1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This transformation analyzes and transforms the induction variables (and
10// computations derived from them) into forms suitable for efficient execution
11// on the target.
12//
13// This pass performs a strength reduction on array references inside loops that
14// have as one or more of their components the loop induction variable, it
15// rewrites expressions to take advantage of scaled-index addressing modes
16// available on the target, and it performs a variety of other optimizations
17// related to loop induction variables.
18//
19// Terminology note: this code has a lot of handling for "post-increment" or
20// "post-inc" users. This is not talking about post-increment addressing modes;
21// it is instead talking about code like this:
22//
23//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24//   ...
25//   %i.next = add %i, 1
26//   %c = icmp eq %i.next, %n
27//
28// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29// it's useful to think about these as the same register, with some uses using
30// the value of the register before the add and some using it after. In this
31// example, the icmp is a post-increment user, since it uses %i.next, which is
32// the value of the induction variable after the increment. The other common
33// case of post-increment users is users outside the loop.
34//
35// TODO: More sophistication in the way Formulae are generated and filtered.
36//
37// TODO: Handle multiple loops at a time.
38//
39// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40//       of a GlobalValue?
41//
42// TODO: When truncation is free, truncate ICmp users' operands to make it a
43//       smaller encoding (on x86 at least).
44//
45// TODO: When a negated register is used by an add (such as in a list of
46//       multiple base registers, or as the increment expression in an addrec),
47//       we may not actually need both reg and (-1 * reg) in registers; the
48//       negation can be implemented by using a sub instead of an add. The
49//       lack of support for taking this into consideration when making
50//       register pressure decisions is partly worked around by the "Special"
51//       use kind.
52//
53//===----------------------------------------------------------------------===//
54
55#include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56#include "llvm/ADT/APInt.h"
57#include "llvm/ADT/DenseMap.h"
58#include "llvm/ADT/DenseSet.h"
59#include "llvm/ADT/Hashing.h"
60#include "llvm/ADT/PointerIntPair.h"
61#include "llvm/ADT/STLExtras.h"
62#include "llvm/ADT/SetVector.h"
63#include "llvm/ADT/SmallBitVector.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/SmallSet.h"
66#include "llvm/ADT/SmallVector.h"
67#include "llvm/ADT/iterator_range.h"
68#include "llvm/Analysis/IVUsers.h"
69#include "llvm/Analysis/LoopAnalysisManager.h"
70#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Analysis/LoopPass.h"
72#include "llvm/Analysis/ScalarEvolution.h"
73#include "llvm/Analysis/ScalarEvolutionExpander.h"
74#include "llvm/Analysis/ScalarEvolutionExpressions.h"
75#include "llvm/Analysis/ScalarEvolutionNormalization.h"
76#include "llvm/Analysis/TargetTransformInfo.h"
77#include "llvm/Config/llvm-config.h"
78#include "llvm/IR/BasicBlock.h"
79#include "llvm/IR/Constant.h"
80#include "llvm/IR/Constants.h"
81#include "llvm/IR/DerivedTypes.h"
82#include "llvm/IR/Dominators.h"
83#include "llvm/IR/GlobalValue.h"
84#include "llvm/IR/IRBuilder.h"
85#include "llvm/IR/InstrTypes.h"
86#include "llvm/IR/Instruction.h"
87#include "llvm/IR/Instructions.h"
88#include "llvm/IR/IntrinsicInst.h"
89#include "llvm/IR/Intrinsics.h"
90#include "llvm/IR/Module.h"
91#include "llvm/IR/OperandTraits.h"
92#include "llvm/IR/Operator.h"
93#include "llvm/IR/PassManager.h"
94#include "llvm/IR/Type.h"
95#include "llvm/IR/Use.h"
96#include "llvm/IR/User.h"
97#include "llvm/IR/Value.h"
98#include "llvm/IR/ValueHandle.h"
99#include "llvm/InitializePasses.h"
100#include "llvm/Pass.h"
101#include "llvm/Support/Casting.h"
102#include "llvm/Support/CommandLine.h"
103#include "llvm/Support/Compiler.h"
104#include "llvm/Support/Debug.h"
105#include "llvm/Support/ErrorHandling.h"
106#include "llvm/Support/MathExtras.h"
107#include "llvm/Support/raw_ostream.h"
108#include "llvm/Transforms/Scalar.h"
109#include "llvm/Transforms/Utils.h"
110#include "llvm/Transforms/Utils/BasicBlockUtils.h"
111#include "llvm/Transforms/Utils/Local.h"
112#include <algorithm>
113#include <cassert>
114#include <cstddef>
115#include <cstdint>
116#include <cstdlib>
117#include <iterator>
118#include <limits>
119#include <map>
120#include <numeric>
121#include <utility>
122
123using namespace llvm;
124
125#define DEBUG_TYPE "loop-reduce"
126
127/// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
128/// bail out. This threshold is far beyond the number of users that LSR can
129/// conceivably solve, so it should not affect generated code, but catches the
130/// worst cases before LSR burns too much compile time and stack space.
131static const unsigned MaxIVUsers = 200;
132
133// Temporary flag to cleanup congruent phis after LSR phi expansion.
134// It's currently disabled until we can determine whether it's truly useful or
135// not. The flag should be removed after the v3.0 release.
136// This is now needed for ivchains.
137static cl::opt<bool> EnablePhiElim(
138  "enable-lsr-phielim", cl::Hidden, cl::init(true),
139  cl::desc("Enable LSR phi elimination"));
140
141// The flag adds instruction count to solutions cost comparision.
142static cl::opt<bool> InsnsCost(
143  "lsr-insns-cost", cl::Hidden, cl::init(true),
144  cl::desc("Add instruction count to a LSR cost model"));
145
146// Flag to choose how to narrow complex lsr solution
147static cl::opt<bool> LSRExpNarrow(
148  "lsr-exp-narrow", cl::Hidden, cl::init(false),
149  cl::desc("Narrow LSR complex solution using"
150           " expectation of registers number"));
151
152// Flag to narrow search space by filtering non-optimal formulae with
153// the same ScaledReg and Scale.
