1//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
10// inserting a dummy basic block.  This pass may be "required" by passes that
11// cannot deal with critical edges.  For this usage, the structure type is
12// forward declared.  This pass obviously invalidates the CFG, but can update
13// dominator trees.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Transforms/Utils/BreakCriticalEdges.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/BlockFrequencyInfo.h"
22#include "llvm/Analysis/BranchProbabilityInfo.h"
23#include "llvm/Analysis/CFG.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/MemorySSAUpdater.h"
26#include "llvm/Analysis/PostDominators.h"
27#include "llvm/IR/CFG.h"
28#include "llvm/IR/Dominators.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/Type.h"
31#include "llvm/InitializePasses.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Transforms/Utils.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/ValueMapper.h"
37using namespace llvm;
38
39#define DEBUG_TYPE "break-crit-edges"
40
41STATISTIC(NumBroken, "Number of blocks inserted");
42
43namespace {
44  struct BreakCriticalEdges : public FunctionPass {
45    static char ID; // Pass identification, replacement for typeid
46    BreakCriticalEdges() : FunctionPass(ID) {
47      initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
48    }
49
50    bool runOnFunction(Function &F) override {
51      auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
52      auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
53
54      auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
55      auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
56
57      auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
58      auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
59      unsigned N =
60          SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
61      NumBroken += N;
62      return N > 0;
63    }
64
65    void getAnalysisUsage(AnalysisUsage &AU) const override {
66      AU.addPreserved<DominatorTreeWrapperPass>();
67      AU.addPreserved<LoopInfoWrapperPass>();
68
69      // No loop canonicalization guarantees are broken by this pass.
70      AU.addPreservedID(LoopSimplifyID);
71    }
72  };
73}
74
75char BreakCriticalEdges::ID = 0;
76INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
77                "Break critical edges in CFG", false, false)
78
79// Publicly exposed interface to pass...
80char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
81FunctionPass *llvm::createBreakCriticalEdgesPass() {
82  return new BreakCriticalEdges();
83}
84
85PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
86                                              FunctionAnalysisManager &AM) {
87  auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
88  auto *LI = AM.getCachedResult<LoopAnalysis>(F);
89  unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
90  NumBroken += N;
91  if (N == 0)
92    return PreservedAnalyses::all();
93  PreservedAnalyses PA;
94  PA.preserve<DominatorTreeAnalysis>();
95  PA.preserve<LoopAnalysis>();
96  return PA;
97}
98
99//===----------------------------------------------------------------------===//
100//    Implementation of the external critical edge manipulation functions
101//===----------------------------------------------------------------------===//
102
103/// When a loop exit edge is split, LCSSA form may require new PHIs in the new
104/// exit block. This function inserts the new PHIs, as needed. Preds is a list
105/// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
106/// the old loop exit, now the successor of SplitBB.
107static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
108                                       BasicBlock *SplitBB,
109                                       BasicBlock *DestBB) {
110  // SplitBB shouldn't have anything non-trivial in it yet.
111  assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
112          SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
113
114  // For each PHI in the destination block.
115  for (PHINode &PN : DestBB->phis()) {
116    unsigned Idx = PN.getBasicBlockIndex(SplitBB);
117    Value *V = PN.getIncomingValue(Idx);
118
119    // If the input is a PHI which already satisfies LCSSA, don't create
120    // a new one.
121    if (const PHINode *VP = dyn_cast<PHINode>(V))
122      if (VP->getParent() == SplitBB)
123        continue;
124
125    // Otherwise a new PHI is needed. Create one and populate it.
126    PHINode *NewPN = PHINode::Create(
127        PN.getType(), Preds.size(), "split",
128        SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
129    for (unsigned i = 0, e = Preds.size(); i != e; ++i)
130      NewPN->addIncoming(V, Preds[i]);
131
132    // Update the original PHI.
