1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/MapVector.h"
24#include "llvm/ADT/None.h"
25#include "llvm/ADT/Optional.h"
26#include "llvm/ADT/PostOrderIterator.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallBitVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/iterator.h"
35#include "llvm/ADT/iterator_range.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Analysis/CodeMetrics.h"
38#include "llvm/Analysis/DemandedBits.h"
39#include "llvm/Analysis/GlobalsModRef.h"
40#include "llvm/Analysis/LoopAccessAnalysis.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Analysis/MemoryLocation.h"
43#include "llvm/Analysis/OptimizationRemarkEmitter.h"
44#include "llvm/Analysis/ScalarEvolution.h"
45#include "llvm/Analysis/ScalarEvolutionExpressions.h"
46#include "llvm/Analysis/TargetLibraryInfo.h"
47#include "llvm/Analysis/TargetTransformInfo.h"
48#include "llvm/Analysis/ValueTracking.h"
49#include "llvm/Analysis/VectorUtils.h"
50#include "llvm/IR/Attributes.h"
51#include "llvm/IR/BasicBlock.h"
52#include "llvm/IR/Constant.h"
53#include "llvm/IR/Constants.h"
54#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/DebugLoc.h"
56#include "llvm/IR/DerivedTypes.h"
57#include "llvm/IR/Dominators.h"
58#include "llvm/IR/Function.h"
59#include "llvm/IR/IRBuilder.h"
60#include "llvm/IR/InstrTypes.h"
61#include "llvm/IR/Instruction.h"
62#include "llvm/IR/Instructions.h"
63#include "llvm/IR/IntrinsicInst.h"
64#include "llvm/IR/Intrinsics.h"
65#include "llvm/IR/Module.h"
66#include "llvm/IR/NoFolder.h"
67#include "llvm/IR/Operator.h"
68#include "llvm/IR/PassManager.h"
69#include "llvm/IR/PatternMatch.h"
70#include "llvm/IR/Type.h"
71#include "llvm/IR/Use.h"
72#include "llvm/IR/User.h"
73#include "llvm/IR/Value.h"
74#include "llvm/IR/ValueHandle.h"
75#include "llvm/IR/Verifier.h"
76#include "llvm/InitializePasses.h"
77#include "llvm/Pass.h"
78#include "llvm/Support/Casting.h"
79#include "llvm/Support/CommandLine.h"
80#include "llvm/Support/Compiler.h"
81#include "llvm/Support/DOTGraphTraits.h"
82#include "llvm/Support/Debug.h"
83#include "llvm/Support/ErrorHandling.h"
84#include "llvm/Support/GraphWriter.h"
85#include "llvm/Support/KnownBits.h"
86#include "llvm/Support/MathExtras.h"
87#include "llvm/Support/raw_ostream.h"
88#include "llvm/Transforms/Utils/LoopUtils.h"
89#include "llvm/Transforms/Vectorize.h"
90#include <algorithm>
91#include <cassert>
92#include <cstdint>
93#include <iterator>
94#include <memory>
95#include <set>
96#include <string>
97#include <tuple>
98#include <utility>
99#include <vector>
100
101using namespace llvm;
102using namespace llvm::PatternMatch;
103using namespace slpvectorizer;
104
105#define SV_NAME "slp-vectorizer"
106#define DEBUG_TYPE "SLP"
107
108STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
109
110cl::opt<bool>
111    llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden,
112                              cl::desc("Run the SLP vectorization passes"));
113
114static cl::opt<int>
115    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
116                     cl::desc("Only vectorize if you gain more than this "
117                              "number "));
118
119static cl::opt<bool>
120ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
121                   cl::desc("Attempt to vectorize horizontal reductions"));
122
123static cl::opt<bool> ShouldStartVectorizeHorAtStore(
124    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
125    cl::desc(
126        "Attempt to vectorize horizontal reductions feeding into a store"));
127
128static cl::opt<int>
129MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
130    cl::desc("Attempt to vectorize for this register size in bits"));
131
132static cl::opt<int>
133MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
134    cl::desc("Maximum depth of the lookup for consecutive stores."));
135
136/// Limits the size of scheduling regions in a block.
137/// It avoid long compile times for _very_ large blocks where vector
138/// instructions are spread over a wide range.
139/// This limit is way higher than needed by real-world functions.
140static cl::opt<int>
141ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
142    cl::desc("Limit the size of the SLP scheduling region per block"));
143
144static cl::opt<int> MinVectorRegSizeOption(
145    "slp-min-reg-size", cl::init(128), cl::Hidden,
146    cl::desc("Attempt to vectorize for this register size in bits"));
147
148static cl::opt<unsigned> RecursionMaxDepth(
149    "slp-recursion-max-depth", cl::init(12), cl::Hidden,
150    cl::desc("Limit the recursion depth when building a vectorizable tree"));
151
152static cl::opt<unsigned> MinTreeSize(
153    "slp-min-tree-size", cl::init(3), cl::Hidden,
154    cl::desc("Only vectorize small trees if they are fully vectorizable"));
155
156// The maximum depth that the look-ahead score heuristic will explore.
157// The higher this value, the higher the compilation time overhead.
158static cl::opt<int> LookAheadMaxDepth(
159    "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
160    cl::desc("The maximum look-ahead depth for operand reordering scores"));
161
162// The Look-ahead heuristic goes through the users of the bundle to calculate
163// the users cost in getExternalUsesCost(). To avoid compilation time increase
164// we limit the number of users visited to this value.
165static cl::opt<unsigned> LookAheadUsersBudget(
166    "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
167    cl::desc("The maximum number of users to visit while visiting the "
168             "predecessors. This prevents compilation time increase."));
169
170static cl::opt<bool>
171    ViewSLPTree("view-slp-tree", cl::Hidden,
172                cl::desc("Display the SLP trees with Graphviz"));
173
174// Limit the number of alias checks. The limit is chosen so that
175// it has no negative effect on the llvm benchmarks.
176static const unsigned AliasedCheckLimit = 10;
177
178// Another limit for the alias checks: The maximum distance between load/store
179// instructions where alias checks are done.
180// This limit is useful for very large basic blocks.
181static const unsigned MaxMemDepDistance = 160;
182
183/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
184/// regions to be handled.
185static const int MinScheduleRegionSize = 16;
186
187/// Predicate for the element types that the SLP vectorizer supports.
188///
189/// The most important thing to filter here are types which are invalid in LLVM
190/// vectors. We also filter target specific types which have absolutely no
191/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
192/// avoids spending time checking the cost model and realizing that they will
193/// be inevitably scalarized.
194static bool isValidElementType(Type *Ty) {
195  return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
196         !Ty->isPPC_FP128Ty();
197}
198
199/// \returns true if all of the instructions in \p VL are in the same block or
200/// false otherwise.
201static bool allSameBlock(ArrayRef<Value *> VL) {
202  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
203  if (!I0)
204    return false;
205  BasicBlock *BB = I0->getParent();
206  for (int i = 1, e = VL.size(); i < e; i++) {
207    Instruction *I = dyn_cast<Instruction>(VL[i]);
208    if (!I)
209      return false;
210
211    if (BB != I->getParent())
212      return false;
213  }
214  return true;
215}
216
217/// \returns True if all of the values in \p VL are constants (but not
218/// globals/constant expressions).
219static bool allConstant(ArrayRef<Value *> VL) {
220  // Constant expressions and globals can't be vectorized like normal integer/FP
221  // constants.
222  for (Value *i : VL)
223    if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
224      return false;
225  return true;
226}
227
228/// \returns True if all of the values in \p VL are identical.
229static bool isSplat(ArrayRef<Value *> VL) {
230  for (unsigned i = 1, e = VL.size(); i < e; ++i)
231    if (VL[i] != VL[0])
232      return false;
233  return true;
234}
235
236/// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
237static bool isCommutative(Instruction *I) {
238  if (auto *IC = dyn_cast<CmpInst>(I))
239    return IC->isCommutative();
240  return I->isCommutative();
241}
242
243/// Checks if the vector of instructions can be represented as a shuffle, like:
244/// %x0 = extractelement <4 x i8> %x, i32 0
245/// %x3 = extractelement <4 x i8> %x, i32 3
246/// %y1 = extractelement <4 x i8> %y, i32 1
247/// %y2 = extractelement <4 x i8> %y, i32 2
248/// %x0x0 = mul i8 %x0, %x0
249/// %x3x3 = mul i8 %x3, %x3
250/// %y1y1 = mul i8 %y1, %y1
251/// %y2y2 = mul i8 %y2, %y2
252/// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
253/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
254/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
255/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
256/// ret <4 x i8> %ins4
257/// can be transformed into:
258/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
259///                                                         i32 6>
260/// %2 = mul <4 x i8> %1, %1
261/// ret <4 x i8> %2
262/// We convert this initially to something like:
263/// %x0 = extractelement <4 x i8> %x, i32 0
264/// %x3 = extractelement <4 x i8> %x, i32 3
265/// %y1 = extractelement <4 x i8> %y, i32 1
266/// %y2 = extractelement <4 x i8> %y, i32 2
267/// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
268/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
269/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
270/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
271/// %5 = mul <4 x i8> %4, %4
272/// %6 = extractelement <4 x i8> %5, i32 0
273/// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
274/// %7 = extractelement <4 x i8> %5, i32 1
275/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
276/// %8 = extractelement <4 x i8> %5, i32 2
277/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
278/// %9 = extractelement <4 x i8> %5, i32 3
279/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
280/// ret <4 x i8> %ins4
281/// InstCombiner transforms this into a shuffle and vector mul
282/// TODO: Can we split off and reuse the shuffle mask detection from
283/// TargetTransformInfo::getInstructionThroughput?
284static Optional<TargetTransformInfo::ShuffleKind>
285isShuffle(ArrayRef<Value *> VL) {
286  auto *EI0 = cast<ExtractElementInst>(VL[0]);
287  unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
288  Value *Vec1 = nullptr;
289  Value *Vec2 = nullptr;
290  enum ShuffleMode { Unknown, Select, Permute };
291  ShuffleMode CommonShuffleMode = Unknown;
292  for (unsigned I = 0, E = VL.size(); I < E; ++I) {
293    auto *EI = cast<ExtractElementInst>(VL[I]);
294    auto *Vec = EI->getVectorOperand();
295    // All vector operands must have the same number of vector elements.
296    if (Vec->getType()->getVectorNumElements() != Size)
297      return None;
298    auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
299    if (!Idx)
300      return None;
301    // Undefined behavior if Idx is negative or >= Size.
302    if (Idx->getValue().uge(Size))
303      continue;
304    unsigned IntIdx = Idx->getValue().getZExtValue();
305    // We can extractelement from undef vector.
306    if (isa<UndefValue>(Vec))
307      continue;
308    // For correct shuffling we have to have at most 2 different vector operands
309    // in all extractelement instructions.
310    if (!Vec1 || Vec1 == Vec)
311      Vec1 = Vec;
312    else if (!Vec2 || Vec2 == Vec)
313      Vec2 = Vec;
314    else
315      return None;
316    if (CommonShuffleMode == Permute)
317      continue;
318    // If the extract index is not the same as the operation number, it is a
319    // permutation.
320    if (IntIdx != I) {
321      CommonShuffleMode = Permute;
322      continue;
323    }
324    CommonShuffleMode = Select;
325  }
326  // If we're not crossing lanes in different vectors, consider it as blending.
327  if (CommonShuffleMode == Select && Vec2)
328    return TargetTransformInfo::SK_Select;
329  // If Vec2 was never used, we have a permutation of a single vector, otherwise
330  // we have permutation of 2 vectors.
331  return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
332              : TargetTransformInfo::SK_PermuteSingleSrc;
333}
334
335namespace {
336
337/// Main data required for vectorization of instructions.
338struct InstructionsState {
339  /// The very first instruction in the list with the main opcode.
340  Value *OpValue = nullptr;
341
342  /// The main/alternate instruction.
343  Instruction *MainOp = nullptr;
344  Instruction *AltOp = nullptr;
345
346  /// The main/alternate opcodes for the list of instructions.
347  unsigned getOpcode() const {
348    return MainOp ? MainOp->getOpcode() : 0;
349  }
350
351  unsigned getAltOpcode() const {
352    return AltOp ? AltOp->getOpcode() : 0;
353  }
354
355  /// Some of the instructions in the list have alternate opcodes.
356  bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
357
358  bool isOpcodeOrAlt(Instruction *I) const {
359    unsigned CheckedOpcode = I->getOpcode();
360    return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
361  }
362
363  InstructionsState() = delete;
364  InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
365      : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
366};
367
368} // end anonymous namespace
369
370/// Chooses the correct key for scheduling data. If \p Op has the same (or
371/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
372/// OpValue.
373static Value *isOneOf(const InstructionsState &S, Value *Op) {
374  auto *I = dyn_cast<Instruction>(Op);
375  if (I && S.isOpcodeOrAlt(I))
376    return Op;
377  return S.OpValue;
378}
379
380/// \returns true if \p Opcode is allowed as part of of the main/alternate
381/// instruction for SLP vectorization.
382///
383/// Example of unsupported opcode is SDIV that can potentially cause UB if the
384/// "shuffled out" lane would result in division by zero.
385static bool isValidForAlternation(unsigned Opcode) {
386  if (Instruction::isIntDivRem(Opcode))
387    return false;
388
389  return true;
390}
391
392/// \returns analysis of the Instructions in \p VL described in
393/// InstructionsState, the Opcode that we suppose the whole list
394/// could be vectorized even if its structure is diverse.
395static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
396                                       unsigned BaseIndex = 0) {
397  // Make sure these are all Instructions.
398  if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
399    return InstructionsState(VL[BaseIndex], nullptr, nullptr);
400
401  bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
402  bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
403  unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
404  unsigned AltOpcode = Opcode;
405  unsigned AltIndex = BaseIndex;
406
407  // Check for one alternate opcode from another BinaryOperator.
408  // TODO - generalize to support all operators (types, calls etc.).
409  for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
410    unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
411    if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
412      if (InstOpcode == Opcode || InstOpcode == AltOpcode)
413        continue;
414      if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
415          isValidForAlternation(Opcode)) {
416        AltOpcode = InstOpcode;
417        AltIndex = Cnt;
418        continue;
419      }
420    } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
421      Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
422      Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
423      if (Ty0 == Ty1) {
424        if (InstOpcode == Opcode || InstOpcode == AltOpcode)
425          continue;
426        if (Opcode == AltOpcode) {
427          assert(isValidForAlternation(Opcode) &&
428                 isValidForAlternation(InstOpcode) &&
429                 "Cast isn't safe for alternation, logic needs to be updated!");
430          AltOpcode = InstOpcode;
431          AltIndex = Cnt;
432          continue;
433        }
434      }
435    } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
436      continue;
437    return InstructionsState(VL[BaseIndex], nullptr, nullptr);
438  }
439
440  return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
441                           cast<Instruction>(VL[AltIndex]));
442}
443
444/// \returns true if all of the values in \p VL have the same type or false
445/// otherwise.
446static bool allSameType(ArrayRef<Value *> VL) {
447  Type *Ty = VL[0]->getType();
448  for (int i = 1, e = VL.size(); i < e; i++)
449    if (VL[i]->getType() != Ty)
450      return false;
451
452  return true;
453}
454
455/// \returns True if Extract{Value,Element} instruction extracts element Idx.
456static Optional<unsigned> getExtractIndex(Instruction *E) {
457  unsigned Opcode = E->getOpcode();
458  assert((Opcode == Instruction::ExtractElement ||
459          Opcode == Instruction::ExtractValue) &&
460         "Expected extractelement or extractvalue instruction.");
461  if (Opcode == Instruction::ExtractElement) {
462    auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
463    if (!CI)
464      return None;
465    return CI->getZExtValue();
466  }
467  ExtractValueInst *EI = cast<ExtractValueInst>(E);
468  if (EI->getNumIndices() != 1)
469    return None;
470  return *EI->idx_begin();
471}
472
473/// \returns True if in-tree use also needs extract. This refers to
474/// possible scalar operand in vectorized instruction.
475static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
476                                    TargetLibraryInfo *TLI) {
477  unsigned Opcode = UserInst->getOpcode();
478  switch (Opcode) {
479  case Instruction::Load: {
480    LoadInst *LI = cast<LoadInst>(UserInst);
481    return (LI->getPointerOperand() == Scalar);
482  }
483  case Instruction::Store: {
484    StoreInst *SI = cast<StoreInst>(UserInst);
485    return (SI->getPointerOperand() == Scalar);
486  }
487  case Instruction::Call: {
488    CallInst *CI = cast<CallInst>(UserInst);
489    Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
490    for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
491      if (hasVectorInstrinsicScalarOpd(ID, i))
492        return (CI->getArgOperand(i) == Scalar);
493    }
494    LLVM_FALLTHROUGH;
495  }
496  default:
497    return false;
498  }
499}
500
501/// \returns the AA location that is being access by the instruction.
502static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
503  if (StoreInst *SI = dyn_cast<StoreInst>(I))
504    return MemoryLocation::get(SI);
505  if (LoadInst *LI = dyn_cast<LoadInst>(I))
506    return MemoryLocation::get(LI);
507  return MemoryLocation();
508}
509
510/// \returns True if the instruction is not a volatile or atomic load/store.
511static bool isSimple(Instruction *I) {
512  if (LoadInst *LI = dyn_cast<LoadInst>(I))
513    return LI->isSimple();
514  if (StoreInst *SI = dyn_cast<StoreInst>(I))
515    return SI->isSimple();
516  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
517    return !MI->isVolatile();
518  return true;
519}
520
521namespace llvm {
522
523namespace slpvectorizer {
524
525/// Bottom Up SLP Vectorizer.
526class BoUpSLP {
527  struct TreeEntry;
528  struct ScheduleData;
529
530public:
531  using ValueList = SmallVector<Value *, 8>;
532  using InstrList = SmallVector<Instruction *, 16>;
533  using ValueSet = SmallPtrSet<Value *, 16>;
534  using StoreList = SmallVector<StoreInst *, 8>;
535  using ExtraValueToDebugLocsMap =
536      MapVector<Value *, SmallVector<Instruction *, 2>>;
537
538  BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
539          TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
540          DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
541          const DataLayout *DL, OptimizationRemarkEmitter *ORE)
542      : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
543        DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
544    CodeMetrics::collectEphemeralValues(F, AC, EphValues);
545    // Use the vector register size specified by the target unless overridden
546    // by a command-line option.
547    // TODO: It would be better to limit the vectorization factor based on
548    //       data type rather than just register size. For example, x86 AVX has
549    //       256-bit registers, but it does not support integer operations
550    //       at that width (that requires AVX2).
551    if (MaxVectorRegSizeOption.getNumOccurrences())
552      MaxVecRegSize = MaxVectorRegSizeOption;
553    else
554      MaxVecRegSize = TTI->getRegisterBitWidth(true);
555
556    if (MinVectorRegSizeOption.getNumOccurrences())
557      MinVecRegSize = MinVectorRegSizeOption;
558    else
559      MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
560  }
561
562  /// Vectorize the tree that starts with the elements in \p VL.
563  /// Returns the vectorized root.
564  Value *vectorizeTree();
565
566  /// Vectorize the tree but with the list of externally used values \p
567  /// ExternallyUsedValues. Values in this MapVector can be replaced but the
568  /// generated extractvalue instructions.
569  Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
570
571  /// \returns the cost incurred by unwanted spills and fills, caused by
572  /// holding live values over call sites.
573  int getSpillCost() const;
574
575  /// \returns the vectorization cost of the subtree that starts at \p VL.
576  /// A negative number means that this is profitable.
577  int getTreeCost();
578
579  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
580  /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
581  void buildTree(ArrayRef<Value *> Roots,
582                 ArrayRef<Value *> UserIgnoreLst = None);
583
584  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
585  /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
586  /// into account (and updating it, if required) list of externally used
587  /// values stored in \p ExternallyUsedValues.
588  void buildTree(ArrayRef<Value *> Roots,
589                 ExtraValueToDebugLocsMap &ExternallyUsedValues,
590                 ArrayRef<Value *> UserIgnoreLst = None);
591
592  /// Clear the internal data structures that are created by 'buildTree'.
593  void deleteTree() {
594    VectorizableTree.clear();
595    ScalarToTreeEntry.clear();
596    MustGather.clear();
597    ExternalUses.clear();
598    NumOpsWantToKeepOrder.clear();
599    NumOpsWantToKeepOriginalOrder = 0;
600    for (auto &Iter : BlocksSchedules) {
601      BlockScheduling *BS = Iter.second.get();
602      BS->clear();
603    }
604    MinBWs.clear();
605  }
606
607  unsigned getTreeSize() const { return VectorizableTree.size(); }
608
609  /// Perform LICM and CSE on the newly generated gather sequences.
610  void optimizeGatherSequence();
611
612  /// \returns The best order of instructions for vectorization.
613  Optional<ArrayRef<unsigned>> bestOrder() const {
614    auto I = std::max_element(
615        NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
616        [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
617           const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
618          return D1.second < D2.second;
619        });
620    if (I == NumOpsWantToKeepOrder.end() ||
621        I->getSecond() <= NumOpsWantToKeepOriginalOrder)
622      return None;
623
624    return makeArrayRef(I->getFirst());
625  }
626
627  /// \return The vector element size in bits to use when vectorizing the
628  /// expression tree ending at \p V. If V is a store, the size is the width of
629  /// the stored value. Otherwise, the size is the width of the largest loaded
630  /// value reaching V. This method is used by the vectorizer to calculate
631  /// vectorization factors.
632  unsigned getVectorElementSize(Value *V) const;
633
634  /// Compute the minimum type sizes required to represent the entries in a
635  /// vectorizable tree.
636  void computeMinimumValueSizes();
637
638  // \returns maximum vector register size as set by TTI or overridden by cl::opt.
639  unsigned getMaxVecRegSize() const {
640    return MaxVecRegSize;
641  }
642
643  // \returns minimum vector register size as set by cl::opt.
644  unsigned getMinVecRegSize() const {
645    return MinVecRegSize;
646  }
647
648  /// Check if homogeneous aggregate is isomorphic to some VectorType.
649  /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
650  /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
651  /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
652  ///
653  /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
654  unsigned canMapToVector(Type *T, const DataLayout &DL) const;
655
656  /// \returns True if the VectorizableTree is both tiny and not fully
657  /// vectorizable. We do not vectorize such trees.
658  bool isTreeTinyAndNotFullyVectorizable() const;
659
660  /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
661  /// can be load combined in the backend. Load combining may not be allowed in
662  /// the IR optimizer, so we do not want to alter the pattern. For example,
663  /// partially transforming a scalar bswap() pattern into vector code is
664  /// effectively impossible for the backend to undo.
665  /// TODO: If load combining is allowed in the IR optimizer, this analysis
666  ///       may not be necessary.
667  bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const;
668
669  OptimizationRemarkEmitter *getORE() { return ORE; }
670
671  /// This structure holds any data we need about the edges being traversed
672  /// during buildTree_rec(). We keep track of:
673  /// (i) the user TreeEntry index, and
674  /// (ii) the index of the edge.
675  struct EdgeInfo {
676    EdgeInfo() = default;
677    EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
678        : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
679    /// The user TreeEntry.
680    TreeEntry *UserTE = nullptr;
681    /// The operand index of the use.
682    unsigned EdgeIdx = UINT_MAX;
683#ifndef NDEBUG
684    friend inline raw_ostream &operator<<(raw_ostream &OS,
685                                          const BoUpSLP::EdgeInfo &EI) {
686      EI.dump(OS);
687      return OS;
688    }
689    /// Debug print.
690    void dump(raw_ostream &OS) const {
691      OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
692         << " EdgeIdx:" << EdgeIdx << "}";
693    }
694    LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
695#endif
696  };
697
698  /// A helper data structure to hold the operands of a vector of instructions.
699  /// This supports a fixed vector length for all operand vectors.
700  class VLOperands {
701    /// For each operand we need (i) the value, and (ii) the opcode that it
702    /// would be attached to if the expression was in a left-linearized form.
703    /// This is required to avoid illegal operand reordering.
704    /// For example:
705    /// \verbatim
706    ///                         0 Op1
707    ///                         |/
708    /// Op1 Op2   Linearized    + Op2
709    ///   \ /     ---------->   |/
710    ///    -                    -
711    ///
712    /// Op1 - Op2            (0 + Op1) - Op2
713    /// \endverbatim
714    ///
715    /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
716    ///
717    /// Another way to think of this is to track all the operations across the
718    /// path from the operand all the way to the root of the tree and to
719    /// calculate the operation that corresponds to this path. For example, the
720    /// path from Op2 to the root crosses the RHS of the '-', therefore the
721    /// corresponding operation is a '-' (which matches the one in the
722    /// linearized tree, as shown above).
723    ///
724    /// For lack of a better term, we refer to this operation as Accumulated
725    /// Path Operation (APO).
726    struct OperandData {
727      OperandData() = default;
728      OperandData(Value *V, bool APO, bool IsUsed)
729          : V(V), APO(APO), IsUsed(IsUsed) {}
730      /// The operand value.
731      Value *V = nullptr;
732      /// TreeEntries only allow a single opcode, or an alternate sequence of
733      /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
734      /// APO. It is set to 'true' if 'V' is attached to an inverse operation
735      /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
736      /// (e.g., Add/Mul)
737      bool APO = false;
738      /// Helper data for the reordering function.
739      bool IsUsed = false;
740    };
741
742    /// During operand reordering, we are trying to select the operand at lane
743    /// that matches best with the operand at the neighboring lane. Our
744    /// selection is based on the type of value we are looking for. For example,
745    /// if the neighboring lane has a load, we need to look for a load that is
746    /// accessing a consecutive address. These strategies are summarized in the
747    /// 'ReorderingMode' enumerator.
748    enum class ReorderingMode {
749      Load,     ///< Matching loads to consecutive memory addresses
750      Opcode,   ///< Matching instructions based on opcode (same or alternate)
751      Constant, ///< Matching constants
752      Splat,    ///< Matching the same instruction multiple times (broadcast)
753      Failed,   ///< We failed to create a vectorizable group
754    };
755
756    using OperandDataVec = SmallVector<OperandData, 2>;
757
758    /// A vector of operand vectors.
759    SmallVector<OperandDataVec, 4> OpsVec;
760
761    const DataLayout &DL;
762    ScalarEvolution &SE;
763    const BoUpSLP &R;
764
765    /// \returns the operand data at \p OpIdx and \p Lane.
766    OperandData &getData(unsigned OpIdx, unsigned Lane) {
767      return OpsVec[OpIdx][Lane];
768    }
769
770    /// \returns the operand data at \p OpIdx and \p Lane. Const version.
771    const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
772      return OpsVec[OpIdx][Lane];
773    }
774
775    /// Clears the used flag for all entries.
776    void clearUsed() {
777      for (unsigned OpIdx = 0, NumOperands = getNumOperands();
778           OpIdx != NumOperands; ++OpIdx)
779        for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
780             ++Lane)
781          OpsVec[OpIdx][Lane].IsUsed = false;
782    }
783
784    /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
785    void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
786      std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
787    }
788
789    // The hard-coded scores listed here are not very important. When computing
790    // the scores of matching one sub-tree with another, we are basically
791    // counting the number of values that are matching. So even if all scores
792    // are set to 1, we would still get a decent matching result.
793    // However, sometimes we have to break ties. For example we may have to
794    // choose between matching loads vs matching opcodes. This is what these
795    // scores are helping us with: they provide the order of preference.
796
797    /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
798    static const int ScoreConsecutiveLoads = 3;
799    /// ExtractElementInst from same vector and consecutive indexes.
800    static const int ScoreConsecutiveExtracts = 3;
801    /// Constants.
802    static const int ScoreConstants = 2;
803    /// Instructions with the same opcode.
804    static const int ScoreSameOpcode = 2;
805    /// Instructions with alt opcodes (e.g, add + sub).
806    static const int ScoreAltOpcodes = 1;
807    /// Identical instructions (a.k.a. splat or broadcast).
808    static const int ScoreSplat = 1;
809    /// Matching with an undef is preferable to failing.
810    static const int ScoreUndef = 1;
811    /// Score for failing to find a decent match.
812    static const int ScoreFail = 0;
813    /// User exteranl to the vectorized code.
814    static const int ExternalUseCost = 1;
815    /// The user is internal but in a different lane.
816    static const int UserInDiffLaneCost = ExternalUseCost;
817
818    /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
819    static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
820                               ScalarEvolution &SE) {
821      auto *LI1 = dyn_cast<LoadInst>(V1);
822      auto *LI2 = dyn_cast<LoadInst>(V2);
823      if (LI1 && LI2)
824        return isConsecutiveAccess(LI1, LI2, DL, SE)
825                   ? VLOperands::ScoreConsecutiveLoads
826                   : VLOperands::ScoreFail;
827
828      auto *C1 = dyn_cast<Constant>(V1);
829      auto *C2 = dyn_cast<Constant>(V2);
830      if (C1 && C2)
831        return VLOperands::ScoreConstants;
832
833      // Extracts from consecutive indexes of the same vector better score as
834      // the extracts could be optimized away.
835      Value *EV;
836      ConstantInt *Ex1Idx, *Ex2Idx;
837      if (match(V1, m_ExtractElement(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
838          match(V2, m_ExtractElement(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
839          Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
840        return VLOperands::ScoreConsecutiveExtracts;
841
842      auto *I1 = dyn_cast<Instruction>(V1);
843      auto *I2 = dyn_cast<Instruction>(V2);
844      if (I1 && I2) {
845        if (I1 == I2)
846          return VLOperands::ScoreSplat;
847        InstructionsState S = getSameOpcode({I1, I2});
848        // Note: Only consider instructions with <= 2 operands to avoid
849        // complexity explosion.
850        if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
851          return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
852                                  : VLOperands::ScoreSameOpcode;
853      }
854
855      if (isa<UndefValue>(V2))
856        return VLOperands::ScoreUndef;
857
858      return VLOperands::ScoreFail;
859    }
860
861    /// Holds the values and their lane that are taking part in the look-ahead
862    /// score calculation. This is used in the external uses cost calculation.
863    SmallDenseMap<Value *, int> InLookAheadValues;
864
865    /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
866    /// either external to the vectorized code, or require shuffling.
867    int getExternalUsesCost(const std::pair<Value *, int> &LHS,
868                            const std::pair<Value *, int> &RHS) {
869      int Cost = 0;
870      SmallVector<std::pair<Value *, int>, 2> Values = {LHS, RHS};
871      for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
872        Value *V = Values[Idx].first;
873        // Calculate the absolute lane, using the minimum relative lane of LHS
874        // and RHS as base and Idx as the offset.
875        int Ln = std::min(LHS.second, RHS.second) + Idx;
876        assert(Ln >= 0 && "Bad lane calculation");
877        unsigned UsersBudget = LookAheadUsersBudget;
878        for (User *U : V->users()) {
879          if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
880            // The user is in the VectorizableTree. Check if we need to insert.
881            auto It = llvm::find(UserTE->Scalars, U);
882            assert(It != UserTE->Scalars.end() && "U is in UserTE");
883            int UserLn = std::distance(UserTE->Scalars.begin(), It);
884            assert(UserLn >= 0 && "Bad lane");
885            if (UserLn != Ln)
886              Cost += UserInDiffLaneCost;
887          } else {
888            // Check if the user is in the look-ahead code.
889            auto It2 = InLookAheadValues.find(U);
890            if (It2 != InLookAheadValues.end()) {
891              // The user is in the look-ahead code. Check the lane.
892              if (It2->second != Ln)
893                Cost += UserInDiffLaneCost;
894            } else {
895              // The user is neither in SLP tree nor in the look-ahead code.
896              Cost += ExternalUseCost;
897            }
898          }
899          // Limit the number of visited uses to cap compilation time.
900          if (--UsersBudget == 0)
901            break;
902        }
903      }
904      return Cost;
905    }
906
907    /// Go through the operands of \p LHS and \p RHS recursively until \p
908    /// MaxLevel, and return the cummulative score. For example:
909    /// \verbatim
910    ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
911    ///     \ /         \ /         \ /        \ /
912    ///      +           +           +          +
913    ///     G1          G2          G3         G4
914    /// \endverbatim
915    /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
916    /// each level recursively, accumulating the score. It starts from matching
917    /// the additions at level 0, then moves on to the loads (level 1). The
918    /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
919    /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
920    /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
921    /// Please note that the order of the operands does not matter, as we
922    /// evaluate the score of all profitable combinations of operands. In
923    /// other words the score of G1 and G4 is the same as G1 and G2. This
924    /// heuristic is based on ideas described in:
925    ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
926    ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
927    ///   Lu��s F. W. G��es
928    int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
929                           const std::pair<Value *, int> &RHS, int CurrLevel,
930                           int MaxLevel) {
931
932      Value *V1 = LHS.first;
933      Value *V2 = RHS.first;
934      // Get the shallow score of V1 and V2.