154static cl::opt<bool> FilterSameScaledReg(
155    "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
156    cl::desc("Narrow LSR search space by filtering non-optimal formulae"
157             " with the same ScaledReg and Scale"));
158
159static cl::opt<bool> EnableBackedgeIndexing(
160  "lsr-backedge-indexing", cl::Hidden, cl::init(true),
161  cl::desc("Enable the generation of cross iteration indexed memops"));
162
163static cl::opt<unsigned> ComplexityLimit(
164  "lsr-complexity-limit", cl::Hidden,
165  cl::init(std::numeric_limits<uint16_t>::max()),
166  cl::desc("LSR search space complexity limit"));
167
168static cl::opt<unsigned> SetupCostDepthLimit(
169    "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
170    cl::desc("The limit on recursion depth for LSRs setup cost"));
171
172#ifndef NDEBUG
173// Stress test IV chain generation.
174static cl::opt<bool> StressIVChain(
175  "stress-ivchain", cl::Hidden, cl::init(false),
176  cl::desc("Stress test LSR IV chains"));
177#else
178static bool StressIVChain = false;
179#endif
180
181namespace {
182
183struct MemAccessTy {
184  /// Used in situations where the accessed memory type is unknown.
185  static const unsigned UnknownAddressSpace =
186      std::numeric_limits<unsigned>::max();
187
188  Type *MemTy = nullptr;
189  unsigned AddrSpace = UnknownAddressSpace;
190
191  MemAccessTy() = default;
192  MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
193
194  bool operator==(MemAccessTy Other) const {
195    return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
196  }
197
198  bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
199
200  static MemAccessTy getUnknown(LLVMContext &Ctx,
201                                unsigned AS = UnknownAddressSpace) {
202    return MemAccessTy(Type::getVoidTy(Ctx), AS);
203  }
204
205  Type *getType() { return MemTy; }
206};
207
208/// This class holds data which is used to order reuse candidates.
209class RegSortData {
210public:
211  /// This represents the set of LSRUse indices which reference
212  /// a particular register.
213  SmallBitVector UsedByIndices;
214
215  void print(raw_ostream &OS) const;
216  void dump() const;
217};
218
219} // end anonymous namespace
220
221#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
222void RegSortData::print(raw_ostream &OS) const {
223  OS << "[NumUses=" << UsedByIndices.count() << ']';
224}
225
226LLVM_DUMP_METHOD void RegSortData::dump() const {
227  print(errs()); errs() << '\n';
228}
229#endif
230
231namespace {
232
233/// Map register candidates to information about how they are used.
234class RegUseTracker {
235  using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
236
237  RegUsesTy RegUsesMap;
238  SmallVector<const SCEV *, 16> RegSequence;
239
240public:
241  void countRegister(const SCEV *Reg, size_t LUIdx);
242  void dropRegister(const SCEV *Reg, size_t LUIdx);
243  void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
244
245  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
246
247  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
248
249  void clear();
250
251  using iterator = SmallVectorImpl<const SCEV *>::iterator;
252  using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
253
254  iterator begin() { return RegSequence.begin(); }
255  iterator end()   { return RegSequence.end(); }
256  const_iterator begin() const { return RegSequence.begin(); }
257  const_iterator end() const   { return RegSequence.end(); }
258};
259
260} // end anonymous namespace
261
262void
263RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
264  std::pair<RegUsesTy::iterator, bool> Pair =
265    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
266  RegSortData &RSD = Pair.first->second;
267  if (Pair.second)
268    RegSequence.push_back(Reg);
269  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
270  RSD.UsedByIndices.set(LUIdx);
271}
272
273void
274RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
275  RegUsesTy::iterator It = RegUsesMap.find(Reg);
276  assert(It != RegUsesMap.end());
277  RegSortData &RSD = It->second;
278  assert(RSD.UsedByIndices.size() > LUIdx);
279  RSD.UsedByIndices.reset(LUIdx);
280}
281
282void
283RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
284  assert(LUIdx <= LastLUIdx);
285
286  // Update RegUses. The data structure is not optimized for this purpose;
287  // we must iterate through it and update each of the bit vectors.
288  for (auto &Pair : RegUsesMap) {
289    SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
290    if (LUIdx < UsedByIndices.size())
291      UsedByIndices[LUIdx] =
292        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
293    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
294  }
295}
296
297bool
298RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
299  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
300  if (I == RegUsesMap.end())
301    return false;
302  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
303  int i = UsedByIndices.find_first();
304  if (i == -1) return false;
305  if ((size_t)i != LUIdx) return true;
306  return UsedByIndices.find_next(i) != -1;
307}
308
309const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
310  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
311  assert(I != RegUsesMap.end() && "Unknown register!");
312  return I->second.UsedByIndices;
313}
314
315void RegUseTracker::clear() {
316  RegUsesMap.clear();
317  RegSequence.clear();
318}
319
320namespace {
321
322/// This class holds information that describes a formula for computing
323/// satisfying a use. It may include broken-out immediates and scaled registers.
324struct Formula {
325  /// Global base address used for complex addressing.
326  GlobalValue *BaseGV = nullptr;
327
328  /// Base offset for complex addressing.
329  int64_t BaseOffset = 0;
330
331  /// Whether any complex addressing has a base register.
332  bool HasBaseReg = false;
333
334  /// The scale of any complex addressing.
335  int64_t Scale = 0;
336
337  /// The list of "base" registers for this use. When this is non-empty. The
338  /// canonical representation of a formula is
339  /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
340  /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
341  /// 3. The reg containing recurrent expr related with currect loop in the
342  /// formula should be put in the ScaledReg.
343  /// #1 enforces that the scaled register is always used when at least two
344  /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
345  /// #2 enforces that 1 * reg is reg.
