1//===- SpeculateAroundPHIs.cpp --------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Transforms/Scalar/SpeculateAroundPHIs.h"
10#include "llvm/ADT/PostOrderIterator.h"
11#include "llvm/ADT/Sequence.h"
12#include "llvm/ADT/SetVector.h"
13#include "llvm/ADT/Statistic.h"
14#include "llvm/Analysis/TargetTransformInfo.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/IR/BasicBlock.h"
17#include "llvm/IR/IRBuilder.h"
18#include "llvm/IR/Instructions.h"
19#include "llvm/IR/IntrinsicInst.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22
23using namespace llvm;
24
25#define DEBUG_TYPE "spec-phis"
26
27STATISTIC(NumPHIsSpeculated, "Number of PHI nodes we speculated around");
28STATISTIC(NumEdgesSplit,
29          "Number of critical edges which were split for speculation");
30STATISTIC(NumSpeculatedInstructions,
31          "Number of instructions we speculated around the PHI nodes");
32STATISTIC(NumNewRedundantInstructions,
33          "Number of new, redundant instructions inserted");
34
35/// Check whether speculating the users of a PHI node around the PHI
36/// will be safe.
37///
38/// This checks both that all of the users are safe and also that all of their
39/// operands are either recursively safe or already available along an incoming
40/// edge to the PHI.
41///
42/// This routine caches both all the safe nodes explored in `PotentialSpecSet`
43/// and the chain of nodes that definitively reach any unsafe node in
44/// `UnsafeSet`. By preserving these between repeated calls to this routine for
45/// PHIs in the same basic block, the exploration here can be reused. However,
46/// these caches must no be reused for PHIs in a different basic block as they
47/// reflect what is available along incoming edges.
48static bool
49isSafeToSpeculatePHIUsers(PHINode &PN, DominatorTree &DT,
50                          SmallPtrSetImpl<Instruction *> &PotentialSpecSet,
51                          SmallPtrSetImpl<Instruction *> &UnsafeSet) {
52  auto *PhiBB = PN.getParent();
53  SmallPtrSet<Instruction *, 4> Visited;
54  SmallVector<std::pair<Instruction *, User::value_op_iterator>, 16> DFSStack;
55
56  // Walk each user of the PHI node.
57  for (Use &U : PN.uses()) {
58    auto *UI = cast<Instruction>(U.getUser());
59
60    // Ensure the use post-dominates the PHI node. This ensures that, in the
61    // absence of unwinding, the use will actually be reached.
62    // FIXME: We use a blunt hammer of requiring them to be in the same basic
63    // block. We should consider using actual post-dominance here in the
64    // future.
65    if (UI->getParent() != PhiBB) {
66      LLVM_DEBUG(dbgs() << "  Unsafe: use in a different BB: " << *UI << "\n");
67      return false;
68    }
69
70    if (auto CS = ImmutableCallSite(UI)) {
71      if (CS.isConvergent() || CS.cannotDuplicate()) {
72        LLVM_DEBUG(dbgs() << "  Unsafe: convergent "
73                   "callsite cannot de duplicated: " << *UI << '\n');
74        return false;
75      }
76    }
77
78    // FIXME: This check is much too conservative. We're not going to move these
79    // instructions onto new dynamic paths through the program unless there is
80    // a call instruction between the use and the PHI node. And memory isn't
81    // changing unless there is a store in that same sequence. We should
82    // probably change this to do at least a limited scan of the intervening
83    // instructions and allow handling stores in easily proven safe cases.
84    if (mayBeMemoryDependent(*UI)) {
85      LLVM_DEBUG(dbgs() << "  Unsafe: can't speculate use: " << *UI << "\n");
86      return false;
87    }
88
89    // Now do a depth-first search of everything these users depend on to make
90    // sure they are transitively safe. This is a depth-first search, but we
91    // check nodes in preorder to minimize the amount of checking.
92    Visited.insert(UI);
93    DFSStack.push_back({UI, UI->value_op_begin()});
94    do {
95      User::value_op_iterator OpIt;
96      std::tie(UI, OpIt) = DFSStack.pop_back_val();
97
98      while (OpIt != UI->value_op_end()) {
99        auto *OpI = dyn_cast<Instruction>(*OpIt);
100        // Increment to the next operand for whenever we continue.
101        ++OpIt;
102        // No need to visit non-instructions, which can't form dependencies.
103        if (!OpI)
104          continue;
105
106        // Now do the main pre-order checks that this operand is a viable
107        // dependency of something we want to speculate.
108
109        // First do a few checks for instructions that won't require
110        // speculation at all because they are trivially available on the
111        // incoming edge (either through dominance or through an incoming value
112        // to a PHI).