935      int ShallowScoreAtThisLevel =
936          std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
937                                       getExternalUsesCost(LHS, RHS));
938      int Lane1 = LHS.second;
939      int Lane2 = RHS.second;
940
941      // If reached MaxLevel,
942      //  or if V1 and V2 are not instructions,
943      //  or if they are SPLAT,
944      //  or if they are not consecutive, early return the current cost.
945      auto *I1 = dyn_cast<Instruction>(V1);
946      auto *I2 = dyn_cast<Instruction>(V2);
947      if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
948          ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
949          (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
950        return ShallowScoreAtThisLevel;
951      assert(I1 && I2 && "Should have early exited.");
952
953      // Keep track of in-tree values for determining the external-use cost.
954      InLookAheadValues[V1] = Lane1;
955      InLookAheadValues[V2] = Lane2;
956
957      // Contains the I2 operand indexes that got matched with I1 operands.
958      SmallSet<unsigned, 4> Op2Used;
959
960      // Recursion towards the operands of I1 and I2. We are trying all possbile
961      // operand pairs, and keeping track of the best score.
962      for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
963           OpIdx1 != NumOperands1; ++OpIdx1) {
964        // Try to pair op1I with the best operand of I2.
965        int MaxTmpScore = 0;
966        unsigned MaxOpIdx2 = 0;
967        bool FoundBest = false;
968        // If I2 is commutative try all combinations.
969        unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
970        unsigned ToIdx = isCommutative(I2)
971                             ? I2->getNumOperands()
972                             : std::min(I2->getNumOperands(), OpIdx1 + 1);
973        assert(FromIdx <= ToIdx && "Bad index");
974        for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
975          // Skip operands already paired with OpIdx1.
976          if (Op2Used.count(OpIdx2))
977            continue;
978          // Recursively calculate the cost at each level
979          int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
980                                            {I2->getOperand(OpIdx2), Lane2},
981                                            CurrLevel + 1, MaxLevel);
982          // Look for the best score.
983          if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
984            MaxTmpScore = TmpScore;
985            MaxOpIdx2 = OpIdx2;
986            FoundBest = true;
987          }
988        }
989        if (FoundBest) {
990          // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
991          Op2Used.insert(MaxOpIdx2);
992          ShallowScoreAtThisLevel += MaxTmpScore;
993        }
994      }
995      return ShallowScoreAtThisLevel;
996    }
997
998    /// \Returns the look-ahead score, which tells us how much the sub-trees
999    /// rooted at \p LHS and \p RHS match, the more they match the higher the
1000    /// score. This helps break ties in an informed way when we cannot decide on
1001    /// the order of the operands by just considering the immediate
1002    /// predecessors.
1003    int getLookAheadScore(const std::pair<Value *, int> &LHS,
1004                          const std::pair<Value *, int> &RHS) {
1005      InLookAheadValues.clear();
1006      return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1007    }
1008
1009    // Search all operands in Ops[*][Lane] for the one that matches best
1010    // Ops[OpIdx][LastLane] and return its opreand index.
1011    // If no good match can be found, return None.
1012    Optional<unsigned>
1013    getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1014                   ArrayRef<ReorderingMode> ReorderingModes) {
1015      unsigned NumOperands = getNumOperands();
1016
1017      // The operand of the previous lane at OpIdx.
1018      Value *OpLastLane = getData(OpIdx, LastLane).V;
1019
1020      // Our strategy mode for OpIdx.
1021      ReorderingMode RMode = ReorderingModes[OpIdx];
1022
1023      // The linearized opcode of the operand at OpIdx, Lane.
1024      bool OpIdxAPO = getData(OpIdx, Lane).APO;
1025
1026      // The best operand index and its score.
1027      // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1028      // are using the score to differentiate between the two.
1029      struct BestOpData {
1030        Optional<unsigned> Idx = None;
1031        unsigned Score = 0;
1032      } BestOp;
1033
1034      // Iterate through all unused operands and look for the best.
1035      for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1036        // Get the operand at Idx and Lane.
1037        OperandData &OpData = getData(Idx, Lane);
1038        Value *Op = OpData.V;
1039        bool OpAPO = OpData.APO;
1040
1041        // Skip already selected operands.
1042        if (OpData.IsUsed)
1043          continue;
1044
1045        // Skip if we are trying to move the operand to a position with a
1046        // different opcode in the linearized tree form. This would break the
1047        // semantics.
1048        if (OpAPO != OpIdxAPO)
1049          continue;
1050
1051        // Look for an operand that matches the current mode.
1052        switch (RMode) {
1053        case ReorderingMode::Load:
1054        case ReorderingMode::Constant:
1055        case ReorderingMode::Opcode: {
1056          bool LeftToRight = Lane > LastLane;
1057          Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1058          Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1059          unsigned Score =
1060              getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1061          if (Score > BestOp.Score) {
1062            BestOp.Idx = Idx;
1063            BestOp.Score = Score;
1064          }
1065          break;
1066        }
1067        case ReorderingMode::Splat:
1068          if (Op == OpLastLane)
1069            BestOp.Idx = Idx;
1070          break;
1071        case ReorderingMode::Failed:
1072          return None;
1073        }
1074      }
1075
1076      if (BestOp.Idx) {
1077        getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1078        return BestOp.Idx;
1079      }
1080      // If we could not find a good match return None.
1081      return None;
1082    }
1083
1084    /// Helper for reorderOperandVecs. \Returns the lane that we should start
1085    /// reordering from. This is the one which has the least number of operands
1086    /// that can freely move about.
1087    unsigned getBestLaneToStartReordering() const {
1088      unsigned BestLane = 0;
1089      unsigned Min = UINT_MAX;
1090      for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1091           ++Lane) {
1092        unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1093        if (NumFreeOps < Min) {
1094          Min = NumFreeOps;
1095          BestLane = Lane;
1096        }
1097      }
1098      return BestLane;
1099    }
1100
1101    /// \Returns the maximum number of operands that are allowed to be reordered
1102    /// for \p Lane. This is used as a heuristic for selecting the first lane to
1103    /// start operand reordering.
1104    unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1105      unsigned CntTrue = 0;
1106      unsigned NumOperands = getNumOperands();
1107      // Operands with the same APO can be reordered. We therefore need to count
1108      // how many of them we have for each APO, like this: Cnt[APO] = x.
1109      // Since we only have two APOs, namely true and false, we can avoid using
1110      // a map. Instead we can simply count the number of operands that
1111      // correspond to one of them (in this case the 'true' APO), and calculate
1112      // the other by subtracting it from the total number of operands.
1113      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1114        if (getData(OpIdx, Lane).APO)
1115          ++CntTrue;
1116      unsigned CntFalse = NumOperands - CntTrue;
1117      return std::max(CntTrue, CntFalse);
1118    }
1119
1120    /// Go through the instructions in VL and append their operands.
1121    void appendOperandsOfVL(ArrayRef<Value *> VL) {
1122      assert(!VL.empty() && "Bad VL");
1123      assert((empty() || VL.size() == getNumLanes()) &&
1124             "Expected same number of lanes");
1125      assert(isa<Instruction>(VL[0]) && "Expected instruction");
1126      unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1127      OpsVec.resize(NumOperands);
1128      unsigned NumLanes = VL.size();
1129      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1130        OpsVec[OpIdx].resize(NumLanes);
1131        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1132          assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1133          // Our tree has just 3 nodes: the root and two operands.
1134          // It is therefore trivial to get the APO. We only need to check the
1135          // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1136          // RHS operand. The LHS operand of both add and sub is never attached
1137          // to an inversese operation in the linearized form, therefore its APO
1138          // is false. The RHS is true only if VL[Lane] is an inverse operation.
1139
1140          // Since operand reordering is performed on groups of commutative
1141          // operations or alternating sequences (e.g., +, -), we can safely
1142          // tell the inverse operations by checking commutativity.
1143          bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1144          bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1145          OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1146                                 APO, false};
1147        }
1148      }
1149    }
1150
1151    /// \returns the number of operands.
1152    unsigned getNumOperands() const { return OpsVec.size(); }
1153
1154    /// \returns the number of lanes.
1155    unsigned getNumLanes() const { return OpsVec[0].size(); }
1156
1157    /// \returns the operand value at \p OpIdx and \p Lane.
1158    Value *getValue(unsigned OpIdx, unsigned Lane) const {
1159      return getData(OpIdx, Lane).V;
1160    }
1161
1162    /// \returns true if the data structure is empty.
1163    bool empty() const { return OpsVec.empty(); }
1164
1165    /// Clears the data.
1166    void clear() { OpsVec.clear(); }
1167
1168    /// \Returns true if there are enough operands identical to \p Op to fill
1169    /// the whole vector.
1170    /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1171    bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1172      bool OpAPO = getData(OpIdx, Lane).APO;
1173      for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1174        if (Ln == Lane)
1175          continue;
1176        // This is set to true if we found a candidate for broadcast at Lane.
1177        bool FoundCandidate = false;
1178        for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1179          OperandData &Data = getData(OpI, Ln);
1180          if (Data.APO != OpAPO || Data.IsUsed)
1181            continue;
1182          if (Data.V == Op) {
1183            FoundCandidate = true;
1184            Data.IsUsed = true;
1185            break;
1186          }
1187        }
1188        if (!FoundCandidate)
1189          return false;
1190      }
1191      return true;
1192    }
1193
1194  public:
1195    /// Initialize with all the operands of the instruction vector \p RootVL.
1196    VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1197               ScalarEvolution &SE, const BoUpSLP &R)
1198        : DL(DL), SE(SE), R(R) {
1199      // Append all the operands of RootVL.
1200      appendOperandsOfVL(RootVL);
1201    }
1202
1203    /// \Returns a value vector with the operands across all lanes for the
1204    /// opearnd at \p OpIdx.
1205    ValueList getVL(unsigned OpIdx) const {
1206      ValueList OpVL(OpsVec[OpIdx].size());
1207      assert(OpsVec[OpIdx].size() == getNumLanes() &&
1208             "Expected same num of lanes across all operands");
1209      for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1210        OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1211      return OpVL;
1212    }
1213
1214    // Performs operand reordering for 2 or more operands.
1215    // The original operands are in OrigOps[OpIdx][Lane].
1216    // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1217    void reorder() {
1218      unsigned NumOperands = getNumOperands();
1219      unsigned NumLanes = getNumLanes();
1220      // Each operand has its own mode. We are using this mode to help us select
1221      // the instructions for each lane, so that they match best with the ones
1222      // we have selected so far.
1223      SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1224
1225      // This is a greedy single-pass algorithm. We are going over each lane
1226      // once and deciding on the best order right away with no back-tracking.
1227      // However, in order to increase its effectiveness, we start with the lane
1228      // that has operands that can move the least. For example, given the
1229      // following lanes:
1230      //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1231      //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1232      //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1233      //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1234      // we will start at Lane 1, since the operands of the subtraction cannot
1235      // be reordered. Then we will visit the rest of the lanes in a circular
1236      // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1237
1238      // Find the first lane that we will start our search from.
1239      unsigned FirstLane = getBestLaneToStartReordering();
1240
1241      // Initialize the modes.
1242      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1243        Value *OpLane0 = getValue(OpIdx, FirstLane);
1244        // Keep track if we have instructions with all the same opcode on one
1245        // side.
1246        if (isa<LoadInst>(OpLane0))
1247          ReorderingModes[OpIdx] = ReorderingMode::Load;
1248        else if (isa<Instruction>(OpLane0)) {
1249          // Check if OpLane0 should be broadcast.
1250          if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1251            ReorderingModes[OpIdx] = ReorderingMode::Splat;
1252          else
1253            ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1254        }
1255        else if (isa<Constant>(OpLane0))
1256          ReorderingModes[OpIdx] = ReorderingMode::Constant;
1257        else if (isa<Argument>(OpLane0))
1258          // Our best hope is a Splat. It may save some cost in some cases.
1259          ReorderingModes[OpIdx] = ReorderingMode::Splat;
1260        else
1261          // NOTE: This should be unreachable.
1262          ReorderingModes[OpIdx] = ReorderingMode::Failed;
1263      }
1264
1265      // If the initial strategy fails for any of the operand indexes, then we
1266      // perform reordering again in a second pass. This helps avoid assigning
1267      // high priority to the failed strategy, and should improve reordering for
1268      // the non-failed operand indexes.
1269      for (int Pass = 0; Pass != 2; ++Pass) {
1270        // Skip the second pass if the first pass did not fail.
1271        bool StrategyFailed = false;
1272        // Mark all operand data as free to use.
1273        clearUsed();
1274        // We keep the original operand order for the FirstLane, so reorder the
1275        // rest of the lanes. We are visiting the nodes in a circular fashion,
1276        // using FirstLane as the center point and increasing the radius
1277        // distance.
1278        for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1279          // Visit the lane on the right and then the lane on the left.
1280          for (int Direction : {+1, -1}) {
1281            int Lane = FirstLane + Direction * Distance;
1282            if (Lane < 0 || Lane >= (int)NumLanes)
1283              continue;
1284            int LastLane = Lane - Direction;
1285            assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1286                   "Out of bounds");
1287            // Look for a good match for each operand.
1288            for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1289              // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1290              Optional<unsigned> BestIdx =
1291                  getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1292              // By not selecting a value, we allow the operands that follow to
1293              // select a better matching value. We will get a non-null value in
1294              // the next run of getBestOperand().
1295              if (BestIdx) {
1296                // Swap the current operand with the one returned by
1297                // getBestOperand().
1298                swap(OpIdx, BestIdx.getValue(), Lane);
1299              } else {
1300                // We failed to find a best operand, set mode to 'Failed'.
1301                ReorderingModes[OpIdx] = ReorderingMode::Failed;
1302                // Enable the second pass.
1303                StrategyFailed = true;
1304              }
1305            }
1306          }
1307        }
1308        // Skip second pass if the strategy did not fail.
1309        if (!StrategyFailed)
1310          break;
1311      }
1312    }
1313
1314#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1315    LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1316      switch (RMode) {
1317      case ReorderingMode::Load:
1318        return "Load";
1319      case ReorderingMode::Opcode:
1320        return "Opcode";
1321      case ReorderingMode::Constant:
1322        return "Constant";
1323      case ReorderingMode::Splat:
1324        return "Splat";
1325      case ReorderingMode::Failed:
1326        return "Failed";
1327      }
1328      llvm_unreachable("Unimplemented Reordering Type");
1329    }
1330
1331    LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1332                                                   raw_ostream &OS) {
1333      return OS << getModeStr(RMode);
1334    }
1335
1336    /// Debug print.
1337    LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1338      printMode(RMode, dbgs());
1339    }
1340
1341    friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1342      return printMode(RMode, OS);
1343    }
1344
1345    LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1346      const unsigned Indent = 2;
1347      unsigned Cnt = 0;
1348      for (const OperandDataVec &OpDataVec : OpsVec) {
1349        OS << "Operand " << Cnt++ << "\n";
1350        for (const OperandData &OpData : OpDataVec) {
1351          OS.indent(Indent) << "{";
1352          if (Value *V = OpData.V)
1353            OS << *V;
1354          else
1355            OS << "null";
1356          OS << ", APO:" << OpData.APO << "}\n";
1357        }
1358        OS << "\n";
1359      }
1360      return OS;
1361    }
1362
1363    /// Debug print.
1364    LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1365#endif
1366  };
1367
1368  /// Checks if the instruction is marked for deletion.
1369  bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1370
1371  /// Marks values operands for later deletion by replacing them with Undefs.
1372  void eraseInstructions(ArrayRef<Value *> AV);
1373
1374  ~BoUpSLP();
1375
1376private:
1377  /// Checks if all users of \p I are the part of the vectorization tree.
1378  bool areAllUsersVectorized(Instruction *I) const;
1379
1380  /// \returns the cost of the vectorizable entry.
1381  int getEntryCost(TreeEntry *E);
1382
1383  /// This is the recursive part of buildTree.
1384  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1385                     const EdgeInfo &EI);
1386
1387  /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1388  /// be vectorized to use the original vector (or aggregate "bitcast" to a
1389  /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1390  /// returns false, setting \p CurrentOrder to either an empty vector or a
1391  /// non-identity permutation that allows to reuse extract instructions.
1392  bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1393                       SmallVectorImpl<unsigned> &CurrentOrder) const;
1394
1395  /// Vectorize a single entry in the tree.
1396  Value *vectorizeTree(TreeEntry *E);
1397
1398  /// Vectorize a single entry in the tree, starting in \p VL.
1399  Value *vectorizeTree(ArrayRef<Value *> VL);
1400
1401  /// \returns the scalarization cost for this type. Scalarization in this
1402  /// context means the creation of vectors from a group of scalars.
1403  int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const;
1404
1405  /// \returns the scalarization cost for this list of values. Assuming that
1406  /// this subtree gets vectorized, we may need to extract the values from the
1407  /// roots. This method calculates the cost of extracting the values.
1408  int getGatherCost(ArrayRef<Value *> VL) const;
1409
1410  /// Set the Builder insert point to one after the last instruction in
1411  /// the bundle
1412  void setInsertPointAfterBundle(TreeEntry *E);
1413
1414  /// \returns a vector from a collection of scalars in \p VL.
1415  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
1416
1417  /// \returns whether the VectorizableTree is fully vectorizable and will
1418  /// be beneficial even the tree height is tiny.
1419  bool isFullyVectorizableTinyTree() const;
1420
1421  /// Reorder commutative or alt operands to get better probability of
1422  /// generating vectorized code.
1423  static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1424                                             SmallVectorImpl<Value *> &Left,
1425                                             SmallVectorImpl<Value *> &Right,
1426                                             const DataLayout &DL,
1427                                             ScalarEvolution &SE,
1428                                             const BoUpSLP &R);
1429  struct TreeEntry {
1430    using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1431    TreeEntry(VecTreeTy &Container) : Container(Container) {}
1432
1433    /// \returns true if the scalars in VL are equal to this entry.
1434    bool isSame(ArrayRef<Value *> VL) const {
1435      if (VL.size() == Scalars.size())
1436        return std::equal(VL.begin(), VL.end(), Scalars.begin());
1437      return VL.size() == ReuseShuffleIndices.size() &&
1438             std::equal(
1439                 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1440                 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
1441    }
1442
1443    /// A vector of scalars.
1444    ValueList Scalars;
1445
1446    /// The Scalars are vectorized into this value. It is initialized to Null.
1447    Value *VectorizedValue = nullptr;
1448
1449    /// Do we need to gather this sequence ?
1450    enum EntryState { Vectorize, NeedToGather };
1451    EntryState State;
1452
1453    /// Does this sequence require some shuffling?
1454    SmallVector<unsigned, 4> ReuseShuffleIndices;
1455
1456    /// Does this entry require reordering?
1457    ArrayRef<unsigned> ReorderIndices;
1458
1459    /// Points back to the VectorizableTree.
1460    ///
1461    /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
1462    /// to be a pointer and needs to be able to initialize the child iterator.
1463    /// Thus we need a reference back to the container to translate the indices
1464    /// to entries.
1465    VecTreeTy &Container;
1466
1467    /// The TreeEntry index containing the user of this entry.  We can actually
1468    /// have multiple users so the data structure is not truly a tree.
1469    SmallVector<EdgeInfo, 1> UserTreeIndices;
1470
1471    /// The index of this treeEntry in VectorizableTree.
1472    int Idx = -1;
1473
1474  private:
1475    /// The operands of each instruction in each lane Operands[op_index][lane].
1476    /// Note: This helps avoid the replication of the code that performs the
1477    /// reordering of operands during buildTree_rec() and vectorizeTree().
1478    SmallVector<ValueList, 2> Operands;
1479
1480    /// The main/alternate instruction.
1481    Instruction *MainOp = nullptr;
1482    Instruction *AltOp = nullptr;
1483
1484  public:
1485    /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1486    void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1487      if (Operands.size() < OpIdx + 1)
1488        Operands.resize(OpIdx + 1);
1489      assert(Operands[OpIdx].size() == 0 && "Already resized?");
1490      Operands[OpIdx].resize(Scalars.size());
1491      for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1492        Operands[OpIdx][Lane] = OpVL[Lane];
1493    }
1494
1495    /// Set the operands of this bundle in their original order.
1496    void setOperandsInOrder() {
1497      assert(Operands.empty() && "Already initialized?");
1498      auto *I0 = cast<Instruction>(Scalars[0]);
1499      Operands.resize(I0->getNumOperands());
1500      unsigned NumLanes = Scalars.size();
1501      for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1502           OpIdx != NumOperands; ++OpIdx) {
1503        Operands[OpIdx].resize(NumLanes);
1504        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1505          auto *I = cast<Instruction>(Scalars[Lane]);
1506          assert(I->getNumOperands() == NumOperands &&
1507                 "Expected same number of operands");
1508          Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1509        }
1510      }
1511    }
1512
1513    /// \returns the \p OpIdx operand of this TreeEntry.
1514    ValueList &getOperand(unsigned OpIdx) {
1515      assert(OpIdx < Operands.size() && "Off bounds");
1516      return Operands[OpIdx];
1517    }
1518
1519    /// \returns the number of operands.
1520    unsigned getNumOperands() const { return Operands.size(); }
1521
1522    /// \return the single \p OpIdx operand.
1523    Value *getSingleOperand(unsigned OpIdx) const {
1524      assert(OpIdx < Operands.size() && "Off bounds");
1525      assert(!Operands[OpIdx].empty() && "No operand available");
1526      return Operands[OpIdx][0];
1527    }
1528
1529    /// Some of the instructions in the list have alternate opcodes.
1530    bool isAltShuffle() const {
1531      return getOpcode() != getAltOpcode();
1532    }
1533
1534    bool isOpcodeOrAlt(Instruction *I) const {
1535      unsigned CheckedOpcode = I->getOpcode();
1536      return (getOpcode() == CheckedOpcode ||
1537              getAltOpcode() == CheckedOpcode);
1538    }
1539
1540    /// Chooses the correct key for scheduling data. If \p Op has the same (or
1541    /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1542    /// \p OpValue.
1543    Value *isOneOf(Value *Op) const {
1544      auto *I = dyn_cast<Instruction>(Op);
1545      if (I && isOpcodeOrAlt(I))
1546        return Op;
1547      return MainOp;
1548    }
1549
1550    void setOperations(const InstructionsState &S) {
1551      MainOp = S.MainOp;
1552      AltOp = S.AltOp;
1553    }
1554
1555    Instruction *getMainOp() const {
1556      return MainOp;
1557    }
1558
1559    Instruction *getAltOp() const {
1560      return AltOp;
1561    }
1562
1563    /// The main/alternate opcodes for the list of instructions.
1564    unsigned getOpcode() const {
1565      return MainOp ? MainOp->getOpcode() : 0;
1566    }
1567
1568    unsigned getAltOpcode() const {
1569      return AltOp ? AltOp->getOpcode() : 0;
1570    }
1571
1572    /// Update operations state of this entry if reorder occurred.
1573    bool updateStateIfReorder() {
1574      if (ReorderIndices.empty())
1575        return false;
1576      InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1577      setOperations(S);
1578      return true;
1579    }
1580
1581#ifndef NDEBUG
1582    /// Debug printer.
1583    LLVM_DUMP_METHOD void dump() const {
1584      dbgs() << Idx << ".\n";
1585      for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1586        dbgs() << "Operand " << OpI << ":\n";
1587        for (const Value *V : Operands[OpI])
1588          dbgs().indent(2) << *V << "\n";
1589      }
1590      dbgs() << "Scalars: \n";
1591      for (Value *V : Scalars)
1592        dbgs().indent(2) << *V << "\n";
1593      dbgs() << "State: ";
1594      switch (State) {
1595      case Vectorize:
1596        dbgs() << "Vectorize\n";
1597        break;
1598      case NeedToGather:
1599        dbgs() << "NeedToGather\n";
1600        break;
1601      }
1602      dbgs() << "MainOp: ";
1603      if (MainOp)
1604        dbgs() << *MainOp << "\n";
1605      else
1606        dbgs() << "NULL\n";
1607      dbgs() << "AltOp: ";
1608      if (AltOp)
1609        dbgs() << *AltOp << "\n";
1610      else
1611        dbgs() << "NULL\n";
1612      dbgs() << "VectorizedValue: ";
1613      if (VectorizedValue)
1614        dbgs() << *VectorizedValue << "\n";
1615      else
1616        dbgs() << "NULL\n";
1617      dbgs() << "ReuseShuffleIndices: ";
1618      if (ReuseShuffleIndices.empty())
1619        dbgs() << "Emtpy";
1620      else
1621        for (unsigned ReuseIdx : ReuseShuffleIndices)
1622          dbgs() << ReuseIdx << ", ";
1623      dbgs() << "\n";
1624      dbgs() << "ReorderIndices: ";
1625      for (unsigned ReorderIdx : ReorderIndices)
1626        dbgs() << ReorderIdx << ", ";
1627      dbgs() << "\n";
1628      dbgs() << "UserTreeIndices: ";
1629      for (const auto &EInfo : UserTreeIndices)
1630        dbgs() << EInfo << ", ";
1631      dbgs() << "\n";
1632    }
1633#endif
1634  };
1635
1636  /// Create a new VectorizableTree entry.
1637  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1638                          const InstructionsState &S,
1639                          const EdgeInfo &UserTreeIdx,
1640                          ArrayRef<unsigned> ReuseShuffleIndices = None,
1641                          ArrayRef<unsigned> ReorderIndices = None) {
1642    bool Vectorized = (bool)Bundle;
1643    VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1644    TreeEntry *Last = VectorizableTree.back().get();
1645    Last->Idx = VectorizableTree.size() - 1;
1646    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1647    Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1648    Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1649                                     ReuseShuffleIndices.end());
1650    Last->ReorderIndices = ReorderIndices;
1651    Last->setOperations(S);
1652    if (Vectorized) {
1653      for (int i = 0, e = VL.size(); i != e; ++i) {
1654        assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
1655        ScalarToTreeEntry[VL[i]] = Last;
1656      }
1657      // Update the scheduler bundle to point to this TreeEntry.
1658      unsigned Lane = 0;
1659      for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1660           BundleMember = BundleMember->NextInBundle) {
1661        BundleMember->TE = Last;
1662        BundleMember->Lane = Lane;
1663        ++Lane;
1664      }
1665      assert((!Bundle.getValue() || Lane == VL.size()) &&
1666             "Bundle and VL out of sync");
1667    } else {
1668      MustGather.insert(VL.begin(), VL.end());
1669    }
1670
1671    if (UserTreeIdx.UserTE)
1672      Last->UserTreeIndices.push_back(UserTreeIdx);
1673
1674    return Last;
1675  }
1676
1677  /// -- Vectorization State --
1678  /// Holds all of the tree entries.
1679  TreeEntry::VecTreeTy VectorizableTree;
1680
1681#ifndef NDEBUG
1682  /// Debug printer.
1683  LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1684    for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1685      VectorizableTree[Id]->dump();
1686      dbgs() << "\n";
1687    }
1688  }
1689#endif
1690
1691  TreeEntry *getTreeEntry(Value *V) {
1692    auto I = ScalarToTreeEntry.find(V);
1693    if (I != ScalarToTreeEntry.end())
1694      return I->second;
1695    return nullptr;
1696  }
1697
1698  const TreeEntry *getTreeEntry(Value *V) const {
1699    auto I = ScalarToTreeEntry.find(V);
1700    if (I != ScalarToTreeEntry.end())
1701      return I->second;
1702    return nullptr;
1703  }
1704
1705  /// Maps a specific scalar to its tree entry.
1706  SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1707
1708  /// A list of scalars that we found that we need to keep as scalars.
1709  ValueSet MustGather;
1710
1711  /// This POD struct describes one external user in the vectorized tree.
1712  struct ExternalUser {
1713    ExternalUser(Value *S, llvm::User *U, int L)
1714        : Scalar(S), User(U), Lane(L) {}
1715
1716    // Which scalar in our function.
1717    Value *Scalar;
1718
1719    // Which user that uses the scalar.
1720    llvm::User *User;
1721
1722    // Which lane does the scalar belong to.
1723    int Lane;
1724  };
1725  using UserList = SmallVector<ExternalUser, 16>;
1726
1727  /// Checks if two instructions may access the same memory.
1728  ///
1729  /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1730  /// is invariant in the calling loop.
1731  bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1732                 Instruction *Inst2) {
1733    // First check if the result is already in the cache.
1734    AliasCacheKey key = std::make_pair(Inst1, Inst2);
1735    Optional<bool> &result = AliasCache[key];
1736    if (result.hasValue()) {
1737      return result.getValue();
1738    }
1739    MemoryLocation Loc2 = getLocation(Inst2, AA);
1740    bool aliased = true;
1741    if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1742      // Do the alias check.
1743      aliased = AA->alias(Loc1, Loc2);
1744    }
1745    // Store the result in the cache.
1746    result = aliased;
1747    return aliased;
1748  }
1749
1750  using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1751
1752  /// Cache for alias results.
1753  /// TODO: consider moving this to the AliasAnalysis itself.
1754  DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1755
1756  /// Removes an instruction from its block and eventually deletes it.
1757  /// It's like Instruction::eraseFromParent() except that the actual deletion
1758  /// is delayed until BoUpSLP is destructed.
1759  /// This is required to ensure that there are no incorrect collisions in the
1760  /// AliasCache, which can happen if a new instruction is allocated at the
1761  /// same address as a previously deleted instruction.
1762  void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1763    auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1764    It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1765  }
1766
1767  /// Temporary store for deleted instructions. Instructions will be deleted
1768  /// eventually when the BoUpSLP is destructed.
1769  DenseMap<Instruction *, bool> DeletedInstructions;
1770
1771  /// A list of values that need to extracted out of the tree.
1772  /// This list holds pairs of (Internal Scalar : External User). External User
1773  /// can be nullptr, it means that this Internal Scalar will be used later,
1774  /// after vectorization.
1775  UserList ExternalUses;
1776
1777  /// Values used only by @llvm.assume calls.
1778  SmallPtrSet<const Value *, 32> EphValues;
1779
1780  /// Holds all of the instructions that we gathered.
1781  SetVector<Instruction *> GatherSeq;
1782
1783  /// A list of blocks that we are going to CSE.
1784  SetVector<BasicBlock *> CSEBlocks;
1785
1786  /// Contains all scheduling relevant data for an instruction.
1787  /// A ScheduleData either represents a single instruction or a member of an
1788  /// instruction bundle (= a group of instructions which is combined into a
1789  /// vector instruction).
1790  struct ScheduleData {
1791    // The initial value for the dependency counters. It means that the
1792    // dependencies are not calculated yet.
1793    enum { InvalidDeps = -1 };
1794
1795    ScheduleData() = default;
1796
1797    void init(int BlockSchedulingRegionID, Value *OpVal) {
1798      FirstInBundle = this;
1799      NextInBundle = nullptr;
1800      NextLoadStore = nullptr;
1801      IsScheduled = false;
1802      SchedulingRegionID = BlockSchedulingRegionID;
1803      UnscheduledDepsInBundle = UnscheduledDeps;
1804      clearDependencies();
1805      OpValue = OpVal;
1806      TE = nullptr;
1807      Lane = -1;
1808    }
1809
1810    /// Returns true if the dependency information has been calculated.
1811    bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1812
1813    /// Returns true for single instructions and for bundle representatives
1814    /// (= the head of a bundle).
1815    bool isSchedulingEntity() const { return FirstInBundle == this; }
1816
1817    /// Returns true if it represents an instruction bundle and not only a
1818    /// single instruction.
1819    bool isPartOfBundle() const {
1820      return NextInBundle != nullptr || FirstInBundle != this;
1821    }
1822
1823    /// Returns true if it is ready for scheduling, i.e. it has no more
1824    /// unscheduled depending instructions/bundles.
1825    bool isReady() const {
1826      assert(isSchedulingEntity() &&
1827             "can't consider non-scheduling entity for ready list");
1828      return UnscheduledDepsInBundle == 0 && !IsScheduled;
1829    }
1830
1831    /// Modifies the number of unscheduled dependencies, also updating it for
1832    /// the whole bundle.
1833    int incrementUnscheduledDeps(int Incr) {
1834      UnscheduledDeps += Incr;
1835      return FirstInBundle->UnscheduledDepsInBundle += Incr;
1836    }
1837
1838    /// Sets the number of unscheduled dependencies to the number of
1839    /// dependencies.
1840    void resetUnscheduledDeps() {
1841      incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
1842    }
1843
1844    /// Clears all dependency information.