346  /// #3 ensures invariant regs with respect to current loop can be combined
347  /// together in LSR codegen.
348  /// This invariant can be temporarily broken while building a formula.
349  /// However, every formula inserted into the LSRInstance must be in canonical
350  /// form.
351  SmallVector<const SCEV *, 4> BaseRegs;
352
353  /// The 'scaled' register for this use. This should be non-null when Scale is
354  /// not zero.
355  const SCEV *ScaledReg = nullptr;
356
357  /// An additional constant offset which added near the use. This requires a
358  /// temporary register, but the offset itself can live in an add immediate
359  /// field rather than a register.
360  int64_t UnfoldedOffset = 0;
361
362  Formula() = default;
363
364  void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
365
366  bool isCanonical(const Loop &L) const;
367
368  void canonicalize(const Loop &L);
369
370  bool unscale();
371
372  bool hasZeroEnd() const;
373
374  size_t getNumRegs() const;
375  Type *getType() const;
376
377  void deleteBaseReg(const SCEV *&S);
378
379  bool referencesReg(const SCEV *S) const;
380  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
381                                  const RegUseTracker &RegUses) const;
382
383  void print(raw_ostream &OS) const;
384  void dump() const;
385};
386
387} // end anonymous namespace
388
389/// Recursion helper for initialMatch.
390static void DoInitialMatch(const SCEV *S, Loop *L,
391                           SmallVectorImpl<const SCEV *> &Good,
392                           SmallVectorImpl<const SCEV *> &Bad,
393                           ScalarEvolution &SE) {
394  // Collect expressions which properly dominate the loop header.
395  if (SE.properlyDominates(S, L->getHeader())) {
396    Good.push_back(S);
397    return;
398  }
399
400  // Look at add operands.
401  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
402    for (const SCEV *S : Add->operands())
403      DoInitialMatch(S, L, Good, Bad, SE);
404    return;
405  }
406
407  // Look at addrec operands.
408  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
409    if (!AR->getStart()->isZero() && AR->isAffine()) {
410      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
411      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
412                                      AR->getStepRecurrence(SE),
413                                      // FIXME: AR->getNoWrapFlags()
414                                      AR->getLoop(), SCEV::FlagAnyWrap),
415                     L, Good, Bad, SE);
416      return;
417    }
418
419  // Handle a multiplication by -1 (negation) if it didn't fold.
420  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
421    if (Mul->getOperand(0)->isAllOnesValue()) {
422      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
423      const SCEV *NewMul = SE.getMulExpr(Ops);
424
425      SmallVector<const SCEV *, 4> MyGood;
426      SmallVector<const SCEV *, 4> MyBad;
427      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
428      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
429        SE.getEffectiveSCEVType(NewMul->getType())));
430      for (const SCEV *S : MyGood)
431        Good.push_back(SE.getMulExpr(NegOne, S));
432      for (const SCEV *S : MyBad)
433        Bad.push_back(SE.getMulExpr(NegOne, S));
434      return;
435    }
436
437  // Ok, we can't do anything interesting. Just stuff the whole thing into a
438  // register and hope for the best.
439  Bad.push_back(S);
440}
441
442/// Incorporate loop-variant parts of S into this Formula, attempting to keep
443/// all loop-invariant and loop-computable values in a single base register.
444void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
445  SmallVector<const SCEV *, 4> Good;
446  SmallVector<const SCEV *, 4> Bad;
447  DoInitialMatch(S, L, Good, Bad, SE);
448  if (!Good.empty()) {
449    const SCEV *Sum = SE.getAddExpr(Good);
450    if (!Sum->isZero())
451      BaseRegs.push_back(Sum);
452    HasBaseReg = true;
453  }
454  if (!Bad.empty()) {
455    const SCEV *Sum = SE.getAddExpr(Bad);
456    if (!Sum->isZero())
457      BaseRegs.push_back(Sum);
458    HasBaseReg = true;
459  }
460  canonicalize(*L);
461}
462
463/// Check whether or not this formula satisfies the canonical
464/// representation.
465/// \see Formula::BaseRegs.
466bool Formula::isCanonical(const Loop &L) const {
467  if (!ScaledReg)
468    return BaseRegs.size() <= 1;
469
470  if (Scale != 1)
471    return true;
472
473  if (Scale == 1 && BaseRegs.empty())
474    return false;
475
476  const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
477  if (SAR && SAR->getLoop() == &L)
478    return true;
479
480  // If ScaledReg is not a recurrent expr, or it is but its loop is not current
481  // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
482  // loop, we want to swap the reg in BaseRegs with ScaledReg.
483  auto I =
484      find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
485        return isa<const SCEVAddRecExpr>(S) &&
486               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
487      });
488  return I == BaseRegs.end();
489}
490
491/// Helper method to morph a formula into its canonical representation.
492/// \see Formula::BaseRegs.
493/// Every formula having more than one base register, must use the ScaledReg
494/// field. Otherwise, we would have to do special cases everywhere in LSR
495/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
496/// On the other hand, 1*reg should be canonicalized into reg.
497void Formula::canonicalize(const Loop &L) {
498  if (isCanonical(L))
499    return;
500  // So far we did not need this case. This is easy to implement but it is
501  // useless to maintain dead code. Beside it could hurt compile time.
502  assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
503
504  // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
505  if (!ScaledReg) {
506    ScaledReg = BaseRegs.back();
507    BaseRegs.pop_back();
508    Scale = 1;
509  }
510
511  // If ScaledReg is an invariant with respect to L, find the reg from
512  // BaseRegs containing the recurrent expr related with Loop L. Swap the
513  // reg with ScaledReg.
514  const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
515  if (!SAR || SAR->getLoop() != &L) {
516    auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
517                     [&](const SCEV *S) {
518                       return isa<const SCEVAddRecExpr>(S) &&
519                              (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
520                     });
521    if (I != BaseRegs.end())
522      std::swap(ScaledReg, *I);
523  }
524}
525
526/// Get rid of the scale in the formula.