113        //
114        // The cases in the current block will be trivially dominated by the
115        // edge.
116        auto *ParentBB = OpI->getParent();
117        if (ParentBB == PhiBB) {
118          if (isa<PHINode>(OpI)) {
119            // We can trivially map through phi nodes in the same block.
120            continue;
121          }
122        } else if (DT.dominates(ParentBB, PhiBB)) {
123          // Instructions from dominating blocks are already available.
124          continue;
125        }
126
127        // Once we know that we're considering speculating the operand, check
128        // if we've already explored this subgraph and found it to be safe.
129        if (PotentialSpecSet.count(OpI))
130          continue;
131
132        // If we've already explored this subgraph and found it unsafe, bail.
133        // If when we directly test whether this is safe it fails, bail.
134        if (UnsafeSet.count(OpI) || ParentBB != PhiBB ||
135            mayBeMemoryDependent(*OpI)) {
136          LLVM_DEBUG(dbgs() << "  Unsafe: can't speculate transitive use: "
137                            << *OpI << "\n");
138          // Record the stack of instructions which reach this node as unsafe
139          // so we prune subsequent searches.
140          UnsafeSet.insert(OpI);
141          for (auto &StackPair : DFSStack) {
142            Instruction *I = StackPair.first;
143            UnsafeSet.insert(I);
144          }
145          return false;
146        }
147
148        // Skip any operands we're already recursively checking.
149        if (!Visited.insert(OpI).second)
150          continue;
151
152        // Push onto the stack and descend. We can directly continue this
153        // loop when ascending.
154        DFSStack.push_back({UI, OpIt});
155        UI = OpI;
156        OpIt = OpI->value_op_begin();
157      }
158
159      // This node and all its operands are safe. Go ahead and cache that for
160      // reuse later.
161      PotentialSpecSet.insert(UI);
162
163      // Continue with the next node on the stack.
164    } while (!DFSStack.empty());
165  }
166
167#ifndef NDEBUG
168  // Every visited operand should have been marked as safe for speculation at
169  // this point. Verify this and return success.
170  for (auto *I : Visited)
171    assert(PotentialSpecSet.count(I) &&
172           "Failed to mark a visited instruction as safe!");
173#endif
174  return true;
175}
176
177/// Check whether, in isolation, a given PHI node is both safe and profitable
178/// to speculate users around.
179///
180/// This handles checking whether there are any constant operands to a PHI
181/// which could represent a useful speculation candidate, whether the users of
182/// the PHI are safe to speculate including all their transitive dependencies,
183/// and whether after speculation there will be some cost savings (profit) to
184/// folding the operands into the users of the PHI node. Returns true if both
185/// safe and profitable with relevant cost savings updated in the map and with
186/// an update to the `PotentialSpecSet`. Returns false if either safety or
187/// profitability are absent. Some new entries may be made to the
188/// `PotentialSpecSet` even when this routine returns false, but they remain
189/// conservatively correct.
190///
191/// The profitability check here is a local one, but it checks this in an
192/// interesting way. Beyond checking that the total cost of materializing the
193/// constants will be less than the cost of folding them into their users, it
194/// also checks that no one incoming constant will have a higher cost when
195/// folded into its users rather than materialized. This higher cost could
196/// result in a dynamic *path* that is more expensive even when the total cost
197/// is lower. Currently, all of the interesting cases where this optimization
198/// should fire are ones where it is a no-loss operation in this sense. If we
199/// ever want to be more aggressive here, we would need to balance the
200/// different incoming edges' cost by looking at their respective
201/// probabilities.
202static bool isSafeAndProfitableToSpeculateAroundPHI(
203    PHINode &PN, SmallDenseMap<PHINode *, int, 16> &CostSavingsMap,
204    SmallPtrSetImpl<Instruction *> &PotentialSpecSet,
205    SmallPtrSetImpl<Instruction *> &UnsafeSet, DominatorTree &DT,
206    TargetTransformInfo &TTI) {
207  // First see whether there is any cost savings to speculating around this
208  // PHI, and build up a map of the constant inputs to how many times they
209  // occur.
210  bool NonFreeMat = false;
211  struct CostsAndCount {
212    int MatCost = TargetTransformInfo::TCC_Free;
213    int FoldedCost = TargetTransformInfo::TCC_Free;
214    int Count = 0;
215  };
216  SmallDenseMap<ConstantInt *, CostsAndCount, 16> CostsAndCounts;
217  SmallPtrSet<BasicBlock *, 16> IncomingConstantBlocks;
218  for (int i : llvm::seq<int>(0, PN.getNumIncomingValues())) {
219    auto *IncomingC = dyn_cast<ConstantInt>(PN.getIncomingValue(i));
220    if (!IncomingC)
221      continue;
222
223    // Only visit each incoming edge with a constant input once.