1845    void clearDependencies() {
1846      Dependencies = InvalidDeps;
1847      resetUnscheduledDeps();
1848      MemoryDependencies.clear();
1849    }
1850
1851    void dump(raw_ostream &os) const {
1852      if (!isSchedulingEntity()) {
1853        os << "/ " << *Inst;
1854      } else if (NextInBundle) {
1855        os << '[' << *Inst;
1856        ScheduleData *SD = NextInBundle;
1857        while (SD) {
1858          os << ';' << *SD->Inst;
1859          SD = SD->NextInBundle;
1860        }
1861        os << ']';
1862      } else {
1863        os << *Inst;
1864      }
1865    }
1866
1867    Instruction *Inst = nullptr;
1868
1869    /// Points to the head in an instruction bundle (and always to this for
1870    /// single instructions).
1871    ScheduleData *FirstInBundle = nullptr;
1872
1873    /// Single linked list of all instructions in a bundle. Null if it is a
1874    /// single instruction.
1875    ScheduleData *NextInBundle = nullptr;
1876
1877    /// Single linked list of all memory instructions (e.g. load, store, call)
1878    /// in the block - until the end of the scheduling region.
1879    ScheduleData *NextLoadStore = nullptr;
1880
1881    /// The dependent memory instructions.
1882    /// This list is derived on demand in calculateDependencies().
1883    SmallVector<ScheduleData *, 4> MemoryDependencies;
1884
1885    /// This ScheduleData is in the current scheduling region if this matches
1886    /// the current SchedulingRegionID of BlockScheduling.
1887    int SchedulingRegionID = 0;
1888
1889    /// Used for getting a "good" final ordering of instructions.
1890    int SchedulingPriority = 0;
1891
1892    /// The number of dependencies. Constitutes of the number of users of the
1893    /// instruction plus the number of dependent memory instructions (if any).
1894    /// This value is calculated on demand.
1895    /// If InvalidDeps, the number of dependencies is not calculated yet.
1896    int Dependencies = InvalidDeps;
1897
1898    /// The number of dependencies minus the number of dependencies of scheduled
1899    /// instructions. As soon as this is zero, the instruction/bundle gets ready
1900    /// for scheduling.
1901    /// Note that this is negative as long as Dependencies is not calculated.
1902    int UnscheduledDeps = InvalidDeps;
1903
1904    /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
1905    /// single instructions.
1906    int UnscheduledDepsInBundle = InvalidDeps;
1907
1908    /// True if this instruction is scheduled (or considered as scheduled in the
1909    /// dry-run).
1910    bool IsScheduled = false;
1911
1912    /// Opcode of the current instruction in the schedule data.
1913    Value *OpValue = nullptr;
1914
1915    /// The TreeEntry that this instruction corresponds to.
1916    TreeEntry *TE = nullptr;
1917
1918    /// The lane of this node in the TreeEntry.
1919    int Lane = -1;
1920  };
1921
1922#ifndef NDEBUG
1923  friend inline raw_ostream &operator<<(raw_ostream &os,
1924                                        const BoUpSLP::ScheduleData &SD) {
1925    SD.dump(os);
1926    return os;
1927  }
1928#endif
1929
1930  friend struct GraphTraits<BoUpSLP *>;
1931  friend struct DOTGraphTraits<BoUpSLP *>;
1932
1933  /// Contains all scheduling data for a basic block.
1934  struct BlockScheduling {
1935    BlockScheduling(BasicBlock *BB)
1936        : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
1937
1938    void clear() {
1939      ReadyInsts.clear();
1940      ScheduleStart = nullptr;
1941      ScheduleEnd = nullptr;
1942      FirstLoadStoreInRegion = nullptr;
1943      LastLoadStoreInRegion = nullptr;
1944
1945      // Reduce the maximum schedule region size by the size of the
1946      // previous scheduling run.
1947      ScheduleRegionSizeLimit -= ScheduleRegionSize;
1948      if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
1949        ScheduleRegionSizeLimit = MinScheduleRegionSize;
1950      ScheduleRegionSize = 0;
1951
1952      // Make a new scheduling region, i.e. all existing ScheduleData is not
1953      // in the new region yet.
1954      ++SchedulingRegionID;
1955    }
1956
1957    ScheduleData *getScheduleData(Value *V) {
1958      ScheduleData *SD = ScheduleDataMap[V];
1959      if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1960        return SD;
1961      return nullptr;
1962    }
1963
1964    ScheduleData *getScheduleData(Value *V, Value *Key) {
1965      if (V == Key)
1966        return getScheduleData(V);
1967      auto I = ExtraScheduleDataMap.find(V);
1968      if (I != ExtraScheduleDataMap.end()) {
1969        ScheduleData *SD = I->second[Key];
1970        if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1971          return SD;
1972      }
1973      return nullptr;
1974    }
1975
1976    bool isInSchedulingRegion(ScheduleData *SD) const {
1977      return SD->SchedulingRegionID == SchedulingRegionID;
1978    }
1979
1980    /// Marks an instruction as scheduled and puts all dependent ready
1981    /// instructions into the ready-list.
1982    template <typename ReadyListType>
1983    void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1984      SD->IsScheduled = true;
1985      LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
1986
1987      ScheduleData *BundleMember = SD;
1988      while (BundleMember) {
1989        if (BundleMember->Inst != BundleMember->OpValue) {
1990          BundleMember = BundleMember->NextInBundle;
1991          continue;
1992        }
1993        // Handle the def-use chain dependencies.
1994
1995        // Decrement the unscheduled counter and insert to ready list if ready.
1996        auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
1997          doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
1998            if (OpDef && OpDef->hasValidDependencies() &&
1999                OpDef->incrementUnscheduledDeps(-1) == 0) {
2000              // There are no more unscheduled dependencies after
2001              // decrementing, so we can put the dependent instruction
2002              // into the ready list.
2003              ScheduleData *DepBundle = OpDef->FirstInBundle;
2004              assert(!DepBundle->IsScheduled &&
2005                     "already scheduled bundle gets ready");
2006              ReadyList.insert(DepBundle);
2007              LLVM_DEBUG(dbgs()
2008                         << "SLP:    gets ready (def): " << *DepBundle << "\n");
2009            }
2010          });
2011        };
2012
2013        // If BundleMember is a vector bundle, its operands may have been
2014        // reordered duiring buildTree(). We therefore need to get its operands
2015        // through the TreeEntry.
2016        if (TreeEntry *TE = BundleMember->TE) {
2017          int Lane = BundleMember->Lane;
2018          assert(Lane >= 0 && "Lane not set");
2019          for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2020               OpIdx != NumOperands; ++OpIdx)
2021            if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2022              DecrUnsched(I);
2023        } else {
2024          // If BundleMember is a stand-alone instruction, no operand reordering
2025          // has taken place, so we directly access its operands.
2026          for (Use &U : BundleMember->Inst->operands())
2027            if (auto *I = dyn_cast<Instruction>(U.get()))
2028              DecrUnsched(I);
2029        }
2030        // Handle the memory dependencies.
2031        for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2032          if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2033            // There are no more unscheduled dependencies after decrementing,
2034            // so we can put the dependent instruction into the ready list.
2035            ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2036            assert(!DepBundle->IsScheduled &&
2037                   "already scheduled bundle gets ready");
2038            ReadyList.insert(DepBundle);
2039            LLVM_DEBUG(dbgs()
2040                       << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2041          }
2042        }
2043        BundleMember = BundleMember->NextInBundle;
2044      }
2045    }
2046
2047    void doForAllOpcodes(Value *V,
2048                         function_ref<void(ScheduleData *SD)> Action) {
2049      if (ScheduleData *SD = getScheduleData(V))
2050        Action(SD);
2051      auto I = ExtraScheduleDataMap.find(V);
2052      if (I != ExtraScheduleDataMap.end())
2053        for (auto &P : I->second)
2054          if (P.second->SchedulingRegionID == SchedulingRegionID)
2055            Action(P.second);
2056    }
2057
2058    /// Put all instructions into the ReadyList which are ready for scheduling.
2059    template <typename ReadyListType>
2060    void initialFillReadyList(ReadyListType &ReadyList) {
2061      for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2062        doForAllOpcodes(I, [&](ScheduleData *SD) {
2063          if (SD->isSchedulingEntity() && SD->isReady()) {
2064            ReadyList.insert(SD);
2065            LLVM_DEBUG(dbgs()
2066                       << "SLP:    initially in ready list: " << *I << "\n");
2067          }
2068        });
2069      }
2070    }
2071
2072    /// Checks if a bundle of instructions can be scheduled, i.e. has no
2073    /// cyclic dependencies. This is only a dry-run, no instructions are
2074    /// actually moved at this stage.
2075    /// \returns the scheduling bundle. The returned Optional value is non-None
2076    /// if \p VL is allowed to be scheduled.
2077    Optional<ScheduleData *>
2078    tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2079                      const InstructionsState &S);
2080
2081    /// Un-bundles a group of instructions.
2082    void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2083
2084    /// Allocates schedule data chunk.
2085    ScheduleData *allocateScheduleDataChunks();
2086
2087    /// Extends the scheduling region so that V is inside the region.
2088    /// \returns true if the region size is within the limit.
2089    bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2090
2091    /// Initialize the ScheduleData structures for new instructions in the
2092    /// scheduling region.
2093    void initScheduleData(Instruction *FromI, Instruction *ToI,
2094                          ScheduleData *PrevLoadStore,
2095                          ScheduleData *NextLoadStore);
2096
2097    /// Updates the dependency information of a bundle and of all instructions/
2098    /// bundles which depend on the original bundle.
2099    void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2100                               BoUpSLP *SLP);
2101
2102    /// Sets all instruction in the scheduling region to un-scheduled.
2103    void resetSchedule();
2104
2105    BasicBlock *BB;
2106
2107    /// Simple memory allocation for ScheduleData.
2108    std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2109
2110    /// The size of a ScheduleData array in ScheduleDataChunks.
2111    int ChunkSize;
2112
2113    /// The allocator position in the current chunk, which is the last entry
2114    /// of ScheduleDataChunks.
2115    int ChunkPos;
2116
2117    /// Attaches ScheduleData to Instruction.
2118    /// Note that the mapping survives during all vectorization iterations, i.e.
2119    /// ScheduleData structures are recycled.
2120    DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2121
2122    /// Attaches ScheduleData to Instruction with the leading key.
2123    DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2124        ExtraScheduleDataMap;
2125
2126    struct ReadyList : SmallVector<ScheduleData *, 8> {
2127      void insert(ScheduleData *SD) { push_back(SD); }
2128    };
2129
2130    /// The ready-list for scheduling (only used for the dry-run).
2131    ReadyList ReadyInsts;
2132
2133    /// The first instruction of the scheduling region.
2134    Instruction *ScheduleStart = nullptr;
2135
2136    /// The first instruction _after_ the scheduling region.
2137    Instruction *ScheduleEnd = nullptr;
2138
2139    /// The first memory accessing instruction in the scheduling region
2140    /// (can be null).
2141    ScheduleData *FirstLoadStoreInRegion = nullptr;
2142
2143    /// The last memory accessing instruction in the scheduling region
2144    /// (can be null).
2145    ScheduleData *LastLoadStoreInRegion = nullptr;
2146
2147    /// The current size of the scheduling region.
2148    int ScheduleRegionSize = 0;
2149
2150    /// The maximum size allowed for the scheduling region.
2151    int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2152
2153    /// The ID of the scheduling region. For a new vectorization iteration this
2154    /// is incremented which "removes" all ScheduleData from the region.
2155    // Make sure that the initial SchedulingRegionID is greater than the
2156    // initial SchedulingRegionID in ScheduleData (which is 0).
2157    int SchedulingRegionID = 1;
2158  };
2159
2160  /// Attaches the BlockScheduling structures to basic blocks.
2161  MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2162
2163  /// Performs the "real" scheduling. Done before vectorization is actually
2164  /// performed in a basic block.
2165  void scheduleBlock(BlockScheduling *BS);
2166
2167  /// List of users to ignore during scheduling and that don't need extracting.
2168  ArrayRef<Value *> UserIgnoreList;
2169
2170  using OrdersType = SmallVector<unsigned, 4>;
2171  /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2172  /// sorted SmallVectors of unsigned.
2173  struct OrdersTypeDenseMapInfo {
2174    static OrdersType getEmptyKey() {
2175      OrdersType V;
2176      V.push_back(~1U);
2177      return V;
2178    }
2179
2180    static OrdersType getTombstoneKey() {
2181      OrdersType V;
2182      V.push_back(~2U);
2183      return V;
2184    }
2185
2186    static unsigned getHashValue(const OrdersType &V) {
2187      return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2188    }
2189
2190    static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2191      return LHS == RHS;
2192    }
2193  };
2194
2195  /// Contains orders of operations along with the number of bundles that have
2196  /// operations in this order. It stores only those orders that require
2197  /// reordering, if reordering is not required it is counted using \a
2198  /// NumOpsWantToKeepOriginalOrder.
2199  DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2200  /// Number of bundles that do not require reordering.
2201  unsigned NumOpsWantToKeepOriginalOrder = 0;
2202
2203  // Analysis and block reference.
2204  Function *F;
2205  ScalarEvolution *SE;
2206  TargetTransformInfo *TTI;
2207  TargetLibraryInfo *TLI;
2208  AliasAnalysis *AA;
2209  LoopInfo *LI;
2210  DominatorTree *DT;
2211  AssumptionCache *AC;
2212  DemandedBits *DB;
2213  const DataLayout *DL;
2214  OptimizationRemarkEmitter *ORE;
2215
2216  unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2217  unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2218
2219  /// Instruction builder to construct the vectorized tree.
2220  IRBuilder<> Builder;
2221
2222  /// A map of scalar integer values to the smallest bit width with which they
2223  /// can legally be represented. The values map to (width, signed) pairs,
2224  /// where "width" indicates the minimum bit width and "signed" is True if the
2225  /// value must be signed-extended, rather than zero-extended, back to its
2226  /// original width.
2227  MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2228};
2229
2230} // end namespace slpvectorizer
2231
2232template <> struct GraphTraits<BoUpSLP *> {
2233  using TreeEntry = BoUpSLP::TreeEntry;
2234
2235  /// NodeRef has to be a pointer per the GraphWriter.
2236  using NodeRef = TreeEntry *;
2237
2238  using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2239
2240  /// Add the VectorizableTree to the index iterator to be able to return
2241  /// TreeEntry pointers.
2242  struct ChildIteratorType
2243      : public iterator_adaptor_base<
2244            ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2245    ContainerTy &VectorizableTree;
2246
2247    ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2248                      ContainerTy &VT)
2249        : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2250
2251    NodeRef operator*() { return I->UserTE; }
2252  };
2253
2254  static NodeRef getEntryNode(BoUpSLP &R) {
2255    return R.VectorizableTree[0].get();
2256  }
2257
2258  static ChildIteratorType child_begin(NodeRef N) {
2259    return {N->UserTreeIndices.begin(), N->Container};
2260  }
2261
2262  static ChildIteratorType child_end(NodeRef N) {
2263    return {N->UserTreeIndices.end(), N->Container};
2264  }
2265
2266  /// For the node iterator we just need to turn the TreeEntry iterator into a
2267  /// TreeEntry* iterator so that it dereferences to NodeRef.
2268  class nodes_iterator {
2269    using ItTy = ContainerTy::iterator;
2270    ItTy It;
2271
2272  public:
2273    nodes_iterator(const ItTy &It2) : It(It2) {}
2274    NodeRef operator*() { return It->get(); }
2275    nodes_iterator operator++() {
2276      ++It;
2277      return *this;
2278    }
2279    bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2280  };
2281
2282  static nodes_iterator nodes_begin(BoUpSLP *R) {
2283    return nodes_iterator(R->VectorizableTree.begin());
2284  }
2285
2286  static nodes_iterator nodes_end(BoUpSLP *R) {
2287    return nodes_iterator(R->VectorizableTree.end());
2288  }
2289
2290  static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2291};
2292
2293template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2294  using TreeEntry = BoUpSLP::TreeEntry;
2295
2296  DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2297
2298  std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2299    std::string Str;
2300    raw_string_ostream OS(Str);
2301    if (isSplat(Entry->Scalars)) {
2302      OS << "<splat> " << *Entry->Scalars[0];
2303      return Str;
2304    }
2305    for (auto V : Entry->Scalars) {
2306      OS << *V;
2307      if (std::any_of(
2308              R->ExternalUses.begin(), R->ExternalUses.end(),
2309              [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
2310        OS << " <extract>";
2311      OS << "\n";
2312    }
2313    return Str;
2314  }
2315
2316  static std::string getNodeAttributes(const TreeEntry *Entry,
2317                                       const BoUpSLP *) {
2318    if (Entry->State == TreeEntry::NeedToGather)
2319      return "color=red";
2320    return "";
2321  }
2322};
2323
2324} // end namespace llvm
2325
2326BoUpSLP::~BoUpSLP() {
2327  for (const auto &Pair : DeletedInstructions) {
2328    // Replace operands of ignored instructions with Undefs in case if they were
2329    // marked for deletion.
2330    if (Pair.getSecond()) {
2331      Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2332      Pair.getFirst()->replaceAllUsesWith(Undef);
2333    }
2334    Pair.getFirst()->dropAllReferences();
2335  }
2336  for (const auto &Pair : DeletedInstructions) {
2337    assert(Pair.getFirst()->use_empty() &&
2338           "trying to erase instruction with users.");
2339    Pair.getFirst()->eraseFromParent();
2340  }
2341}
2342
2343void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2344  for (auto *V : AV) {
2345    if (auto *I = dyn_cast<Instruction>(V))
2346      eraseInstruction(I, /*ReplaceWithUndef=*/true);
2347  };
2348}
2349
2350void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2351                        ArrayRef<Value *> UserIgnoreLst) {
2352  ExtraValueToDebugLocsMap ExternallyUsedValues;
2353  buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2354}
2355
2356void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2357                        ExtraValueToDebugLocsMap &ExternallyUsedValues,
2358                        ArrayRef<Value *> UserIgnoreLst) {
2359  deleteTree();
2360  UserIgnoreList = UserIgnoreLst;
2361  if (!allSameType(Roots))
2362    return;
2363  buildTree_rec(Roots, 0, EdgeInfo());
2364
2365  // Collect the values that we need to extract from the tree.
2366  for (auto &TEPtr : VectorizableTree) {
2367    TreeEntry *Entry = TEPtr.get();
2368
2369    // No need to handle users of gathered values.
2370    if (Entry->State == TreeEntry::NeedToGather)
2371      continue;
2372
2373    // For each lane:
2374    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2375      Value *Scalar = Entry->Scalars[Lane];
2376      int FoundLane = Lane;
2377      if (!Entry->ReuseShuffleIndices.empty()) {
2378        FoundLane =
2379            std::distance(Entry->ReuseShuffleIndices.begin(),
2380                          llvm::find(Entry->ReuseShuffleIndices, FoundLane));
2381      }
2382
2383      // Check if the scalar is externally used as an extra arg.
2384      auto ExtI = ExternallyUsedValues.find(Scalar);
2385      if (ExtI != ExternallyUsedValues.end()) {
2386        LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2387                          << Lane << " from " << *Scalar << ".\n");
2388        ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2389      }
2390      for (User *U : Scalar->users()) {
2391        LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2392
2393        Instruction *UserInst = dyn_cast<Instruction>(U);
2394        if (!UserInst)
2395          continue;
2396
2397        // Skip in-tree scalars that become vectors
2398        if (TreeEntry *UseEntry = getTreeEntry(U)) {
2399          Value *UseScalar = UseEntry->Scalars[0];
2400          // Some in-tree scalars will remain as scalar in vectorized
2401          // instructions. If that is the case, the one in Lane 0 will
2402          // be used.
2403          if (UseScalar != U ||
2404              !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2405            LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2406                              << ".\n");
2407            assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2408            continue;
2409          }
2410        }
2411
2412        // Ignore users in the user ignore list.
2413        if (is_contained(UserIgnoreList, UserInst))
2414          continue;
2415
2416        LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2417                          << Lane << " from " << *Scalar << ".\n");
2418        ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2419      }
2420    }
2421  }
2422}
2423
2424void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2425                            const EdgeInfo &UserTreeIdx) {
2426  assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2427
2428  InstructionsState S = getSameOpcode(VL);
2429  if (Depth == RecursionMaxDepth) {
2430    LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2431    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2432    return;
2433  }
2434
2435  // Don't handle vectors.
2436  if (S.OpValue->getType()->isVectorTy()) {
2437    LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2438    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2439    return;
2440  }
2441
2442  if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2443    if (SI->getValueOperand()->getType()->isVectorTy()) {
2444      LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2445      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2446      return;
2447    }
2448
2449  // If all of the operands are identical or constant we have a simple solution.
2450  if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2451    LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2452    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2453    return;
2454  }
2455
2456  // We now know that this is a vector of instructions of the same type from
2457  // the same block.
2458
2459  // Don't vectorize ephemeral values.
2460  for (Value *V : VL) {
2461    if (EphValues.count(V)) {
2462      LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2463                        << ") is ephemeral.\n");
2464      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2465      return;
2466    }
2467  }
2468
2469  // Check if this is a duplicate of another entry.
2470  if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2471    LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2472    if (!E->isSame(VL)) {
2473      LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2474      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2475      return;
2476    }
2477    // Record the reuse of the tree node.  FIXME, currently this is only used to
2478    // properly draw the graph rather than for the actual vectorization.
2479    E->UserTreeIndices.push_back(UserTreeIdx);
2480    LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2481                      << ".\n");
2482    return;
2483  }
2484
2485  // Check that none of the instructions in the bundle are already in the tree.
2486  for (Value *V : VL) {
2487    auto *I = dyn_cast<Instruction>(V);
2488    if (!I)
2489      continue;
2490    if (getTreeEntry(I)) {
2491      LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2492                        << ") is already in tree.\n");
2493      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2494      return;
2495    }
2496  }
2497
2498  // If any of the scalars is marked as a value that needs to stay scalar, then
2499  // we need to gather the scalars.
2500  // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2501  for (Value *V : VL) {
2502    if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2503      LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2504      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2505      return;
2506    }
2507  }
2508
2509  // Check that all of the users of the scalars that we want to vectorize are
2510  // schedulable.
2511  auto *VL0 = cast<Instruction>(S.OpValue);
2512  BasicBlock *BB = VL0->getParent();
2513
2514  if (!DT->isReachableFromEntry(BB)) {
2515    // Don't go into unreachable blocks. They may contain instructions with
2516    // dependency cycles which confuse the final scheduling.
2517    LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2518    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2519    return;
2520  }
2521
2522  // Check that every instruction appears once in this bundle.
2523  SmallVector<unsigned, 4> ReuseShuffleIndicies;
2524  SmallVector<Value *, 4> UniqueValues;
2525  DenseMap<Value *, unsigned> UniquePositions;
2526  for (Value *V : VL) {
2527    auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2528    ReuseShuffleIndicies.emplace_back(Res.first->second);
2529    if (Res.second)
2530      UniqueValues.emplace_back(V);
2531  }
2532  size_t NumUniqueScalarValues = UniqueValues.size();
2533  if (NumUniqueScalarValues == VL.size()) {
2534    ReuseShuffleIndicies.clear();
2535  } else {
2536    LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2537    if (NumUniqueScalarValues <= 1 ||
2538        !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2539      LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2540      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2541      return;
2542    }
2543    VL = UniqueValues;
2544  }
2545
2546  auto &BSRef = BlocksSchedules[BB];
2547  if (!BSRef)
2548    BSRef = std::make_unique<BlockScheduling>(BB);
2549
2550  BlockScheduling &BS = *BSRef.get();
2551
2552  Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2553  if (!Bundle) {
2554    LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2555    assert((!BS.getScheduleData(VL0) ||
2556            !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2557           "tryScheduleBundle should cancelScheduling on failure");
2558    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2559                 ReuseShuffleIndicies);
2560    return;
2561  }
2562  LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2563
2564  unsigned ShuffleOrOp = S.isAltShuffle() ?
2565                (unsigned) Instruction::ShuffleVector : S.getOpcode();
2566  switch (ShuffleOrOp) {
2567    case Instruction::PHI: {
2568      auto *PH = cast<PHINode>(VL0);
2569
2570      // Check for terminator values (e.g. invoke).
2571      for (unsigned j = 0; j < VL.size(); ++j)
2572        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2573          Instruction *Term = dyn_cast<Instruction>(
2574              cast<PHINode>(VL[j])->getIncomingValueForBlock(
2575                  PH->getIncomingBlock(i)));
2576          if (Term && Term->isTerminator()) {
2577            LLVM_DEBUG(dbgs()
2578                       << "SLP: Need to swizzle PHINodes (terminator use).\n");
2579            BS.cancelScheduling(VL, VL0);
2580            newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2581                         ReuseShuffleIndicies);
2582            return;
2583          }
2584        }
2585
2586      TreeEntry *TE =
2587          newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2588      LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2589
2590      // Keeps the reordered operands to avoid code duplication.
2591      SmallVector<ValueList, 2> OperandsVec;
2592      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2593        ValueList Operands;
2594        // Prepare the operand vector.
2595        for (Value *j : VL)
2596          Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
2597              PH->getIncomingBlock(i)));
2598        TE->setOperand(i, Operands);
2599        OperandsVec.push_back(Operands);
2600      }
2601      for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2602        buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2603      return;
2604    }
2605    case Instruction::ExtractValue:
2606    case Instruction::ExtractElement: {
2607      OrdersType CurrentOrder;
2608      bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2609      if (Reuse) {
2610        LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2611        ++NumOpsWantToKeepOriginalOrder;
2612        newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2613                     ReuseShuffleIndicies);
2614        // This is a special case, as it does not gather, but at the same time
2615        // we are not extending buildTree_rec() towards the operands.
2616        ValueList Op0;
2617        Op0.assign(VL.size(), VL0->getOperand(0));
2618        VectorizableTree.back()->setOperand(0, Op0);
2619        return;
2620      }
2621      if (!CurrentOrder.empty()) {
2622        LLVM_DEBUG({
2623          dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2624                    "with order";
2625          for (unsigned Idx : CurrentOrder)
2626            dbgs() << " " << Idx;
2627          dbgs() << "\n";
2628        });
2629        // Insert new order with initial value 0, if it does not exist,
2630        // otherwise return the iterator to the existing one.
2631        auto StoredCurrentOrderAndNum =
2632            NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2633        ++StoredCurrentOrderAndNum->getSecond();
2634        newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2635                     ReuseShuffleIndicies,
2636                     StoredCurrentOrderAndNum->getFirst());
2637        // This is a special case, as it does not gather, but at the same time
2638        // we are not extending buildTree_rec() towards the operands.
2639        ValueList Op0;
2640        Op0.assign(VL.size(), VL0->getOperand(0));
2641        VectorizableTree.back()->setOperand(0, Op0);
2642        return;
2643      }
2644      LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2645      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2646                   ReuseShuffleIndicies);
2647      BS.cancelScheduling(VL, VL0);
2648      return;
2649    }
2650    case Instruction::Load: {
2651      // Check that a vectorized load would load the same memory as a scalar
2652      // load. For example, we don't want to vectorize loads that are smaller
2653      // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2654      // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2655      // from such a struct, we read/write packed bits disagreeing with the
2656      // unvectorized version.
2657      Type *ScalarTy = VL0->getType();
2658
2659      if (DL->getTypeSizeInBits(ScalarTy) !=
2660          DL->getTypeAllocSizeInBits(ScalarTy)) {
2661        BS.cancelScheduling(VL, VL0);
2662        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2663                     ReuseShuffleIndicies);
2664        LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2665        return;
2666      }
2667
2668      // Make sure all loads in the bundle are simple - we can't vectorize
2669      // atomic or volatile loads.
2670      SmallVector<Value *, 4> PointerOps(VL.size());
2671      auto POIter = PointerOps.begin();
2672      for (Value *V : VL) {
2673        auto *L = cast<LoadInst>(V);
2674        if (!L->isSimple()) {
2675          BS.cancelScheduling(VL, VL0);
2676          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2677                       ReuseShuffleIndicies);
2678          LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2679          return;
2680        }
2681        *POIter = L->getPointerOperand();
2682        ++POIter;
2683      }
2684
2685      OrdersType CurrentOrder;
2686      // Check the order of pointer operands.
2687      if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2688        Value *Ptr0;
2689        Value *PtrN;
2690        if (CurrentOrder.empty()) {
2691          Ptr0 = PointerOps.front();
2692          PtrN = PointerOps.back();
2693        } else {
2694          Ptr0 = PointerOps[CurrentOrder.front()];
2695          PtrN = PointerOps[CurrentOrder.back()];
2696        }
2697        const SCEV *Scev0 = SE->getSCEV(Ptr0);
2698        const SCEV *ScevN = SE->getSCEV(PtrN);
2699        const auto *Diff =
2700            dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2701        uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2702        // Check that the sorted loads are consecutive.
2703        if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
2704          if (CurrentOrder.empty()) {
2705            // Original loads are consecutive and does not require reordering.
2706            ++NumOpsWantToKeepOriginalOrder;
2707            TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2708                                         UserTreeIdx, ReuseShuffleIndicies);
2709            TE->setOperandsInOrder();
2710            LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2711          } else {
2712            // Need to reorder.
2713            auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2714            ++I->getSecond();
2715            TreeEntry *TE =
2716                newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2717                             ReuseShuffleIndicies, I->getFirst());
2718            TE->setOperandsInOrder();
2719            LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2720          }
2721          return;
2722        }
2723      }
2724
2725      LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
2726      BS.cancelScheduling(VL, VL0);
2727      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2728                   ReuseShuffleIndicies);
2729      return;
2730    }
2731    case Instruction::ZExt:
2732    case Instruction::SExt:
2733    case Instruction::FPToUI:
2734    case Instruction::FPToSI:
2735    case Instruction::FPExt:
2736    case Instruction::PtrToInt:
2737    case Instruction::IntToPtr:
2738    case Instruction::SIToFP:
2739    case Instruction::UIToFP:
2740    case Instruction::Trunc:
2741    case Instruction::FPTrunc:
2742    case Instruction::BitCast: {
2743      Type *SrcTy = VL0->getOperand(0)->getType();
2744      for (Value *V : VL) {
2745        Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2746        if (Ty != SrcTy || !isValidElementType(Ty)) {
2747          BS.cancelScheduling(VL, VL0);
2748          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2749                       ReuseShuffleIndicies);
2750          LLVM_DEBUG(dbgs()
2751                     << "SLP: Gathering casts with different src types.\n");
2752          return;
2753        }
2754      }
2755      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2756                                   ReuseShuffleIndicies);
2757      LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
2758
2759      TE->setOperandsInOrder();
2760      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2761        ValueList Operands;
2762        // Prepare the operand vector.
2763        for (Value *V : VL)
2764          Operands.push_back(cast<Instruction>(V)->getOperand(i));
2765
2766        buildTree_rec(Operands, Depth + 1, {TE, i});
2767      }
2768      return;
2769    }
2770    case Instruction::ICmp:
2771    case Instruction::FCmp: {
2772      // Check that all of the compares have the same predicate.
2773      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2774      CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2775      Type *ComparedTy = VL0->getOperand(0)->getType();
2776      for (Value *V : VL) {
2777        CmpInst *Cmp = cast<CmpInst>(V);
2778        if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2779            Cmp->getOperand(0)->getType() != ComparedTy) {
2780          BS.cancelScheduling(VL, VL0);
2781          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2782                       ReuseShuffleIndicies);
2783          LLVM_DEBUG(dbgs()
2784                     << "SLP: Gathering cmp with different predicate.\n");
2785          return;
2786        }
2787      }
2788
2789      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2790                                   ReuseShuffleIndicies);
2791      LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
2792
2793      ValueList Left, Right;
2794      if (cast<CmpInst>(VL0)->isCommutative()) {
2795        // Commutative predicate - collect + sort operands of the instructions
2796        // so that each side is more likely to have the same opcode.
2797        assert(P0 == SwapP0 && "Commutative Predicate mismatch");
2798        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2799      } else {
2800        // Collect operands - commute if it uses the swapped predicate.
