1//===- FunctionComparator.h - Function Comparator -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the FunctionComparator and GlobalNumberState classes
10// which are used by the MergeFunctions pass for comparing functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/FunctionComparator.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/Hashing.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/IR/Attributes.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/CallSite.h"
24#include "llvm/IR/Constant.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/GlobalValue.h"
30#include "llvm/IR/InlineAsm.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/Instruction.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Value.h"
40#include "llvm/Support/Casting.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <utility>
49
50using namespace llvm;
51
52#define DEBUG_TYPE "functioncomparator"
53
54int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
55  if (L < R) return -1;
56  if (L > R) return 1;
57  return 0;
58}
59
60int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
61  if ((int)L < (int)R) return -1;
62  if ((int)L > (int)R) return 1;
63  return 0;
64}
65
66int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
67  if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
68    return Res;
69  if (L.ugt(R)) return 1;
70  if (R.ugt(L)) return -1;
71  return 0;
72}
73
74int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
75  // Floats are ordered first by semantics (i.e. float, double, half, etc.),
76  // then by value interpreted as a bitstring (aka APInt).
77  const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
78  if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
79                           APFloat::semanticsPrecision(SR)))
80    return Res;
81  if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
82                           APFloat::semanticsMaxExponent(SR)))
83    return Res;
84  if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
85                           APFloat::semanticsMinExponent(SR)))
86    return Res;
87  if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
88                           APFloat::semanticsSizeInBits(SR)))
89    return Res;
90  return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
91}
92
93int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
94  // Prevent heavy comparison, compare sizes first.
95  if (int Res = cmpNumbers(L.size(), R.size()))
96    return Res;
97
98  // Compare strings lexicographically only when it is necessary: only when
99  // strings are equal in size.
100  return L.compare(R);
101}
102
103int FunctionComparator::cmpAttrs(const AttributeList L,
104                                 const AttributeList R) const {
105  if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
106    return Res;
107
108  for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) {
109    AttributeSet LAS = L.getAttributes(i);
110    AttributeSet RAS = R.getAttributes(i);
111    AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
112    AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
113    for (; LI != LE && RI != RE; ++LI, ++RI) {
114      Attribute LA = *LI;
115      Attribute RA = *RI;
116      if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
117        if (LA.getKindAsEnum() != RA.getKindAsEnum())
118          return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
119
120        Type *TyL = LA.getValueAsType();
121        Type *TyR = RA.getValueAsType();
122        if (TyL && TyR)
123          return cmpTypes(TyL, TyR);
124
125        // Two pointers, at least one null, so the comparison result is
126        // independent of the value of a real pointer.
127        return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
128      }
129      if (LA < RA)
130        return -1;
131      if (RA < LA)
132        return 1;
133    }
134    if (LI != LE)
135      return 1;
136    if (RI != RE)
137      return -1;
138  }
139  return 0;
140}
141
142int FunctionComparator::cmpRangeMetadata(const MDNode *L,
143                                         const MDNode *R) const {
144  if (L == R)
145    return 0;
146  if (!L)
147    return -1;
148  if (!R)
149    return 1;
150  // Range metadata is a sequence of numbers. Make sure they are the same
151  // sequence.
152  // TODO: Note that as this is metadata, it is possible to drop and/or merge
153  // this data when considering functions to merge. Thus this comparison would
154  // return 0 (i.e. equivalent), but merging would become more complicated
155  // because the ranges would need to be unioned. It is not likely that
156  // functions differ ONLY in this metadata if they are actually the same
157  // function semantically.
158  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
159    return Res;
160  for (size_t I = 0; I < L->getNumOperands(); ++I) {
161    ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
162    ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
163    if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
164      return Res;
165  }
166  return 0;
167}
168
169int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
170                                                const Instruction *R) const {
171  ImmutableCallSite LCS(L);
172  ImmutableCallSite RCS(R);
173
174  assert(LCS && RCS && "Must be calls or invokes!");
175  assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
176
177  if (int Res =
178          cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
179    return Res;
180
181  for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
182    auto OBL = LCS.getOperandBundleAt(i);
183    auto OBR = RCS.getOperandBundleAt(i);
184
185    if (int Res = OBL.getTagName().compare(OBR.getTagName()))
186      return Res;
187
188    if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
189      return Res;
190  }
191
192  return 0;
193}
194
195/// Constants comparison:
196/// 1. Check whether type of L constant could be losslessly bitcasted to R
197/// type.