527/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
528/// \return true if it was possible to get rid of the scale, false otherwise.
529/// \note After this operation the formula may not be in the canonical form.
530bool Formula::unscale() {
531  if (Scale != 1)
532    return false;
533  Scale = 0;
534  BaseRegs.push_back(ScaledReg);
535  ScaledReg = nullptr;
536  return true;
537}
538
539bool Formula::hasZeroEnd() const {
540  if (UnfoldedOffset || BaseOffset)
541    return false;
542  if (BaseRegs.size() != 1 || ScaledReg)
543    return false;
544  return true;
545}
546
547/// Return the total number of register operands used by this formula. This does
548/// not include register uses implied by non-constant addrec strides.
549size_t Formula::getNumRegs() const {
550  return !!ScaledReg + BaseRegs.size();
551}
552
553/// Return the type of this formula, if it has one, or null otherwise. This type
554/// is meaningless except for the bit size.
555Type *Formula::getType() const {
556  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
557         ScaledReg ? ScaledReg->getType() :
558         BaseGV ? BaseGV->getType() :
559         nullptr;
560}
561
562/// Delete the given base reg from the BaseRegs list.
563void Formula::deleteBaseReg(const SCEV *&S) {
564  if (&S != &BaseRegs.back())
565    std::swap(S, BaseRegs.back());
566  BaseRegs.pop_back();
567}
568
569/// Test if this formula references the given register.
570bool Formula::referencesReg(const SCEV *S) const {
571  return S == ScaledReg || is_contained(BaseRegs, S);
572}
573
574/// Test whether this formula uses registers which are used by uses other than
575/// the use with the given index.
576bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
577                                         const RegUseTracker &RegUses) const {
578  if (ScaledReg)
579    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
580      return true;
581  for (const SCEV *BaseReg : BaseRegs)
582    if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
583      return true;
584  return false;
585}
586
587#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
588void Formula::print(raw_ostream &OS) const {
589  bool First = true;
590  if (BaseGV) {
591    if (!First) OS << " + "; else First = false;
592    BaseGV->printAsOperand(OS, /*PrintType=*/false);
593  }
594  if (BaseOffset != 0) {
595    if (!First) OS << " + "; else First = false;
596    OS << BaseOffset;
597  }
598  for (const SCEV *BaseReg : BaseRegs) {
599    if (!First) OS << " + "; else First = false;
600    OS << "reg(" << *BaseReg << ')';
601  }
602  if (HasBaseReg && BaseRegs.empty()) {
603    if (!First) OS << " + "; else First = false;
604    OS << "**error: HasBaseReg**";
605  } else if (!HasBaseReg && !BaseRegs.empty()) {
606    if (!First) OS << " + "; else First = false;
607    OS << "**error: !HasBaseReg**";
608  }
609  if (Scale != 0) {
610    if (!First) OS << " + "; else First = false;
611    OS << Scale << "*reg(";
612    if (ScaledReg)
613      OS << *ScaledReg;
614    else
615      OS << "<unknown>";
616    OS << ')';
617  }
618  if (UnfoldedOffset != 0) {
619    if (!First) OS << " + ";
620    OS << "imm(" << UnfoldedOffset << ')';
621  }
622}
623
624LLVM_DUMP_METHOD void Formula::dump() const {
625  print(errs()); errs() << '\n';
626}
627#endif
628
629/// Return true if the given addrec can be sign-extended without changing its
630/// value.
631static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
632  Type *WideTy =
633    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
634  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
635}
636
637/// Return true if the given add can be sign-extended without changing its
638/// value.
639static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
640  Type *WideTy =
641    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
642  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
643}
644
645/// Return true if the given mul can be sign-extended without changing its
646/// value.
647static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
648  Type *WideTy =
649    IntegerType::get(SE.getContext(),
650                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
651  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
652}
653
654/// Return an expression for LHS /s RHS, if it can be determined and if the
655/// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
656/// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
657/// the multiplication may overflow, which is useful when the result will be
658/// used in a context where the most significant bits are ignored.
659static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
660                                ScalarEvolution &SE,
661                                bool IgnoreSignificantBits = false) {
662  // Handle the trivial case, which works for any SCEV type.
663  if (LHS == RHS)
664    return SE.getConstant(LHS->getType(), 1);
665
666  // Handle a few RHS special cases.
667  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
668  if (RC) {
669    const APInt &RA = RC->getAPInt();
670    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
671    // some folding.
672    if (RA.isAllOnesValue())
673      return SE.getMulExpr(LHS, RC);
674    // Handle x /s 1 as x.
675    if (RA == 1)
676      return LHS;
677  }
678
679  // Check for a division of a constant by a constant.
680  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
681    if (!RC)
682      return nullptr;
683    const APInt &LA = C->getAPInt();
684    const APInt &RA = RC->getAPInt();
685    if (LA.srem(RA) != 0)
686      return nullptr;
687    return SE.getConstant(LA.sdiv(RA));
688  }
689
690  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
691  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
692    if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
693      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
694                                      IgnoreSignificantBits);
695      if (!Step) return nullptr;
696      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
697                                       IgnoreSignificantBits);
698      if (!Start) return nullptr;
699      // FlagNW is independent of the start value, step direction, and is
700      // preserved with smaller magnitude steps.
701      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
702      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
703    }
704    return nullptr;
705  }
706
707  // Distribute the sdiv over add operands, if the add doesn't overflow.
708  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
709    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
710      SmallVector<const SCEV *, 8> Ops;
711      for (const SCEV *S : Add->operands()) {
712        const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
713        if (!Op) return nullptr;
714        Ops.push_back(Op);
715      }
716      return SE.getAddExpr(Ops);
717    }
718    return nullptr;
719  }
720
721  // Check for a multiply operand that we can pull RHS out of.