2801        for (Value *V : VL) {
2802          auto *Cmp = cast<CmpInst>(V);
2803          Value *LHS = Cmp->getOperand(0);
2804          Value *RHS = Cmp->getOperand(1);
2805          if (Cmp->getPredicate() != P0)
2806            std::swap(LHS, RHS);
2807          Left.push_back(LHS);
2808          Right.push_back(RHS);
2809        }
2810      }
2811      TE->setOperand(0, Left);
2812      TE->setOperand(1, Right);
2813      buildTree_rec(Left, Depth + 1, {TE, 0});
2814      buildTree_rec(Right, Depth + 1, {TE, 1});
2815      return;
2816    }
2817    case Instruction::Select:
2818    case Instruction::FNeg:
2819    case Instruction::Add:
2820    case Instruction::FAdd:
2821    case Instruction::Sub:
2822    case Instruction::FSub:
2823    case Instruction::Mul:
2824    case Instruction::FMul:
2825    case Instruction::UDiv:
2826    case Instruction::SDiv:
2827    case Instruction::FDiv:
2828    case Instruction::URem:
2829    case Instruction::SRem:
2830    case Instruction::FRem:
2831    case Instruction::Shl:
2832    case Instruction::LShr:
2833    case Instruction::AShr:
2834    case Instruction::And:
2835    case Instruction::Or:
2836    case Instruction::Xor: {
2837      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2838                                   ReuseShuffleIndicies);
2839      LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
2840
2841      // Sort operands of the instructions so that each side is more likely to
2842      // have the same opcode.
2843      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
2844        ValueList Left, Right;
2845        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2846        TE->setOperand(0, Left);
2847        TE->setOperand(1, Right);
2848        buildTree_rec(Left, Depth + 1, {TE, 0});
2849        buildTree_rec(Right, Depth + 1, {TE, 1});
2850        return;
2851      }
2852
2853      TE->setOperandsInOrder();
2854      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2855        ValueList Operands;
2856        // Prepare the operand vector.
2857        for (Value *j : VL)
2858          Operands.push_back(cast<Instruction>(j)->getOperand(i));
2859
2860        buildTree_rec(Operands, Depth + 1, {TE, i});
2861      }
2862      return;
2863    }
2864    case Instruction::GetElementPtr: {
2865      // We don't combine GEPs with complicated (nested) indexing.
2866      for (Value *V : VL) {
2867        if (cast<Instruction>(V)->getNumOperands() != 2) {
2868          LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
2869          BS.cancelScheduling(VL, VL0);
2870          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2871                       ReuseShuffleIndicies);
2872          return;
2873        }
2874      }
2875
2876      // We can't combine several GEPs into one vector if they operate on
2877      // different types.
2878      Type *Ty0 = VL0->getOperand(0)->getType();
2879      for (Value *V : VL) {
2880        Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
2881        if (Ty0 != CurTy) {
2882          LLVM_DEBUG(dbgs()
2883                     << "SLP: not-vectorizable GEP (different types).\n");
2884          BS.cancelScheduling(VL, VL0);
2885          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2886                       ReuseShuffleIndicies);
2887          return;
2888        }
2889      }
2890
2891      // We don't combine GEPs with non-constant indexes.
2892      Type *Ty1 = VL0->getOperand(1)->getType();
2893      for (Value *V : VL) {
2894        auto Op = cast<Instruction>(V)->getOperand(1);
2895        if (!isa<ConstantInt>(Op) ||
2896            (Op->getType() != Ty1 &&
2897             Op->getType()->getScalarSizeInBits() >
2898                 DL->getIndexSizeInBits(
2899                     V->getType()->getPointerAddressSpace()))) {
2900          LLVM_DEBUG(dbgs()
2901                     << "SLP: not-vectorizable GEP (non-constant indexes).\n");
2902          BS.cancelScheduling(VL, VL0);
2903          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2904                       ReuseShuffleIndicies);
2905          return;
2906        }
2907      }
2908
2909      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2910                                   ReuseShuffleIndicies);
2911      LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
2912      TE->setOperandsInOrder();
2913      for (unsigned i = 0, e = 2; i < e; ++i) {
2914        ValueList Operands;
2915        // Prepare the operand vector.
2916        for (Value *V : VL)
2917          Operands.push_back(cast<Instruction>(V)->getOperand(i));
2918
2919        buildTree_rec(Operands, Depth + 1, {TE, i});
2920      }
2921      return;
2922    }
2923    case Instruction::Store: {
2924      // Check if the stores are consecutive or if we need to swizzle them.
2925      llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
2926      // Make sure all stores in the bundle are simple - we can't vectorize
2927      // atomic or volatile stores.
2928      SmallVector<Value *, 4> PointerOps(VL.size());
2929      ValueList Operands(VL.size());
2930      auto POIter = PointerOps.begin();
2931      auto OIter = Operands.begin();
2932      for (Value *V : VL) {
2933        auto *SI = cast<StoreInst>(V);
2934        if (!SI->isSimple()) {
2935          BS.cancelScheduling(VL, VL0);
2936          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2937                       ReuseShuffleIndicies);
2938          LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
2939          return;
2940        }
2941        *POIter = SI->getPointerOperand();
2942        *OIter = SI->getValueOperand();
2943        ++POIter;
2944        ++OIter;
2945      }
2946
2947      OrdersType CurrentOrder;
2948      // Check the order of pointer operands.
2949      if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2950        Value *Ptr0;
2951        Value *PtrN;
2952        if (CurrentOrder.empty()) {
2953          Ptr0 = PointerOps.front();
2954          PtrN = PointerOps.back();
2955        } else {
2956          Ptr0 = PointerOps[CurrentOrder.front()];
2957          PtrN = PointerOps[CurrentOrder.back()];
2958        }
2959        const SCEV *Scev0 = SE->getSCEV(Ptr0);
2960        const SCEV *ScevN = SE->getSCEV(PtrN);
2961        const auto *Diff =
2962            dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2963        uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2964        // Check that the sorted pointer operands are consecutive.
2965        if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
2966          if (CurrentOrder.empty()) {
2967            // Original stores are consecutive and does not require reordering.
2968            ++NumOpsWantToKeepOriginalOrder;
2969            TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2970                                         UserTreeIdx, ReuseShuffleIndicies);
2971            TE->setOperandsInOrder();
2972            buildTree_rec(Operands, Depth + 1, {TE, 0});
2973            LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
2974          } else {
2975            // Need to reorder.
2976            auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2977            ++(I->getSecond());
2978            TreeEntry *TE =
2979                newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2980                             ReuseShuffleIndicies, I->getFirst());
2981            TE->setOperandsInOrder();
2982            buildTree_rec(Operands, Depth + 1, {TE, 0});
2983            LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
2984          }
2985          return;
2986        }
2987      }
2988
2989      BS.cancelScheduling(VL, VL0);
2990      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2991                   ReuseShuffleIndicies);
2992      LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
2993      return;
2994    }
2995    case Instruction::Call: {
2996      // Check if the calls are all to the same vectorizable intrinsic.
2997      CallInst *CI = cast<CallInst>(VL0);
2998      // Check if this is an Intrinsic call or something that can be
2999      // represented by an intrinsic call
3000      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3001      if (!isTriviallyVectorizable(ID)) {
3002        BS.cancelScheduling(VL, VL0);
3003        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3004                     ReuseShuffleIndicies);
3005        LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3006        return;
3007      }
3008      Function *Int = CI->getCalledFunction();
3009      unsigned NumArgs = CI->getNumArgOperands();
3010      SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3011      for (unsigned j = 0; j != NumArgs; ++j)
3012        if (hasVectorInstrinsicScalarOpd(ID, j))
3013          ScalarArgs[j] = CI->getArgOperand(j);
3014      for (Value *V : VL) {
3015        CallInst *CI2 = dyn_cast<CallInst>(V);
3016        if (!CI2 || CI2->getCalledFunction() != Int ||
3017            getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3018            !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3019          BS.cancelScheduling(VL, VL0);
3020          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3021                       ReuseShuffleIndicies);
3022          LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3023                            << "\n");
3024          return;
3025        }
3026        // Some intrinsics have scalar arguments and should be same in order for
3027        // them to be vectorized.
3028        for (unsigned j = 0; j != NumArgs; ++j) {
3029          if (hasVectorInstrinsicScalarOpd(ID, j)) {
3030            Value *A1J = CI2->getArgOperand(j);
3031            if (ScalarArgs[j] != A1J) {
3032              BS.cancelScheduling(VL, VL0);
3033              newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3034                           ReuseShuffleIndicies);
3035              LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3036                                << " argument " << ScalarArgs[j] << "!=" << A1J
3037                                << "\n");
3038              return;
3039            }
3040          }
3041        }
3042        // Verify that the bundle operands are identical between the two calls.
3043        if (CI->hasOperandBundles() &&
3044            !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3045                        CI->op_begin() + CI->getBundleOperandsEndIndex(),
3046                        CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3047          BS.cancelScheduling(VL, VL0);
3048          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3049                       ReuseShuffleIndicies);
3050          LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3051                            << *CI << "!=" << *V << '\n');
3052          return;
3053        }
3054      }
3055
3056      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3057                                   ReuseShuffleIndicies);
3058      TE->setOperandsInOrder();
3059      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3060        ValueList Operands;
3061        // Prepare the operand vector.
3062        for (Value *V : VL) {
3063          auto *CI2 = cast<CallInst>(V);
3064          Operands.push_back(CI2->getArgOperand(i));
3065        }
3066        buildTree_rec(Operands, Depth + 1, {TE, i});
3067      }
3068      return;
3069    }
3070    case Instruction::ShuffleVector: {
3071      // If this is not an alternate sequence of opcode like add-sub
3072      // then do not vectorize this instruction.
3073      if (!S.isAltShuffle()) {
3074        BS.cancelScheduling(VL, VL0);
3075        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3076                     ReuseShuffleIndicies);
3077        LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3078        return;
3079      }
3080      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3081                                   ReuseShuffleIndicies);
3082      LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3083
3084      // Reorder operands if reordering would enable vectorization.
3085      if (isa<BinaryOperator>(VL0)) {
3086        ValueList Left, Right;
3087        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3088        TE->setOperand(0, Left);
3089        TE->setOperand(1, Right);
3090        buildTree_rec(Left, Depth + 1, {TE, 0});
3091        buildTree_rec(Right, Depth + 1, {TE, 1});
3092        return;
3093      }
3094
3095      TE->setOperandsInOrder();
3096      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3097        ValueList Operands;
3098        // Prepare the operand vector.
3099        for (Value *V : VL)
3100          Operands.push_back(cast<Instruction>(V)->getOperand(i));
3101
3102        buildTree_rec(Operands, Depth + 1, {TE, i});
3103      }
3104      return;
3105    }
3106    default:
3107      BS.cancelScheduling(VL, VL0);
3108      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3109                   ReuseShuffleIndicies);
3110      LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3111      return;
3112  }
3113}
3114
3115unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3116  unsigned N = 1;
3117  Type *EltTy = T;
3118
3119  while (isa<CompositeType>(EltTy)) {
3120    if (auto *ST = dyn_cast<StructType>(EltTy)) {
3121      // Check that struct is homogeneous.
3122      for (const auto *Ty : ST->elements())
3123        if (Ty != *ST->element_begin())
3124          return 0;
3125      N *= ST->getNumElements();
3126      EltTy = *ST->element_begin();
3127    } else {
3128      auto *SeqT = cast<SequentialType>(EltTy);
3129      N *= SeqT->getNumElements();
3130      EltTy = SeqT->getElementType();
3131    }
3132  }
3133
3134  if (!isValidElementType(EltTy))
3135    return 0;
3136  uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
3137  if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3138    return 0;
3139  return N;
3140}
3141
3142bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3143                              SmallVectorImpl<unsigned> &CurrentOrder) const {
3144  Instruction *E0 = cast<Instruction>(OpValue);
3145  assert(E0->getOpcode() == Instruction::ExtractElement ||
3146         E0->getOpcode() == Instruction::ExtractValue);
3147  assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3148  // Check if all of the extracts come from the same vector and from the
3149  // correct offset.
3150  Value *Vec = E0->getOperand(0);
3151
3152  CurrentOrder.clear();
3153
3154  // We have to extract from a vector/aggregate with the same number of elements.
3155  unsigned NElts;
3156  if (E0->getOpcode() == Instruction::ExtractValue) {
3157    const DataLayout &DL = E0->getModule()->getDataLayout();
3158    NElts = canMapToVector(Vec->getType(), DL);
3159    if (!NElts)
3160      return false;
3161    // Check if load can be rewritten as load of vector.
3162    LoadInst *LI = dyn_cast<LoadInst>(Vec);
3163    if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3164      return false;
3165  } else {
3166    NElts = Vec->getType()->getVectorNumElements();
3167  }
3168
3169  if (NElts != VL.size())
3170    return false;
3171
3172  // Check that all of the indices extract from the correct offset.
3173  bool ShouldKeepOrder = true;
3174  unsigned E = VL.size();
3175  // Assign to all items the initial value E + 1 so we can check if the extract
3176  // instruction index was used already.
3177  // Also, later we can check that all the indices are used and we have a
3178  // consecutive access in the extract instructions, by checking that no
3179  // element of CurrentOrder still has value E + 1.
3180  CurrentOrder.assign(E, E + 1);
3181  unsigned I = 0;
3182  for (; I < E; ++I) {
3183    auto *Inst = cast<Instruction>(VL[I]);
3184    if (Inst->getOperand(0) != Vec)
3185      break;
3186    Optional<unsigned> Idx = getExtractIndex(Inst);
3187    if (!Idx)
3188      break;
3189    const unsigned ExtIdx = *Idx;
3190    if (ExtIdx != I) {
3191      if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3192        break;
3193      ShouldKeepOrder = false;
3194      CurrentOrder[ExtIdx] = I;
3195    } else {
3196      if (CurrentOrder[I] != E + 1)
3197        break;
3198      CurrentOrder[I] = I;
3199    }
3200  }
3201  if (I < E) {
3202    CurrentOrder.clear();
3203    return false;
3204  }
3205
3206  return ShouldKeepOrder;
3207}
3208
3209bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
3210  return I->hasOneUse() ||
3211         std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
3212           return ScalarToTreeEntry.count(U) > 0;
3213         });
3214}
3215
3216int BoUpSLP::getEntryCost(TreeEntry *E) {
3217  ArrayRef<Value*> VL = E->Scalars;
3218
3219  Type *ScalarTy = VL[0]->getType();
3220  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3221    ScalarTy = SI->getValueOperand()->getType();
3222  else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3223    ScalarTy = CI->getOperand(0)->getType();
3224  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3225
3226  // If we have computed a smaller type for the expression, update VecTy so
3227  // that the costs will be accurate.
3228  if (MinBWs.count(VL[0]))
3229    VecTy = VectorType::get(
3230        IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3231
3232  unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3233  bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3234  int ReuseShuffleCost = 0;
3235  if (NeedToShuffleReuses) {
3236    ReuseShuffleCost =
3237        TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3238  }
3239  if (E->State == TreeEntry::NeedToGather) {
3240    if (allConstant(VL))
3241      return 0;
3242    if (isSplat(VL)) {
3243      return ReuseShuffleCost +
3244             TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
3245    }
3246    if (E->getOpcode() == Instruction::ExtractElement &&
3247        allSameType(VL) && allSameBlock(VL)) {
3248      Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
3249      if (ShuffleKind.hasValue()) {
3250        int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
3251        for (auto *V : VL) {
3252          // If all users of instruction are going to be vectorized and this
3253          // instruction itself is not going to be vectorized, consider this
3254          // instruction as dead and remove its cost from the final cost of the
3255          // vectorized tree.
3256          if (areAllUsersVectorized(cast<Instruction>(V)) &&
3257              !ScalarToTreeEntry.count(V)) {
3258            auto *IO = cast<ConstantInt>(
3259                cast<ExtractElementInst>(V)->getIndexOperand());
3260            Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
3261                                            IO->getZExtValue());
3262          }
3263        }
3264        return ReuseShuffleCost + Cost;
3265      }
3266    }
3267    return ReuseShuffleCost + getGatherCost(VL);
3268  }
3269  assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3270  Instruction *VL0 = E->getMainOp();
3271  unsigned ShuffleOrOp =
3272      E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3273  switch (ShuffleOrOp) {
3274    case Instruction::PHI:
3275      return 0;
3276
3277    case Instruction::ExtractValue:
3278    case Instruction::ExtractElement:
3279      if (NeedToShuffleReuses) {
3280        unsigned Idx = 0;
3281        for (unsigned I : E->ReuseShuffleIndices) {
3282          if (ShuffleOrOp == Instruction::ExtractElement) {
3283            auto *IO = cast<ConstantInt>(
3284                cast<ExtractElementInst>(VL[I])->getIndexOperand());
3285            Idx = IO->getZExtValue();
3286            ReuseShuffleCost -= TTI->getVectorInstrCost(
3287                Instruction::ExtractElement, VecTy, Idx);
3288          } else {
3289            ReuseShuffleCost -= TTI->getVectorInstrCost(
3290                Instruction::ExtractElement, VecTy, Idx);
3291            ++Idx;
3292          }
3293        }
3294        Idx = ReuseShuffleNumbers;
3295        for (Value *V : VL) {
3296          if (ShuffleOrOp == Instruction::ExtractElement) {
3297            auto *IO = cast<ConstantInt>(
3298                cast<ExtractElementInst>(V)->getIndexOperand());
3299            Idx = IO->getZExtValue();
3300          } else {
3301            --Idx;
3302          }
3303          ReuseShuffleCost +=
3304              TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
3305        }
3306      }
3307      if (E->State == TreeEntry::Vectorize) {
3308        int DeadCost = ReuseShuffleCost;
3309        if (!E->ReorderIndices.empty()) {
3310          // TODO: Merge this shuffle with the ReuseShuffleCost.
3311          DeadCost += TTI->getShuffleCost(
3312              TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3313        }
3314        for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3315          Instruction *E = cast<Instruction>(VL[i]);
3316          // If all users are going to be vectorized, instruction can be
3317          // considered as dead.
3318          // The same, if have only one user, it will be vectorized for sure.
3319          if (areAllUsersVectorized(E)) {
3320            // Take credit for instruction that will become dead.
3321            if (E->hasOneUse()) {
3322              Instruction *Ext = E->user_back();
3323              if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3324                  all_of(Ext->users(),
3325                         [](User *U) { return isa<GetElementPtrInst>(U); })) {
3326                // Use getExtractWithExtendCost() to calculate the cost of
3327                // extractelement/ext pair.
3328                DeadCost -= TTI->getExtractWithExtendCost(
3329                    Ext->getOpcode(), Ext->getType(), VecTy, i);
3330                // Add back the cost of s|zext which is subtracted separately.
3331                DeadCost += TTI->getCastInstrCost(
3332                    Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
3333                continue;
3334              }
3335            }
3336            DeadCost -=
3337                TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
3338          }
3339        }
3340        return DeadCost;
3341      }
3342      return ReuseShuffleCost + getGatherCost(VL);
3343
3344    case Instruction::ZExt:
3345    case Instruction::SExt:
3346    case Instruction::FPToUI:
3347    case Instruction::FPToSI:
3348    case Instruction::FPExt:
3349    case Instruction::PtrToInt:
3350    case Instruction::IntToPtr:
3351    case Instruction::SIToFP:
3352    case Instruction::UIToFP:
3353    case Instruction::Trunc:
3354    case Instruction::FPTrunc:
3355    case Instruction::BitCast: {
3356      Type *SrcTy = VL0->getOperand(0)->getType();
3357      int ScalarEltCost =
3358          TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0);
3359      if (NeedToShuffleReuses) {
3360        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3361      }
3362
3363      // Calculate the cost of this instruction.
3364      int ScalarCost = VL.size() * ScalarEltCost;
3365
3366      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
3367      int VecCost = 0;
3368      // Check if the values are candidates to demote.
3369      if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3370        VecCost = ReuseShuffleCost +
3371                  TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0);
3372      }
3373      return VecCost - ScalarCost;
3374    }
3375    case Instruction::FCmp:
3376    case Instruction::ICmp:
3377    case Instruction::Select: {
3378      // Calculate the cost of this instruction.
3379      int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
3380                                                  Builder.getInt1Ty(), VL0);
3381      if (NeedToShuffleReuses) {
3382        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3383      }
3384      VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
3385      int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3386      int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0);
3387      return ReuseShuffleCost + VecCost - ScalarCost;
3388    }
3389    case Instruction::FNeg:
3390    case Instruction::Add:
3391    case Instruction::FAdd:
3392    case Instruction::Sub:
3393    case Instruction::FSub:
3394    case Instruction::Mul:
3395    case Instruction::FMul:
3396    case Instruction::UDiv:
3397    case Instruction::SDiv:
3398    case Instruction::FDiv:
3399    case Instruction::URem:
3400    case Instruction::SRem:
3401    case Instruction::FRem:
3402    case Instruction::Shl:
3403    case Instruction::LShr:
3404    case Instruction::AShr:
3405    case Instruction::And:
3406    case Instruction::Or:
3407    case Instruction::Xor: {
3408      // Certain instructions can be cheaper to vectorize if they have a
3409      // constant second vector operand.
3410      TargetTransformInfo::OperandValueKind Op1VK =
3411          TargetTransformInfo::OK_AnyValue;
3412      TargetTransformInfo::OperandValueKind Op2VK =
3413          TargetTransformInfo::OK_UniformConstantValue;
3414      TargetTransformInfo::OperandValueProperties Op1VP =
3415          TargetTransformInfo::OP_None;
3416      TargetTransformInfo::OperandValueProperties Op2VP =
3417          TargetTransformInfo::OP_PowerOf2;
3418
3419      // If all operands are exactly the same ConstantInt then set the
3420      // operand kind to OK_UniformConstantValue.
3421      // If instead not all operands are constants, then set the operand kind
3422      // to OK_AnyValue. If all operands are constants but not the same,
3423      // then set the operand kind to OK_NonUniformConstantValue.
3424      ConstantInt *CInt0 = nullptr;
3425      for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3426        const Instruction *I = cast<Instruction>(VL[i]);
3427        unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3428        ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3429        if (!CInt) {
3430          Op2VK = TargetTransformInfo::OK_AnyValue;
3431          Op2VP = TargetTransformInfo::OP_None;
3432          break;
3433        }
3434        if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3435            !CInt->getValue().isPowerOf2())
3436          Op2VP = TargetTransformInfo::OP_None;
3437        if (i == 0) {
3438          CInt0 = CInt;
3439          continue;
3440        }
3441        if (CInt0 != CInt)
3442          Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3443      }
3444
3445      SmallVector<const Value *, 4> Operands(VL0->operand_values());
3446      int ScalarEltCost = TTI->getArithmeticInstrCost(
3447          E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0);
3448      if (NeedToShuffleReuses) {
3449        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3450      }
3451      int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3452      int VecCost = TTI->getArithmeticInstrCost(
3453          E->getOpcode(), VecTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0);
3454      return ReuseShuffleCost + VecCost - ScalarCost;
3455    }
3456    case Instruction::GetElementPtr: {
3457      TargetTransformInfo::OperandValueKind Op1VK =
3458          TargetTransformInfo::OK_AnyValue;
3459      TargetTransformInfo::OperandValueKind Op2VK =
3460          TargetTransformInfo::OK_UniformConstantValue;
3461
3462      int ScalarEltCost =
3463          TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
3464      if (NeedToShuffleReuses) {
3465        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3466      }
3467      int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3468      int VecCost =
3469          TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
3470      return ReuseShuffleCost + VecCost - ScalarCost;
3471    }
3472    case Instruction::Load: {
3473      // Cost of wide load - cost of scalar loads.
3474      MaybeAlign alignment(cast<LoadInst>(VL0)->getAlignment());
3475      int ScalarEltCost =
3476          TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
3477      if (NeedToShuffleReuses) {
3478        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3479      }
3480      int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3481      int VecLdCost =
3482          TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
3483      if (!E->ReorderIndices.empty()) {
3484        // TODO: Merge this shuffle with the ReuseShuffleCost.
3485        VecLdCost += TTI->getShuffleCost(
3486            TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3487      }
3488      return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3489    }
3490    case Instruction::Store: {
3491      // We know that we can merge the stores. Calculate the cost.
3492      bool IsReorder = !E->ReorderIndices.empty();
3493      auto *SI =
3494          cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
3495      MaybeAlign Alignment(SI->getAlignment());
3496      int ScalarEltCost =
3497          TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, VL0);
3498      if (NeedToShuffleReuses)
3499        ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3500      int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3501      int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
3502                                           VecTy, Alignment, 0, VL0);
3503      if (IsReorder) {
3504        // TODO: Merge this shuffle with the ReuseShuffleCost.
3505        VecStCost += TTI->getShuffleCost(
3506            TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3507      }
3508      return ReuseShuffleCost + VecStCost - ScalarStCost;
3509    }
3510    case Instruction::Call: {
3511      CallInst *CI = cast<CallInst>(VL0);
3512      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3513
3514      // Calculate the cost of the scalar and vector calls.
3515      SmallVector<Type *, 4> ScalarTys;
3516      for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
3517        ScalarTys.push_back(CI->getArgOperand(op)->getType());
3518
3519      FastMathFlags FMF;
3520      if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3521        FMF = FPMO->getFastMathFlags();
3522
3523      int ScalarEltCost =
3524          TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
3525      if (NeedToShuffleReuses) {
3526        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3527      }
3528      int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3529
3530      SmallVector<Value *, 4> Args(CI->arg_operands());
3531      int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
3532                                                   VecTy->getNumElements());
3533
3534      LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
3535                        << " (" << VecCallCost << "-" << ScalarCallCost << ")"
3536                        << " for " << *CI << "\n");
3537
3538      return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3539    }
3540    case Instruction::ShuffleVector: {
3541      assert(E->isAltShuffle() &&
3542             ((Instruction::isBinaryOp(E->getOpcode()) &&
3543               Instruction::isBinaryOp(E->getAltOpcode())) ||
3544              (Instruction::isCast(E->getOpcode()) &&
3545               Instruction::isCast(E->getAltOpcode()))) &&
3546             "Invalid Shuffle Vector Operand");
3547      int ScalarCost = 0;
3548      if (NeedToShuffleReuses) {
3549        for (unsigned Idx : E->ReuseShuffleIndices) {
3550          Instruction *I = cast<Instruction>(VL[Idx]);
3551          ReuseShuffleCost -= TTI->getInstructionCost(
3552              I, TargetTransformInfo::TCK_RecipThroughput);
3553        }
3554        for (Value *V : VL) {
3555          Instruction *I = cast<Instruction>(V);
3556          ReuseShuffleCost += TTI->getInstructionCost(
3557              I, TargetTransformInfo::TCK_RecipThroughput);
3558        }
3559      }
3560      for (Value *V : VL) {
3561        Instruction *I = cast<Instruction>(V);
3562        assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
3563        ScalarCost += TTI->getInstructionCost(
3564            I, TargetTransformInfo::TCK_RecipThroughput);
3565      }
3566      // VecCost is equal to sum of the cost of creating 2 vectors
3567      // and the cost of creating shuffle.
3568      int VecCost = 0;
3569      if (Instruction::isBinaryOp(E->getOpcode())) {
3570        VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy);
3571        VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy);
3572      } else {
3573        Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
3574        Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
3575        VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
3576        VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
3577        VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty);
3578        VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty);
3579      }
3580      VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
3581      return ReuseShuffleCost + VecCost - ScalarCost;
3582    }
3583    default:
3584      llvm_unreachable("Unknown instruction");
3585  }
3586}
3587
3588bool BoUpSLP::isFullyVectorizableTinyTree() const {
3589  LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
3590                    << VectorizableTree.size() << " is fully vectorizable .\n");
3591
3592  // We only handle trees of heights 1 and 2.
3593  if (VectorizableTree.size() == 1 &&
3594      VectorizableTree[0]->State == TreeEntry::Vectorize)
3595    return true;
3596
3597  if (VectorizableTree.size() != 2)
3598    return false;
3599
3600  // Handle splat and all-constants stores.
3601  if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
3602      (allConstant(VectorizableTree[1]->Scalars) ||
3603       isSplat(VectorizableTree[1]->Scalars)))
3604    return true;
3605
3606  // Gathering cost would be too much for tiny trees.
3607  if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
3608      VectorizableTree[1]->State == TreeEntry::NeedToGather)
3609    return false;
3610
3611  return true;
3612}
3613
3614bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const {
3615  if (RdxOpcode != Instruction::Or)
3616    return false;
3617
3618  unsigned NumElts = VectorizableTree[0]->Scalars.size();
3619  Value *FirstReduced = VectorizableTree[0]->Scalars[0];
3620
3621  // Look past the reduction to find a source value. Arbitrarily follow the
3622  // path through operand 0 of any 'or'. Also, peek through optional
3623  // shift-left-by-constant.
3624  Value *ZextLoad = FirstReduced;
3625  while (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
3626         match(ZextLoad, m_Shl(m_Value(), m_Constant())))
3627    ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
3628
3629  // Check if the input to the reduction is an extended load.
3630  Value *LoadPtr;
3631  if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
3632    return false;
3633
3634  // Require that the total load bit width is a legal integer type.
3635  // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
3636  // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
3637  Type *SrcTy = LoadPtr->getType()->getPointerElementType();
3638  unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
3639  LLVMContext &Context = FirstReduced->getContext();
3640  if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth)))
3641    return false;
3642
3643  // Everything matched - assume that we can fold the whole sequence using
3644  // load combining.
3645  LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of "
3646             << *(cast<Instruction>(FirstReduced)) << "\n");
3647
3648  return true;
3649}
3650
3651bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
3652  // We can vectorize the tree if its size is greater than or equal to the
3653  // minimum size specified by the MinTreeSize command line option.
3654  if (VectorizableTree.size() >= MinTreeSize)
3655    return false;
3656
3657  // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
3658  // can vectorize it if we can prove it fully vectorizable.
3659  if (isFullyVectorizableTinyTree())
3660    return false;
3661
3662  assert(VectorizableTree.empty()
3663             ? ExternalUses.empty()
3664             : true && "We shouldn't have any external users");
3665
3666  // Otherwise, we can't vectorize the tree. It is both tiny and not fully
3667  // vectorizable.
3668  return true;
3669}
3670
3671int BoUpSLP::getSpillCost() const {
3672  // Walk from the bottom of the tree to the top, tracking which values are
3673  // live. When we see a call instruction that is not part of our tree,
3674  // query TTI to see if there is a cost to keeping values live over it
3675  // (for example, if spills and fills are required).
3676  unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
3677  int Cost = 0;
3678
3679  SmallPtrSet<Instruction*, 4> LiveValues;
3680  Instruction *PrevInst = nullptr;
3681
3682  for (const auto &TEPtr : VectorizableTree) {
3683    Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
3684    if (!Inst)
3685      continue;
3686
3687    if (!PrevInst) {
3688      PrevInst = Inst;
3689      continue;
3690    }
3691
3692    // Update LiveValues.
3693    LiveValues.erase(PrevInst);
3694    for (auto &J : PrevInst->operands()) {
3695      if (isa<Instruction>(&*J) && getTreeEntry(&*J))
3696        LiveValues.insert(cast<Instruction>(&*J));
3697    }
3698
3699    LLVM_DEBUG({
3700      dbgs() << "SLP: #LV: " << LiveValues.size();
3701      for (auto *X : LiveValues)
3702        dbgs() << " " << X->getName();
3703      dbgs() << ", Looking at ";
3704      Inst->dump();
3705    });
3706
3707    // Now find the sequence of instructions between PrevInst and Inst.
3708    unsigned NumCalls = 0;
3709    BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
3710                                 PrevInstIt =
3711                                     PrevInst->getIterator().getReverse();
3712    while (InstIt != PrevInstIt) {
3713      if (PrevInstIt == PrevInst->getParent()->rend()) {
3714        PrevInstIt = Inst->getParent()->rbegin();
3715        continue;
3716      }
3717
3718      // Debug information does not impact spill cost.
3719      if ((isa<CallInst>(&*PrevInstIt) &&
3720           !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
3721          &*PrevInstIt != PrevInst)
3722        NumCalls++;
3723
3724      ++PrevInstIt;
3725    }
3726
3727    if (NumCalls) {
3728      SmallVector<Type*, 4> V;
3729      for (auto *II : LiveValues)
3730        V.push_back(VectorType::get(II->getType(), BundleWidth));
3731      Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
3732    }
3733
3734    PrevInst = Inst;
3735  }
3736
3737  return Cost;
3738}
3739
3740int BoUpSLP::getTreeCost() {
3741  int Cost = 0;
3742  LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
3743                    << VectorizableTree.size() << ".\n");
3744
3745  unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
3746
3747  for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
3748    TreeEntry &TE = *VectorizableTree[I].get();
3749
3750    // We create duplicate tree entries for gather sequences that have multiple
3751    // uses. However, we should not compute the cost of duplicate sequences.
3752    // For example, if we have a build vector (i.e., insertelement sequence)
3753    // that is used by more than one vector instruction, we only need to
3754    // compute the cost of the insertelement instructions once. The redundant
3755    // instructions will be eliminated by CSE.
3756    //
3757    // We should consider not creating duplicate tree entries for gather
3758    // sequences, and instead add additional edges to the tree representing
3759    // their uses. Since such an approach results in fewer total entries,
3760    // existing heuristics based on tree size may yield different results.