224    if (!IncomingConstantBlocks.insert(PN.getIncomingBlock(i)).second)
225      continue;
226
227    auto InsertResult = CostsAndCounts.insert({IncomingC, {}});
228    // Count how many edges share a given incoming costant.
229    ++InsertResult.first->second.Count;
230    // Only compute the cost the first time we see a particular constant.
231    if (!InsertResult.second)
232      continue;
233
234    int &MatCost = InsertResult.first->second.MatCost;
235    MatCost = TTI.getIntImmCost(IncomingC->getValue(), IncomingC->getType());
236    NonFreeMat |= MatCost != TTI.TCC_Free;
237  }
238  if (!NonFreeMat) {
239    LLVM_DEBUG(dbgs() << "    Free: " << PN << "\n");
240    // No profit in free materialization.
241    return false;
242  }
243
244  // Now check that the uses of this PHI can actually be speculated,
245  // otherwise we'll still have to materialize the PHI value.
246  if (!isSafeToSpeculatePHIUsers(PN, DT, PotentialSpecSet, UnsafeSet)) {
247    LLVM_DEBUG(dbgs() << "    Unsafe PHI: " << PN << "\n");
248    return false;
249  }
250
251  // Compute how much (if any) savings are available by speculating around this
252  // PHI.
253  for (Use &U : PN.uses()) {
254    auto *UserI = cast<Instruction>(U.getUser());
255    // Now check whether there is any savings to folding the incoming constants
256    // into this use.
257    unsigned Idx = U.getOperandNo();
258
259    // If we have a binary operator that is commutative, an actual constant
260    // operand would end up on the RHS, so pretend the use of the PHI is on the
261    // RHS.
262    //
263    // Technically, this is a bit weird if *both* operands are PHIs we're
264    // speculating. But if that is the case, giving an "optimistic" cost isn't
265    // a bad thing because after speculation it will constant fold. And
266    // moreover, such cases should likely have been constant folded already by
267    // some other pass, so we shouldn't worry about "modeling" them terribly
268    // accurately here. Similarly, if the other operand is a constant, it still
269    // seems fine to be "optimistic" in our cost modeling, because when the
270    // incoming operand from the PHI node is also a constant, we will end up
271    // constant folding.
272    if (UserI->isBinaryOp() && UserI->isCommutative() && Idx != 1)
273      // Assume we will commute the constant to the RHS to be canonical.
274      Idx = 1;
275
276    // Get the intrinsic ID if this user is an intrinsic.
277    Intrinsic::ID IID = Intrinsic::not_intrinsic;
278    if (auto *UserII = dyn_cast<IntrinsicInst>(UserI))
279      IID = UserII->getIntrinsicID();
280
281    for (auto &IncomingConstantAndCostsAndCount : CostsAndCounts) {
282      ConstantInt *IncomingC = IncomingConstantAndCostsAndCount.first;
283      int MatCost = IncomingConstantAndCostsAndCount.second.MatCost;
284      int &FoldedCost = IncomingConstantAndCostsAndCount.second.FoldedCost;
285      if (IID)
286        FoldedCost += TTI.getIntImmCostIntrin(IID, Idx, IncomingC->getValue(),
287                                              IncomingC->getType());
288      else
289        FoldedCost +=
290            TTI.getIntImmCostInst(UserI->getOpcode(), Idx,
291                                  IncomingC->getValue(), IncomingC->getType());
292
293      // If we accumulate more folded cost for this incoming constant than
294      // materialized cost, then we'll regress any edge with this constant so
295      // just bail. We're only interested in cases where folding the incoming
296      // constants is at least break-even on all paths.
297      if (FoldedCost > MatCost) {
298        LLVM_DEBUG(dbgs() << "  Not profitable to fold imm: " << *IncomingC
299                          << "\n"
300                             "    Materializing cost:    "
301                          << MatCost
302                          << "\n"
303                             "    Accumulated folded cost: "
304                          << FoldedCost << "\n");
305        return false;
306      }
307    }
308  }
309
310  // Compute the total cost savings afforded by this PHI node.