722  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
723    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
724      SmallVector<const SCEV *, 4> Ops;
725      bool Found = false;
726      for (const SCEV *S : Mul->operands()) {
727        if (!Found)
728          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
729                                           IgnoreSignificantBits)) {
730            S = Q;
731            Found = true;
732          }
733        Ops.push_back(S);
734      }
735      return Found ? SE.getMulExpr(Ops) : nullptr;
736    }
737    return nullptr;
738  }
739
740  // Otherwise we don't know.
741  return nullptr;
742}
743
744/// If S involves the addition of a constant integer value, return that integer
745/// value, and mutate S to point to a new SCEV with that value excluded.
746static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
747  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
748    if (C->getAPInt().getMinSignedBits() <= 64) {
749      S = SE.getConstant(C->getType(), 0);
750      return C->getValue()->getSExtValue();
751    }
752  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
753    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
754    int64_t Result = ExtractImmediate(NewOps.front(), SE);
755    if (Result != 0)
756      S = SE.getAddExpr(NewOps);
757    return Result;
758  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
759    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
760    int64_t Result = ExtractImmediate(NewOps.front(), SE);
761    if (Result != 0)
762      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
763                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
764                           SCEV::FlagAnyWrap);
765    return Result;
766  }
767  return 0;
768}
769
770/// If S involves the addition of a GlobalValue address, return that symbol, and
771/// mutate S to point to a new SCEV with that value excluded.
772static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
773  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
774    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
775      S = SE.getConstant(GV->getType(), 0);
776      return GV;
777    }
778  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
779    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
780    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
781    if (Result)
782      S = SE.getAddExpr(NewOps);
783    return Result;
784  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
785    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
786    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
787    if (Result)
788      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
789                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
790                           SCEV::FlagAnyWrap);
791    return Result;
792  }
793  return nullptr;
794}
795
796/// Returns true if the specified instruction is using the specified value as an
797/// address.
798static bool isAddressUse(const TargetTransformInfo &TTI,
799                         Instruction *Inst, Value *OperandVal) {
800  bool isAddress = isa<LoadInst>(Inst);
801  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
802    if (SI->getPointerOperand() == OperandVal)
803      isAddress = true;
804  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
805    // Addressing modes can also be folded into prefetches and a variety
806    // of intrinsics.
807    switch (II->getIntrinsicID()) {
808    case Intrinsic::memset:
809    case Intrinsic::prefetch:
810      if (II->getArgOperand(0) == OperandVal)
811        isAddress = true;
812      break;
813    case Intrinsic::memmove:
814    case Intrinsic::memcpy:
815      if (II->getArgOperand(0) == OperandVal ||
816          II->getArgOperand(1) == OperandVal)
817        isAddress = true;
818      break;
819    default: {
820      MemIntrinsicInfo IntrInfo;
821      if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
822        if (IntrInfo.PtrVal == OperandVal)
823          isAddress = true;
824      }
825    }
826    }
827  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
828    if (RMW->getPointerOperand() == OperandVal)
829      isAddress = true;
830  } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
831    if (CmpX->getPointerOperand() == OperandVal)
832      isAddress = true;
833  }
834  return isAddress;
835}
836
837/// Return the type of the memory being accessed.
838static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
839                                 Instruction *Inst, Value *OperandVal) {
840  MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
841  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
842    AccessTy.MemTy = SI->getOperand(0)->getType();
843    AccessTy.AddrSpace = SI->getPointerAddressSpace();
844  } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
845    AccessTy.AddrSpace = LI->getPointerAddressSpace();
846  } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
847    AccessTy.AddrSpace = RMW->getPointerAddressSpace();
848  } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
849    AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
850  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
851    switch (II->getIntrinsicID()) {
852    case Intrinsic::prefetch:
853    case Intrinsic::memset:
854      AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
855      AccessTy.MemTy = OperandVal->getType();
856      break;
857    case Intrinsic::memmove:
858    case Intrinsic::memcpy:
859      AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
860      AccessTy.MemTy = OperandVal->getType();
861      break;
862    default: {
863      MemIntrinsicInfo IntrInfo;
864      if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
865        AccessTy.AddrSpace
866          = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
867      }
868
869      break;
870    }
871    }
872  }
873
874  // All pointers have the same requirements, so canonicalize them to an
875  // arbitrary pointer type to minimize variation.
876  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
877    AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
878                                      PTy->getAddressSpace());
879
880  return AccessTy;
881}
882
883/// Return true if this AddRec is already a phi in its loop.
884static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
885  for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
886    if (SE.isSCEVable(PN.getType()) &&
887        (SE.getEffectiveSCEVType(PN.getType()) ==
888         SE.getEffectiveSCEVType(AR->getType())) &&
889        SE.getSCEV(&PN) == AR)
890      return true;
891  }
892  return false;
893}
894
895/// Check if expanding this expression is likely to incur significant cost. This
896/// is tricky because SCEV doesn't track which expressions are actually computed
897/// by the current IR.
898///
899/// We currently allow expansion of IV increments that involve adds,
900/// multiplication by constants, and AddRecs from existing phis.
901///
902/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
903/// obvious multiple of the UDivExpr.
904static bool isHighCostExpansion(const SCEV *S,
905                                SmallPtrSetImpl<const SCEV*> &Processed,
906                                ScalarEvolution &SE) {
907  // Zero/One operand expressions
908  switch (S->getSCEVType()) {
909  case scUnknown:
910  case scConstant:
911    return false;
912  case scTruncate:
913    return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
914                               Processed, SE);
915  case scZeroExtend:
916    return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
917                               Processed, SE);
918  case scSignExtend:
919    return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
920                               Processed, SE);
921  }
922
923  if (!Processed.insert(S).second)
924    return false;
925
926  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
927    for (const SCEV *S : Add->operands()) {
928      if (isHighCostExpansion(S, Processed, SE))
929        return true;
930    }
931    return false;
932  }
933
934  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
935    if (Mul->getNumOperands() == 2) {
936      // Multiplication by a constant is ok
937      if (isa<SCEVConstant>(Mul->getOperand(0)))
938        return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
939
940      // If we have the value of one operand, check if an existing
941      // multiplication already generates this expression.