3761    //
3762    if (TE.State == TreeEntry::NeedToGather &&
3763        std::any_of(std::next(VectorizableTree.begin(), I + 1),
3764                    VectorizableTree.end(),
3765                    [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
3766                      return EntryPtr->State == TreeEntry::NeedToGather &&
3767                             EntryPtr->isSame(TE.Scalars);
3768                    }))
3769      continue;
3770
3771    int C = getEntryCost(&TE);
3772    LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
3773                      << " for bundle that starts with " << *TE.Scalars[0]
3774                      << ".\n");
3775    Cost += C;
3776  }
3777
3778  SmallPtrSet<Value *, 16> ExtractCostCalculated;
3779  int ExtractCost = 0;
3780  for (ExternalUser &EU : ExternalUses) {
3781    // We only add extract cost once for the same scalar.
3782    if (!ExtractCostCalculated.insert(EU.Scalar).second)
3783      continue;
3784
3785    // Uses by ephemeral values are free (because the ephemeral value will be
3786    // removed prior to code generation, and so the extraction will be
3787    // removed as well).
3788    if (EphValues.count(EU.User))
3789      continue;
3790
3791    // If we plan to rewrite the tree in a smaller type, we will need to sign
3792    // extend the extracted value back to the original type. Here, we account
3793    // for the extract and the added cost of the sign extend if needed.
3794    auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
3795    auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
3796    if (MinBWs.count(ScalarRoot)) {
3797      auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3798      auto Extend =
3799          MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
3800      VecTy = VectorType::get(MinTy, BundleWidth);
3801      ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
3802                                                   VecTy, EU.Lane);
3803    } else {
3804      ExtractCost +=
3805          TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
3806    }
3807  }
3808
3809  int SpillCost = getSpillCost();
3810  Cost += SpillCost + ExtractCost;
3811
3812  std::string Str;
3813  {
3814    raw_string_ostream OS(Str);
3815    OS << "SLP: Spill Cost = " << SpillCost << ".\n"
3816       << "SLP: Extract Cost = " << ExtractCost << ".\n"
3817       << "SLP: Total Cost = " << Cost << ".\n";
3818  }
3819  LLVM_DEBUG(dbgs() << Str);
3820
3821  if (ViewSLPTree)
3822    ViewGraph(this, "SLP" + F->getName(), false, Str);
3823
3824  return Cost;
3825}
3826
3827int BoUpSLP::getGatherCost(Type *Ty,
3828                           const DenseSet<unsigned> &ShuffledIndices) const {
3829  int Cost = 0;
3830  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
3831    if (!ShuffledIndices.count(i))
3832      Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
3833  if (!ShuffledIndices.empty())
3834    Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
3835  return Cost;
3836}
3837
3838int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
3839  // Find the type of the operands in VL.
3840  Type *ScalarTy = VL[0]->getType();
3841  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3842    ScalarTy = SI->getValueOperand()->getType();
3843  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3844  // Find the cost of inserting/extracting values from the vector.
3845  // Check if the same elements are inserted several times and count them as
3846  // shuffle candidates.
3847  DenseSet<unsigned> ShuffledElements;
3848  DenseSet<Value *> UniqueElements;
3849  // Iterate in reverse order to consider insert elements with the high cost.
3850  for (unsigned I = VL.size(); I > 0; --I) {
3851    unsigned Idx = I - 1;
3852    if (!UniqueElements.insert(VL[Idx]).second)
3853      ShuffledElements.insert(Idx);
3854  }
3855  return getGatherCost(VecTy, ShuffledElements);
3856}
3857
3858// Perform operand reordering on the instructions in VL and return the reordered
3859// operands in Left and Right.
3860void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
3861                                             SmallVectorImpl<Value *> &Left,
3862                                             SmallVectorImpl<Value *> &Right,
3863                                             const DataLayout &DL,
3864                                             ScalarEvolution &SE,
3865                                             const BoUpSLP &R) {
3866  if (VL.empty())
3867    return;
3868  VLOperands Ops(VL, DL, SE, R);
3869  // Reorder the operands in place.
3870  Ops.reorder();
3871  Left = Ops.getVL(0);
3872  Right = Ops.getVL(1);
3873}
3874
3875void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
3876  // Get the basic block this bundle is in. All instructions in the bundle
3877  // should be in this block.
3878  auto *Front = E->getMainOp();
3879  auto *BB = Front->getParent();
3880  assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),
3881                      [=](Value *V) -> bool {
3882                        auto *I = cast<Instruction>(V);
3883                        return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
3884                      }));
3885
3886  // The last instruction in the bundle in program order.
3887  Instruction *LastInst = nullptr;
3888
3889  // Find the last instruction. The common case should be that BB has been
3890  // scheduled, and the last instruction is VL.back(). So we start with
3891  // VL.back() and iterate over schedule data until we reach the end of the
3892  // bundle. The end of the bundle is marked by null ScheduleData.
3893  if (BlocksSchedules.count(BB)) {
3894    auto *Bundle =
3895        BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
3896    if (Bundle && Bundle->isPartOfBundle())
3897      for (; Bundle; Bundle = Bundle->NextInBundle)
3898        if (Bundle->OpValue == Bundle->Inst)
3899          LastInst = Bundle->Inst;
3900  }
3901
3902  // LastInst can still be null at this point if there's either not an entry
3903  // for BB in BlocksSchedules or there's no ScheduleData available for
3904  // VL.back(). This can be the case if buildTree_rec aborts for various
3905  // reasons (e.g., the maximum recursion depth is reached, the maximum region
3906  // size is reached, etc.). ScheduleData is initialized in the scheduling
3907  // "dry-run".
3908  //
3909  // If this happens, we can still find the last instruction by brute force. We
3910  // iterate forwards from Front (inclusive) until we either see all
3911  // instructions in the bundle or reach the end of the block. If Front is the
3912  // last instruction in program order, LastInst will be set to Front, and we
3913  // will visit all the remaining instructions in the block.
3914  //
3915  // One of the reasons we exit early from buildTree_rec is to place an upper
3916  // bound on compile-time. Thus, taking an additional compile-time hit here is
3917  // not ideal. However, this should be exceedingly rare since it requires that
3918  // we both exit early from buildTree_rec and that the bundle be out-of-order
3919  // (causing us to iterate all the way to the end of the block).
3920  if (!LastInst) {
3921    SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
3922    for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
3923      if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
3924        LastInst = &I;
3925      if (Bundle.empty())
3926        break;
3927    }
3928  }
3929  assert(LastInst && "Failed to find last instruction in bundle");
3930
3931  // Set the insertion point after the last instruction in the bundle. Set the
3932  // debug location to Front.
3933  Builder.SetInsertPoint(BB, ++LastInst->getIterator());
3934  Builder.SetCurrentDebugLocation(Front->getDebugLoc());
3935}
3936
3937Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
3938  Value *Vec = UndefValue::get(Ty);
3939  // Generate the 'InsertElement' instruction.
3940  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
3941    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
3942    if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) {
3943      GatherSeq.insert(Insrt);
3944      CSEBlocks.insert(Insrt->getParent());
3945
3946      // Add to our 'need-to-extract' list.
3947      if (TreeEntry *E = getTreeEntry(VL[i])) {
3948        // Find which lane we need to extract.
3949        int FoundLane = -1;
3950        for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
3951          // Is this the lane of the scalar that we are looking for ?
3952          if (E->Scalars[Lane] == VL[i]) {
3953            FoundLane = Lane;
3954            break;
3955          }
3956        }
3957        assert(FoundLane >= 0 && "Could not find the correct lane");
3958        if (!E->ReuseShuffleIndices.empty()) {
3959          FoundLane =
3960              std::distance(E->ReuseShuffleIndices.begin(),
3961                            llvm::find(E->ReuseShuffleIndices, FoundLane));
3962        }
3963        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
3964      }
3965    }
3966  }
3967
3968  return Vec;
3969}
3970
3971Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
3972  InstructionsState S = getSameOpcode(VL);
3973  if (S.getOpcode()) {
3974    if (TreeEntry *E = getTreeEntry(S.OpValue)) {
3975      if (E->isSame(VL)) {
3976        Value *V = vectorizeTree(E);
3977        if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
3978          // We need to get the vectorized value but without shuffle.
3979          if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
3980            V = SV->getOperand(0);
3981          } else {
3982            // Reshuffle to get only unique values.
3983            SmallVector<unsigned, 4> UniqueIdxs;
3984            SmallSet<unsigned, 4> UsedIdxs;
3985            for(unsigned Idx : E->ReuseShuffleIndices)
3986              if (UsedIdxs.insert(Idx).second)
3987                UniqueIdxs.emplace_back(Idx);
3988            V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
3989                                            UniqueIdxs);
3990          }
3991        }
3992        return V;
3993      }
3994    }
3995  }
3996
3997  Type *ScalarTy = S.OpValue->getType();
3998  if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
3999    ScalarTy = SI->getValueOperand()->getType();
4000
4001  // Check that every instruction appears once in this bundle.
4002  SmallVector<unsigned, 4> ReuseShuffleIndicies;
4003  SmallVector<Value *, 4> UniqueValues;
4004  if (VL.size() > 2) {
4005    DenseMap<Value *, unsigned> UniquePositions;
4006    for (Value *V : VL) {
4007      auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4008      ReuseShuffleIndicies.emplace_back(Res.first->second);
4009      if (Res.second || isa<Constant>(V))
4010        UniqueValues.emplace_back(V);
4011    }
4012    // Do not shuffle single element or if number of unique values is not power
4013    // of 2.
4014    if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
4015        !llvm::isPowerOf2_32(UniqueValues.size()))
4016      ReuseShuffleIndicies.clear();
4017    else
4018      VL = UniqueValues;
4019  }
4020  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
4021
4022  Value *V = Gather(VL, VecTy);
4023  if (!ReuseShuffleIndicies.empty()) {
4024    V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4025                                    ReuseShuffleIndicies, "shuffle");
4026    if (auto *I = dyn_cast<Instruction>(V)) {
4027      GatherSeq.insert(I);
4028      CSEBlocks.insert(I->getParent());
4029    }
4030  }
4031  return V;
4032}
4033
4034static void inversePermutation(ArrayRef<unsigned> Indices,
4035                               SmallVectorImpl<unsigned> &Mask) {
4036  Mask.clear();
4037  const unsigned E = Indices.size();
4038  Mask.resize(E);
4039  for (unsigned I = 0; I < E; ++I)
4040    Mask[Indices[I]] = I;
4041}
4042
4043Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
4044  IRBuilder<>::InsertPointGuard Guard(Builder);
4045
4046  if (E->VectorizedValue) {
4047    LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
4048    return E->VectorizedValue;
4049  }
4050
4051  Instruction *VL0 = E->getMainOp();
4052  Type *ScalarTy = VL0->getType();
4053  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
4054    ScalarTy = SI->getValueOperand()->getType();
4055  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
4056
4057  bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4058
4059  if (E->State == TreeEntry::NeedToGather) {
4060    setInsertPointAfterBundle(E);
4061    auto *V = Gather(E->Scalars, VecTy);
4062    if (NeedToShuffleReuses) {
4063      V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4064                                      E->ReuseShuffleIndices, "shuffle");
4065      if (auto *I = dyn_cast<Instruction>(V)) {
4066        GatherSeq.insert(I);
4067        CSEBlocks.insert(I->getParent());
4068      }
4069    }
4070    E->VectorizedValue = V;
4071    return V;
4072  }
4073
4074  unsigned ShuffleOrOp =
4075      E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
4076  switch (ShuffleOrOp) {
4077    case Instruction::PHI: {
4078      auto *PH = cast<PHINode>(VL0);
4079      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
4080      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4081      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
4082      Value *V = NewPhi;
4083      if (NeedToShuffleReuses) {
4084        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4085                                        E->ReuseShuffleIndices, "shuffle");
4086      }
4087      E->VectorizedValue = V;
4088
4089      // PHINodes may have multiple entries from the same block. We want to
4090      // visit every block once.
4091      SmallPtrSet<BasicBlock*, 4> VisitedBBs;
4092
4093      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
4094        ValueList Operands;
4095        BasicBlock *IBB = PH->getIncomingBlock(i);
4096
4097        if (!VisitedBBs.insert(IBB).second) {
4098          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
4099          continue;
4100        }
4101
4102        Builder.SetInsertPoint(IBB->getTerminator());
4103        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4104        Value *Vec = vectorizeTree(E->getOperand(i));
4105        NewPhi->addIncoming(Vec, IBB);
4106      }
4107
4108      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
4109             "Invalid number of incoming values");
4110      return V;
4111    }
4112
4113    case Instruction::ExtractElement: {
4114      if (E->State == TreeEntry::Vectorize) {
4115        Value *V = E->getSingleOperand(0);
4116        if (!E->ReorderIndices.empty()) {
4117          OrdersType Mask;
4118          inversePermutation(E->ReorderIndices, Mask);
4119          Builder.SetInsertPoint(VL0);
4120          V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
4121                                          "reorder_shuffle");
4122        }
4123        if (NeedToShuffleReuses) {
4124          // TODO: Merge this shuffle with the ReorderShuffleMask.
4125          if (E->ReorderIndices.empty())
4126            Builder.SetInsertPoint(VL0);
4127          V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4128                                          E->ReuseShuffleIndices, "shuffle");
4129        }
4130        E->VectorizedValue = V;
4131        return V;
4132      }
4133      setInsertPointAfterBundle(E);
4134      auto *V = Gather(E->Scalars, VecTy);
4135      if (NeedToShuffleReuses) {
4136        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4137                                        E->ReuseShuffleIndices, "shuffle");
4138        if (auto *I = dyn_cast<Instruction>(V)) {
4139          GatherSeq.insert(I);
4140          CSEBlocks.insert(I->getParent());
4141        }
4142      }
4143      E->VectorizedValue = V;
4144      return V;
4145    }
4146    case Instruction::ExtractValue: {
4147      if (E->State == TreeEntry::Vectorize) {
4148        LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
4149        Builder.SetInsertPoint(LI);
4150        PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
4151        Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
4152        LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment());
4153        Value *NewV = propagateMetadata(V, E->Scalars);
4154        if (!E->ReorderIndices.empty()) {
4155          OrdersType Mask;
4156          inversePermutation(E->ReorderIndices, Mask);
4157          NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
4158                                             "reorder_shuffle");
4159        }
4160        if (NeedToShuffleReuses) {
4161          // TODO: Merge this shuffle with the ReorderShuffleMask.
4162          NewV = Builder.CreateShuffleVector(
4163              NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
4164        }
4165        E->VectorizedValue = NewV;
4166        return NewV;
4167      }
4168      setInsertPointAfterBundle(E);
4169      auto *V = Gather(E->Scalars, VecTy);
4170      if (NeedToShuffleReuses) {
4171        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4172                                        E->ReuseShuffleIndices, "shuffle");
4173        if (auto *I = dyn_cast<Instruction>(V)) {
4174          GatherSeq.insert(I);
4175          CSEBlocks.insert(I->getParent());
4176        }
4177      }
4178      E->VectorizedValue = V;
4179      return V;
4180    }
4181    case Instruction::ZExt:
4182    case Instruction::SExt:
4183    case Instruction::FPToUI:
4184    case Instruction::FPToSI:
4185    case Instruction::FPExt:
4186    case Instruction::PtrToInt:
4187    case Instruction::IntToPtr:
4188    case Instruction::SIToFP:
4189    case Instruction::UIToFP:
4190    case Instruction::Trunc:
4191    case Instruction::FPTrunc:
4192    case Instruction::BitCast: {
4193      setInsertPointAfterBundle(E);
4194
4195      Value *InVec = vectorizeTree(E->getOperand(0));
4196
4197      if (E->VectorizedValue) {
4198        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4199        return E->VectorizedValue;
4200      }
4201
4202      auto *CI = cast<CastInst>(VL0);
4203      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
4204      if (NeedToShuffleReuses) {
4205        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4206                                        E->ReuseShuffleIndices, "shuffle");
4207      }
4208      E->VectorizedValue = V;
4209      ++NumVectorInstructions;
4210      return V;
4211    }
4212    case Instruction::FCmp:
4213    case Instruction::ICmp: {
4214      setInsertPointAfterBundle(E);
4215
4216      Value *L = vectorizeTree(E->getOperand(0));
4217      Value *R = vectorizeTree(E->getOperand(1));
4218
4219      if (E->VectorizedValue) {
4220        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4221        return E->VectorizedValue;
4222      }
4223
4224      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4225      Value *V;
4226      if (E->getOpcode() == Instruction::FCmp)
4227        V = Builder.CreateFCmp(P0, L, R);
4228      else
4229        V = Builder.CreateICmp(P0, L, R);
4230
4231      propagateIRFlags(V, E->Scalars, VL0);
4232      if (NeedToShuffleReuses) {
4233        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4234                                        E->ReuseShuffleIndices, "shuffle");
4235      }
4236      E->VectorizedValue = V;
4237      ++NumVectorInstructions;
4238      return V;
4239    }
4240    case Instruction::Select: {
4241      setInsertPointAfterBundle(E);
4242
4243      Value *Cond = vectorizeTree(E->getOperand(0));
4244      Value *True = vectorizeTree(E->getOperand(1));
4245      Value *False = vectorizeTree(E->getOperand(2));
4246
4247      if (E->VectorizedValue) {
4248        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4249        return E->VectorizedValue;
4250      }
4251
4252      Value *V = Builder.CreateSelect(Cond, True, False);
4253      if (NeedToShuffleReuses) {
4254        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4255                                        E->ReuseShuffleIndices, "shuffle");
4256      }
4257      E->VectorizedValue = V;
4258      ++NumVectorInstructions;
4259      return V;
4260    }
4261    case Instruction::FNeg: {
4262      setInsertPointAfterBundle(E);
4263
4264      Value *Op = vectorizeTree(E->getOperand(0));
4265
4266      if (E->VectorizedValue) {
4267        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4268        return E->VectorizedValue;
4269      }
4270
4271      Value *V = Builder.CreateUnOp(
4272          static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
4273      propagateIRFlags(V, E->Scalars, VL0);
4274      if (auto *I = dyn_cast<Instruction>(V))
4275        V = propagateMetadata(I, E->Scalars);
4276
4277      if (NeedToShuffleReuses) {
4278        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4279                                        E->ReuseShuffleIndices, "shuffle");
4280      }
4281      E->VectorizedValue = V;
4282      ++NumVectorInstructions;
4283
4284      return V;
4285    }
4286    case Instruction::Add:
4287    case Instruction::FAdd:
4288    case Instruction::Sub:
4289    case Instruction::FSub:
4290    case Instruction::Mul:
4291    case Instruction::FMul:
4292    case Instruction::UDiv:
4293    case Instruction::SDiv:
4294    case Instruction::FDiv:
4295    case Instruction::URem:
4296    case Instruction::SRem:
4297    case Instruction::FRem:
4298    case Instruction::Shl:
4299    case Instruction::LShr:
4300    case Instruction::AShr:
4301    case Instruction::And:
4302    case Instruction::Or:
4303    case Instruction::Xor: {
4304      setInsertPointAfterBundle(E);
4305
4306      Value *LHS = vectorizeTree(E->getOperand(0));
4307      Value *RHS = vectorizeTree(E->getOperand(1));
4308
4309      if (E->VectorizedValue) {
4310        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4311        return E->VectorizedValue;
4312      }
4313
4314      Value *V = Builder.CreateBinOp(
4315          static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
4316          RHS);
4317      propagateIRFlags(V, E->Scalars, VL0);
4318      if (auto *I = dyn_cast<Instruction>(V))
4319        V = propagateMetadata(I, E->Scalars);
4320
4321      if (NeedToShuffleReuses) {
4322        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4323                                        E->ReuseShuffleIndices, "shuffle");
4324      }
4325      E->VectorizedValue = V;
4326      ++NumVectorInstructions;
4327
4328      return V;
4329    }
4330    case Instruction::Load: {
4331      // Loads are inserted at the head of the tree because we don't want to
4332      // sink them all the way down past store instructions.
4333      bool IsReorder = E->updateStateIfReorder();
4334      if (IsReorder)
4335        VL0 = E->getMainOp();
4336      setInsertPointAfterBundle(E);
4337
4338      LoadInst *LI = cast<LoadInst>(VL0);
4339      Type *ScalarLoadTy = LI->getType();
4340      unsigned AS = LI->getPointerAddressSpace();
4341
4342      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
4343                                            VecTy->getPointerTo(AS));
4344
4345      // The pointer operand uses an in-tree scalar so we add the new BitCast to
4346      // ExternalUses list to make sure that an extract will be generated in the
4347      // future.
4348      Value *PO = LI->getPointerOperand();
4349      if (getTreeEntry(PO))
4350        ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
4351
4352      MaybeAlign Alignment = MaybeAlign(LI->getAlignment());
4353      LI = Builder.CreateLoad(VecTy, VecPtr);
4354      if (!Alignment)
4355        Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy));
4356      LI->setAlignment(Alignment);
4357      Value *V = propagateMetadata(LI, E->Scalars);
4358      if (IsReorder) {
4359        OrdersType Mask;
4360        inversePermutation(E->ReorderIndices, Mask);
4361        V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
4362                                        Mask, "reorder_shuffle");
4363      }
4364      if (NeedToShuffleReuses) {
4365        // TODO: Merge this shuffle with the ReorderShuffleMask.
4366        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4367                                        E->ReuseShuffleIndices, "shuffle");
4368      }
4369      E->VectorizedValue = V;
4370      ++NumVectorInstructions;
4371      return V;
4372    }
4373    case Instruction::Store: {
4374      bool IsReorder = !E->ReorderIndices.empty();
4375      auto *SI = cast<StoreInst>(
4376          IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
4377      unsigned Alignment = SI->getAlignment();
4378      unsigned AS = SI->getPointerAddressSpace();
4379
4380      setInsertPointAfterBundle(E);
4381
4382      Value *VecValue = vectorizeTree(E->getOperand(0));
4383      if (IsReorder) {
4384        OrdersType Mask;
4385        inversePermutation(E->ReorderIndices, Mask);
4386        VecValue = Builder.CreateShuffleVector(
4387            VecValue, UndefValue::get(VecValue->getType()), E->ReorderIndices,
4388            "reorder_shuffle");
4389      }
4390      Value *ScalarPtr = SI->getPointerOperand();
4391      Value *VecPtr = Builder.CreateBitCast(
4392          ScalarPtr, VecValue->getType()->getPointerTo(AS));
4393      StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
4394
4395      // The pointer operand uses an in-tree scalar, so add the new BitCast to
4396      // ExternalUses to make sure that an extract will be generated in the
4397      // future.
4398      if (getTreeEntry(ScalarPtr))
4399        ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4400
4401      if (!Alignment)
4402        Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
4403
4404      ST->setAlignment(Align(Alignment));
4405      Value *V = propagateMetadata(ST, E->Scalars);
4406      if (NeedToShuffleReuses) {
4407        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4408                                        E->ReuseShuffleIndices, "shuffle");
4409      }
4410      E->VectorizedValue = V;
4411      ++NumVectorInstructions;
4412      return V;
4413    }
4414    case Instruction::GetElementPtr: {
4415      setInsertPointAfterBundle(E);
4416
4417      Value *Op0 = vectorizeTree(E->getOperand(0));
4418
4419      std::vector<Value *> OpVecs;
4420      for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4421           ++j) {
4422        ValueList &VL = E->getOperand(j);
4423        // Need to cast all elements to the same type before vectorization to
4424        // avoid crash.
4425        Type *VL0Ty = VL0->getOperand(j)->getType();
4426        Type *Ty = llvm::all_of(
4427                       VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
4428                       ? VL0Ty
4429                       : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4430                                              ->getPointerOperandType()
4431                                              ->getScalarType());
4432        for (Value *&V : VL) {
4433          auto *CI = cast<ConstantInt>(V);
4434          V = ConstantExpr::getIntegerCast(CI, Ty,
4435                                           CI->getValue().isSignBitSet());
4436        }
4437        Value *OpVec = vectorizeTree(VL);
4438        OpVecs.push_back(OpVec);
4439      }
4440
4441      Value *V = Builder.CreateGEP(
4442          cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4443      if (Instruction *I = dyn_cast<Instruction>(V))
4444        V = propagateMetadata(I, E->Scalars);
4445
4446      if (NeedToShuffleReuses) {
4447        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4448                                        E->ReuseShuffleIndices, "shuffle");
4449      }
4450      E->VectorizedValue = V;
4451      ++NumVectorInstructions;
4452
4453      return V;
4454    }
4455    case Instruction::Call: {
4456      CallInst *CI = cast<CallInst>(VL0);
4457      setInsertPointAfterBundle(E);
4458
4459      Intrinsic::ID IID  = Intrinsic::not_intrinsic;
4460      if (Function *FI = CI->getCalledFunction())
4461        IID = FI->getIntrinsicID();
4462
4463      Value *ScalarArg = nullptr;
4464      std::vector<Value *> OpVecs;
4465      for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
4466        ValueList OpVL;
4467        // Some intrinsics have scalar arguments. This argument should not be
4468        // vectorized.
4469        if (hasVectorInstrinsicScalarOpd(IID, j)) {
4470          CallInst *CEI = cast<CallInst>(VL0);
4471          ScalarArg = CEI->getArgOperand(j);
4472          OpVecs.push_back(CEI->getArgOperand(j));
4473          continue;
4474        }
4475
4476        Value *OpVec = vectorizeTree(E->getOperand(j));
4477        LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
4478        OpVecs.push_back(OpVec);
4479      }
4480
4481      Module *M = F->getParent();
4482      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4483      Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
4484      Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
4485      SmallVector<OperandBundleDef, 1> OpBundles;
4486      CI->getOperandBundlesAsDefs(OpBundles);
4487      Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
4488
4489      // The scalar argument uses an in-tree scalar so we add the new vectorized
4490      // call to ExternalUses list to make sure that an extract will be
4491      // generated in the future.
4492      if (ScalarArg && getTreeEntry(ScalarArg))
4493        ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
4494
4495      propagateIRFlags(V, E->Scalars, VL0);
4496      if (NeedToShuffleReuses) {
4497        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4498                                        E->ReuseShuffleIndices, "shuffle");
4499      }
4500      E->VectorizedValue = V;
4501      ++NumVectorInstructions;
4502      return V;
4503    }
4504    case Instruction::ShuffleVector: {
4505      assert(E->isAltShuffle() &&
4506             ((Instruction::isBinaryOp(E->getOpcode()) &&
4507               Instruction::isBinaryOp(E->getAltOpcode())) ||
4508              (Instruction::isCast(E->getOpcode()) &&
4509               Instruction::isCast(E->getAltOpcode()))) &&
4510             "Invalid Shuffle Vector Operand");
4511
4512      Value *LHS = nullptr, *RHS = nullptr;
4513      if (Instruction::isBinaryOp(E->getOpcode())) {
4514        setInsertPointAfterBundle(E);
4515        LHS = vectorizeTree(E->getOperand(0));
4516        RHS = vectorizeTree(E->getOperand(1));
4517      } else {
4518        setInsertPointAfterBundle(E);
4519        LHS = vectorizeTree(E->getOperand(0));
4520      }
4521
4522      if (E->VectorizedValue) {
4523        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4524        return E->VectorizedValue;
4525      }
4526
4527      Value *V0, *V1;
4528      if (Instruction::isBinaryOp(E->getOpcode())) {
4529        V0 = Builder.CreateBinOp(
4530            static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
4531        V1 = Builder.CreateBinOp(
4532            static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
4533      } else {
4534        V0 = Builder.CreateCast(
4535            static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
4536        V1 = Builder.CreateCast(
4537            static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
4538      }
4539
4540      // Create shuffle to take alternate operations from the vector.
4541      // Also, gather up main and alt scalar ops to propagate IR flags to
4542      // each vector operation.
4543      ValueList OpScalars, AltScalars;
4544      unsigned e = E->Scalars.size();
4545      SmallVector<Constant *, 8> Mask(e);
4546      for (unsigned i = 0; i < e; ++i) {
4547        auto *OpInst = cast<Instruction>(E->Scalars[i]);
4548        assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4549        if (OpInst->getOpcode() == E->getAltOpcode()) {
4550          Mask[i] = Builder.getInt32(e + i);
4551          AltScalars.push_back(E->Scalars[i]);
4552        } else {
4553          Mask[i] = Builder.getInt32(i);
4554          OpScalars.push_back(E->Scalars[i]);
4555        }
4556      }
4557
4558      Value *ShuffleMask = ConstantVector::get(Mask);
4559      propagateIRFlags(V0, OpScalars);
4560      propagateIRFlags(V1, AltScalars);
4561
4562      Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
4563      if (Instruction *I = dyn_cast<Instruction>(V))
4564        V = propagateMetadata(I, E->Scalars);
4565      if (NeedToShuffleReuses) {
4566        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4567                                        E->ReuseShuffleIndices, "shuffle");
4568      }
4569      E->VectorizedValue = V;
4570      ++NumVectorInstructions;
4571
4572      return V;
4573    }
4574    default:
4575    llvm_unreachable("unknown inst");
4576  }
4577  return nullptr;
4578}
4579
4580Value *BoUpSLP::vectorizeTree() {
4581  ExtraValueToDebugLocsMap ExternallyUsedValues;
4582  return vectorizeTree(ExternallyUsedValues);
4583}
4584
4585Value *
4586BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4587  // All blocks must be scheduled before any instructions are inserted.
4588  for (auto &BSIter : BlocksSchedules) {
4589    scheduleBlock(BSIter.second.get());
4590  }
4591
4592  Builder.SetInsertPoint(&F->getEntryBlock().front());
4593  auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
4594
4595  // If the vectorized tree can be rewritten in a smaller type, we truncate the
4596  // vectorized root. InstCombine will then rewrite the entire expression. We
4597  // sign extend the extracted values below.
4598  auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4599  if (MinBWs.count(ScalarRoot)) {
4600    if (auto *I = dyn_cast<Instruction>(VectorRoot))
4601      Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
4602    auto BundleWidth = VectorizableTree[0]->Scalars.size();
4603    auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4604    auto *VecTy = VectorType::get(MinTy, BundleWidth);
4605    auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
4606    VectorizableTree[0]->VectorizedValue = Trunc;
4607  }
4608
4609  LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
4610                    << " values .\n");
4611
4612  // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
4613  // specified by ScalarType.
4614  auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
4615    if (!MinBWs.count(ScalarRoot))
4616      return Ex;
4617    if (MinBWs[ScalarRoot].second)
4618      return Builder.CreateSExt(Ex, ScalarType);
4619    return Builder.CreateZExt(Ex, ScalarType);
4620  };
4621
4622  // Extract all of the elements with the external uses.
4623  for (const auto &ExternalUse : ExternalUses) {
4624    Value *Scalar = ExternalUse.Scalar;
4625    llvm::User *User = ExternalUse.User;
4626
4627    // Skip users that we already RAUW. This happens when one instruction
4628    // has multiple uses of the same value.
4629    if (User && !is_contained(Scalar->users(), User))
4630      continue;
4631    TreeEntry *E = getTreeEntry(Scalar);
4632    assert(E && "Invalid scalar");
4633    assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list");
4634
4635    Value *Vec = E->VectorizedValue;
4636    assert(Vec && "Can't find vectorizable value");
4637
4638    Value *Lane = Builder.getInt32(ExternalUse.Lane);
4639    // If User == nullptr, the Scalar is used as extra arg. Generate
4640    // ExtractElement instruction and update the record for this scalar in
4641    // ExternallyUsedValues.
4642    if (!User) {
4643      assert(ExternallyUsedValues.count(Scalar) &&
4644             "Scalar with nullptr as an external user must be registered in "
4645             "ExternallyUsedValues map");
4646      if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4647        Builder.SetInsertPoint(VecI->getParent(),
4648                               std::next(VecI->getIterator()));
4649      } else {
4650        Builder.SetInsertPoint(&F->getEntryBlock().front());
4651      }
4652      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4653      Ex = extend(ScalarRoot, Ex, Scalar->getType());
4654      CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
4655      auto &Locs = ExternallyUsedValues[Scalar];
4656      ExternallyUsedValues.insert({Ex, Locs});
4657      ExternallyUsedValues.erase(Scalar);
4658      // Required to update internally referenced instructions.
4659      Scalar->replaceAllUsesWith(Ex);
4660      continue;
4661    }
4662
4663    // Generate extracts for out-of-tree users.
4664    // Find the insertion point for the extractelement lane.