198/// 2. Compare constant contents.
199/// For more details see declaration comments.
200int FunctionComparator::cmpConstants(const Constant *L,
201                                     const Constant *R) const {
202  Type *TyL = L->getType();
203  Type *TyR = R->getType();
204
205  // Check whether types are bitcastable. This part is just re-factored
206  // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
207  // we also pack into result which type is "less" for us.
208  int TypesRes = cmpTypes(TyL, TyR);
209  if (TypesRes != 0) {
210    // Types are different, but check whether we can bitcast them.
211    if (!TyL->isFirstClassType()) {
212      if (TyR->isFirstClassType())
213        return -1;
214      // Neither TyL nor TyR are values of first class type. Return the result
215      // of comparing the types
216      return TypesRes;
217    }
218    if (!TyR->isFirstClassType()) {
219      if (TyL->isFirstClassType())
220        return 1;
221      return TypesRes;
222    }
223
224    // Vector -> Vector conversions are always lossless if the two vector types
225    // have the same size, otherwise not.
226    unsigned TyLWidth = 0;
227    unsigned TyRWidth = 0;
228
229    if (auto *VecTyL = dyn_cast<VectorType>(TyL))
230      TyLWidth = VecTyL->getBitWidth();
231    if (auto *VecTyR = dyn_cast<VectorType>(TyR))
232      TyRWidth = VecTyR->getBitWidth();
233
234    if (TyLWidth != TyRWidth)
235      return cmpNumbers(TyLWidth, TyRWidth);
236
237    // Zero bit-width means neither TyL nor TyR are vectors.
238    if (!TyLWidth) {
239      PointerType *PTyL = dyn_cast<PointerType>(TyL);
240      PointerType *PTyR = dyn_cast<PointerType>(TyR);
241      if (PTyL && PTyR) {
242        unsigned AddrSpaceL = PTyL->getAddressSpace();
243        unsigned AddrSpaceR = PTyR->getAddressSpace();
244        if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
245          return Res;
246      }
247      if (PTyL)
248        return 1;
249      if (PTyR)
250        return -1;
251
252      // TyL and TyR aren't vectors, nor pointers. We don't know how to
253      // bitcast them.
254      return TypesRes;
255    }
256  }
257
258  // OK, types are bitcastable, now check constant contents.
259
260  if (L->isNullValue() && R->isNullValue())
261    return TypesRes;
262  if (L->isNullValue() && !R->isNullValue())
263    return 1;
264  if (!L->isNullValue() && R->isNullValue())
265    return -1;
266
267  auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
268  auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
269  if (GlobalValueL && GlobalValueR) {
270    return cmpGlobalValues(GlobalValueL, GlobalValueR);
271  }
272
273  if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
274    return Res;
275
276  if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
277    const auto *SeqR = cast<ConstantDataSequential>(R);
278    // This handles ConstantDataArray and ConstantDataVector. Note that we
279    // compare the two raw data arrays, which might differ depending on the host
280    // endianness. This isn't a problem though, because the endiness of a module
281    // will affect the order of the constants, but this order is the same
282    // for a given input module and host platform.