942      if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
943        Value *UVal = U->getValue();
944        for (User *UR : UVal->users()) {
945          // If U is a constant, it may be used by a ConstantExpr.
946          Instruction *UI = dyn_cast<Instruction>(UR);
947          if (UI && UI->getOpcode() == Instruction::Mul &&
948              SE.isSCEVable(UI->getType())) {
949            return SE.getSCEV(UI) == Mul;
950          }
951        }
952      }
953    }
954  }
955
956  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
957    if (isExistingPhi(AR, SE))
958      return false;
959  }
960
961  // Fow now, consider any other type of expression (div/mul/min/max) high cost.
962  return true;
963}
964
965/// If any of the instructions in the specified set are trivially dead, delete
966/// them and see if this makes any of their operands subsequently dead.
967static bool
968DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
969  bool Changed = false;
970
971  while (!DeadInsts.empty()) {
972    Value *V = DeadInsts.pop_back_val();
973    Instruction *I = dyn_cast_or_null<Instruction>(V);
974
975    if (!I || !isInstructionTriviallyDead(I))
976      continue;
977
978    for (Use &O : I->operands())
979      if (Instruction *U = dyn_cast<Instruction>(O)) {
980        O = nullptr;
981        if (U->use_empty())
982          DeadInsts.emplace_back(U);
983      }
984
985    I->eraseFromParent();
986    Changed = true;
987  }
988
989  return Changed;
990}
991
992namespace {
993
994class LSRUse;
995
996} // end anonymous namespace
997
998/// Check if the addressing mode defined by \p F is completely
999/// folded in \p LU at isel time.
1000/// This includes address-mode folding and special icmp tricks.
1001/// This function returns true if \p LU can accommodate what \p F
1002/// defines and up to 1 base + 1 scaled + offset.
1003/// In other words, if \p F has several base registers, this function may
1004/// still return true. Therefore, users still need to account for
1005/// additional base registers and/or unfolded offsets to derive an
1006/// accurate cost model.
1007static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1008                                 const LSRUse &LU, const Formula &F);
1009
1010// Get the cost of the scaling factor used in F for LU.
1011static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1012                                     const LSRUse &LU, const Formula &F,
1013                                     const Loop &L);
1014
1015namespace {
1016
1017/// This class is used to measure and compare candidate formulae.
1018class Cost {
1019  const Loop *L = nullptr;
1020  ScalarEvolution *SE = nullptr;
1021  const TargetTransformInfo *TTI = nullptr;
1022  TargetTransformInfo::LSRCost C;
1023
1024public:
1025  Cost() = delete;
1026  Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1027    L(L), SE(&SE), TTI(&TTI) {
1028    C.Insns = 0;
1029    C.NumRegs = 0;
1030    C.AddRecCost = 0;
1031    C.NumIVMuls = 0;
1032    C.NumBaseAdds = 0;
1033    C.ImmCost = 0;
1034    C.SetupCost = 0;
1035    C.ScaleCost = 0;
1036  }
1037
1038  bool isLess(Cost &Other);
1039
1040  void Lose();
1041
1042#ifndef NDEBUG
1043  // Once any of the metrics loses, they must all remain losers.
1044  bool isValid() {
1045    return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1046             | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1047      || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1048           & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1049  }
1050#endif
1051
1052  bool isLoser() {
1053    assert(isValid() && "invalid cost");
1054    return C.NumRegs == ~0u;
1055  }
1056
1057  void RateFormula(const Formula &F,
1058                   SmallPtrSetImpl<const SCEV *> &Regs,
1059                   const DenseSet<const SCEV *> &VisitedRegs,
1060                   const LSRUse &LU,
1061                   SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1062
1063  void print(raw_ostream &OS) const;
1064  void dump() const;
1065
1066private:
1067  void RateRegister(const Formula &F, const SCEV *Reg,
1068                    SmallPtrSetImpl<const SCEV *> &Regs);
1069  void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1070                           SmallPtrSetImpl<const SCEV *> &Regs,
1071                           SmallPtrSetImpl<const SCEV *> *LoserRegs);
1072};
1073
1074/// An operand value in an instruction which is to be replaced with some
1075/// equivalent, possibly strength-reduced, replacement.
1076struct LSRFixup {
1077  /// The instruction which will be updated.
1078  Instruction *UserInst = nullptr;
1079
1080  /// The operand of the instruction which will be replaced. The operand may be
1081  /// used more than once; every instance will be replaced.
1082  Value *OperandValToReplace = nullptr;
1083
1084  /// If this user is to use the post-incremented value of an induction
1085  /// variable, this set is non-empty and holds the loops associated with the
1086  /// induction variable.
1087  PostIncLoopSet PostIncLoops;
1088
1089  /// A constant offset to be added to the LSRUse expression.  This allows
1090  /// multiple fixups to share the same LSRUse with different offsets, for
1091  /// example in an unrolled loop.
1092  int64_t Offset = 0;
1093
1094  LSRFixup() = default;
1095
1096  bool isUseFullyOutsideLoop(const Loop *L) const;
1097
1098  void print(raw_ostream &OS) const;
1099  void dump() const;
1100};
1101
1102/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1103/// SmallVectors of const SCEV*.
1104struct UniquifierDenseMapInfo {
1105  static SmallVector<const SCEV *, 4> getEmptyKey() {
1106    SmallVector<const SCEV *, 4>  V;
1107    V.push_back(reinterpret_cast<const SCEV *>(-1));
1108    return V;
1109  }
1110
1111  static SmallVector<const SCEV *, 4> getTombstoneKey() {
1112    SmallVector<const SCEV *, 4> V;
1113    V.push_back(reinterpret_cast<const SCEV *>(-2));
1114    return V;
1115  }
1116
1117  static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1118    return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1119  }
1120
1121  static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1122                      const SmallVector<const SCEV *, 4> &RHS) {
1123    return LHS == RHS;
1124  }
1125};
1126
1127/// This class holds the state that LSR keeps for each use in IVUsers, as well
1128/// as uses invented by LSR itself. It includes information about what kinds of
1129/// things can be folded into the user, information about the user itself, and
1130/// information about how the use may be satisfied.  TODO: Represent multiple
1131/// users of the same expression in common?