133    PN.setIncomingValue(Idx, NewPN);
134  }
135}
136
137BasicBlock *
138llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
139                        const CriticalEdgeSplittingOptions &Options) {
140  if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
141    return nullptr;
142
143  assert(!isa<IndirectBrInst>(TI) &&
144         "Cannot split critical edge from IndirectBrInst");
145
146  BasicBlock *TIBB = TI->getParent();
147  BasicBlock *DestBB = TI->getSuccessor(SuccNum);
148
149  // Splitting the critical edge to a pad block is non-trivial. Don't do
150  // it in this generic function.
151  if (DestBB->isEHPad()) return nullptr;
152
153  // Don't split the non-fallthrough edge from a callbr.
154  if (isa<CallBrInst>(TI) && SuccNum > 0)
155    return nullptr;
156
157  if (Options.IgnoreUnreachableDests &&
158      isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
159    return nullptr;
160
161  // Create a new basic block, linking it into the CFG.
162  BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
163                      TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
164  // Create our unconditional branch.
165  BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
166  NewBI->setDebugLoc(TI->getDebugLoc());
167
168  // Branch to the new block, breaking the edge.
169  TI->setSuccessor(SuccNum, NewBB);
170
171  // Insert the block into the function... right after the block TI lives in.
172  Function &F = *TIBB->getParent();
173  Function::iterator FBBI = TIBB->getIterator();
174  F.getBasicBlockList().insert(++FBBI, NewBB);
175
176  // If there are any PHI nodes in DestBB, we need to update them so that they
177  // merge incoming values from NewBB instead of from TIBB.
178  {
179    unsigned BBIdx = 0;
180    for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
181      // We no longer enter through TIBB, now we come in through NewBB.
182      // Revector exactly one entry in the PHI node that used to come from
183      // TIBB to come from NewBB.
184      PHINode *PN = cast<PHINode>(I);
185
186      // Reuse the previous value of BBIdx if it lines up.  In cases where we
187      // have multiple phi nodes with *lots* of predecessors, this is a speed
188      // win because we don't have to scan the PHI looking for TIBB.  This
189      // happens because the BB list of PHI nodes are usually in the same
190      // order.
191      if (PN->getIncomingBlock(BBIdx) != TIBB)
192        BBIdx = PN->getBasicBlockIndex(TIBB);
193      PN->setIncomingBlock(BBIdx, NewBB);
194    }
195  }
196
197  // If there are any other edges from TIBB to DestBB, update those to go
198  // through the split block, making those edges non-critical as well (and
199  // reducing the number of phi entries in the DestBB if relevant).
200  if (Options.MergeIdenticalEdges) {
201    for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
202      if (TI->getSuccessor(i) != DestBB) continue;
203
204      // Remove an entry for TIBB from DestBB phi nodes.
205      DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
206
207      // We found another edge to DestBB, go to NewBB instead.
208      TI->setSuccessor(i, NewBB);
209    }
210  }
211
212  // If we have nothing to update, just return.
213  auto *DT = Options.DT;
214  auto *PDT = Options.PDT;
215  auto *LI = Options.LI;
216  auto *MSSAU = Options.MSSAU;
217  if (MSSAU)
218    MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
219        DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
220
221  if (!DT && !PDT && !LI)
222    return NewBB;
223
224  if (DT || PDT) {
225    // Update the DominatorTree.
226    //       ---> NewBB -----\
227    //      /                 V
228    //  TIBB -------\\------> DestBB
229    //
230    // First, inform the DT about the new path from TIBB to DestBB via NewBB,
231    // then delete the old edge from TIBB to DestBB. By doing this in that order
232    // DestBB stays reachable in the DT the whole time and its subtree doesn't
233    // get disconnected.
234    SmallVector<DominatorTree::UpdateType, 3> Updates;
235    Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
236    Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
237    if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB))
238      Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
239
240    if (DT)
241      DT->applyUpdates(Updates);
242    if (PDT)
243      PDT->applyUpdates(Updates);
244  }
245
246  // Update LoopInfo if it is around.
247  if (LI) {
248    if (Loop *TIL = LI->getLoopFor(TIBB)) {
249      // If one or the other blocks were not in a loop, the new block is not
250      // either, and thus LI doesn't need to be updated.