283    return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
284  }
285
286  switch (L->getValueID()) {
287  case Value::UndefValueVal:
288  case Value::ConstantTokenNoneVal:
289    return TypesRes;
290  case Value::ConstantIntVal: {
291    const APInt &LInt = cast<ConstantInt>(L)->getValue();
292    const APInt &RInt = cast<ConstantInt>(R)->getValue();
293    return cmpAPInts(LInt, RInt);
294  }
295  case Value::ConstantFPVal: {
296    const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
297    const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
298    return cmpAPFloats(LAPF, RAPF);
299  }
300  case Value::ConstantArrayVal: {
301    const ConstantArray *LA = cast<ConstantArray>(L);
302    const ConstantArray *RA = cast<ConstantArray>(R);
303    uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
304    uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
305    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
306      return Res;
307    for (uint64_t i = 0; i < NumElementsL; ++i) {
308      if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
309                                 cast<Constant>(RA->getOperand(i))))
310        return Res;
311    }
312    return 0;
313  }
314  case Value::ConstantStructVal: {
315    const ConstantStruct *LS = cast<ConstantStruct>(L);
316    const ConstantStruct *RS = cast<ConstantStruct>(R);
317    unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
318    unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
319    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
320      return Res;
321    for (unsigned i = 0; i != NumElementsL; ++i) {
322      if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
323                                 cast<Constant>(RS->getOperand(i))))
324        return Res;
325    }
326    return 0;
327  }
328  case Value::ConstantVectorVal: {
329    const ConstantVector *LV = cast<ConstantVector>(L);
330    const ConstantVector *RV = cast<ConstantVector>(R);
331    unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
332    unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
333    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
334      return Res;
335    for (uint64_t i = 0; i < NumElementsL; ++i) {
336      if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
337                                 cast<Constant>(RV->getOperand(i))))
338        return Res;
339    }
340    return 0;
341  }
342  case Value::ConstantExprVal: {
343    const ConstantExpr *LE = cast<ConstantExpr>(L);
344    const ConstantExpr *RE = cast<ConstantExpr>(R);
345    unsigned NumOperandsL = LE->getNumOperands();
346    unsigned NumOperandsR = RE->getNumOperands();
347    if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
348      return Res;
349    for (unsigned i = 0; i < NumOperandsL; ++i) {
350      if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
351                                 cast<Constant>(RE->getOperand(i))))
352        return Res;
353    }
354    return 0;
355  }
356  case Value::BlockAddressVal: {
357    const BlockAddress *LBA = cast<BlockAddress>(L);
358    const BlockAddress *RBA = cast<BlockAddress>(R);
359    if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
360      return Res;
361    if (LBA->getFunction() == RBA->getFunction()) {
362      // They are BBs in the same function. Order by which comes first in the
363      // BB order of the function. This order is deterministic.
364      Function* F = LBA->getFunction();
365      BasicBlock *LBB = LBA->getBasicBlock();
366      BasicBlock *RBB = RBA->getBasicBlock();
367      if (LBB == RBB)
368        return 0;
369      for(BasicBlock &BB : F->getBasicBlockList()) {
370        if (&BB == LBB) {
371          assert(&BB != RBB);
372          return -1;
373        }
374        if (&BB == RBB)
375          return 1;
376      }
377      llvm_unreachable("Basic Block Address does not point to a basic block in "
378                       "its function.");
379      return -1;
380    } else {
381      // cmpValues said the functions are the same. So because they aren't
382      // literally the same pointer, they must respectively be the left and
383      // right functions.
384      assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
385      // cmpValues will tell us if these are equivalent BasicBlocks, in the
386      // context of their respective functions.
387      return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
388    }
389  }
390  default: // Unknown constant, abort.
391    LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
392    llvm_unreachable("Constant ValueID not recognized.");
393    return -1;
394  }
395}
396
397int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
398  uint64_t LNumber = GlobalNumbers->getNumber(L);
399  uint64_t RNumber = GlobalNumbers->getNumber(R);
400  return cmpNumbers(LNumber, RNumber);
401}
402
403/// cmpType - compares two types,
404/// defines total ordering among the types set.
405/// See method declaration comments for more details.