311  int TotalMatCost = TTI.TCC_Free, TotalFoldedCost = TTI.TCC_Free;
312  for (auto IncomingConstantAndCostsAndCount : CostsAndCounts) {
313    int MatCost = IncomingConstantAndCostsAndCount.second.MatCost;
314    int FoldedCost = IncomingConstantAndCostsAndCount.second.FoldedCost;
315    int Count = IncomingConstantAndCostsAndCount.second.Count;
316
317    TotalMatCost += MatCost * Count;
318    TotalFoldedCost += FoldedCost * Count;
319  }
320  assert(TotalFoldedCost <= TotalMatCost && "If each constant's folded cost is "
321                                            "less that its materialized cost, "
322                                            "the sum must be as well.");
323
324  LLVM_DEBUG(dbgs() << "    Cost savings " << (TotalMatCost - TotalFoldedCost)
325                    << ": " << PN << "\n");
326  CostSavingsMap[&PN] = TotalMatCost - TotalFoldedCost;
327  return true;
328}
329
330/// Simple helper to walk all the users of a list of phis depth first, and call
331/// a visit function on each one in post-order.
332///
333/// All of the PHIs should be in the same basic block, and this is primarily
334/// used to make a single depth-first walk across their collective users
335/// without revisiting any subgraphs. Callers should provide a fast, idempotent
336/// callable to test whether a node has been visited and the more important
337/// callable to actually visit a particular node.
338///
339/// Depth-first and postorder here refer to the *operand* graph -- we start
340/// from a collection of users of PHI nodes and walk "up" the operands
341/// depth-first.
342template <typename IsVisitedT, typename VisitT>
343static void visitPHIUsersAndDepsInPostOrder(ArrayRef<PHINode *> PNs,
344                                            IsVisitedT IsVisited,
345                                            VisitT Visit) {
346  SmallVector<std::pair<Instruction *, User::value_op_iterator>, 16> DFSStack;
347  for (auto *PN : PNs)
348    for (Use &U : PN->uses()) {
349      auto *UI = cast<Instruction>(U.getUser());
350      if (IsVisited(UI))
351        // Already visited this user, continue across the roots.
352        continue;
353
354      // Otherwise, walk the operand graph depth-first and visit each
355      // dependency in postorder.
356      DFSStack.push_back({UI, UI->value_op_begin()});
357      do {
358        User::value_op_iterator OpIt;
359        std::tie(UI, OpIt) = DFSStack.pop_back_val();
360        while (OpIt != UI->value_op_end()) {
361          auto *OpI = dyn_cast<Instruction>(*OpIt);
362          // Increment to the next operand for whenever we continue.
363          ++OpIt;
364          // No need to visit non-instructions, which can't form dependencies,
365          // or instructions outside of our potential dependency set that we
366          // were given. Finally, if we've already visited the node, continue
367          // to the next.
368          if (!OpI || IsVisited(OpI))
369            continue;
370
371          // Push onto the stack and descend. We can directly continue this
372          // loop when ascending.
373          DFSStack.push_back({UI, OpIt});
374          UI = OpI;
375          OpIt = OpI->value_op_begin();
376        }
377
378        // Finished visiting children, visit this node.
379        assert(!IsVisited(UI) && "Should not have already visited a node!");
380        Visit(UI);
381      } while (!DFSStack.empty());
382    }
383}
384
385/// Find profitable PHIs to speculate.
386///
387/// For a PHI node to be profitable, we need the cost of speculating its users
388/// (and their dependencies) to not exceed the savings of folding the PHI's
389/// constant operands into the speculated users.
390///
391/// Computing this is surprisingly challenging. Because users of two different
392/// PHI nodes can depend on each other or on common other instructions, it may
393/// be profitable to speculate two PHI nodes together even though neither one
394/// in isolation is profitable. The straightforward way to find all the
395/// profitable PHIs would be to check each combination of PHIs' cost, but this
396/// is exponential in complexity.
397///
398/// Even if we assume that we only care about cases where we can consider each
399/// PHI node in isolation (rather than considering cases where none are
400/// profitable in isolation but some subset are profitable as a set), we still
401/// have a challenge. The obvious way to find all individually profitable PHIs
402/// is to iterate until reaching a fixed point, but this will be quadratic in
403/// complexity. =/
404///
405/// This code currently uses a linear-to-compute order for a greedy approach.
406/// It won't find cases where a set of PHIs must be considered together, but it
407/// handles most cases of order dependence without quadratic iteration. The
408/// specific order used is the post-order across the operand DAG. When the last
409/// user of a PHI is visited in this postorder walk, we check it for
410/// profitability.
411///
412/// There is an orthogonal extra complexity to all of this: computing the cost
413/// itself can easily become a linear computation making everything again (at
414/// best) quadratic. Using a postorder over the operand graph makes it
415/// particularly easy to avoid this through dynamic programming. As we do the
416/// postorder walk, we build the transitive cost of that subgraph. It is also
417/// straightforward to then update these costs when we mark a PHI for
418/// speculation so that subsequent PHIs don't re-pay the cost of already
419/// speculated instructions.
