_add_begin.
737         * The check for alloc_len makes sure we do not compare the
738         * address of the end of the allocated memory to something
739         * different, since that comparison would have an
740         * indeterminate result.
741         */
742        if (pool->alloc_len > pool->len && pool->buffer + pool->len == buffer) {
743            RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR);
744            return 0;
745        }
746        /*
747         * We have that only for cases when a pool is used to collect
748         * additional data.
749         * For entropy data, as long as the allocation request stays within
750         * the limits given by rand_pool_bytes_needed this rand_pool_grow
751         * below is guaranteed to succeed, thus no allocation happens.
752         */
753        if (!rand_pool_grow(pool, len))
754            return 0;
755        memcpy(pool->buffer + pool->len, buffer, len);
756        pool->len += len;
757        pool->entropy += entropy;
758    }
759
760    return 1;
761}
762
763/*
764 * Start to add random bytes to the random pool in-place.
765 *
766 * Reserves the next |len| bytes for adding random bytes in-place
767 * and returns a pointer to the buffer.
768 * The caller is allowed to copy up to |len| bytes into the buffer.
769 * If |len| == 0 this is considered a no-op and a NULL pointer
770 * is returned without producing an error message.
771 *
772 * After updating the buffer, rand_pool_add_end() needs to be called
773 * to finish the update operation (see next comment).
774 */
775unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len)
776{
777    if (len == 0)
778        return NULL;
779
780    if (len > pool->max_len - pool->len) {
781        RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW);
782        return NULL;
783    }
784
785    if (pool->buffer == NULL) {
786        RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, ERR_R_INTERNAL_ERROR);
787        return NULL;
788    }
789
790    /*
791     * As long as the allocation request stays within the limits given
792     * by rand_pool_bytes_needed this rand_pool_grow below is guaranteed
793     * to succeed, thus no allocation happens.
794     * We have that only for cases when a pool is used to collect
795     * additional data. Then the buffer might need to grow here,
796     * and of course the caller is responsible to check the return
797     * value of this function.
798     */
799    if (!rand_pool_grow(pool, len))
800        return NULL;
801
802    return pool->buffer + pool->len;
803}
804
805/*
806 * Finish to add random bytes to the random pool in-place.
807 *
808 * Finishes an in-place update of the random pool started by
809 * rand_pool_add_begin() (see previous comment).
810 * It is expected that |len| bytes of random input have been added
811 * to the buffer which contain at least |entropy| bits of randomness.
812 * It is allowed to add less bytes than originally reserved.
813 */
814int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy)
815{
816    if (len > pool->alloc_len - pool->len) {
817        RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW);
818        return 0;
819    }
820
821    if (len > 0) {
822        pool->len += len;
823        pool->entropy += entropy;
824    }
825
826    return 1;
827}
828
829int RAND_set_rand_method(const RAND_METHOD *meth)
830{
831    if (!RUN_ONCE(&rand_init, do_rand_init))
832        return 0;
833
834    CRYPTO_THREAD_write_lock(rand_meth_lock);
835#ifndef OPENSSL_NO_ENGINE
836    ENGINE_finish(funct_ref);
837    funct_ref = NULL;
838#endif
839    default_RAND_meth = meth;
840    CRYPTO_THREAD_unlock(rand_meth_lock);
841    return 1;
842}
843
844const RAND_METHOD *RAND_get_rand_method(void)
845{
846    const RAND_METHOD *tmp_meth = NULL;
847
848    if (!RUN_ONCE(&rand_init, do_rand_init))
849        return NULL;
850
851    CRYPTO_THREAD_write_lock(rand_meth_lock);
852    if (default_RAND_meth == NULL) {
853#ifndef OPENSSL_NO_ENGINE
854        ENGINE *e;
855
856        /* If we have an engine that can do RAND, use it. */
857        if ((e = ENGINE_get_default_RAND()) != NULL
858                && (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
859            funct_ref = e;
860            default_RAND_meth = tmp_meth;
861        } else {
862            ENGINE_finish(e);
863            default_RAND_meth = &rand_meth;
864        }
865#else
866        default_RAND_meth = &rand_meth;
867#endif
868    }
869    tmp_meth = default_RAND_meth;
870    CRYPTO_THREAD_unlock(rand_meth_lock);
871    return tmp_meth;
872}
873
874#ifndef OPENSSL_NO_ENGINE
875int RAND_set_rand_engine(ENGINE *engine)
876{
877    const RAND_METHOD *tmp_meth = NULL;
878
879    if (!RUN_ONCE(&rand_init, do_rand_init))
880        return 0;
881
882    if (engine != NULL) {
883        if (!ENGINE_init(engine))
884            return 0;
885        tmp_meth = ENGINE_get_RAND(engine);
886        if (tmp_meth == NULL) {
887            ENGINE_finish(engine);
888            return 0;
889        }
890    }
891    CRYPTO_THREAD_write_lock(rand_engine_lock);
892    /* This function releases any prior ENGINE so call it first */
893    RAND_set_rand_method(tmp_meth);
894    funct_ref = engine;
895    CRYPTO_THREAD_unlock(rand_engine_lock);
896    return 1;
897}
898#endif
899
900void RAND_seed(const void *buf, int num)
901{
902    const RAND_METHOD *meth = RAND_get_rand_method();
903
904    if (meth != NULL && meth->seed != NULL)
905        meth->seed(buf, num);
906}
907
908void RAND_add(const void *buf, int num, double randomness)
909{
910    const RAND_METHOD *meth = RAND_get_rand_method();
911
912    if (meth != NULL && meth->add != NULL)
913        meth->add(buf, num, randomness);
914}
915
916/*
917 * This function is not part of RAND_METHOD, so if we're not using
918 * the default method, then just call RAND_bytes().  Otherwise make
919 * sure we're instantiated and use the private DRBG.
920 */
921int RAND_priv_bytes(unsigned char *buf, int num)
922{
923    const RAND_METHOD *meth = RAND_get_rand_method();
924    RAND_DRBG *drbg;
925
926    if (meth != NULL && meth != RAND_OpenSSL())
927        return RAND_bytes(buf, num);
928
929    drbg = RAND_DRBG_get0_private();
930    if (drbg != NULL)
931        return RAND_DRBG_bytes(drbg, buf, num);
932
933    return 0;
934}
935
936int RAND_bytes(unsigned char *buf, int num)
937{
938    const RAND_METHOD *meth = RAND_get_rand_method();
939
940    if (meth != NULL && meth->bytes != NULL)
941        return meth->bytes(buf, num);
942    RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
943    return -1;
944}
945
946#if OPENSSL_API_COMPAT < 0x10100000L
947int RAND_pseudo_bytes(unsigned char *buf, int num)
948{
949    const RAND_METHOD *meth = RAND_get_rand_method();
950
951    if (meth != NULL && meth->pseudorand != NULL)
952        return meth->pseudorand(buf, num);
953    RANDerr(RAND_F_RAND_PSEUDO_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
954    return -1;
955}
956#endif
957
958int RAND_status(void)
959{
960    const RAND_METHOD *meth = RAND_get_rand_method();
961
962    if (meth != NULL && meth->status != NULL)
963        return meth->status();
964    return 0;
965}
966