406int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
407  PointerType *PTyL = dyn_cast<PointerType>(TyL);
408  PointerType *PTyR = dyn_cast<PointerType>(TyR);
409
410  const DataLayout &DL = FnL->getParent()->getDataLayout();
411  if (PTyL && PTyL->getAddressSpace() == 0)
412    TyL = DL.getIntPtrType(TyL);
413  if (PTyR && PTyR->getAddressSpace() == 0)
414    TyR = DL.getIntPtrType(TyR);
415
416  if (TyL == TyR)
417    return 0;
418
419  if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
420    return Res;
421
422  switch (TyL->getTypeID()) {
423  default:
424    llvm_unreachable("Unknown type!");
425  case Type::IntegerTyID:
426    return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
427                      cast<IntegerType>(TyR)->getBitWidth());
428  // TyL == TyR would have returned true earlier, because types are uniqued.
429  case Type::VoidTyID:
430  case Type::FloatTyID:
431  case Type::DoubleTyID:
432  case Type::X86_FP80TyID:
433  case Type::FP128TyID:
434  case Type::PPC_FP128TyID:
435  case Type::LabelTyID:
436  case Type::MetadataTyID:
437  case Type::TokenTyID:
438    return 0;
439
440  case Type::PointerTyID:
441    assert(PTyL && PTyR && "Both types must be pointers here.");
442    return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
443
444  case Type::StructTyID: {
445    StructType *STyL = cast<StructType>(TyL);
446    StructType *STyR = cast<StructType>(TyR);
447    if (STyL->getNumElements() != STyR->getNumElements())
448      return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
449
450    if (STyL->isPacked() != STyR->isPacked())
451      return cmpNumbers(STyL->isPacked(), STyR->isPacked());
452
453    for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
454      if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
455        return Res;
456    }
457    return 0;
458  }
459
460  case Type::FunctionTyID: {
461    FunctionType *FTyL = cast<FunctionType>(TyL);
462    FunctionType *FTyR = cast<FunctionType>(TyR);
463    if (FTyL->getNumParams() != FTyR->getNumParams())
464      return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
465
466    if (FTyL->isVarArg() != FTyR->isVarArg())
467      return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
468
469    if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
470      return Res;
471
472    for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
473      if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
474        return Res;
475    }
476    return 0;
477  }
478
479  case Type::ArrayTyID:
480  case Type::VectorTyID: {
481    auto *STyL = cast<SequentialType>(TyL);
482    auto *STyR = cast<SequentialType>(TyR);
483    if (STyL->getNumElements() != STyR->getNumElements())
484      return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
485    return cmpTypes(STyL->getElementType(), STyR->getElementType());
486  }
487  }
488}
489
490// Determine whether the two operations are the same except that pointer-to-A
491// and pointer-to-B are equivalent. This should be kept in sync with
492// Instruction::isSameOperationAs.
493// Read method declaration comments for more details.
494int FunctionComparator::cmpOperations(const Instruction *L,
495                                      const Instruction *R,
496                                      bool &needToCmpOperands) const {
497  needToCmpOperands = true;
498  if (int Res = cmpValues(L, R))
499    return Res;
500
501  // Differences from Instruction::isSameOperationAs:
502  //  * replace type comparison with calls to cmpTypes.
503  //  * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
504  //  * because of the above, we don't test for the tail bit on calls later on.
505  if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
506    return Res;
507
508  if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
509    needToCmpOperands = false;
510    const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
511    if (int Res =
512            cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
513      return Res;
514    return cmpGEPs(GEPL, GEPR);
515  }
516
517  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
518    return Res;
519
520  if (int Res = cmpTypes(L->getType(), R->getType()))
521    return Res;
522
523  if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
524                           R->getRawSubclassOptionalData()))
525    return Res;
526
527  // We have two instructions of identical opcode and #operands.  Check to see
528  // if all operands are the same type
529  for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
530    if (int Res =
531            cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
532      return Res;
533  }
534
535  // Check special state that is a part of some instructions.