420static SmallVector<PHINode *, 16>
421findProfitablePHIs(ArrayRef<PHINode *> PNs,
422                   const SmallDenseMap<PHINode *, int, 16> &CostSavingsMap,
423                   const SmallPtrSetImpl<Instruction *> &PotentialSpecSet,
424                   int NumPreds, DominatorTree &DT, TargetTransformInfo &TTI) {
425  SmallVector<PHINode *, 16> SpecPNs;
426
427  // First, establish a reverse mapping from immediate users of the PHI nodes
428  // to the nodes themselves, and count how many users each PHI node has in
429  // a way we can update while processing them.
430  SmallDenseMap<Instruction *, TinyPtrVector<PHINode *>, 16> UserToPNMap;
431  SmallDenseMap<PHINode *, int, 16> PNUserCountMap;
432  SmallPtrSet<Instruction *, 16> UserSet;
433  for (auto *PN : PNs) {
434    assert(UserSet.empty() && "Must start with an empty user set!");
435    for (Use &U : PN->uses())
436      UserSet.insert(cast<Instruction>(U.getUser()));
437    PNUserCountMap[PN] = UserSet.size();
438    for (auto *UI : UserSet)
439      UserToPNMap.insert({UI, {}}).first->second.push_back(PN);
440    UserSet.clear();
441  }
442
443  // Now do a DFS across the operand graph of the users, computing cost as we
444  // go and when all costs for a given PHI are known, checking that PHI for
445  // profitability.
446  SmallDenseMap<Instruction *, int, 16> SpecCostMap;
447  visitPHIUsersAndDepsInPostOrder(
448      PNs,
449      /*IsVisited*/
450      [&](Instruction *I) {
451        // We consider anything that isn't potentially speculated to be
452        // "visited" as it is already handled. Similarly, anything that *is*
453        // potentially speculated but for which we have an entry in our cost
454        // map, we're done.
455        return !PotentialSpecSet.count(I) || SpecCostMap.count(I);
456      },
457      /*Visit*/
458      [&](Instruction *I) {
459        // We've fully visited the operands, so sum their cost with this node
460        // and update the cost map.
461        int Cost = TTI.TCC_Free;
462        for (Value *OpV : I->operand_values())
463          if (auto *OpI = dyn_cast<Instruction>(OpV)) {
464            auto CostMapIt = SpecCostMap.find(OpI);
465            if (CostMapIt != SpecCostMap.end())
466              Cost += CostMapIt->second;
467          }
468        Cost += TTI.getUserCost(I);
469        bool Inserted = SpecCostMap.insert({I, Cost}).second;
470        (void)Inserted;
471        assert(Inserted && "Must not re-insert a cost during the DFS!");
472
473        // Now check if this node had a corresponding PHI node using it. If so,
474        // we need to decrement the outstanding user count for it.
475        auto UserPNsIt = UserToPNMap.find(I);
476        if (UserPNsIt == UserToPNMap.end())
477          return;
478        auto &UserPNs = UserPNsIt->second;
479        auto UserPNsSplitIt = std::stable_partition(
480            UserPNs.begin(), UserPNs.end(), [&](PHINode *UserPN) {
481              int &PNUserCount = PNUserCountMap.find(UserPN)->second;
482              assert(
483                  PNUserCount > 0 &&
484                  "Should never re-visit a PN after its user count hits zero!");
485              --PNUserCount;
486              return PNUserCount != 0;
487            });
488
489        // FIXME: Rather than one at a time, we should sum the savings as the
490        // cost will be completely shared.
491        SmallVector<Instruction *, 16> SpecWorklist;
492        for (auto *PN : llvm::make_range(UserPNsSplitIt, UserPNs.end())) {
493          int SpecCost = TTI.TCC_Free;
494          for (Use &U : PN->uses())
495            SpecCost +=
496                SpecCostMap.find(cast<Instruction>(U.getUser()))->second;
497          SpecCost *= (NumPreds - 1);
498          // When the user count of a PHI node hits zero, we should check its
499          // profitability. If profitable, we should mark it for speculation
500          // and zero out the cost of everything it depends on.
501          int CostSavings = CostSavingsMap.find(PN)->second;
502          if (SpecCost > CostSavings) {
503            LLVM_DEBUG(dbgs() << "  Not profitable, speculation cost: " << *PN
504                              << "\n"
505                                 "    Cost savings:     "
506                              << CostSavings
507                              << "\n"
508                                 "    Speculation cost: "
509                              << SpecCost << "\n");
510            continue;
511          }
512
513          // We're going to speculate this user-associated PHI. Copy it out and
514          // add its users to the worklist to update their cost.