4665    if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4666      if (PHINode *PH = dyn_cast<PHINode>(User)) {
4667        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
4668          if (PH->getIncomingValue(i) == Scalar) {
4669            Instruction *IncomingTerminator =
4670                PH->getIncomingBlock(i)->getTerminator();
4671            if (isa<CatchSwitchInst>(IncomingTerminator)) {
4672              Builder.SetInsertPoint(VecI->getParent(),
4673                                     std::next(VecI->getIterator()));
4674            } else {
4675              Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
4676            }
4677            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4678            Ex = extend(ScalarRoot, Ex, Scalar->getType());
4679            CSEBlocks.insert(PH->getIncomingBlock(i));
4680            PH->setOperand(i, Ex);
4681          }
4682        }
4683      } else {
4684        Builder.SetInsertPoint(cast<Instruction>(User));
4685        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4686        Ex = extend(ScalarRoot, Ex, Scalar->getType());
4687        CSEBlocks.insert(cast<Instruction>(User)->getParent());
4688        User->replaceUsesOfWith(Scalar, Ex);
4689      }
4690    } else {
4691      Builder.SetInsertPoint(&F->getEntryBlock().front());
4692      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4693      Ex = extend(ScalarRoot, Ex, Scalar->getType());
4694      CSEBlocks.insert(&F->getEntryBlock());
4695      User->replaceUsesOfWith(Scalar, Ex);
4696    }
4697
4698    LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
4699  }
4700
4701  // For each vectorized value:
4702  for (auto &TEPtr : VectorizableTree) {
4703    TreeEntry *Entry = TEPtr.get();
4704
4705    // No need to handle users of gathered values.
4706    if (Entry->State == TreeEntry::NeedToGather)
4707      continue;
4708
4709    assert(Entry->VectorizedValue && "Can't find vectorizable value");
4710
4711    // For each lane:
4712    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4713      Value *Scalar = Entry->Scalars[Lane];
4714
4715#ifndef NDEBUG
4716      Type *Ty = Scalar->getType();
4717      if (!Ty->isVoidTy()) {
4718        for (User *U : Scalar->users()) {
4719          LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
4720
4721          // It is legal to delete users in the ignorelist.
4722          assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
4723                 "Deleting out-of-tree value");
4724        }
4725      }
4726#endif
4727      LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
4728      eraseInstruction(cast<Instruction>(Scalar));
4729    }
4730  }
4731
4732  Builder.ClearInsertionPoint();
4733
4734  return VectorizableTree[0]->VectorizedValue;
4735}
4736
4737void BoUpSLP::optimizeGatherSequence() {
4738  LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
4739                    << " gather sequences instructions.\n");
4740  // LICM InsertElementInst sequences.
4741  for (Instruction *I : GatherSeq) {
4742    if (isDeleted(I))
4743      continue;
4744
4745    // Check if this block is inside a loop.
4746    Loop *L = LI->getLoopFor(I->getParent());
4747    if (!L)
4748      continue;
4749
4750    // Check if it has a preheader.
4751    BasicBlock *PreHeader = L->getLoopPreheader();
4752    if (!PreHeader)
4753      continue;
4754
4755    // If the vector or the element that we insert into it are
4756    // instructions that are defined in this basic block then we can't
4757    // hoist this instruction.
4758    auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4759    auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4760    if (Op0 && L->contains(Op0))
4761      continue;
4762    if (Op1 && L->contains(Op1))
4763      continue;
4764
4765    // We can hoist this instruction. Move it to the pre-header.
4766    I->moveBefore(PreHeader->getTerminator());
4767  }
4768
4769  // Make a list of all reachable blocks in our CSE queue.
4770  SmallVector<const DomTreeNode *, 8> CSEWorkList;
4771  CSEWorkList.reserve(CSEBlocks.size());
4772  for (BasicBlock *BB : CSEBlocks)
4773    if (DomTreeNode *N = DT->getNode(BB)) {
4774      assert(DT->isReachableFromEntry(N));
4775      CSEWorkList.push_back(N);
4776    }
4777
4778  // Sort blocks by domination. This ensures we visit a block after all blocks
4779  // dominating it are visited.
4780  llvm::stable_sort(CSEWorkList,
4781                    [this](const DomTreeNode *A, const DomTreeNode *B) {
4782                      return DT->properlyDominates(A, B);
4783                    });
4784
4785  // Perform O(N^2) search over the gather sequences and merge identical
4786  // instructions. TODO: We can further optimize this scan if we split the
4787  // instructions into different buckets based on the insert lane.
4788  SmallVector<Instruction *, 16> Visited;
4789  for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
4790    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
4791           "Worklist not sorted properly!");
4792    BasicBlock *BB = (*I)->getBlock();
4793    // For all instructions in blocks containing gather sequences:
4794    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
4795      Instruction *In = &*it++;
4796      if (isDeleted(In))
4797        continue;
4798      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
4799        continue;
4800
4801      // Check if we can replace this instruction with any of the
4802      // visited instructions.
4803      for (Instruction *v : Visited) {
4804        if (In->isIdenticalTo(v) &&
4805            DT->dominates(v->getParent(), In->getParent())) {
4806          In->replaceAllUsesWith(v);
4807          eraseInstruction(In);
4808          In = nullptr;
4809          break;
4810        }
4811      }
4812      if (In) {
4813        assert(!is_contained(Visited, In));
4814        Visited.push_back(In);
4815      }
4816    }
4817  }
4818  CSEBlocks.clear();
4819  GatherSeq.clear();
4820}
4821
4822// Groups the instructions to a bundle (which is then a single scheduling entity)
4823// and schedules instructions until the bundle gets ready.
4824Optional<BoUpSLP::ScheduleData *>
4825BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
4826                                            const InstructionsState &S) {
4827  if (isa<PHINode>(S.OpValue))
4828    return nullptr;
4829
4830  // Initialize the instruction bundle.
4831  Instruction *OldScheduleEnd = ScheduleEnd;
4832  ScheduleData *PrevInBundle = nullptr;
4833  ScheduleData *Bundle = nullptr;
4834  bool ReSchedule = false;
4835  LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
4836
4837  // Make sure that the scheduling region contains all
4838  // instructions of the bundle.
4839  for (Value *V : VL) {
4840    if (!extendSchedulingRegion(V, S))
4841      return None;
4842  }
4843
4844  for (Value *V : VL) {
4845    ScheduleData *BundleMember = getScheduleData(V);
4846    assert(BundleMember &&
4847           "no ScheduleData for bundle member (maybe not in same basic block)");
4848    if (BundleMember->IsScheduled) {
4849      // A bundle member was scheduled as single instruction before and now
4850      // needs to be scheduled as part of the bundle. We just get rid of the
4851      // existing schedule.
4852      LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
4853                        << " was already scheduled\n");
4854      ReSchedule = true;
4855    }
4856    assert(BundleMember->isSchedulingEntity() &&
4857           "bundle member already part of other bundle");
4858    if (PrevInBundle) {
4859      PrevInBundle->NextInBundle = BundleMember;
4860    } else {
4861      Bundle = BundleMember;
4862    }
4863    BundleMember->UnscheduledDepsInBundle = 0;
4864    Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
4865
4866    // Group the instructions to a bundle.
4867    BundleMember->FirstInBundle = Bundle;
4868    PrevInBundle = BundleMember;
4869  }
4870  if (ScheduleEnd != OldScheduleEnd) {
4871    // The scheduling region got new instructions at the lower end (or it is a
4872    // new region for the first bundle). This makes it necessary to
4873    // recalculate all dependencies.
4874    // It is seldom that this needs to be done a second time after adding the
4875    // initial bundle to the region.
4876    for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4877      doForAllOpcodes(I, [](ScheduleData *SD) {
4878        SD->clearDependencies();
4879      });
4880    }
4881    ReSchedule = true;
4882  }
4883  if (ReSchedule) {
4884    resetSchedule();
4885    initialFillReadyList(ReadyInsts);
4886  }
4887  assert(Bundle && "Failed to find schedule bundle");
4888
4889  LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
4890                    << BB->getName() << "\n");
4891
4892  calculateDependencies(Bundle, true, SLP);
4893
4894  // Now try to schedule the new bundle. As soon as the bundle is "ready" it
4895  // means that there are no cyclic dependencies and we can schedule it.
4896  // Note that's important that we don't "schedule" the bundle yet (see
4897  // cancelScheduling).
4898  while (!Bundle->isReady() && !ReadyInsts.empty()) {
4899
4900    ScheduleData *pickedSD = ReadyInsts.back();
4901    ReadyInsts.pop_back();
4902
4903    if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
4904      schedule(pickedSD, ReadyInsts);
4905    }
4906  }
4907  if (!Bundle->isReady()) {
4908    cancelScheduling(VL, S.OpValue);
4909    return None;
4910  }
4911  return Bundle;
4912}
4913
4914void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
4915                                                Value *OpValue) {
4916  if (isa<PHINode>(OpValue))
4917    return;
4918
4919  ScheduleData *Bundle = getScheduleData(OpValue);
4920  LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
4921  assert(!Bundle->IsScheduled &&
4922         "Can't cancel bundle which is already scheduled");
4923  assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
4924         "tried to unbundle something which is not a bundle");
4925
4926  // Un-bundle: make single instructions out of the bundle.
4927  ScheduleData *BundleMember = Bundle;
4928  while (BundleMember) {
4929    assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
4930    BundleMember->FirstInBundle = BundleMember;
4931    ScheduleData *Next = BundleMember->NextInBundle;
4932    BundleMember->NextInBundle = nullptr;
4933    BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
4934    if (BundleMember->UnscheduledDepsInBundle == 0) {
4935      ReadyInsts.insert(BundleMember);
4936    }
4937    BundleMember = Next;
4938  }
4939}
4940
4941BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
4942  // Allocate a new ScheduleData for the instruction.
4943  if (ChunkPos >= ChunkSize) {
4944    ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
4945    ChunkPos = 0;
4946  }
4947  return &(ScheduleDataChunks.back()[ChunkPos++]);
4948}
4949
4950bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
4951                                                      const InstructionsState &S) {
4952  if (getScheduleData(V, isOneOf(S, V)))
4953    return true;
4954  Instruction *I = dyn_cast<Instruction>(V);
4955  assert(I && "bundle member must be an instruction");
4956  assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
4957  auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
4958    ScheduleData *ISD = getScheduleData(I);
4959    if (!ISD)
4960      return false;
4961    assert(isInSchedulingRegion(ISD) &&
4962           "ScheduleData not in scheduling region");
4963    ScheduleData *SD = allocateScheduleDataChunks();
4964    SD->Inst = I;
4965    SD->init(SchedulingRegionID, S.OpValue);
4966    ExtraScheduleDataMap[I][S.OpValue] = SD;
4967    return true;
4968  };
4969  if (CheckSheduleForI(I))
4970    return true;
4971  if (!ScheduleStart) {
4972    // It's the first instruction in the new region.
4973    initScheduleData(I, I->getNextNode(), nullptr, nullptr);
4974    ScheduleStart = I;
4975    ScheduleEnd = I->getNextNode();
4976    if (isOneOf(S, I) != I)
4977      CheckSheduleForI(I);
4978    assert(ScheduleEnd && "tried to vectorize a terminator?");
4979    LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
4980    return true;
4981  }
4982  // Search up and down at the same time, because we don't know if the new
4983  // instruction is above or below the existing scheduling region.
4984  BasicBlock::reverse_iterator UpIter =
4985      ++ScheduleStart->getIterator().getReverse();
4986  BasicBlock::reverse_iterator UpperEnd = BB->rend();
4987  BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
4988  BasicBlock::iterator LowerEnd = BB->end();
4989  while (true) {
4990    if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
4991      LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
4992      return false;
4993    }
4994
4995    if (UpIter != UpperEnd) {
4996      if (&*UpIter == I) {
4997        initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
4998        ScheduleStart = I;
4999        if (isOneOf(S, I) != I)
5000          CheckSheduleForI(I);
5001        LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
5002                          << "\n");
5003        return true;
5004      }
5005      ++UpIter;
5006    }
5007    if (DownIter != LowerEnd) {
5008      if (&*DownIter == I) {
5009        initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
5010                         nullptr);
5011        ScheduleEnd = I->getNextNode();
5012        if (isOneOf(S, I) != I)
5013          CheckSheduleForI(I);
5014        assert(ScheduleEnd && "tried to vectorize a terminator?");
5015        LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I
5016                          << "\n");
5017        return true;
5018      }
5019      ++DownIter;
5020    }
5021    assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
5022           "instruction not found in block");
5023  }
5024  return true;
5025}
5026
5027void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
5028                                                Instruction *ToI,
5029                                                ScheduleData *PrevLoadStore,
5030                                                ScheduleData *NextLoadStore) {
5031  ScheduleData *CurrentLoadStore = PrevLoadStore;
5032  for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
5033    ScheduleData *SD = ScheduleDataMap[I];
5034    if (!SD) {
5035      SD = allocateScheduleDataChunks();
5036      ScheduleDataMap[I] = SD;
5037      SD->Inst = I;
5038    }
5039    assert(!isInSchedulingRegion(SD) &&
5040           "new ScheduleData already in scheduling region");
5041    SD->init(SchedulingRegionID, I);
5042
5043    if (I->mayReadOrWriteMemory() &&
5044        (!isa<IntrinsicInst>(I) ||
5045         cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
5046      // Update the linked list of memory accessing instructions.
5047      if (CurrentLoadStore) {
5048        CurrentLoadStore->NextLoadStore = SD;
5049      } else {
5050        FirstLoadStoreInRegion = SD;
5051      }
5052      CurrentLoadStore = SD;
5053    }
5054  }
5055  if (NextLoadStore) {
5056    if (CurrentLoadStore)
5057      CurrentLoadStore->NextLoadStore = NextLoadStore;
5058  } else {
5059    LastLoadStoreInRegion = CurrentLoadStore;
5060  }
5061}
5062
5063void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
5064                                                     bool InsertInReadyList,
5065                                                     BoUpSLP *SLP) {
5066  assert(SD->isSchedulingEntity());
5067
5068  SmallVector<ScheduleData *, 10> WorkList;
5069  WorkList.push_back(SD);
5070
5071  while (!WorkList.empty()) {
5072    ScheduleData *SD = WorkList.back();
5073    WorkList.pop_back();
5074
5075    ScheduleData *BundleMember = SD;
5076    while (BundleMember) {
5077      assert(isInSchedulingRegion(BundleMember));
5078      if (!BundleMember->hasValidDependencies()) {
5079
5080        LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
5081                          << "\n");
5082        BundleMember->Dependencies = 0;
5083        BundleMember->resetUnscheduledDeps();
5084
5085        // Handle def-use chain dependencies.
5086        if (BundleMember->OpValue != BundleMember->Inst) {
5087          ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
5088          if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5089            BundleMember->Dependencies++;
5090            ScheduleData *DestBundle = UseSD->FirstInBundle;
5091            if (!DestBundle->IsScheduled)
5092              BundleMember->incrementUnscheduledDeps(1);
5093            if (!DestBundle->hasValidDependencies())
5094              WorkList.push_back(DestBundle);
5095          }
5096        } else {
5097          for (User *U : BundleMember->Inst->users()) {
5098            if (isa<Instruction>(U)) {
5099              ScheduleData *UseSD = getScheduleData(U);
5100              if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5101                BundleMember->Dependencies++;
5102                ScheduleData *DestBundle = UseSD->FirstInBundle;
5103                if (!DestBundle->IsScheduled)
5104                  BundleMember->incrementUnscheduledDeps(1);
5105                if (!DestBundle->hasValidDependencies())
5106                  WorkList.push_back(DestBundle);
5107              }
5108            } else {
5109              // I'm not sure if this can ever happen. But we need to be safe.
5110              // This lets the instruction/bundle never be scheduled and
5111              // eventually disable vectorization.
5112              BundleMember->Dependencies++;
5113              BundleMember->incrementUnscheduledDeps(1);
5114            }
5115          }
5116        }
5117
5118        // Handle the memory dependencies.
5119        ScheduleData *DepDest = BundleMember->NextLoadStore;
5120        if (DepDest) {
5121          Instruction *SrcInst = BundleMember->Inst;
5122          MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
5123          bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
5124          unsigned numAliased = 0;
5125          unsigned DistToSrc = 1;
5126
5127          while (DepDest) {
5128            assert(isInSchedulingRegion(DepDest));
5129
5130            // We have two limits to reduce the complexity:
5131            // 1) AliasedCheckLimit: It's a small limit to reduce calls to
5132            //    SLP->isAliased (which is the expensive part in this loop).
5133            // 2) MaxMemDepDistance: It's for very large blocks and it aborts
5134            //    the whole loop (even if the loop is fast, it's quadratic).
5135            //    It's important for the loop break condition (see below) to
5136            //    check this limit even between two read-only instructions.
5137            if (DistToSrc >= MaxMemDepDistance ||
5138                    ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
5139                     (numAliased >= AliasedCheckLimit ||
5140                      SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
5141
5142              // We increment the counter only if the locations are aliased
5143              // (instead of counting all alias checks). This gives a better
5144              // balance between reduced runtime and accurate dependencies.
5145              numAliased++;
5146
5147              DepDest->MemoryDependencies.push_back(BundleMember);
5148              BundleMember->Dependencies++;
5149              ScheduleData *DestBundle = DepDest->FirstInBundle;
5150              if (!DestBundle->IsScheduled) {
5151                BundleMember->incrementUnscheduledDeps(1);
5152              }
5153              if (!DestBundle->hasValidDependencies()) {
5154                WorkList.push_back(DestBundle);
5155              }
5156            }
5157            DepDest = DepDest->NextLoadStore;
5158
5159            // Example, explaining the loop break condition: Let's assume our
5160            // starting instruction is i0 and MaxMemDepDistance = 3.
5161            //
5162            //                      +--------v--v--v
5163            //             i0,i1,i2,i3,i4,i5,i6,i7,i8
5164            //             +--------^--^--^
5165            //
5166            // MaxMemDepDistance let us stop alias-checking at i3 and we add
5167            // dependencies from i0 to i3,i4,.. (even if they are not aliased).
5168            // Previously we already added dependencies from i3 to i6,i7,i8
5169            // (because of MaxMemDepDistance). As we added a dependency from
5170            // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
5171            // and we can abort this loop at i6.
5172            if (DistToSrc >= 2 * MaxMemDepDistance)
5173              break;
5174            DistToSrc++;
5175          }
5176        }
5177      }
5178      BundleMember = BundleMember->NextInBundle;
5179    }
5180    if (InsertInReadyList && SD->isReady()) {
5181      ReadyInsts.push_back(SD);
5182      LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
5183                        << "\n");
5184    }
5185  }
5186}
5187
5188void BoUpSLP::BlockScheduling::resetSchedule() {
5189  assert(ScheduleStart &&
5190         "tried to reset schedule on block which has not been scheduled");
5191  for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
5192    doForAllOpcodes(I, [&](ScheduleData *SD) {
5193      assert(isInSchedulingRegion(SD) &&
5194             "ScheduleData not in scheduling region");
5195      SD->IsScheduled = false;
5196      SD->resetUnscheduledDeps();
5197    });
5198  }
5199  ReadyInsts.clear();
5200}
5201
5202void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
5203  if (!BS->ScheduleStart)
5204    return;
5205
5206  LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
5207
5208  BS->resetSchedule();
5209
5210  // For the real scheduling we use a more sophisticated ready-list: it is
5211  // sorted by the original instruction location. This lets the final schedule
5212  // be as  close as possible to the original instruction order.
5213  struct ScheduleDataCompare {
5214    bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
5215      return SD2->SchedulingPriority < SD1->SchedulingPriority;
5216    }
5217  };
5218  std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
5219
5220  // Ensure that all dependency data is updated and fill the ready-list with
5221  // initial instructions.
5222  int Idx = 0;
5223  int NumToSchedule = 0;
5224  for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
5225       I = I->getNextNode()) {
5226    BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
5227      assert(SD->isPartOfBundle() ==
5228                 (getTreeEntry(SD->Inst) != nullptr) &&
5229             "scheduler and vectorizer bundle mismatch");
5230      SD->FirstInBundle->SchedulingPriority = Idx++;
5231      if (SD->isSchedulingEntity()) {
5232        BS->calculateDependencies(SD, false, this);
5233        NumToSchedule++;
5234      }
5235    });
5236  }
5237  BS->initialFillReadyList(ReadyInsts);
5238
5239  Instruction *LastScheduledInst = BS->ScheduleEnd;
5240
5241  // Do the "real" scheduling.
5242  while (!ReadyInsts.empty()) {
5243    ScheduleData *picked = *ReadyInsts.begin();
5244    ReadyInsts.erase(ReadyInsts.begin());
5245
5246    // Move the scheduled instruction(s) to their dedicated places, if not
5247    // there yet.
5248    ScheduleData *BundleMember = picked;
5249    while (BundleMember) {
5250      Instruction *pickedInst = BundleMember->Inst;
5251      if (LastScheduledInst->getNextNode() != pickedInst) {
5252        BS->BB->getInstList().remove(pickedInst);
5253        BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
5254                                     pickedInst);
5255      }
5256      LastScheduledInst = pickedInst;
5257      BundleMember = BundleMember->NextInBundle;
5258    }
5259
5260    BS->schedule(picked, ReadyInsts);
5261    NumToSchedule--;
5262  }
5263  assert(NumToSchedule == 0 && "could not schedule all instructions");
5264
5265  // Avoid duplicate scheduling of the block.
5266  BS->ScheduleStart = nullptr;
5267}
5268
5269unsigned BoUpSLP::getVectorElementSize(Value *V) const {
5270  // If V is a store, just return the width of the stored value without
5271  // traversing the expression tree. This is the common case.
5272  if (auto *Store = dyn_cast<StoreInst>(V))
5273    return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
5274
5275  // If V is not a store, we can traverse the expression tree to find loads
5276  // that feed it. The type of the loaded value may indicate a more suitable
5277  // width than V's type. We want to base the vector element size on the width
5278  // of memory operations where possible.
5279  SmallVector<Instruction *, 16> Worklist;
5280  SmallPtrSet<Instruction *, 16> Visited;
5281  if (auto *I = dyn_cast<Instruction>(V))
5282    Worklist.push_back(I);
5283
5284  // Traverse the expression tree in bottom-up order looking for loads. If we
5285  // encounter an instruction we don't yet handle, we give up.
5286  auto MaxWidth = 0u;
5287  auto FoundUnknownInst = false;
5288  while (!Worklist.empty() && !FoundUnknownInst) {
5289    auto *I = Worklist.pop_back_val();
5290    Visited.insert(I);
5291
5292    // We should only be looking at scalar instructions here. If the current
5293    // instruction has a vector type, give up.
5294    auto *Ty = I->getType();
5295    if (isa<VectorType>(Ty))
5296      FoundUnknownInst = true;
5297
5298    // If the current instruction is a load, update MaxWidth to reflect the
5299    // width of the loaded value.
5300    else if (isa<LoadInst>(I))
5301      MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
5302
5303    // Otherwise, we need to visit the operands of the instruction. We only
5304    // handle the interesting cases from buildTree here. If an operand is an
5305    // instruction we haven't yet visited, we add it to the worklist.
5306    else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5307             isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
5308      for (Use &U : I->operands())
5309        if (auto *J = dyn_cast<Instruction>(U.get()))
5310          if (!Visited.count(J))
5311            Worklist.push_back(J);
5312    }
5313
5314    // If we don't yet handle the instruction, give up.
5315    else
5316      FoundUnknownInst = true;
5317  }
5318
5319  // If we didn't encounter a memory access in the expression tree, or if we
5320  // gave up for some reason, just return the width of V.
5321  if (!MaxWidth || FoundUnknownInst)
5322    return DL->getTypeSizeInBits(V->getType());
5323
5324  // Otherwise, return the maximum width we found.
5325  return MaxWidth;
5326}
5327
5328// Determine if a value V in a vectorizable expression Expr can be demoted to a
5329// smaller type with a truncation. We collect the values that will be demoted
5330// in ToDemote and additional roots that require investigating in Roots.
5331static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
5332                                  SmallVectorImpl<Value *> &ToDemote,
5333                                  SmallVectorImpl<Value *> &Roots) {
5334  // We can always demote constants.
5335  if (isa<Constant>(V)) {
5336    ToDemote.push_back(V);
5337    return true;
5338  }
5339
5340  // If the value is not an instruction in the expression with only one use, it
5341  // cannot be demoted.
5342  auto *I = dyn_cast<Instruction>(V);
5343  if (!I || !I->hasOneUse() || !Expr.count(I))
5344    return false;
5345
5346  switch (I->getOpcode()) {
5347
5348  // We can always demote truncations and extensions. Since truncations can
5349  // seed additional demotion, we save the truncated value.
5350  case Instruction::Trunc:
5351    Roots.push_back(I->getOperand(0));
5352    break;
5353  case Instruction::ZExt:
5354  case Instruction::SExt:
5355    break;
5356
5357  // We can demote certain binary operations if we can demote both of their
5358  // operands.
5359  case Instruction::Add:
5360  case Instruction::Sub:
5361  case Instruction::Mul:
5362  case Instruction::And:
5363  case Instruction::Or:
5364  case Instruction::Xor:
5365    if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
5366        !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
5367      return false;
5368    break;
5369
5370  // We can demote selects if we can demote their true and false values.
5371  case Instruction::Select: {
5372    SelectInst *SI = cast<SelectInst>(I);
5373    if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
5374        !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
5375      return false;
5376    break;
5377  }
5378
5379  // We can demote phis if we can demote all their incoming operands. Note that
5380  // we don't need to worry about cycles since we ensure single use above.
5381  case Instruction::PHI: {
5382    PHINode *PN = cast<PHINode>(I);
5383    for (Value *IncValue : PN->incoming_values())
5384      if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
5385        return false;
5386    break;
5387  }
5388
5389  // Otherwise, conservatively give up.
5390  default:
5391    return false;
5392  }
5393
5394  // Record the value that we can demote.
5395  ToDemote.push_back(V);
5396  return true;
5397}
5398
5399void BoUpSLP::computeMinimumValueSizes() {
5400  // If there are no external uses, the expression tree must be rooted by a
5401  // store. We can't demote in-memory values, so there is nothing to do here.
5402  if (ExternalUses.empty())
5403    return;
5404
5405  // We only attempt to truncate integer expressions.
5406  auto &TreeRoot = VectorizableTree[0]->Scalars;
5407  auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
5408  if (!TreeRootIT)
5409    return;
5410
5411  // If the expression is not rooted by a store, these roots should have
5412  // external uses. We will rely on InstCombine to rewrite the expression in
5413  // the narrower type. However, InstCombine only rewrites single-use values.
5414  // This means that if a tree entry other than a root is used externally, it
5415  // must have multiple uses and InstCombine will not rewrite it. The code
5416  // below ensures that only the roots are used externally.
5417  SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
5418  for (auto &EU : ExternalUses)
5419    if (!Expr.erase(EU.Scalar))
5420      return;
5421  if (!Expr.empty())
5422    return;
5423
5424  // Collect the scalar values of the vectorizable expression. We will use this
5425  // context to determine which values can be demoted. If we see a truncation,
5426  // we mark it as seeding another demotion.
5427  for (auto &EntryPtr : VectorizableTree)
5428    Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
5429
5430  // Ensure the roots of the vectorizable tree don't form a cycle. They must
5431  // have a single external user that is not in the vectorizable tree.
5432  for (auto *Root : TreeRoot)
5433    if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
5434      return;
5435
5436  // Conservatively determine if we can actually truncate the roots of the
5437  // expression. Collect the values that can be demoted in ToDemote and
5438  // additional roots that require investigating in Roots.
5439  SmallVector<Value *, 32> ToDemote;
5440  SmallVector<Value *, 4> Roots;
5441  for (auto *Root : TreeRoot)
5442    if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
5443      return;
5444
5445  // The maximum bit width required to represent all the values that can be
5446  // demoted without loss of precision. It would be safe to truncate the roots
5447  // of the expression to this width.
5448  auto MaxBitWidth = 8u;
5449
5450  // We first check if all the bits of the roots are demanded. If they're not,
5451  // we can truncate the roots to this narrower type.
5452  for (auto *Root : TreeRoot) {
5453    auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
5454    MaxBitWidth = std::max<unsigned>(
5455        Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
5456  }
5457
5458  // True if the roots can be zero-extended back to their original type, rather
5459  // than sign-extended. We know that if the leading bits are not demanded, we
5460  // can safely zero-extend. So we initialize IsKnownPositive to True.
5461  bool IsKnownPositive = true;
5462
5463  // If all the bits of the roots are demanded, we can try a little harder to
5464  // compute a narrower type. This can happen, for example, if the roots are
5465  // getelementptr indices. InstCombine promotes these indices to the pointer
5466  // width. Thus, all their bits are technically demanded even though the
5467  // address computation might be vectorized in a smaller type.
5468  //
5469  // We start by looking at each entry that can be demoted. We compute the
5470  // maximum bit width required to store the scalar by using ValueTracking to
5471  // compute the number of high-order bits we can truncate.
5472  if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
5473      llvm::all_of(TreeRoot, [](Value *R) {
5474        assert(R->hasOneUse() && "Root should have only one use!");
5475        return isa<GetElementPtrInst>(R->user_back());
5476      })) {
5477    MaxBitWidth = 8u;
5478
5479    // Determine if the sign bit of all the roots is known to be zero. If not,
5480    // IsKnownPositive is set to False.
5481    IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
5482      KnownBits Known = computeKnownBits(R, *DL);
5483      return Known.isNonNegative();
5484    });
5485
5486    // Determine the maximum number of bits required to store the scalar
5487    // values.
5488    for (auto *Scalar : ToDemote) {
5489      auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
5490      auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
5491      MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
5492    }
5493
5494    // If we can't prove that the sign bit is zero, we must add one to the
5495    // maximum bit width to account for the unknown sign bit. This preserves
5496    // the existing sign bit so we can safely sign-extend the root back to the
5497    // original type. Otherwise, if we know the sign bit is zero, we will
5498    // zero-extend the root instead.
5499    //
5500    // FIXME: This is somewhat suboptimal, as there will be cases where adding
5501    //        one to the maximum bit width will yield a larger-than-necessary
5502    //        type. In general, we need to add an extra bit only if we can't
5503    //        prove that the upper bit of the original type is equal to the
5504    //        upper bit of the proposed smaller type. If these two bits are the
5505    //        same (either zero or one) we know that sign-extending from the
5506    //        smaller type will result in the same value. Here, since we can't
5507    //        yet prove this, we are just making the proposed smaller type
5508    //        larger to ensure correctness.
5509    if (!IsKnownPositive)
5510      ++MaxBitWidth;
5511  }
5512
5513  // Round MaxBitWidth up to the next power-of-two.
5514  if (!isPowerOf2_64(MaxBitWidth))
5515    MaxBitWidth = NextPowerOf2(MaxBitWidth);
5516
5517  // If the maximum bit width we compute is less than the with of the roots'
5518  // type, we can proceed with the narrowing. Otherwise, do nothing.
5519  if (MaxBitWidth >= TreeRootIT->getBitWidth())
5520    return;
5521
5522  // If we can truncate the root, we must collect additional values that might
5523  // be demoted as a result. That is, those seeded by truncations we will
5524  // modify.
5525  while (!Roots.empty())
5526    collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
5527
5528  // Finally, map the values we can demote to the maximum bit with we computed.
5529  for (auto *Scalar : ToDemote)
5530    MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
5531}
5532
5533namespace {
5534
5535/// The SLPVectorizer Pass.
5536struct SLPVectorizer : public FunctionPass {
5537  SLPVectorizerPass Impl;
5538
5539  /// Pass identification, replacement for typeid
5540  static char ID;
5541
5542  explicit SLPVectorizer() : FunctionPass(ID) {
5543    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
5544  }
5545
5546  bool doInitialization(Module &M) override {
5547    return false;
5548  }
5549
5550  bool runOnFunction(Function &F) override {
5551    if (skipFunction(F))
5552      return false;
5553
5554    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5555    auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5556    auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5557    auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
5558    auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5559    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5560    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5561    auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5562    auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
5563    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5564
5565    return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5566  }
5567
5568  void getAnalysisUsage(AnalysisUsage &AU) const override {
5569    FunctionPass::getAnalysisUsage(AU);
5570    AU.addRequired<AssumptionCacheTracker>();
5571    AU.addRequired<ScalarEvolutionWrapperPass>();
5572    AU.addRequired<AAResultsWrapperPass>();
5573    AU.addRequired<TargetTransformInfoWrapperPass>();
5574    AU.addRequired<LoopInfoWrapperPass>();
5575    AU.addRequired<DominatorTreeWrapperPass>();
5576    AU.addRequired<DemandedBitsWrapperPass>();
5577    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5578    AU.addPreserved<LoopInfoWrapperPass>();
5579    AU.addPreserved<DominatorTreeWrapperPass>();
5580    AU.addPreserved<AAResultsWrapperPass>();
5581    AU.addPreserved<GlobalsAAWrapperPass>();
5582    AU.setPreservesCFG();
5583  }
5584};
5585
5586} // end anonymous namespace
5587
5588PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
5589  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
5590  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
5591  auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
5592  auto *AA = &AM.getResult<AAManager>(F);
5593  auto *LI = &AM.getResult<LoopAnalysis>(F);
5594  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
5595  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
5596  auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
5597  auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5598
5599  bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5600  if (!Changed)
5601    return PreservedAnalyses::all();
5602
5603  PreservedAnalyses PA;
5604  PA.preserveSet<CFGAnalyses>();
5605  PA.preserve<AAManager>();
5606  PA.preserve<GlobalsAA>();
5607  return PA;
5608}
5609
5610bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
5611                                TargetTransformInfo *TTI_,
5612                                TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
5613                                LoopInfo *LI_, DominatorTree *DT_,
5614                                AssumptionCache *AC_, DemandedBits *DB_,
5615                                OptimizationRemarkEmitter *ORE_) {
5616  SE = SE_;
5617  TTI = TTI_;
5618  TLI = TLI_;
5619  AA = AA_;
5620  LI = LI_;
5621  DT = DT_;
5622  AC = AC_;
5623  DB = DB_;
5624  DL = &F.getParent()->getDataLayout();
5625
5626  Stores.clear();
5627  GEPs.clear();
5628  bool Changed = false;
5629
5630  // If the target claims to have no vector registers don't attempt
5631  // vectorization.