536  if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
537    if (int Res = cmpTypes(AI->getAllocatedType(),
538                           cast<AllocaInst>(R)->getAllocatedType()))
539      return Res;
540    return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
541  }
542  if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
543    if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
544      return Res;
545    if (int Res =
546            cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
547      return Res;
548    if (int Res =
549            cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
550      return Res;
551    if (int Res = cmpNumbers(LI->getSyncScopeID(),
552                             cast<LoadInst>(R)->getSyncScopeID()))
553      return Res;
554    return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
555        cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
556  }
557  if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
558    if (int Res =
559            cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
560      return Res;
561    if (int Res =
562            cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
563      return Res;
564    if (int Res =
565            cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
566      return Res;
567    return cmpNumbers(SI->getSyncScopeID(),
568                      cast<StoreInst>(R)->getSyncScopeID());
569  }
570  if (const CmpInst *CI = dyn_cast<CmpInst>(L))
571    return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
572  if (auto CSL = CallSite(const_cast<Instruction *>(L))) {
573    auto CSR = CallSite(const_cast<Instruction *>(R));
574    if (int Res = cmpNumbers(CSL.getCallingConv(), CSR.getCallingConv()))
575      return Res;
576    if (int Res = cmpAttrs(CSL.getAttributes(), CSR.getAttributes()))
577      return Res;
578    if (int Res = cmpOperandBundlesSchema(L, R))
579      return Res;
580    if (const CallInst *CI = dyn_cast<CallInst>(L))
581      if (int Res = cmpNumbers(CI->getTailCallKind(),
582                               cast<CallInst>(R)->getTailCallKind()))
583        return Res;
584    return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range),
585                            R->getMetadata(LLVMContext::MD_range));
586  }
587  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
588    ArrayRef<unsigned> LIndices = IVI->getIndices();
589    ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
590    if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
591      return Res;
592    for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
593      if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
594        return Res;
595    }
596    return 0;
597  }
598  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
599    ArrayRef<unsigned> LIndices = EVI->getIndices();
600    ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
601    if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
602      return Res;
603    for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
604      if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
605        return Res;
606    }
607  }
608  if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
609    if (int Res =
610            cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
611      return Res;
612    return cmpNumbers(FI->getSyncScopeID(),
613                      cast<FenceInst>(R)->getSyncScopeID());
614  }
615  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
616    if (int Res = cmpNumbers(CXI->isVolatile(),
617                             cast<AtomicCmpXchgInst>(R)->isVolatile()))
618      return Res;
619    if (int Res = cmpNumbers(CXI->isWeak(),
620                             cast<AtomicCmpXchgInst>(R)->isWeak()))
621      return Res;
622    if (int Res =
623            cmpOrderings(CXI->getSuccessOrdering(),
624                         cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
625      return Res;
626    if (int Res =
627            cmpOrderings(CXI->getFailureOrdering(),
628                         cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
629      return Res;
630    return cmpNumbers(CXI->getSyncScopeID(),
631                      cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
632  }
633  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
634    if (int Res = cmpNumbers(RMWI->getOperation(),
635                             cast<AtomicRMWInst>(R)->getOperation()))
636      return Res;
637    if (int Res = cmpNumbers(RMWI->isVolatile(),
638                             cast<AtomicRMWInst>(R)->isVolatile()))
639      return Res;
640    if (int Res = cmpOrderings(RMWI->getOrdering(),
641                             cast<AtomicRMWInst>(R)->getOrdering()))
642      return Res;
643    return cmpNumbers(RMWI->getSyncScopeID(),
644                      cast<AtomicRMWInst>(R)->getSyncScopeID());
645  }
646  if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
647    const PHINode *PNR = cast<PHINode>(R);
648    // Ensure that in addition to the incoming values being identical
649    // (checked by the caller of this function), the incoming blocks
650    // are also identical.
651    for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
652      if (int Res =
653              cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
654        return Res;
655    }
656  }
657  return 0;
658}
659
660// Determine whether two GEP operations perform the same underlying arithmetic.
661// Read method declaration comments for more details.
662int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
663                                const GEPOperator *GEPR) const {
664  unsigned int ASL = GEPL->getPointerAddressSpace();
665  unsigned int ASR = GEPR->getPointerAddressSpace();
666
667  if (int Res = cmpNumbers(ASL, ASR))
668    return Res;
669
670  // When we have target data, we can reduce the GEP down to the value in bytes
671  // added to the address.