515          SpecPNs.push_back(PN);
516          for (Use &U : PN->uses()) {
517            auto *UI = cast<Instruction>(U.getUser());
518            auto CostMapIt = SpecCostMap.find(UI);
519            if (CostMapIt->second == 0)
520              continue;
521            // Zero out this cost entry to avoid duplicates.
522            CostMapIt->second = 0;
523            SpecWorklist.push_back(UI);
524          }
525        }
526
527        // Now walk all the operands of the users in the worklist transitively
528        // to zero out all the memoized costs.
529        while (!SpecWorklist.empty()) {
530          Instruction *SpecI = SpecWorklist.pop_back_val();
531          assert(SpecCostMap.find(SpecI)->second == 0 &&
532                 "Didn't zero out a cost!");
533
534          // Walk the operands recursively to zero out their cost as well.
535          for (auto *OpV : SpecI->operand_values()) {
536            auto *OpI = dyn_cast<Instruction>(OpV);
537            if (!OpI)
538              continue;
539            auto CostMapIt = SpecCostMap.find(OpI);
540            if (CostMapIt == SpecCostMap.end() || CostMapIt->second == 0)
541              continue;
542            CostMapIt->second = 0;
543            SpecWorklist.push_back(OpI);
544          }
545        }
546      });
547
548  return SpecPNs;
549}
550
551/// Speculate users around a set of PHI nodes.
552///
553/// This routine does the actual speculation around a set of PHI nodes where we
554/// have determined this to be both safe and profitable.
555///
556/// This routine handles any spliting of critical edges necessary to create
557/// a safe block to speculate into as well as cloning the instructions and
558/// rewriting all uses.
559static void speculatePHIs(ArrayRef<PHINode *> SpecPNs,
560                          SmallPtrSetImpl<Instruction *> &PotentialSpecSet,
561                          SmallSetVector<BasicBlock *, 16> &PredSet,
562                          DominatorTree &DT) {
563  LLVM_DEBUG(dbgs() << "  Speculating around " << SpecPNs.size() << " PHIs!\n");
564  NumPHIsSpeculated += SpecPNs.size();
565
566  // Split any critical edges so that we have a block to hoist into.
567  auto *ParentBB = SpecPNs[0]->getParent();
568  SmallVector<BasicBlock *, 16> SpecPreds;
569  SpecPreds.reserve(PredSet.size());
570  for (auto *PredBB : PredSet) {
571    auto *NewPredBB = SplitCriticalEdge(
572        PredBB, ParentBB,
573        CriticalEdgeSplittingOptions(&DT).setMergeIdenticalEdges());
574    if (NewPredBB) {
575      ++NumEdgesSplit;
576      LLVM_DEBUG(dbgs() << "  Split critical edge from: " << PredBB->getName()
577                        << "\n");
578      SpecPreds.push_back(NewPredBB);
579    } else {
580      assert(PredBB->getSingleSuccessor() == ParentBB &&
581             "We need a non-critical predecessor to speculate into.");
582      assert(!isa<InvokeInst>(PredBB->getTerminator()) &&
583             "Cannot have a non-critical invoke!");
584
585      // Already non-critical, use existing pred.
586      SpecPreds.push_back(PredBB);
587    }
588  }
589
590  SmallPtrSet<Instruction *, 16> SpecSet;
591  SmallVector<Instruction *, 16> SpecList;
592  visitPHIUsersAndDepsInPostOrder(SpecPNs,
593                                  /*IsVisited*/
594                                  [&](Instruction *I) {
595                                    // This is visited if we don't need to
596                                    // speculate it or we already have
597                                    // speculated it.
598                                    return !PotentialSpecSet.count(I) ||
599                                           SpecSet.count(I);
600                                  },
601                                  /*Visit*/
602                                  [&](Instruction *I) {
603                                    // All operands scheduled, schedule this
604                                    // node.
605                                    SpecSet.insert(I);
606                                    SpecList.push_back(I);
607                                  });
608
609  int NumSpecInsts = SpecList.size() * SpecPreds.size();
610  int NumRedundantInsts = NumSpecInsts - SpecList.size();
611  LLVM_DEBUG(dbgs() << "  Inserting " << NumSpecInsts
612                    << " speculated instructions, " << NumRedundantInsts
613                    << " redundancies\n");
614  NumSpeculatedInstructions += NumSpecInsts;
615  NumNewRedundantInstructions += NumRedundantInsts;
616
617  // Each predecessor is numbered by its index in `SpecPreds`, so for each
618  // instruction we speculate, the speculated instruction is stored in that
619  // index of the vector associated with the original instruction. We also
620  // store the incoming values for each predecessor from any PHIs used.