251      if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
252        if (TIL == DestLoop) {
253          // Both in the same loop, the NewBB joins loop.
254          DestLoop->addBasicBlockToLoop(NewBB, *LI);
255        } else if (TIL->contains(DestLoop)) {
256          // Edge from an outer loop to an inner loop.  Add to the outer loop.
257          TIL->addBasicBlockToLoop(NewBB, *LI);
258        } else if (DestLoop->contains(TIL)) {
259          // Edge from an inner loop to an outer loop.  Add to the outer loop.
260          DestLoop->addBasicBlockToLoop(NewBB, *LI);
261        } else {
262          // Edge from two loops with no containment relation.  Because these
263          // are natural loops, we know that the destination block must be the
264          // header of its loop (adding a branch into a loop elsewhere would
265          // create an irreducible loop).
266          assert(DestLoop->getHeader() == DestBB &&
267                 "Should not create irreducible loops!");
268          if (Loop *P = DestLoop->getParentLoop())
269            P->addBasicBlockToLoop(NewBB, *LI);
270        }
271      }
272
273      // If TIBB is in a loop and DestBB is outside of that loop, we may need
274      // to update LoopSimplify form and LCSSA form.
275      if (!TIL->contains(DestBB)) {
276        assert(!TIL->contains(NewBB) &&
277               "Split point for loop exit is contained in loop!");
278
279        // Update LCSSA form in the newly created exit block.
280        if (Options.PreserveLCSSA) {
281          createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
282        }
283
284        // The only that we can break LoopSimplify form by splitting a critical
285        // edge is if after the split there exists some edge from TIL to DestBB
286        // *and* the only edge into DestBB from outside of TIL is that of
287        // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
288        // is the new exit block and it has no non-loop predecessors. If the
289        // second isn't true, then DestBB was not in LoopSimplify form prior to
290        // the split as it had a non-loop predecessor. In both of these cases,
291        // the predecessor must be directly in TIL, not in a subloop, or again
292        // LoopSimplify doesn't hold.
293        SmallVector<BasicBlock *, 4> LoopPreds;
294        for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
295             ++I) {
296          BasicBlock *P = *I;
297          if (P == NewBB)
298            continue; // The new block is known.
299          if (LI->getLoopFor(P) != TIL) {
300            // No need to re-simplify, it wasn't to start with.
301            LoopPreds.clear();
302            break;
303          }
304          LoopPreds.push_back(P);
305        }
306        if (!LoopPreds.empty()) {
307          assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
308          BasicBlock *NewExitBB = SplitBlockPredecessors(
309              DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
310          if (Options.PreserveLCSSA)
311            createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
312        }
313      }
314    }
315  }
316
317  return NewBB;
318}
319
320// Return the unique indirectbr predecessor of a block. This may return null
321// even if such a predecessor exists, if it's not useful for splitting.
322// If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
323// predecessors of BB.
324static BasicBlock *
325findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
326  // If the block doesn't have any PHIs, we don't care about it, since there's
327  // no point in splitting it.
328  PHINode *PN = dyn_cast<PHINode>(BB->begin());
329  if (!PN)
330    return nullptr;
331
332  // Verify we have exactly one IBR predecessor.
333  // Conservatively bail out if one of the other predecessors is not a "regular"
334  // terminator (that is, not a switch or a br).