5632  if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
5633    return false;
5634
5635  // Don't vectorize when the attribute NoImplicitFloat is used.
5636  if (F.hasFnAttribute(Attribute::NoImplicitFloat))
5637    return false;
5638
5639  LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
5640
5641  // Use the bottom up slp vectorizer to construct chains that start with
5642  // store instructions.
5643  BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
5644
5645  // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
5646  // delete instructions.
5647
5648  // Scan the blocks in the function in post order.
5649  for (auto BB : post_order(&F.getEntryBlock())) {
5650    collectSeedInstructions(BB);
5651
5652    // Vectorize trees that end at stores.
5653    if (!Stores.empty()) {
5654      LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
5655                        << " underlying objects.\n");
5656      Changed |= vectorizeStoreChains(R);
5657    }
5658
5659    // Vectorize trees that end at reductions.
5660    Changed |= vectorizeChainsInBlock(BB, R);
5661
5662    // Vectorize the index computations of getelementptr instructions. This
5663    // is primarily intended to catch gather-like idioms ending at
5664    // non-consecutive loads.
5665    if (!GEPs.empty()) {
5666      LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
5667                        << " underlying objects.\n");
5668      Changed |= vectorizeGEPIndices(BB, R);
5669    }
5670  }
5671
5672  if (Changed) {
5673    R.optimizeGatherSequence();
5674    LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
5675    LLVM_DEBUG(verifyFunction(F));
5676  }
5677  return Changed;
5678}
5679
5680bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
5681                                            unsigned Idx) {
5682  LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
5683                    << "\n");
5684  const unsigned Sz = R.getVectorElementSize(Chain[0]);
5685  const unsigned MinVF = R.getMinVecRegSize() / Sz;
5686  unsigned VF = Chain.size();
5687
5688  if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
5689    return false;
5690
5691  LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
5692                    << "\n");
5693
5694  R.buildTree(Chain);
5695  Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5696  // TODO: Handle orders of size less than number of elements in the vector.
5697  if (Order && Order->size() == Chain.size()) {
5698    // TODO: reorder tree nodes without tree rebuilding.
5699    SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
5700    llvm::transform(*Order, ReorderedOps.begin(),
5701                    [Chain](const unsigned Idx) { return Chain[Idx]; });
5702    R.buildTree(ReorderedOps);
5703  }
5704  if (R.isTreeTinyAndNotFullyVectorizable())
5705    return false;
5706
5707  R.computeMinimumValueSizes();
5708
5709  int Cost = R.getTreeCost();
5710
5711  LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
5712  if (Cost < -SLPCostThreshold) {
5713    LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
5714
5715    using namespace ore;
5716
5717    R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
5718                                        cast<StoreInst>(Chain[0]))
5719                     << "Stores SLP vectorized with cost " << NV("Cost", Cost)
5720                     << " and with tree size "
5721                     << NV("TreeSize", R.getTreeSize()));
5722
5723    R.vectorizeTree();
5724    return true;
5725  }
5726
5727  return false;
5728}
5729
5730bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
5731                                        BoUpSLP &R) {
5732  // We may run into multiple chains that merge into a single chain. We mark the
5733  // stores that we vectorized so that we don't visit the same store twice.
5734  BoUpSLP::ValueSet VectorizedStores;
5735  bool Changed = false;
5736
5737  int E = Stores.size();
5738  SmallBitVector Tails(E, false);
5739  SmallVector<int, 16> ConsecutiveChain(E, E + 1);
5740  int MaxIter = MaxStoreLookup.getValue();
5741  int IterCnt;
5742  auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
5743                                  &ConsecutiveChain](int K, int Idx) {
5744    if (IterCnt >= MaxIter)
5745      return true;
5746    ++IterCnt;
5747    if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
5748      return false;
5749
5750    Tails.set(Idx);
5751    ConsecutiveChain[K] = Idx;
5752    return true;
5753  };
5754  // Do a quadratic search on all of the given stores in reverse order and find
5755  // all of the pairs of stores that follow each other.
5756  for (int Idx = E - 1; Idx >= 0; --Idx) {
5757    // If a store has multiple consecutive store candidates, search according
5758    // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
5759    // This is because usually pairing with immediate succeeding or preceding
5760    // candidate create the best chance to find slp vectorization opportunity.
5761    const int MaxLookDepth = std::max(E - Idx, Idx + 1);
5762    IterCnt = 0;
5763    for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
5764      if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
5765          (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
5766        break;
5767  }
5768
5769  // For stores that start but don't end a link in the chain:
5770  for (int Cnt = E; Cnt > 0; --Cnt) {
5771    int I = Cnt - 1;
5772    if (ConsecutiveChain[I] == E + 1 || Tails.test(I))
5773      continue;
5774    // We found a store instr that starts a chain. Now follow the chain and try
5775    // to vectorize it.
5776    BoUpSLP::ValueList Operands;
5777    // Collect the chain into a list.
5778    while (I != E + 1 && !VectorizedStores.count(Stores[I])) {
5779      Operands.push_back(Stores[I]);
5780      // Move to the next value in the chain.
5781      I = ConsecutiveChain[I];
5782    }
5783
5784    // If a vector register can't hold 1 element, we are done.
5785    unsigned MaxVecRegSize = R.getMaxVecRegSize();
5786    unsigned EltSize = R.getVectorElementSize(Stores[0]);
5787    if (MaxVecRegSize % EltSize != 0)
5788      continue;
5789
5790    unsigned MaxElts = MaxVecRegSize / EltSize;
5791    // FIXME: Is division-by-2 the correct step? Should we assert that the
5792    // register size is a power-of-2?
5793    unsigned StartIdx = 0;
5794    for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) {
5795      for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
5796        ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
5797        if (!VectorizedStores.count(Slice.front()) &&
5798            !VectorizedStores.count(Slice.back()) &&
5799            vectorizeStoreChain(Slice, R, Cnt)) {
5800          // Mark the vectorized stores so that we don't vectorize them again.
5801          VectorizedStores.insert(Slice.begin(), Slice.end());
5802          Changed = true;
5803          // If we vectorized initial block, no need to try to vectorize it
5804          // again.
5805          if (Cnt == StartIdx)
5806            StartIdx += Size;
5807          Cnt += Size;
5808          continue;
5809        }
5810        ++Cnt;
5811      }
5812      // Check if the whole array was vectorized already - exit.
5813      if (StartIdx >= Operands.size())
5814        break;
5815    }
5816  }
5817
5818  return Changed;
5819}
5820
5821void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
5822  // Initialize the collections. We will make a single pass over the block.
5823  Stores.clear();
5824  GEPs.clear();
5825
5826  // Visit the store and getelementptr instructions in BB and organize them in
5827  // Stores and GEPs according to the underlying objects of their pointer
5828  // operands.
5829  for (Instruction &I : *BB) {
5830    // Ignore store instructions that are volatile or have a pointer operand
5831    // that doesn't point to a scalar type.
5832    if (auto *SI = dyn_cast<StoreInst>(&I)) {
5833      if (!SI->isSimple())
5834        continue;
5835      if (!isValidElementType(SI->getValueOperand()->getType()))
5836        continue;
5837      Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
5838    }
5839
5840    // Ignore getelementptr instructions that have more than one index, a
5841    // constant index, or a pointer operand that doesn't point to a scalar
5842    // type.
5843    else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
5844      auto Idx = GEP->idx_begin()->get();
5845      if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
5846        continue;
5847      if (!isValidElementType(Idx->getType()))
5848        continue;
5849      if (GEP->getType()->isVectorTy())
5850        continue;
5851      GEPs[GEP->getPointerOperand()].push_back(GEP);
5852    }
5853  }
5854}
5855
5856bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
5857  if (!A || !B)
5858    return false;
5859  Value *VL[] = { A, B };
5860  return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
5861}
5862
5863bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
5864                                           int UserCost, bool AllowReorder) {
5865  if (VL.size() < 2)
5866    return false;
5867
5868  LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
5869                    << VL.size() << ".\n");
5870
5871  // Check that all of the parts are scalar instructions of the same type,
5872  // we permit an alternate opcode via InstructionsState.
5873  InstructionsState S = getSameOpcode(VL);
5874  if (!S.getOpcode())
5875    return false;
5876
5877  Instruction *I0 = cast<Instruction>(S.OpValue);
5878  unsigned Sz = R.getVectorElementSize(I0);
5879  unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
5880  unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
5881  if (MaxVF < 2) {
5882    R.getORE()->emit([&]() {
5883      return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
5884             << "Cannot SLP vectorize list: vectorization factor "
5885             << "less than 2 is not supported";
5886    });
5887    return false;
5888  }
5889
5890  for (Value *V : VL) {
5891    Type *Ty = V->getType();
5892    if (!isValidElementType(Ty)) {
5893      // NOTE: the following will give user internal llvm type name, which may
5894      // not be useful.
5895      R.getORE()->emit([&]() {
5896        std::string type_str;
5897        llvm::raw_string_ostream rso(type_str);
5898        Ty->print(rso);
5899        return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
5900               << "Cannot SLP vectorize list: type "
5901               << rso.str() + " is unsupported by vectorizer";
5902      });
5903      return false;
5904    }
5905  }
5906
5907  bool Changed = false;
5908  bool CandidateFound = false;
5909  int MinCost = SLPCostThreshold;
5910
5911  unsigned NextInst = 0, MaxInst = VL.size();
5912  for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
5913    // No actual vectorization should happen, if number of parts is the same as
5914    // provided vectorization factor (i.e. the scalar type is used for vector
5915    // code during codegen).
5916    auto *VecTy = VectorType::get(VL[0]->getType(), VF);
5917    if (TTI->getNumberOfParts(VecTy) == VF)
5918      continue;
5919    for (unsigned I = NextInst; I < MaxInst; ++I) {
5920      unsigned OpsWidth = 0;
5921
5922      if (I + VF > MaxInst)
5923        OpsWidth = MaxInst - I;
5924      else
5925        OpsWidth = VF;
5926
5927      if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
5928        break;
5929
5930      ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
5931      // Check that a previous iteration of this loop did not delete the Value.
5932      if (llvm::any_of(Ops, [&R](Value *V) {
5933            auto *I = dyn_cast<Instruction>(V);
5934            return I && R.isDeleted(I);
5935          }))
5936        continue;
5937
5938      LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
5939                        << "\n");
5940
5941      R.buildTree(Ops);
5942      Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5943      // TODO: check if we can allow reordering for more cases.
5944      if (AllowReorder && Order) {
5945        // TODO: reorder tree nodes without tree rebuilding.
5946        // Conceptually, there is nothing actually preventing us from trying to
5947        // reorder a larger list. In fact, we do exactly this when vectorizing
5948        // reductions. However, at this point, we only expect to get here when
5949        // there are exactly two operations.
5950        assert(Ops.size() == 2);
5951        Value *ReorderedOps[] = {Ops[1], Ops[0]};
5952        R.buildTree(ReorderedOps, None);
5953      }
5954      if (R.isTreeTinyAndNotFullyVectorizable())
5955        continue;
5956
5957      R.computeMinimumValueSizes();
5958      int Cost = R.getTreeCost() - UserCost;
5959      CandidateFound = true;
5960      MinCost = std::min(MinCost, Cost);
5961
5962      if (Cost < -SLPCostThreshold) {
5963        LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
5964        R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
5965                                                    cast<Instruction>(Ops[0]))
5966                                 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
5967                                 << " and with tree size "
5968                                 << ore::NV("TreeSize", R.getTreeSize()));
5969
5970        R.vectorizeTree();
5971        // Move to the next bundle.
5972        I += VF - 1;
5973        NextInst = I + 1;
5974        Changed = true;
5975      }
5976    }
5977  }
5978
5979  if (!Changed && CandidateFound) {
5980    R.getORE()->emit([&]() {
5981      return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
5982             << "List vectorization was possible but not beneficial with cost "
5983             << ore::NV("Cost", MinCost) << " >= "
5984             << ore::NV("Treshold", -SLPCostThreshold);
5985    });
5986  } else if (!Changed) {
5987    R.getORE()->emit([&]() {
5988      return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
5989             << "Cannot SLP vectorize list: vectorization was impossible"
5990             << " with available vectorization factors";
5991    });
5992  }
5993  return Changed;
5994}
5995
5996bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
5997  if (!I)
5998    return false;
5999
6000  if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
6001    return false;
6002
6003  Value *P = I->getParent();
6004
6005  // Vectorize in current basic block only.
6006  auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
6007  auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
6008  if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
6009    return false;
6010
6011  // Try to vectorize V.
6012  if (tryToVectorizePair(Op0, Op1, R))
6013    return true;
6014
6015  auto *A = dyn_cast<BinaryOperator>(Op0);
6016  auto *B = dyn_cast<BinaryOperator>(Op1);
6017  // Try to skip B.
6018  if (B && B->hasOneUse()) {
6019    auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
6020    auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
6021    if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
6022      return true;
6023    if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
6024      return true;
6025  }
6026
6027  // Try to skip A.
6028  if (A && A->hasOneUse()) {
6029    auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
6030    auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
6031    if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
6032      return true;
6033    if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
6034      return true;
6035  }
6036  return false;
6037}
6038
6039/// Generate a shuffle mask to be used in a reduction tree.
6040///
6041/// \param VecLen The length of the vector to be reduced.
6042/// \param NumEltsToRdx The number of elements that should be reduced in the
6043///        vector.
6044/// \param IsPairwise Whether the reduction is a pairwise or splitting
6045///        reduction. A pairwise reduction will generate a mask of
6046///        <0,2,...> or <1,3,..> while a splitting reduction will generate
6047///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
6048/// \param IsLeft True will generate a mask of even elements, odd otherwise.
6049static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
6050                                   bool IsPairwise, bool IsLeft,
6051                                   IRBuilder<> &Builder) {
6052  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
6053
6054  SmallVector<Constant *, 32> ShuffleMask(
6055      VecLen, UndefValue::get(Builder.getInt32Ty()));
6056
6057  if (IsPairwise)
6058    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
6059    for (unsigned i = 0; i != NumEltsToRdx; ++i)
6060      ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
6061  else
6062    // Move the upper half of the vector to the lower half.
6063    for (unsigned i = 0; i != NumEltsToRdx; ++i)
6064      ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
6065
6066  return ConstantVector::get(ShuffleMask);
6067}
6068
6069namespace {
6070
6071/// Model horizontal reductions.
6072///
6073/// A horizontal reduction is a tree of reduction operations (currently add and
6074/// fadd) that has operations that can be put into a vector as its leaf.
6075/// For example, this tree:
6076///
6077/// mul mul mul mul
6078///  \  /    \  /
6079///   +       +
6080///    \     /
6081///       +
6082/// This tree has "mul" as its reduced values and "+" as its reduction
6083/// operations. A reduction might be feeding into a store or a binary operation
6084/// feeding a phi.
6085///    ...
6086///    \  /
6087///     +
6088///     |
6089///  phi +=
6090///
6091///  Or:
6092///    ...
6093///    \  /
6094///     +
6095///     |
6096///   *p =
6097///
6098class HorizontalReduction {
6099  using ReductionOpsType = SmallVector<Value *, 16>;
6100  using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
6101  ReductionOpsListType  ReductionOps;
6102  SmallVector<Value *, 32> ReducedVals;
6103  // Use map vector to make stable output.
6104  MapVector<Instruction *, Value *> ExtraArgs;
6105
6106  /// Kind of the reduction data.
6107  enum ReductionKind {
6108    RK_None,       /// Not a reduction.
6109    RK_Arithmetic, /// Binary reduction data.
6110    RK_Min,        /// Minimum reduction data.
6111    RK_UMin,       /// Unsigned minimum reduction data.
6112    RK_Max,        /// Maximum reduction data.
6113    RK_UMax,       /// Unsigned maximum reduction data.
6114  };
6115
6116  /// Contains info about operation, like its opcode, left and right operands.
6117  class OperationData {
6118    /// Opcode of the instruction.
6119    unsigned Opcode = 0;
6120
6121    /// Left operand of the reduction operation.
6122    Value *LHS = nullptr;
6123
6124    /// Right operand of the reduction operation.
6125    Value *RHS = nullptr;
6126
6127    /// Kind of the reduction operation.
6128    ReductionKind Kind = RK_None;
6129
6130    /// True if float point min/max reduction has no NaNs.
6131    bool NoNaN = false;
6132
6133    /// Checks if the reduction operation can be vectorized.
6134    bool isVectorizable() const {
6135      return LHS && RHS &&
6136             // We currently only support add/mul/logical && min/max reductions.
6137             ((Kind == RK_Arithmetic &&
6138               (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
6139                Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
6140                Opcode == Instruction::And || Opcode == Instruction::Or ||
6141                Opcode == Instruction::Xor)) ||
6142              ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
6143               (Kind == RK_Min || Kind == RK_Max)) ||
6144              (Opcode == Instruction::ICmp &&
6145               (Kind == RK_UMin || Kind == RK_UMax)));
6146    }
6147
6148    /// Creates reduction operation with the current opcode.
6149    Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
6150      assert(isVectorizable() &&
6151             "Expected add|fadd or min/max reduction operation.");
6152      Value *Cmp = nullptr;
6153      switch (Kind) {
6154      case RK_Arithmetic:
6155        return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
6156                                   Name);
6157      case RK_Min:
6158        Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
6159                                          : Builder.CreateFCmpOLT(LHS, RHS);
6160        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6161      case RK_Max:
6162        Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
6163                                          : Builder.CreateFCmpOGT(LHS, RHS);
6164        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6165      case RK_UMin:
6166        assert(Opcode == Instruction::ICmp && "Expected integer types.");
6167        Cmp = Builder.CreateICmpULT(LHS, RHS);
6168        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6169      case RK_UMax:
6170        assert(Opcode == Instruction::ICmp && "Expected integer types.");
6171        Cmp = Builder.CreateICmpUGT(LHS, RHS);
6172        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6173      case RK_None:
6174        break;
6175      }
6176      llvm_unreachable("Unknown reduction operation.");
6177    }
6178
6179  public:
6180    explicit OperationData() = default;
6181
6182    /// Construction for reduced values. They are identified by opcode only and
6183    /// don't have associated LHS/RHS values.
6184    explicit OperationData(Value *V) {
6185      if (auto *I = dyn_cast<Instruction>(V))
6186        Opcode = I->getOpcode();
6187    }
6188
6189    /// Constructor for reduction operations with opcode and its left and
6190    /// right operands.
6191    OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
6192                  bool NoNaN = false)
6193        : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
6194      assert(Kind != RK_None && "One of the reduction operations is expected.");
6195    }
6196
6197    explicit operator bool() const { return Opcode; }
6198
6199    /// Return true if this operation is any kind of minimum or maximum.
6200    bool isMinMax() const {
6201      switch (Kind) {
6202      case RK_Arithmetic:
6203        return false;
6204      case RK_Min:
6205      case RK_Max:
6206      case RK_UMin:
6207      case RK_UMax:
6208        return true;
6209      case RK_None:
6210        break;
6211      }
6212      llvm_unreachable("Reduction kind is not set");
6213    }
6214
6215    /// Get the index of the first operand.
6216    unsigned getFirstOperandIndex() const {
6217      assert(!!*this && "The opcode is not set.");
6218      // We allow calling this before 'Kind' is set, so handle that specially.
6219      if (Kind == RK_None)
6220        return 0;
6221      return isMinMax() ? 1 : 0;
6222    }
6223
6224    /// Total number of operands in the reduction operation.
6225    unsigned getNumberOfOperands() const {
6226      assert(Kind != RK_None && !!*this && LHS && RHS &&
6227             "Expected reduction operation.");
6228      return isMinMax() ? 3 : 2;
6229    }
6230
6231    /// Checks if the operation has the same parent as \p P.
6232    bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
6233      assert(Kind != RK_None && !!*this && LHS && RHS &&
6234             "Expected reduction operation.");
6235      if (!IsRedOp)
6236        return I->getParent() == P;
6237      if (isMinMax()) {
6238        // SelectInst must be used twice while the condition op must have single
6239        // use only.
6240        auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
6241        return I->getParent() == P && Cmp && Cmp->getParent() == P;
6242      }
6243      // Arithmetic reduction operation must be used once only.
6244      return I->getParent() == P;
6245    }
6246
6247    /// Expected number of uses for reduction operations/reduced values.
6248    bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
6249      assert(Kind != RK_None && !!*this && LHS && RHS &&
6250             "Expected reduction operation.");
6251      if (isMinMax())
6252        return I->hasNUses(2) &&
6253               (!IsReductionOp ||
6254                cast<SelectInst>(I)->getCondition()->hasOneUse());
6255      return I->hasOneUse();
6256    }
6257
6258    /// Initializes the list of reduction operations.
6259    void initReductionOps(ReductionOpsListType &ReductionOps) {
6260      assert(Kind != RK_None && !!*this && LHS && RHS &&
6261             "Expected reduction operation.");
6262      if (isMinMax())
6263        ReductionOps.assign(2, ReductionOpsType());
6264      else
6265        ReductionOps.assign(1, ReductionOpsType());
6266    }
6267
6268    /// Add all reduction operations for the reduction instruction \p I.
6269    void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
6270      assert(Kind != RK_None && !!*this && LHS && RHS &&
6271             "Expected reduction operation.");
6272      if (isMinMax()) {
6273        ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
6274        ReductionOps[1].emplace_back(I);
6275      } else {
6276        ReductionOps[0].emplace_back(I);
6277      }
6278    }
6279
6280    /// Checks if instruction is associative and can be vectorized.
6281    bool isAssociative(Instruction *I) const {
6282      assert(Kind != RK_None && *this && LHS && RHS &&
6283             "Expected reduction operation.");
6284      switch (Kind) {
6285      case RK_Arithmetic:
6286        return I->isAssociative();
6287      case RK_Min:
6288      case RK_Max:
6289        return Opcode == Instruction::ICmp ||
6290               cast<Instruction>(I->getOperand(0))->isFast();
6291      case RK_UMin:
6292      case RK_UMax:
6293        assert(Opcode == Instruction::ICmp &&
6294               "Only integer compare operation is expected.");
6295        return true;
6296      case RK_None:
6297        break;
6298      }
6299      llvm_unreachable("Reduction kind is not set");
6300    }
6301
6302    /// Checks if the reduction operation can be vectorized.
6303    bool isVectorizable(Instruction *I) const {
6304      return isVectorizable() && isAssociative(I);
6305    }
6306
6307    /// Checks if two operation data are both a reduction op or both a reduced
6308    /// value.
6309    bool operator==(const OperationData &OD) const {
6310      assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
6311             "One of the comparing operations is incorrect.");
6312      return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
6313    }
6314    bool operator!=(const OperationData &OD) const { return !(*this == OD); }
6315    void clear() {
6316      Opcode = 0;
6317      LHS = nullptr;
6318      RHS = nullptr;
6319      Kind = RK_None;
6320      NoNaN = false;
6321    }
6322
6323    /// Get the opcode of the reduction operation.
6324    unsigned getOpcode() const {
6325      assert(isVectorizable() && "Expected vectorizable operation.");
6326      return Opcode;
6327    }
6328
6329    /// Get kind of reduction data.
6330    ReductionKind getKind() const { return Kind; }
6331    Value *getLHS() const { return LHS; }
6332    Value *getRHS() const { return RHS; }
6333    Type *getConditionType() const {
6334      return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr;
6335    }
6336
6337    /// Creates reduction operation with the current opcode with the IR flags
6338    /// from \p ReductionOps.
6339    Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6340                    const ReductionOpsListType &ReductionOps) const {
6341      assert(isVectorizable() &&
6342             "Expected add|fadd or min/max reduction operation.");
6343      auto *Op = createOp(Builder, Name);
6344      switch (Kind) {
6345      case RK_Arithmetic:
6346        propagateIRFlags(Op, ReductionOps[0]);
6347        return Op;
6348      case RK_Min:
6349      case RK_Max:
6350      case RK_UMin:
6351      case RK_UMax:
6352        if (auto *SI = dyn_cast<SelectInst>(Op))
6353          propagateIRFlags(SI->getCondition(), ReductionOps[0]);
6354        propagateIRFlags(Op, ReductionOps[1]);
6355        return Op;
6356      case RK_None:
6357        break;
6358      }
6359      llvm_unreachable("Unknown reduction operation.");
6360    }
6361    /// Creates reduction operation with the current opcode with the IR flags
6362    /// from \p I.
6363    Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6364                    Instruction *I) const {
6365      assert(isVectorizable() &&
6366             "Expected add|fadd or min/max reduction operation.");
6367      auto *Op = createOp(Builder, Name);
6368      switch (Kind) {
6369      case RK_Arithmetic:
6370        propagateIRFlags(Op, I);
6371        return Op;
6372      case RK_Min:
6373      case RK_Max:
6374      case RK_UMin:
6375      case RK_UMax:
6376        if (auto *SI = dyn_cast<SelectInst>(Op)) {
6377          propagateIRFlags(SI->getCondition(),
6378                           cast<SelectInst>(I)->getCondition());
6379        }
6380        propagateIRFlags(Op, I);
6381        return Op;
6382      case RK_None:
6383        break;
6384      }
6385      llvm_unreachable("Unknown reduction operation.");
6386    }
6387
6388    TargetTransformInfo::ReductionFlags getFlags() const {
6389      TargetTransformInfo::ReductionFlags Flags;
6390      Flags.NoNaN = NoNaN;
6391      switch (Kind) {
6392      case RK_Arithmetic:
6393        break;
6394      case RK_Min:
6395        Flags.IsSigned = Opcode == Instruction::ICmp;
6396        Flags.IsMaxOp = false;
6397        break;
6398      case RK_Max:
6399        Flags.IsSigned = Opcode == Instruction::ICmp;
6400        Flags.IsMaxOp = true;
6401        break;
6402      case RK_UMin:
6403        Flags.IsSigned = false;
6404        Flags.IsMaxOp = false;
6405        break;
6406      case RK_UMax:
6407        Flags.IsSigned = false;
6408        Flags.IsMaxOp = true;
6409        break;
6410      case RK_None:
6411        llvm_unreachable("Reduction kind is not set");
6412      }
6413      return Flags;
6414    }
6415  };
6416
6417  WeakTrackingVH ReductionRoot;
6418
6419  /// The operation data of the reduction operation.
6420  OperationData ReductionData;
6421
6422  /// The operation data of the values we perform a reduction on.
6423  OperationData ReducedValueData;
6424
6425  /// Should we model this reduction as a pairwise reduction tree or a tree that
6426  /// splits the vector in halves and adds those halves.
6427  bool IsPairwiseReduction = false;
6428
6429  /// Checks if the ParentStackElem.first should be marked as a reduction
6430  /// operation with an extra argument or as extra argument itself.
6431  void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6432                    Value *ExtraArg) {
6433    if (ExtraArgs.count(ParentStackElem.first)) {
6434      ExtraArgs[ParentStackElem.first] = nullptr;
6435      // We ran into something like:
6436      // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6437      // The whole ParentStackElem.first should be considered as an extra value
6438      // in this case.
6439      // Do not perform analysis of remaining operands of ParentStackElem.first
6440      // instruction, this whole instruction is an extra argument.
6441      ParentStackElem.second = ParentStackElem.first->getNumOperands();
6442    } else {
6443      // We ran into something like:
6444      // ParentStackElem.first += ... + ExtraArg + ...
6445      ExtraArgs[ParentStackElem.first] = ExtraArg;
6446    }
6447  }
6448
6449  static OperationData getOperationData(Value *V) {
6450    if (!V)
6451      return OperationData();
6452
6453    Value *LHS;
6454    Value *RHS;
6455    if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
6456      return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
6457                           RK_Arithmetic);
6458    }
6459    if (auto *Select = dyn_cast<SelectInst>(V)) {
6460      // Look for a min/max pattern.
6461      if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6462        return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6463      } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6464        return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6465      } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
6466                 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6467        return OperationData(
6468            Instruction::FCmp, LHS, RHS, RK_Min,
6469            cast<Instruction>(Select->getCondition())->hasNoNaNs());
6470      } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6471        return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6472      } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6473        return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6474      } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
6475                 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6476        return OperationData(
6477            Instruction::FCmp, LHS, RHS, RK_Max,
6478            cast<Instruction>(Select->getCondition())->hasNoNaNs());
6479      } else {
6480        // Try harder: look for min/max pattern based on instructions producing
6481        // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6482        // During the intermediate stages of SLP, it's very common to have
6483        // pattern like this (since optimizeGatherSequence is run only once
6484        // at the end):
6485        // %1 = extractelement <2 x i32> %a, i32 0
6486        // %2 = extractelement <2 x i32> %a, i32 1
6487        // %cond = icmp sgt i32 %1, %2
6488        // %3 = extractelement <2 x i32> %a, i32 0
6489        // %4 = extractelement <2 x i32> %a, i32 1
6490        // %select = select i1 %cond, i32 %3, i32 %4
6491        CmpInst::Predicate Pred;
6492        Instruction *L1;
6493        Instruction *L2;
6494
6495        LHS = Select->getTrueValue();
6496        RHS = Select->getFalseValue();
6497        Value *Cond = Select->getCondition();
6498
6499        // TODO: Support inverse predicates.
6500        if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6501          if (!isa<ExtractElementInst>(RHS) ||
6502              !L2->isIdenticalTo(cast<Instruction>(RHS)))
6503            return OperationData(V);
6504        } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6505          if (!isa<ExtractElementInst>(LHS) ||
6506              !L1->isIdenticalTo(cast<Instruction>(LHS)))
6507            return OperationData(V);
6508        } else {
6509          if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6510            return OperationData(V);
6511          if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6512              !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6513              !L2->isIdenticalTo(cast<Instruction>(RHS)))
6514            return OperationData(V);
6515        }
6516        switch (Pred) {
6517        default:
6518          return OperationData(V);
6519
6520        case CmpInst::ICMP_ULT:
6521        case CmpInst::ICMP_ULE:
6522          return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6523
6524        case CmpInst::ICMP_SLT:
6525        case CmpInst::ICMP_SLE:
6526          return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6527
6528        case CmpInst::FCMP_OLT:
6529        case CmpInst::FCMP_OLE:
6530        case CmpInst::FCMP_ULT:
6531        case CmpInst::FCMP_ULE:
6532          return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
6533                               cast<Instruction>(Cond)->hasNoNaNs());
6534
6535        case CmpInst::ICMP_UGT:
6536        case CmpInst::ICMP_UGE:
6537          return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6538
6539        case CmpInst::ICMP_SGT:
6540        case CmpInst::ICMP_SGE:
6541          return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6542
6543        case CmpInst::FCMP_OGT:
6544        case CmpInst::FCMP_OGE:
6545        case CmpInst::FCMP_UGT:
6546        case CmpInst::FCMP_UGE:
6547          return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
6548                               cast<Instruction>(Cond)->hasNoNaNs());
6549        }
6550      }
6551    }
6552    return OperationData(V);
6553  }
6554
6555public:
6556  HorizontalReduction() = default;
6557
6558  /// Try to find a reduction tree.
6559  bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6560    assert((!Phi || is_contained(Phi->operands(), B)) &&
6561           "Thi phi needs to use the binary operator");
6562
6563    ReductionData = getOperationData(B);
6564
6565    // We could have a initial reductions that is not an add.
6566    //  r *= v1 + v2 + v3 + v4
6567    // In such a case start looking for a tree rooted in the first '+'.