621  SmallDenseMap<Instruction *, SmallVector<Value *, 2>, 16> SpeculatedValueMap;
622
623  // Inject the synthetic mappings to rewrite PHIs to the appropriate incoming
624  // value. This handles both the PHIs we are speculating around and any other
625  // PHIs that happen to be used.
626  for (auto *OrigI : SpecList)
627    for (auto *OpV : OrigI->operand_values()) {
628      auto *OpPN = dyn_cast<PHINode>(OpV);
629      if (!OpPN || OpPN->getParent() != ParentBB)
630        continue;
631
632      auto InsertResult = SpeculatedValueMap.insert({OpPN, {}});
633      if (!InsertResult.second)
634        continue;
635
636      auto &SpeculatedVals = InsertResult.first->second;
637
638      // Populating our structure for mapping is particularly annoying because
639      // finding an incoming value for a particular predecessor block in a PHI
640      // node is a linear time operation! To avoid quadratic behavior, we build
641      // a map for this PHI node's incoming values and then translate it into
642      // the more compact representation used below.
643      SmallDenseMap<BasicBlock *, Value *, 16> IncomingValueMap;
644      for (int i : llvm::seq<int>(0, OpPN->getNumIncomingValues()))
645        IncomingValueMap[OpPN->getIncomingBlock(i)] = OpPN->getIncomingValue(i);
646
647      for (auto *PredBB : SpecPreds)
648        SpeculatedVals.push_back(IncomingValueMap.find(PredBB)->second);
649    }
650
651  // Speculate into each predecessor.
652  for (int PredIdx : llvm::seq<int>(0, SpecPreds.size())) {
653    auto *PredBB = SpecPreds[PredIdx];
654    assert(PredBB->getSingleSuccessor() == ParentBB &&
655           "We need a non-critical predecessor to speculate into.");
656
657    for (auto *OrigI : SpecList) {
658      auto *NewI = OrigI->clone();
659      NewI->setName(Twine(OrigI->getName()) + "." + Twine(PredIdx));
660      NewI->insertBefore(PredBB->getTerminator());
661
662      // Rewrite all the operands to the previously speculated instructions.
663      // Because we're walking in-order, the defs must precede the uses and we
664      // should already have these mappings.
665      for (Use &U : NewI->operands()) {
666        auto *OpI = dyn_cast<Instruction>(U.get());
667        if (!OpI)
668          continue;
669        auto MapIt = SpeculatedValueMap.find(OpI);
670        if (MapIt == SpeculatedValueMap.end())
671          continue;
672        const auto &SpeculatedVals = MapIt->second;
673        assert(SpeculatedVals[PredIdx] &&
674               "Must have a speculated value for this predecessor!");
675        assert(SpeculatedVals[PredIdx]->getType() == OpI->getType() &&
676               "Speculated value has the wrong type!");
677
678        // Rewrite the use to this predecessor's speculated instruction.
679        U.set(SpeculatedVals[PredIdx]);
680      }
681
682      // Commute instructions which now have a constant in the LHS but not the
683      // RHS.
684      if (NewI->isBinaryOp() && NewI->isCommutative() &&
685          isa<Constant>(NewI->getOperand(0)) &&
686          !isa<Constant>(NewI->getOperand(1)))
687        NewI->getOperandUse(0).swap(NewI->getOperandUse(1));
688
689      SpeculatedValueMap[OrigI].push_back(NewI);
690      assert(SpeculatedValueMap[OrigI][PredIdx] == NewI &&
691             "Mismatched speculated instruction index!");
692    }
693  }
694
695  // Walk the speculated instruction list and if they have uses, insert a PHI
696  // for them from the speculated versions, and replace the uses with the PHI.
697  // Then erase the instructions as they have been fully speculated. The walk
698  // needs to be in reverse so that we don't think there are users when we'll
699  // actually eventually remove them later.
700  IRBuilder<> IRB(SpecPNs[0]);
701  for (auto *OrigI : llvm::reverse(SpecList)) {
702    // Check if we need a PHI for any remaining users and if so, insert it.
703    if (!OrigI->use_empty()) {
704      auto *SpecIPN = IRB.CreatePHI(OrigI->getType(), SpecPreds.size(),
705                                    Twine(OrigI->getName()) + ".phi");
706      // Add the incoming values we speculated.
707      auto &SpeculatedVals = SpeculatedValueMap.find(OrigI)->second;
708      for (int PredIdx : llvm::seq<int>(0, SpecPreds.size()))
709        SpecIPN->addIncoming(SpeculatedVals[PredIdx], SpecPreds[PredIdx]);
710
711      // And replace the uses with the PHI node.
712      OrigI->replaceAllUsesWith(SpecIPN);
713    }
714
715    // It is important to immediately erase this so that it stops using other
716    // instructions. This avoids inserting needless PHIs of them.