672  const DataLayout &DL = FnL->getParent()->getDataLayout();
673  unsigned BitWidth = DL.getPointerSizeInBits(ASL);
674  APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
675  if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
676      GEPR->accumulateConstantOffset(DL, OffsetR))
677    return cmpAPInts(OffsetL, OffsetR);
678  if (int Res = cmpTypes(GEPL->getSourceElementType(),
679                         GEPR->getSourceElementType()))
680    return Res;
681
682  if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
683    return Res;
684
685  for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
686    if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
687      return Res;
688  }
689
690  return 0;
691}
692
693int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
694                                     const InlineAsm *R) const {
695  // InlineAsm's are uniqued. If they are the same pointer, obviously they are
696  // the same, otherwise compare the fields.
697  if (L == R)
698    return 0;
699  if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
700    return Res;
701  if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
702    return Res;
703  if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
704    return Res;
705  if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
706    return Res;
707  if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
708    return Res;
709  if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
710    return Res;
711  assert(L->getFunctionType() != R->getFunctionType());
712  return 0;
713}
714
715/// Compare two values used by the two functions under pair-wise comparison. If
716/// this is the first time the values are seen, they're added to the mapping so
717/// that we will detect mismatches on next use.
718/// See comments in declaration for more details.
719int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
720  // Catch self-reference case.
721  if (L == FnL) {
722    if (R == FnR)
723      return 0;
724    return -1;
725  }
726  if (R == FnR) {
727    if (L == FnL)
728      return 0;
729    return 1;
730  }
731
732  const Constant *ConstL = dyn_cast<Constant>(L);
733  const Constant *ConstR = dyn_cast<Constant>(R);
734  if (ConstL && ConstR) {
735    if (L == R)
736      return 0;
737    return cmpConstants(ConstL, ConstR);
738  }
739
740  if (ConstL)
741    return 1;
742  if (ConstR)
743    return -1;
744
745  const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
746  const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
747
748  if (InlineAsmL && InlineAsmR)
749    return cmpInlineAsm(InlineAsmL, InlineAsmR);
750  if (InlineAsmL)
751    return 1;
752  if (InlineAsmR)
753    return -1;
754
755  auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
756       RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
757
758  return cmpNumbers(LeftSN.first->second, RightSN.first->second);
759}
760
761// Test whether two basic blocks have equivalent behaviour.
762int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
763                                       const BasicBlock *BBR) const {
764  BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
765  BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
766
767  do {
768    bool needToCmpOperands = true;
769    if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
770      return Res;
771    if (needToCmpOperands) {
772      assert(InstL->getNumOperands() == InstR->getNumOperands());
773
774      for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
775        Value *OpL = InstL->getOperand(i);
776        Value *OpR = InstR->getOperand(i);
777        if (int Res = cmpValues(OpL, OpR))
778          return Res;
779        // cmpValues should ensure this is true.
780        assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
781      }
782    }
783
784    ++InstL;
785    ++InstR;
786  } while (InstL != InstLE && InstR != InstRE);
787
788  if (InstL != InstLE && InstR == InstRE)
789    return 1;
790  if (InstL == InstLE && InstR != InstRE)
791    return -1;
792  return 0;
793}
794
795int FunctionComparator::compareSignature() const {
796  if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
797    return Res;
798
799  if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
800    return Res;
801
802  if (FnL->hasGC()) {
803    if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
804      return Res;
805  }
806
807  if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
808    return Res;
809
810  if (FnL->hasSection()) {
811    if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
812      return Res;
813  }
814
815  if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
816    return Res;
817
818  // TODO: if it's internal and only used in direct calls, we could handle this
819  // case too.
820  if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
821    return Res;
822
823  if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
824    return Res;
825
826  assert(FnL->arg_size() == FnR->arg_size() &&
827         "Identically typed functions have different numbers of args!");
828
829  // Visit the arguments so that they get enumerated in the order they're
830  // passed in.