6568    if (Phi) {
6569      if (ReductionData.getLHS() == Phi) {
6570        Phi = nullptr;
6571        B = dyn_cast<Instruction>(ReductionData.getRHS());
6572        ReductionData = getOperationData(B);
6573      } else if (ReductionData.getRHS() == Phi) {
6574        Phi = nullptr;
6575        B = dyn_cast<Instruction>(ReductionData.getLHS());
6576        ReductionData = getOperationData(B);
6577      }
6578    }
6579
6580    if (!ReductionData.isVectorizable(B))
6581      return false;
6582
6583    Type *Ty = B->getType();
6584    if (!isValidElementType(Ty))
6585      return false;
6586    if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
6587      return false;
6588
6589    ReducedValueData.clear();
6590    ReductionRoot = B;
6591
6592    // Post order traverse the reduction tree starting at B. We only handle true
6593    // trees containing only binary operators.
6594    SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6595    Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
6596    ReductionData.initReductionOps(ReductionOps);
6597    while (!Stack.empty()) {
6598      Instruction *TreeN = Stack.back().first;
6599      unsigned EdgeToVist = Stack.back().second++;
6600      OperationData OpData = getOperationData(TreeN);
6601      bool IsReducedValue = OpData != ReductionData;
6602
6603      // Postorder vist.
6604      if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
6605        if (IsReducedValue)
6606          ReducedVals.push_back(TreeN);
6607        else {
6608          auto I = ExtraArgs.find(TreeN);
6609          if (I != ExtraArgs.end() && !I->second) {
6610            // Check if TreeN is an extra argument of its parent operation.
6611            if (Stack.size() <= 1) {
6612              // TreeN can't be an extra argument as it is a root reduction
6613              // operation.
6614              return false;
6615            }
6616            // Yes, TreeN is an extra argument, do not add it to a list of
6617            // reduction operations.
6618            // Stack[Stack.size() - 2] always points to the parent operation.
6619            markExtraArg(Stack[Stack.size() - 2], TreeN);
6620            ExtraArgs.erase(TreeN);
6621          } else
6622            ReductionData.addReductionOps(TreeN, ReductionOps);
6623        }
6624        // Retract.
6625        Stack.pop_back();
6626        continue;
6627      }
6628
6629      // Visit left or right.
6630      Value *NextV = TreeN->getOperand(EdgeToVist);
6631      if (NextV != Phi) {
6632        auto *I = dyn_cast<Instruction>(NextV);
6633        OpData = getOperationData(I);
6634        // Continue analysis if the next operand is a reduction operation or
6635        // (possibly) a reduced value. If the reduced value opcode is not set,
6636        // the first met operation != reduction operation is considered as the
6637        // reduced value class.
6638        if (I && (!ReducedValueData || OpData == ReducedValueData ||
6639                  OpData == ReductionData)) {
6640          const bool IsReductionOperation = OpData == ReductionData;
6641          // Only handle trees in the current basic block.
6642          if (!ReductionData.hasSameParent(I, B->getParent(),
6643                                           IsReductionOperation)) {
6644            // I is an extra argument for TreeN (its parent operation).
6645            markExtraArg(Stack.back(), I);
6646            continue;
6647          }
6648
6649          // Each tree node needs to have minimal number of users except for the
6650          // ultimate reduction.
6651          if (!ReductionData.hasRequiredNumberOfUses(I,
6652                                                     OpData == ReductionData) &&
6653              I != B) {
6654            // I is an extra argument for TreeN (its parent operation).
6655            markExtraArg(Stack.back(), I);
6656            continue;
6657          }
6658
6659          if (IsReductionOperation) {
6660            // We need to be able to reassociate the reduction operations.
6661            if (!OpData.isAssociative(I)) {
6662              // I is an extra argument for TreeN (its parent operation).
6663              markExtraArg(Stack.back(), I);
6664              continue;
6665            }
6666          } else if (ReducedValueData &&
6667                     ReducedValueData != OpData) {
6668            // Make sure that the opcodes of the operations that we are going to
6669            // reduce match.
6670            // I is an extra argument for TreeN (its parent operation).
6671            markExtraArg(Stack.back(), I);
6672            continue;
6673          } else if (!ReducedValueData)
6674            ReducedValueData = OpData;
6675
6676          Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
6677          continue;
6678        }
6679      }
6680      // NextV is an extra argument for TreeN (its parent operation).
6681      markExtraArg(Stack.back(), NextV);
6682    }
6683    return true;
6684  }
6685
6686  /// Attempt to vectorize the tree found by
6687  /// matchAssociativeReduction.
6688  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
6689    if (ReducedVals.empty())
6690      return false;
6691
6692    // If there is a sufficient number of reduction values, reduce
6693    // to a nearby power-of-2. Can safely generate oversized
6694    // vectors and rely on the backend to split them to legal sizes.
6695    unsigned NumReducedVals = ReducedVals.size();
6696    if (NumReducedVals < 4)
6697      return false;
6698
6699    unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
6700
6701    Value *VectorizedTree = nullptr;
6702
6703    // FIXME: Fast-math-flags should be set based on the instructions in the
6704    //        reduction (not all of 'fast' are required).
6705    IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
6706    FastMathFlags Unsafe;
6707    Unsafe.setFast();
6708    Builder.setFastMathFlags(Unsafe);
6709    unsigned i = 0;
6710
6711    BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
6712    // The same extra argument may be used several time, so log each attempt
6713    // to use it.
6714    for (auto &Pair : ExtraArgs) {
6715      assert(Pair.first && "DebugLoc must be set.");
6716      ExternallyUsedValues[Pair.second].push_back(Pair.first);
6717    }
6718
6719    // The compare instruction of a min/max is the insertion point for new
6720    // instructions and may be replaced with a new compare instruction.
6721    auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
6722      assert(isa<SelectInst>(RdxRootInst) &&
6723             "Expected min/max reduction to have select root instruction");
6724      Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
6725      assert(isa<Instruction>(ScalarCond) &&
6726             "Expected min/max reduction to have compare condition");
6727      return cast<Instruction>(ScalarCond);
6728    };
6729
6730    // The reduction root is used as the insertion point for new instructions,
6731    // so set it as externally used to prevent it from being deleted.
6732    ExternallyUsedValues[ReductionRoot];
6733    SmallVector<Value *, 16> IgnoreList;
6734    for (auto &V : ReductionOps)
6735      IgnoreList.append(V.begin(), V.end());
6736    while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
6737      auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
6738      V.buildTree(VL, ExternallyUsedValues, IgnoreList);
6739      Optional<ArrayRef<unsigned>> Order = V.bestOrder();
6740      // TODO: Handle orders of size less than number of elements in the vector.
6741      if (Order && Order->size() == VL.size()) {
6742        // TODO: reorder tree nodes without tree rebuilding.
6743        SmallVector<Value *, 4> ReorderedOps(VL.size());
6744        llvm::transform(*Order, ReorderedOps.begin(),
6745                        [VL](const unsigned Idx) { return VL[Idx]; });
6746        V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
6747      }
6748      if (V.isTreeTinyAndNotFullyVectorizable())
6749        break;
6750      if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode()))
6751        break;
6752
6753      V.computeMinimumValueSizes();
6754
6755      // Estimate cost.
6756      int TreeCost = V.getTreeCost();
6757      int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
6758      int Cost = TreeCost + ReductionCost;
6759      if (Cost >= -SLPCostThreshold) {
6760          V.getORE()->emit([&]() {
6761              return OptimizationRemarkMissed(
6762                         SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
6763                     << "Vectorizing horizontal reduction is possible"
6764                     << "but not beneficial with cost "
6765                     << ore::NV("Cost", Cost) << " and threshold "
6766                     << ore::NV("Threshold", -SLPCostThreshold);
6767          });
6768          break;
6769      }
6770
6771      LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
6772                        << Cost << ". (HorRdx)\n");
6773      V.getORE()->emit([&]() {
6774          return OptimizationRemark(
6775                     SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
6776          << "Vectorized horizontal reduction with cost "
6777          << ore::NV("Cost", Cost) << " and with tree size "
6778          << ore::NV("TreeSize", V.getTreeSize());
6779      });
6780
6781      // Vectorize a tree.
6782      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
6783      Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
6784
6785      // Emit a reduction. For min/max, the root is a select, but the insertion
6786      // point is the compare condition of that select.
6787      Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
6788      if (ReductionData.isMinMax())
6789        Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
6790      else
6791        Builder.SetInsertPoint(RdxRootInst);
6792
6793      Value *ReducedSubTree =
6794          emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
6795      if (VectorizedTree) {
6796        Builder.SetCurrentDebugLocation(Loc);
6797        OperationData VectReductionData(ReductionData.getOpcode(),
6798                                        VectorizedTree, ReducedSubTree,
6799                                        ReductionData.getKind());
6800        VectorizedTree =
6801            VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6802      } else
6803        VectorizedTree = ReducedSubTree;
6804      i += ReduxWidth;
6805      ReduxWidth = PowerOf2Floor(NumReducedVals - i);
6806    }
6807
6808    if (VectorizedTree) {
6809      // Finish the reduction.
6810      for (; i < NumReducedVals; ++i) {
6811        auto *I = cast<Instruction>(ReducedVals[i]);
6812        Builder.SetCurrentDebugLocation(I->getDebugLoc());
6813        OperationData VectReductionData(ReductionData.getOpcode(),
6814                                        VectorizedTree, I,
6815                                        ReductionData.getKind());
6816        VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
6817      }
6818      for (auto &Pair : ExternallyUsedValues) {
6819        // Add each externally used value to the final reduction.
6820        for (auto *I : Pair.second) {
6821          Builder.SetCurrentDebugLocation(I->getDebugLoc());
6822          OperationData VectReductionData(ReductionData.getOpcode(),
6823                                          VectorizedTree, Pair.first,
6824                                          ReductionData.getKind());
6825          VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
6826        }
6827      }
6828
6829      // Update users. For a min/max reduction that ends with a compare and
6830      // select, we also have to RAUW for the compare instruction feeding the
6831      // reduction root. That's because the original compare may have extra uses
6832      // besides the final select of the reduction.
6833      if (ReductionData.isMinMax()) {
6834        if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) {
6835          Instruction *ScalarCmp =
6836              getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot));
6837          ScalarCmp->replaceAllUsesWith(VecSelect->getCondition());
6838        }
6839      }
6840      ReductionRoot->replaceAllUsesWith(VectorizedTree);
6841
6842      // Mark all scalar reduction ops for deletion, they are replaced by the
6843      // vector reductions.
6844      V.eraseInstructions(IgnoreList);
6845    }
6846    return VectorizedTree != nullptr;
6847  }
6848
6849  unsigned numReductionValues() const {
6850    return ReducedVals.size();
6851  }
6852
6853private:
6854  /// Calculate the cost of a reduction.
6855  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
6856                       unsigned ReduxWidth) {
6857    Type *ScalarTy = FirstReducedVal->getType();
6858    Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
6859
6860    int PairwiseRdxCost;
6861    int SplittingRdxCost;
6862    switch (ReductionData.getKind()) {
6863    case RK_Arithmetic:
6864      PairwiseRdxCost =
6865          TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6866                                          /*IsPairwiseForm=*/true);
6867      SplittingRdxCost =
6868          TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6869                                          /*IsPairwiseForm=*/false);
6870      break;
6871    case RK_Min:
6872    case RK_Max:
6873    case RK_UMin:
6874    case RK_UMax: {
6875      Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
6876      bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
6877                        ReductionData.getKind() == RK_UMax;
6878      PairwiseRdxCost =
6879          TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6880                                      /*IsPairwiseForm=*/true, IsUnsigned);
6881      SplittingRdxCost =
6882          TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6883                                      /*IsPairwiseForm=*/false, IsUnsigned);
6884      break;
6885    }
6886    case RK_None:
6887      llvm_unreachable("Expected arithmetic or min/max reduction operation");
6888    }
6889
6890    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
6891    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
6892
6893    int ScalarReduxCost = 0;
6894    switch (ReductionData.getKind()) {
6895    case RK_Arithmetic:
6896      ScalarReduxCost =
6897          TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
6898      break;
6899    case RK_Min:
6900    case RK_Max:
6901    case RK_UMin:
6902    case RK_UMax:
6903      ScalarReduxCost =
6904          TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
6905          TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
6906                                  CmpInst::makeCmpResultType(ScalarTy));
6907      break;
6908    case RK_None:
6909      llvm_unreachable("Expected arithmetic or min/max reduction operation");
6910    }
6911    ScalarReduxCost *= (ReduxWidth - 1);
6912
6913    LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
6914                      << " for reduction that starts with " << *FirstReducedVal
6915                      << " (It is a "
6916                      << (IsPairwiseReduction ? "pairwise" : "splitting")
6917                      << " reduction)\n");
6918
6919    return VecReduxCost - ScalarReduxCost;
6920  }
6921
6922  /// Emit a horizontal reduction of the vectorized value.
6923  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
6924                       unsigned ReduxWidth, const TargetTransformInfo *TTI) {
6925    assert(VectorizedValue && "Need to have a vectorized tree node");
6926    assert(isPowerOf2_32(ReduxWidth) &&
6927           "We only handle power-of-two reductions for now");
6928
6929    if (!IsPairwiseReduction) {
6930      // FIXME: The builder should use an FMF guard. It should not be hard-coded
6931      //        to 'fast'.
6932      assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
6933      return createSimpleTargetReduction(
6934          Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
6935          ReductionData.getFlags(), ReductionOps.back());
6936    }
6937
6938    Value *TmpVec = VectorizedValue;
6939    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
6940      Value *LeftMask =
6941          createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
6942      Value *RightMask =
6943          createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
6944
6945      Value *LeftShuf = Builder.CreateShuffleVector(
6946          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
6947      Value *RightShuf = Builder.CreateShuffleVector(
6948          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
6949          "rdx.shuf.r");
6950      OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
6951                                      RightShuf, ReductionData.getKind());
6952      TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6953    }
6954
6955    // The result is in the first element of the vector.
6956    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
6957  }
6958};
6959
6960} // end anonymous namespace
6961
6962/// Recognize construction of vectors like
6963///  %ra = insertelement <4 x float> undef, float %s0, i32 0
6964///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
6965///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
6966///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
6967///  starting from the last insertelement or insertvalue instruction.
6968///
6969/// Also recognize aggregates like {<2 x float>, <2 x float>},
6970/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
6971/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
6972///
6973/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
6974///
6975/// \return true if it matches.
6976static bool findBuildAggregate(Value *LastInsertInst, TargetTransformInfo *TTI,
6977                               SmallVectorImpl<Value *> &BuildVectorOpds,
6978                               int &UserCost) {
6979  assert((isa<InsertElementInst>(LastInsertInst) ||
6980          isa<InsertValueInst>(LastInsertInst)) &&
6981         "Expected insertelement or insertvalue instruction!");
6982  UserCost = 0;
6983  do {
6984    Value *InsertedOperand;
6985    if (auto *IE = dyn_cast<InsertElementInst>(LastInsertInst)) {
6986      InsertedOperand = IE->getOperand(1);
6987      LastInsertInst = IE->getOperand(0);
6988      if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
6989        UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
6990                                            IE->getType(), CI->getZExtValue());
6991      }
6992    } else {
6993      auto *IV = cast<InsertValueInst>(LastInsertInst);
6994      InsertedOperand = IV->getInsertedValueOperand();
6995      LastInsertInst = IV->getAggregateOperand();
6996    }
6997    if (isa<InsertElementInst>(InsertedOperand) ||
6998        isa<InsertValueInst>(InsertedOperand)) {
6999      int TmpUserCost;
7000      SmallVector<Value *, 8> TmpBuildVectorOpds;
7001      if (!findBuildAggregate(InsertedOperand, TTI, TmpBuildVectorOpds,
7002                              TmpUserCost))
7003        return false;
7004      BuildVectorOpds.append(TmpBuildVectorOpds.rbegin(),
7005                             TmpBuildVectorOpds.rend());
7006      UserCost += TmpUserCost;
7007    } else {
7008      BuildVectorOpds.push_back(InsertedOperand);
7009    }
7010    if (isa<UndefValue>(LastInsertInst))
7011      break;
7012    if ((!isa<InsertValueInst>(LastInsertInst) &&
7013         !isa<InsertElementInst>(LastInsertInst)) ||
7014        !LastInsertInst->hasOneUse())
7015      return false;
7016  } while (true);
7017  std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
7018  return true;
7019}
7020
7021static bool PhiTypeSorterFunc(Value *V, Value *V2) {
7022  return V->getType() < V2->getType();
7023}
7024
7025/// Try and get a reduction value from a phi node.
7026///
7027/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
7028/// if they come from either \p ParentBB or a containing loop latch.
7029///
7030/// \returns A candidate reduction value if possible, or \code nullptr \endcode
7031/// if not possible.
7032static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
7033                                BasicBlock *ParentBB, LoopInfo *LI) {
7034  // There are situations where the reduction value is not dominated by the
7035  // reduction phi. Vectorizing such cases has been reported to cause
7036  // miscompiles. See PR25787.
7037  auto DominatedReduxValue = [&](Value *R) {
7038    return isa<Instruction>(R) &&
7039           DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
7040  };
7041
7042  Value *Rdx = nullptr;
7043
7044  // Return the incoming value if it comes from the same BB as the phi node.
7045  if (P->getIncomingBlock(0) == ParentBB) {
7046    Rdx = P->getIncomingValue(0);
7047  } else if (P->getIncomingBlock(1) == ParentBB) {
7048    Rdx = P->getIncomingValue(1);
7049  }
7050
7051  if (Rdx && DominatedReduxValue(Rdx))
7052    return Rdx;
7053
7054  // Otherwise, check whether we have a loop latch to look at.
7055  Loop *BBL = LI->getLoopFor(ParentBB);
7056  if (!BBL)
7057    return nullptr;
7058  BasicBlock *BBLatch = BBL->getLoopLatch();
7059  if (!BBLatch)
7060    return nullptr;
7061
7062  // There is a loop latch, return the incoming value if it comes from
7063  // that. This reduction pattern occasionally turns up.
7064  if (P->getIncomingBlock(0) == BBLatch) {
7065    Rdx = P->getIncomingValue(0);
7066  } else if (P->getIncomingBlock(1) == BBLatch) {
7067    Rdx = P->getIncomingValue(1);
7068  }
7069
7070  if (Rdx && DominatedReduxValue(Rdx))
7071    return Rdx;
7072
7073  return nullptr;
7074}
7075
7076/// Attempt to reduce a horizontal reduction.
7077/// If it is legal to match a horizontal reduction feeding the phi node \a P
7078/// with reduction operators \a Root (or one of its operands) in a basic block
7079/// \a BB, then check if it can be done. If horizontal reduction is not found
7080/// and root instruction is a binary operation, vectorization of the operands is
7081/// attempted.
7082/// \returns true if a horizontal reduction was matched and reduced or operands
7083/// of one of the binary instruction were vectorized.
7084/// \returns false if a horizontal reduction was not matched (or not possible)
7085/// or no vectorization of any binary operation feeding \a Root instruction was
7086/// performed.
7087static bool tryToVectorizeHorReductionOrInstOperands(
7088    PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
7089    TargetTransformInfo *TTI,
7090    const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
7091  if (!ShouldVectorizeHor)
7092    return false;
7093
7094  if (!Root)
7095    return false;
7096
7097  if (Root->getParent() != BB || isa<PHINode>(Root))
7098    return false;
7099  // Start analysis starting from Root instruction. If horizontal reduction is
7100  // found, try to vectorize it. If it is not a horizontal reduction or
7101  // vectorization is not possible or not effective, and currently analyzed
7102  // instruction is a binary operation, try to vectorize the operands, using
7103  // pre-order DFS traversal order. If the operands were not vectorized, repeat
7104  // the same procedure considering each operand as a possible root of the
7105  // horizontal reduction.
7106  // Interrupt the process if the Root instruction itself was vectorized or all
7107  // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
7108  SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
7109  SmallPtrSet<Value *, 8> VisitedInstrs;
7110  bool Res = false;
7111  while (!Stack.empty()) {
7112    Instruction *Inst;
7113    unsigned Level;
7114    std::tie(Inst, Level) = Stack.pop_back_val();
7115    auto *BI = dyn_cast<BinaryOperator>(Inst);
7116    auto *SI = dyn_cast<SelectInst>(Inst);
7117    if (BI || SI) {
7118      HorizontalReduction HorRdx;
7119      if (HorRdx.matchAssociativeReduction(P, Inst)) {
7120        if (HorRdx.tryToReduce(R, TTI)) {
7121          Res = true;
7122          // Set P to nullptr to avoid re-analysis of phi node in
7123          // matchAssociativeReduction function unless this is the root node.
7124          P = nullptr;
7125          continue;
7126        }
7127      }
7128      if (P && BI) {
7129        Inst = dyn_cast<Instruction>(BI->getOperand(0));
7130        if (Inst == P)
7131          Inst = dyn_cast<Instruction>(BI->getOperand(1));
7132        if (!Inst) {
7133          // Set P to nullptr to avoid re-analysis of phi node in
7134          // matchAssociativeReduction function unless this is the root node.
7135          P = nullptr;
7136          continue;
7137        }
7138      }
7139    }
7140    // Set P to nullptr to avoid re-analysis of phi node in
7141    // matchAssociativeReduction function unless this is the root node.
7142    P = nullptr;
7143    if (Vectorize(Inst, R)) {
7144      Res = true;
7145      continue;
7146    }
7147
7148    // Try to vectorize operands.
7149    // Continue analysis for the instruction from the same basic block only to
7150    // save compile time.
7151    if (++Level < RecursionMaxDepth)
7152      for (auto *Op : Inst->operand_values())
7153        if (VisitedInstrs.insert(Op).second)
7154          if (auto *I = dyn_cast<Instruction>(Op))
7155            if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB)
7156              Stack.emplace_back(I, Level);
7157  }
7158  return Res;
7159}
7160
7161bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
7162                                                 BasicBlock *BB, BoUpSLP &R,
7163                                                 TargetTransformInfo *TTI) {
7164  if (!V)
7165    return false;
7166  auto *I = dyn_cast<Instruction>(V);
7167  if (!I)
7168    return false;
7169
7170  if (!isa<BinaryOperator>(I))
7171    P = nullptr;
7172  // Try to match and vectorize a horizontal reduction.
7173  auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
7174    return tryToVectorize(I, R);
7175  };
7176  return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
7177                                                  ExtraVectorization);
7178}
7179
7180bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
7181                                                 BasicBlock *BB, BoUpSLP &R) {
7182  int UserCost = 0;
7183  const DataLayout &DL = BB->getModule()->getDataLayout();
7184  if (!R.canMapToVector(IVI->getType(), DL))
7185    return false;
7186
7187  SmallVector<Value *, 16> BuildVectorOpds;
7188  if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, UserCost))
7189    return false;
7190
7191  LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
7192  // Aggregate value is unlikely to be processed in vector register, we need to
7193  // extract scalars into scalar registers, so NeedExtraction is set true.
7194  return tryToVectorizeList(BuildVectorOpds, R, UserCost);
7195}
7196
7197bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
7198                                                   BasicBlock *BB, BoUpSLP &R) {
7199  int UserCost;
7200  SmallVector<Value *, 16> BuildVectorOpds;
7201  if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, UserCost) ||
7202      (llvm::all_of(BuildVectorOpds,
7203                    [](Value *V) { return isa<ExtractElementInst>(V); }) &&
7204       isShuffle(BuildVectorOpds)))
7205    return false;
7206
7207  // Vectorize starting with the build vector operands ignoring the BuildVector
7208  // instructions for the purpose of scheduling and user extraction.
7209  return tryToVectorizeList(BuildVectorOpds, R, UserCost);
7210}
7211
7212bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
7213                                         BoUpSLP &R) {
7214  if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
7215    return true;
7216
7217  bool OpsChanged = false;
7218  for (int Idx = 0; Idx < 2; ++Idx) {
7219    OpsChanged |=
7220        vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
7221  }
7222  return OpsChanged;
7223}
7224
7225bool SLPVectorizerPass::vectorizeSimpleInstructions(
7226    SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) {
7227  bool OpsChanged = false;
7228  for (auto *I : reverse(Instructions)) {
7229    if (R.isDeleted(I))
7230      continue;
7231    if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
7232      OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
7233    else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
7234      OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
7235    else if (auto *CI = dyn_cast<CmpInst>(I))
7236      OpsChanged |= vectorizeCmpInst(CI, BB, R);
7237  }
7238  Instructions.clear();
7239  return OpsChanged;
7240}
7241
7242bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
7243  bool Changed = false;
7244  SmallVector<Value *, 4> Incoming;
7245  SmallPtrSet<Value *, 16> VisitedInstrs;
7246
7247  bool HaveVectorizedPhiNodes = true;
7248  while (HaveVectorizedPhiNodes) {
7249    HaveVectorizedPhiNodes = false;
7250
7251    // Collect the incoming values from the PHIs.
7252    Incoming.clear();
7253    for (Instruction &I : *BB) {
7254      PHINode *P = dyn_cast<PHINode>(&I);
7255      if (!P)
7256        break;
7257
7258      if (!VisitedInstrs.count(P) && !R.isDeleted(P))
7259        Incoming.push_back(P);
7260    }
7261
7262    // Sort by type.
7263    llvm::stable_sort(Incoming, PhiTypeSorterFunc);
7264
7265    // Try to vectorize elements base on their type.
7266    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
7267                                           E = Incoming.end();
7268         IncIt != E;) {
7269
7270      // Look for the next elements with the same type.
7271      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
7272      while (SameTypeIt != E &&
7273             (*SameTypeIt)->getType() == (*IncIt)->getType()) {
7274        VisitedInstrs.insert(*SameTypeIt);
7275        ++SameTypeIt;
7276      }
7277
7278      // Try to vectorize them.
7279      unsigned NumElts = (SameTypeIt - IncIt);
7280      LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
7281                        << NumElts << ")\n");
7282      // The order in which the phi nodes appear in the program does not matter.
7283      // So allow tryToVectorizeList to reorder them if it is beneficial. This
7284      // is done when there are exactly two elements since tryToVectorizeList
7285      // asserts that there are only two values when AllowReorder is true.
7286      bool AllowReorder = NumElts == 2;
7287      if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
7288                                            /*UserCost=*/0, AllowReorder)) {
7289        // Success start over because instructions might have been changed.
7290        HaveVectorizedPhiNodes = true;
7291        Changed = true;
7292        break;
7293      }
7294
7295      // Start over at the next instruction of a different type (or the end).
7296      IncIt = SameTypeIt;
7297    }
7298  }
7299
7300  VisitedInstrs.clear();
7301
7302  SmallVector<Instruction *, 8> PostProcessInstructions;
7303  SmallDenseSet<Instruction *, 4> KeyNodes;
7304  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
7305    // Skip instructions marked for the deletion.
7306    if (R.isDeleted(&*it))
7307      continue;
7308    // We may go through BB multiple times so skip the one we have checked.
7309    if (!VisitedInstrs.insert(&*it).second) {
7310      if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
7311          vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
7312        // We would like to start over since some instructions are deleted
7313        // and the iterator may become invalid value.
7314        Changed = true;
7315        it = BB->begin();
7316        e = BB->end();
7317      }
7318      continue;
7319    }
7320
7321    if (isa<DbgInfoIntrinsic>(it))
7322      continue;
7323
7324    // Try to vectorize reductions that use PHINodes.
7325    if (PHINode *P = dyn_cast<PHINode>(it)) {
7326      // Check that the PHI is a reduction PHI.
7327      if (P->getNumIncomingValues() != 2)
7328        return Changed;
7329
7330      // Try to match and vectorize a horizontal reduction.
7331      if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
7332                                   TTI)) {
7333        Changed = true;
7334        it = BB->begin();
7335        e = BB->end();
7336        continue;
7337      }
7338      continue;
7339    }
7340
7341    // Ran into an instruction without users, like terminator, or function call
7342    // with ignored return value, store. Ignore unused instructions (basing on
7343    // instruction type, except for CallInst and InvokeInst).
7344    if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
7345                            isa<InvokeInst>(it))) {
7346      KeyNodes.insert(&*it);
7347      bool OpsChanged = false;
7348      if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
7349        for (auto *V : it->operand_values()) {
7350          // Try to match and vectorize a horizontal reduction.
7351          OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
7352        }
7353      }
7354      // Start vectorization of post-process list of instructions from the
7355      // top-tree instructions to try to vectorize as many instructions as
7356      // possible.
7357      OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
7358      if (OpsChanged) {
7359        // We would like to start over since some instructions are deleted
7360        // and the iterator may become invalid value.
7361        Changed = true;
7362        it = BB->begin();
7363        e = BB->end();
7364        continue;
7365      }
7366    }
7367
7368    if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
7369        isa<InsertValueInst>(it))
7370      PostProcessInstructions.push_back(&*it);
7371  }
7372
7373  return Changed;
7374}
7375
7376bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
7377  auto Changed = false;
7378  for (auto &Entry : GEPs) {
7379    // If the getelementptr list has fewer than two elements, there's nothing
7380    // to do.
7381    if (Entry.second.size() < 2)
7382      continue;
7383
7384    LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
7385                      << Entry.second.size() << ".\n");
7386
7387    // Process the GEP list in chunks suitable for the target's supported
7388    // vector size. If a vector register can't hold 1 element, we are done.
7389    unsigned MaxVecRegSize = R.getMaxVecRegSize();
7390    unsigned EltSize = R.getVectorElementSize(Entry.second[0]);
7391    if (MaxVecRegSize < EltSize)
7392      continue;
7393
7394    unsigned MaxElts = MaxVecRegSize / EltSize;
7395    for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
7396      auto Len = std::min<unsigned>(BE - BI, MaxElts);
7397      auto GEPList = makeArrayRef(&Entry.second[BI], Len);
7398
7399      // Initialize a set a candidate getelementptrs. Note that we use a
7400      // SetVector here to preserve program order. If the index computations
7401      // are vectorizable and begin with loads, we want to minimize the chance
7402      // of having to reorder them later.
7403      SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
7404
7405      // Some of the candidates may have already been vectorized after we
7406      // initially collected them. If so, they are marked as deleted, so remove
7407      // them from the set of candidates.
7408      Candidates.remove_if(
7409          [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
7410
7411      // Remove from the set of candidates all pairs of getelementptrs with
7412      // constant differences. Such getelementptrs are likely not good
7413      // candidates for vectorization in a bottom-up phase since one can be
7414      // computed from the other. We also ensure all candidate getelementptr
7415      // indices are unique.
7416      for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
7417        auto *GEPI = GEPList[I];
7418        if (!Candidates.count(GEPI))
7419          continue;
7420        auto *SCEVI = SE->getSCEV(GEPList[I]);
7421        for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
7422          auto *GEPJ = GEPList[J];
7423          auto *SCEVJ = SE->getSCEV(GEPList[J]);
7424          if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
7425            Candidates.remove(GEPI);
7426            Candidates.remove(GEPJ);
7427          } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
7428            Candidates.remove(GEPJ);
7429          }
7430        }
7431      }
7432
7433      // We break out of the above computation as soon as we know there are
7434      // fewer than two candidates remaining.
7435      if (Candidates.size() < 2)
7436        continue;
7437
7438      // Add the single, non-constant index of each candidate to the bundle. We
7439      // ensured the indices met these constraints when we originally collected
7440      // the getelementptrs.
7441      SmallVector<Value *, 16> Bundle(Candidates.size());
7442      auto BundleIndex = 0u;
7443      for (auto *V : Candidates) {
7444        auto *GEP = cast<GetElementPtrInst>(V);
7445        auto *GEPIdx = GEP->idx_begin()->get();
7446        assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
7447        Bundle[BundleIndex++] = GEPIdx;
7448      }
7449
7450      // Try and vectorize the indices. We are currently only interested in
7451      // gather-like cases of the form:
7452      //
7453      // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
7454      //
7455      // where the loads of "a", the loads of "b", and the subtractions can be
7456      // performed in parallel. It's likely that detecting this pattern in a
7457      // bottom-up phase will be simpler and less costly than building a
7458      // full-blown top-down phase beginning at the consecutive loads.
7459      Changed |= tryToVectorizeList(Bundle, R);
7460    }
7461  }
7462  return Changed;
7463}
7464
7465bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
7466  bool Changed = false;
7467  // Attempt to sort and vectorize each of the store-groups.
7468  for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
7469       ++it) {
7470    if (it->second.size() < 2)
7471      continue;
7472
7473    LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
7474                      << it->second.size() << ".\n");
7475
7476    Changed |= vectorizeStores(it->second, R);
7477  }
7478  return Changed;
7479}
7480
7481char SLPVectorizer::ID = 0;
7482
7483static const char lv_name[] = "SLP Vectorizer";
7484
7485INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
7486INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7487INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7488INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7489INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7490INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7491INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7492INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7493INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
7494
7495Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
7496