717    OrigI->eraseFromParent();
718  }
719
720  // All of the uses of the speculated phi nodes should be removed at this
721  // point, so erase them.
722  for (auto *SpecPN : SpecPNs) {
723    assert(SpecPN->use_empty() && "All users should have been speculated!");
724    SpecPN->eraseFromParent();
725  }
726}
727
728/// Try to speculate around a series of PHIs from a single basic block.
729///
730/// This routine checks whether any of these PHIs are profitable to speculate
731/// users around. If safe and profitable, it does the speculation. It returns
732/// true when at least some speculation occurs.
733static bool tryToSpeculatePHIs(SmallVectorImpl<PHINode *> &PNs,
734                               DominatorTree &DT, TargetTransformInfo &TTI) {
735  LLVM_DEBUG(dbgs() << "Evaluating phi nodes for speculation:\n");
736
737  // Savings in cost from speculating around a PHI node.
738  SmallDenseMap<PHINode *, int, 16> CostSavingsMap;
739
740  // Remember the set of instructions that are candidates for speculation so
741  // that we can quickly walk things within that space. This prunes out
742  // instructions already available along edges, etc.
743  SmallPtrSet<Instruction *, 16> PotentialSpecSet;
744
745  // Remember the set of instructions that are (transitively) unsafe to
746  // speculate into the incoming edges of this basic block. This avoids
747  // recomputing them for each PHI node we check. This set is specific to this
748  // block though as things are pruned out of it based on what is available
749  // along incoming edges.
750  SmallPtrSet<Instruction *, 16> UnsafeSet;
751
752  // For each PHI node in this block, check whether there are immediate folding
753  // opportunities from speculation, and whether that speculation will be
754  // valid. This determise the set of safe PHIs to speculate.
755  PNs.erase(llvm::remove_if(PNs,
756                            [&](PHINode *PN) {
757                              return !isSafeAndProfitableToSpeculateAroundPHI(
758                                  *PN, CostSavingsMap, PotentialSpecSet,
759                                  UnsafeSet, DT, TTI);
760                            }),
761            PNs.end());
762  // If no PHIs were profitable, skip.
763  if (PNs.empty()) {
764    LLVM_DEBUG(dbgs() << "  No safe and profitable PHIs found!\n");
765    return false;
766  }
767
768  // We need to know how much speculation will cost which is determined by how
769  // many incoming edges will need a copy of each speculated instruction.
770  SmallSetVector<BasicBlock *, 16> PredSet;
771  for (auto *PredBB : PNs[0]->blocks()) {
772    if (!PredSet.insert(PredBB))
773      continue;
774
775    // We cannot speculate when a predecessor is an indirect branch.
776    // FIXME: We also can't reliably create a non-critical edge block for
777    // speculation if the predecessor is an invoke. This doesn't seem
778    // fundamental and we should probably be splitting critical edges
779    // differently.
780    const auto *TermInst = PredBB->getTerminator();
781    if (isa<IndirectBrInst>(TermInst) ||
782        isa<InvokeInst>(TermInst) ||
783        isa<CallBrInst>(TermInst)) {
784      LLVM_DEBUG(dbgs() << "  Invalid: predecessor terminator: "
785                        << PredBB->getName() << "\n");
786      return false;
787    }
788  }
789  if (PredSet.size() < 2) {
790    LLVM_DEBUG(dbgs() << "  Unimportant: phi with only one predecessor\n");
791    return false;
792  }
793
794  SmallVector<PHINode *, 16> SpecPNs = findProfitablePHIs(
795      PNs, CostSavingsMap, PotentialSpecSet, PredSet.size(), DT, TTI);
796  if (SpecPNs.empty())
797    // Nothing to do.
798    return false;
799
800  speculatePHIs(SpecPNs, PotentialSpecSet, PredSet, DT);
801  return true;
802}
803
804PreservedAnalyses SpeculateAroundPHIsPass::run(Function &F,
805                                               FunctionAnalysisManager &AM) {
806  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
807  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
808
809  bool Changed = false;
810  for (auto *BB : ReversePostOrderTraversal<Function *>(&F)) {
811    SmallVector<PHINode *, 16> PNs;
812    auto BBI = BB->begin();
813    while (auto *PN = dyn_cast<PHINode>(&*BBI)) {
814      PNs.push_back(PN);
815      ++BBI;
816    }
817
818    if (PNs.empty())
819      continue;
820
821    Changed |= tryToSpeculatePHIs(PNs, DT, TTI);
822  }
823
824  if (!Changed)
825    return PreservedAnalyses::all();
826
827  PreservedAnalyses PA;
828  return PA;
829}
830