831  for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
832       ArgRI = FnR->arg_begin(),
833       ArgLE = FnL->arg_end();
834       ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
835    if (cmpValues(&*ArgLI, &*ArgRI) != 0)
836      llvm_unreachable("Arguments repeat!");
837  }
838  return 0;
839}
840
841// Test whether the two functions have equivalent behaviour.
842int FunctionComparator::compare() {
843  beginCompare();
844
845  if (int Res = compareSignature())
846    return Res;
847
848  // We do a CFG-ordered walk since the actual ordering of the blocks in the
849  // linked list is immaterial. Our walk starts at the entry block for both
850  // functions, then takes each block from each terminator in order. As an
851  // artifact, this also means that unreachable blocks are ignored.
852  SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
853  SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
854
855  FnLBBs.push_back(&FnL->getEntryBlock());
856  FnRBBs.push_back(&FnR->getEntryBlock());
857
858  VisitedBBs.insert(FnLBBs[0]);
859  while (!FnLBBs.empty()) {
860    const BasicBlock *BBL = FnLBBs.pop_back_val();
861    const BasicBlock *BBR = FnRBBs.pop_back_val();
862
863    if (int Res = cmpValues(BBL, BBR))
864      return Res;
865
866    if (int Res = cmpBasicBlocks(BBL, BBR))
867      return Res;
868
869    const Instruction *TermL = BBL->getTerminator();
870    const Instruction *TermR = BBR->getTerminator();
871
872    assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
873    for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
874      if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
875        continue;
876
877      FnLBBs.push_back(TermL->getSuccessor(i));
878      FnRBBs.push_back(TermR->getSuccessor(i));
879    }
880  }
881  return 0;
882}
883
884namespace {
885
886// Accumulate the hash of a sequence of 64-bit integers. This is similar to a
887// hash of a sequence of 64bit ints, but the entire input does not need to be
888// available at once. This interface is necessary for functionHash because it
889// needs to accumulate the hash as the structure of the function is traversed
890// without saving these values to an intermediate buffer. This form of hashing
891// is not often needed, as usually the object to hash is just read from a
892// buffer.
893class HashAccumulator64 {
894  uint64_t Hash;
895
896public:
897  // Initialize to random constant, so the state isn't zero.
898  HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
899
900  void add(uint64_t V) {
901     Hash = hashing::detail::hash_16_bytes(Hash, V);
902  }
903
904  // No finishing is required, because the entire hash value is used.
905  uint64_t getHash() { return Hash; }
906};
907
908} // end anonymous namespace
909
910// A function hash is calculated by considering only the number of arguments and
911// whether a function is varargs, the order of basic blocks (given by the
912// successors of each basic block in depth first order), and the order of
913// opcodes of each instruction within each of these basic blocks. This mirrors
914// the strategy compare() uses to compare functions by walking the BBs in depth
915// first order and comparing each instruction in sequence. Because this hash
916// does not look at the operands, it is insensitive to things such as the
917// target of calls and the constants used in the function, which makes it useful
918// when possibly merging functions which are the same modulo constants and call
919// targets.
920FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
921  HashAccumulator64 H;
922  H.add(F.isVarArg());
923  H.add(F.arg_size());
924
925  SmallVector<const BasicBlock *, 8> BBs;
926  SmallPtrSet<const BasicBlock *, 16> VisitedBBs;
927
928  // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
929  // accumulating the hash of the function "structure." (BB and opcode sequence)
930  BBs.push_back(&F.getEntryBlock());
931  VisitedBBs.insert(BBs[0]);
932  while (!BBs.empty()) {
933    const BasicBlock *BB = BBs.pop_back_val();
934    // This random value acts as a block header, as otherwise the partition of
935    // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
936    H.add(45798);
937    for (auto &Inst : *BB) {
938      H.add(Inst.getOpcode());
939    }
940    const Instruction *Term = BB->getTerminator();
941    for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
942      if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
943        continue;
944      BBs.push_back(Term->getSuccessor(i));
945    }
946  }
947  return H.getHash();
948}
949