1132class LSRUse {
1133  DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1134
1135public:
1136  /// An enum for a kind of use, indicating what types of scaled and immediate
1137  /// operands it might support.
1138  enum KindType {
1139    Basic,   ///< A normal use, with no folding.
1140    Special, ///< A special case of basic, allowing -1 scales.
1141    Address, ///< An address use; folding according to TargetLowering
1142    ICmpZero ///< An equality icmp with both operands folded into one.
1143    // TODO: Add a generic icmp too?
1144  };
1145
1146  using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1147
1148  KindType Kind;
1149  MemAccessTy AccessTy;
1150
1151  /// The list of operands which are to be replaced.
1152  SmallVector<LSRFixup, 8> Fixups;
1153
1154  /// Keep track of the min and max offsets of the fixups.
1155  int64_t MinOffset = std::numeric_limits<int64_t>::max();
1156  int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1157
1158  /// This records whether all of the fixups using this LSRUse are outside of
1159  /// the loop, in which case some special-case heuristics may be used.
1160  bool AllFixupsOutsideLoop = true;
1161
1162  /// RigidFormula is set to true to guarantee that this use will be associated
1163  /// with a single formula--the one that initially matched. Some SCEV
1164  /// expressions cannot be expanded. This allows LSR to consider the registers
1165  /// used by those expressions without the need to expand them later after
1166  /// changing the formula.
1167  bool RigidFormula = false;
1168
1169  /// This records the widest use type for any fixup using this
1170  /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1171  /// fixup widths to be equivalent, because the narrower one may be relying on
1172  /// the implicit truncation to truncate away bogus bits.
1173  Type *WidestFixupType = nullptr;
1174
1175  /// A list of ways to build a value that can satisfy this user.  After the
1176  /// list is populated, one of these is selected heuristically and used to
1177  /// formulate a replacement for OperandValToReplace in UserInst.
1178  SmallVector<Formula, 12> Formulae;
1179
1180  /// The set of register candidates used by all formulae in this LSRUse.
1181  SmallPtrSet<const SCEV *, 4> Regs;
1182
1183  LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1184
1185  LSRFixup &getNewFixup() {
1186    Fixups.push_back(LSRFixup());
1187    return Fixups.back();
1188  }
1189
1190  void pushFixup(LSRFixup &f) {
1191    Fixups.push_back(f);
1192    if (f.Offset > MaxOffset)
1193      MaxOffset = f.Offset;
1194    if (f.Offset < MinOffset)
1195      MinOffset = f.Offset;
1196  }
1197
1198  bool HasFormulaWithSameRegs(const Formula &F) const;
1199  float getNotSelectedProbability(const SCEV *Reg) const;
1200  bool InsertFormula(const Formula &F, const Loop &L);
1201  void DeleteFormula(Formula &F);
1202  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1203
1204  void print(raw_ostream &OS) const;
1205  void dump() const;
1206};
1207
1208} // end anonymous namespace
1209
1210static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1211                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1212                                 GlobalValue *BaseGV, int64_t BaseOffset,
1213                                 bool HasBaseReg, int64_t Scale,
1214                                 Instruction *Fixup = nullptr);
1215
1216static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1217  if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1218    return 1;
1219  if (Depth == 0)
1220    return 0;
1221  if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1222    return getSetupCost(S->getStart(), Depth - 1);
1223  if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1224    return getSetupCost(S->getOperand(), Depth - 1);
1225  if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1226    return std::accumulate(S->op_begin(), S->op_end(), 0,
1227                           [&](unsigned i, const SCEV *Reg) {
1228                             return i + getSetupCost(Reg, Depth - 1);
1229                           });
1230  if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1231    return getSetupCost(S->getLHS(), Depth - 1) +
1232           getSetupCost(S->getRHS(), Depth - 1);
1233  return 0;
1234}
1235
1236/// Tally up interesting quantities from the given register.
1237void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1238                        SmallPtrSetImpl<const SCEV *> &Regs) {
1239  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1240    // If this is an addrec for another loop, it should be an invariant
1241    // with respect to L since L is the innermost loop (at least
1242    // for now LSR only handles innermost loops).
1243    if (AR->getLoop() != L) {
1244      // If the AddRec exists, consider it's register free and leave it alone.
1245      if (isExistingPhi(AR, *SE))
1246        return;
1247
1248      // It is bad to allow LSR for current loop to add induction variables
1249      // for its sibling loops.
1250      if (!AR->getLoop()->contains(L)) {
1251        Lose();
1252        return;
1253      }
1254
1255      // Otherwise, it will be an invariant with respect to Loop L.
1256      ++C.NumRegs;
1257      return;
1258    }
1259
1260    unsigned LoopCost = 1;
1261    if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1262        TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1263
1264      // If the step size matches the base offset, we could use pre-indexed
1265      // addressing.
1266      if (TTI->shouldFavorBackedgeIndex(L)) {
1267        if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1268          if (Step->getAPInt() == F.BaseOffset)
1269            LoopCost = 0;
1270      }
1271
1272      if (TTI->shouldFavorPostInc()) {
1273        const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1274        if (isa<SCEVConstant>(LoopStep)) {
1275          const SCEV *LoopStart = AR->getStart();
1276          if (!isa<SCEVConstant>(LoopStart) &&
1277              SE->isLoopInvariant(LoopStart, L))
1278            LoopCost = 0;
1279        }
1280      }
1281    }
1282    C.AddRecCost += LoopCost;
1283
1284    // Add the step value register, if it needs one.