335  BasicBlock *IBB = nullptr;
336  for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
337    BasicBlock *PredBB = PN->getIncomingBlock(Pred);
338    Instruction *PredTerm = PredBB->getTerminator();
339    switch (PredTerm->getOpcode()) {
340    case Instruction::IndirectBr:
341      if (IBB)
342        return nullptr;
343      IBB = PredBB;
344      break;
345    case Instruction::Br:
346    case Instruction::Switch:
347      OtherPreds.push_back(PredBB);
348      continue;
349    default:
350      return nullptr;
351    }
352  }
353
354  return IBB;
355}
356
357bool llvm::SplitIndirectBrCriticalEdges(Function &F,
358                                        BranchProbabilityInfo *BPI,
359                                        BlockFrequencyInfo *BFI) {
360  // Check whether the function has any indirectbrs, and collect which blocks
361  // they may jump to. Since most functions don't have indirect branches,
362  // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
363  SmallSetVector<BasicBlock *, 16> Targets;
364  for (auto &BB : F) {
365    auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
366    if (!IBI)
367      continue;
368
369    for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
370      Targets.insert(IBI->getSuccessor(Succ));
371  }
372
373  if (Targets.empty())
374    return false;
375
376  bool ShouldUpdateAnalysis = BPI && BFI;
377  bool Changed = false;
378  for (BasicBlock *Target : Targets) {
379    SmallVector<BasicBlock *, 16> OtherPreds;
380    BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
381    // If we did not found an indirectbr, or the indirectbr is the only
382    // incoming edge, this isn't the kind of edge we're looking for.
383    if (!IBRPred || OtherPreds.empty())
384      continue;
385
386    // Don't even think about ehpads/landingpads.
387    Instruction *FirstNonPHI = Target->getFirstNonPHI();
388    if (FirstNonPHI->isEHPad() || Target->isLandingPad())
389      continue;
390
391    BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
392    if (ShouldUpdateAnalysis) {
393      // Copy the BFI/BPI from Target to BodyBlock.
394      for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors();
395           I < E; ++I)
396        BPI->setEdgeProbability(BodyBlock, I,
397                                BPI->getEdgeProbability(Target, I));
398      BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
399    }
400    // It's possible Target was its own successor through an indirectbr.
401    // In this case, the indirectbr now comes from BodyBlock.
402    if (IBRPred == Target)
403      IBRPred = BodyBlock;
404
405    // At this point Target only has PHIs, and BodyBlock has the rest of the
406    // block's body. Create a copy of Target that will be used by the "direct"
407    // preds.
408    ValueToValueMapTy VMap;
409    BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
410
411    BlockFrequency BlockFreqForDirectSucc;
412    for (BasicBlock *Pred : OtherPreds) {
413      // If the target is a loop to itself, then the terminator of the split
414      // block (BodyBlock) needs to be updated.
415      BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
416      Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
417      if (ShouldUpdateAnalysis)
418        BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
419            BPI->getEdgeProbability(Src, DirectSucc);
420    }
421    if (ShouldUpdateAnalysis) {
422      BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
423      BlockFrequency NewBlockFreqForTarget =
424          BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
425      BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
426      BPI->eraseBlock(Target);
427    }
428
429    // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
430    // they are clones, so the number of PHIs are the same.
431    // (a) Remove the edge coming from IBRPred from the "Direct" PHI
432    // (b) Leave that as the only edge in the "Indirect" PHI.
433    // (c) Merge the two in the body block.
434    BasicBlock::iterator Indirect = Target->begin(),
435                         End = Target->getFirstNonPHI()->getIterator();
436    BasicBlock::iterator Direct = DirectSucc->begin();
437    BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
438
439    assert(&*End == Target->getTerminator() &&
440           "Block was expected to only contain PHIs");
441
442    while (Indirect != End) {
443      PHINode *DirPHI = cast<PHINode>(Direct);
444      PHINode *IndPHI = cast<PHINode>(Indirect);
445
446      // Now, clean up - the direct block shouldn't get the indirect value,
447      // and vice versa.
448      DirPHI->removeIncomingValue(IBRPred);
449      Direct++;
450
451      // Advance the pointer here, to avoid invalidation issues when the old
452      // PHI is erased.
453      Indirect++;
454
455      PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
456      NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
457                             IBRPred);
458
459      // Create a PHI in the body block, to merge the direct and indirect
460      // predecessors.
461      PHINode *MergePHI =
462          PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
463      MergePHI->addIncoming(NewIndPHI, Target);
464      MergePHI->addIncoming(DirPHI, DirectSucc);
465
466      IndPHI->replaceAllUsesWith(MergePHI);
467      IndPHI->eraseFromParent();
468    }
469
470    Changed = true;
471  }
472
473  return Changed;
474}
475