1285    // TODO: The non-affine case isn't precisely modeled here.
1286    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1287      if (!Regs.count(AR->getOperand(1))) {
1288        RateRegister(F, AR->getOperand(1), Regs);
1289        if (isLoser())
1290          return;
1291      }
1292    }
1293  }
1294  ++C.NumRegs;
1295
1296  // Rough heuristic; favor registers which don't require extra setup
1297  // instructions in the preheader.
1298  C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1299  // Ensure we don't, even with the recusion limit, produce invalid costs.
1300  C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1301
1302  C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1303               SE->hasComputableLoopEvolution(Reg, L);
1304}
1305
1306/// Record this register in the set. If we haven't seen it before, rate
1307/// it. Optional LoserRegs provides a way to declare any formula that refers to
1308/// one of those regs an instant loser.
1309void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1310                               SmallPtrSetImpl<const SCEV *> &Regs,
1311                               SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1312  if (LoserRegs && LoserRegs->count(Reg)) {
1313    Lose();
1314    return;
1315  }
1316  if (Regs.insert(Reg).second) {
1317    RateRegister(F, Reg, Regs);
1318    if (LoserRegs && isLoser())
1319      LoserRegs->insert(Reg);
1320  }
1321}
1322
1323void Cost::RateFormula(const Formula &F,
1324                       SmallPtrSetImpl<const SCEV *> &Regs,
1325                       const DenseSet<const SCEV *> &VisitedRegs,
1326                       const LSRUse &LU,
1327                       SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1328  assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1329  // Tally up the registers.
1330  unsigned PrevAddRecCost = C.AddRecCost;
1331  unsigned PrevNumRegs = C.NumRegs;
1332  unsigned PrevNumBaseAdds = C.NumBaseAdds;
1333  if (const SCEV *ScaledReg = F.ScaledReg) {
1334    if (VisitedRegs.count(ScaledReg)) {
1335      Lose();
1336      return;
1337    }
1338    RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1339    if (isLoser())
1340      return;
1341  }
1342  for (const SCEV *BaseReg : F.BaseRegs) {
1343    if (VisitedRegs.count(BaseReg)) {
1344      Lose();
1345      return;
1346    }
1347    RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1348    if (isLoser())
1349      return;
1350  }
1351
1352  // Determine how many (unfolded) adds we'll need inside the loop.
1353  size_t NumBaseParts = F.getNumRegs();
1354  if (NumBaseParts > 1)
1355    // Do not count the base and a possible second register if the target
1356    // allows to fold 2 registers.
1357    C.NumBaseAdds +=
1358        NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1359  C.NumBaseAdds += (F.UnfoldedOffset != 0);
1360
1361  // Accumulate non-free scaling amounts.
1362  C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1363
1364  // Tally up the non-zero immediates.
1365  for (const LSRFixup &Fixup : LU.Fixups) {
1366    int64_t O = Fixup.Offset;
1367    int64_t Offset = (uint64_t)O + F.BaseOffset;
1368    if (F.BaseGV)
1369      C.ImmCost += 64; // Handle symbolic values conservatively.
1370                     // TODO: This should probably be the pointer size.
1371    else if (Offset != 0)
1372      C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1373
1374    // Check with target if this offset with this instruction is
1375    // specifically not supported.
1376    if (LU.Kind == LSRUse::Address && Offset != 0 &&
1377        !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1378                              Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1379      C.NumBaseAdds++;
1380  }
1381
1382  // If we don't count instruction cost exit here.
1383  if (!InsnsCost) {
1384    assert(isValid() && "invalid cost");
1385    return;
1386  }
1387
1388  // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1389  // additional instruction (at least fill).
1390  // TODO: Need distinguish register class?
1391  unsigned TTIRegNum = TTI->getNumberOfRegisters(
1392                       TTI->getRegisterClassForType(false, F.getType())) - 1;
1393  if (C.NumRegs > TTIRegNum) {
1394    // Cost already exceeded TTIRegNum, then only newly added register can add
1395    // new instructions.
1396    if (PrevNumRegs > TTIRegNum)
1397      C.Insns += (C.NumRegs - PrevNumRegs);
1398    else
1399      C.Insns += (C.NumRegs - TTIRegNum);
1400  }
1401
1402  // If ICmpZero formula ends with not 0, it could not be replaced by
1403  // just add or sub. We'll need to compare final result of AddRec.
1404  // That means we'll need an additional instruction. But if the target can
1405  // macro-fuse a compare with a branch, don't count this extra instruction.
1406  // For -10 + {0, +, 1}:
1407  // i = i + 1;
1408  // cmp i, 10
1409  //
1410  // For {-10, +, 1}:
1411  // i = i + 1;
1412  if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1413      !TTI->canMacroFuseCmp())
1414    C.Insns++;
1415  // Each new AddRec adds 1 instruction to calculation.
1416  C.Insns += (C.AddRecCost - PrevAddRecCost);
1417
1418  // BaseAdds adds instructions for unfolded registers.
1419  if (LU.Kind != LSRUse::ICmpZero)
1420    C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1421  assert(isValid() && "invalid cost");
1422}
1423
1424/// Set this cost to a losing value.
1425void Cost::Lose() {
1426  C.Insns = std::numeric_limits<unsigned>::max();
1427  C.NumRegs = std::numeric_limits<unsigned>::max();
1428  C.AddRecCost = std::numeric_limits<unsigned>::max();
1429  C.NumIVMuls = std::numeric_limits<unsigned>::max();
1430  C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1431  C.ImmCost = std::numeric_limits<unsigned>::max();
1432  C.SetupCost = std::numeric_limits<unsigned>::max();
1433  C.ScaleCost = std::numeric_limits<unsigned>::max();
1434}
1435
1436/// Choose the lower cost.
1437bool Cost::isLess(Cost &Other) {
1438  if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1439      C.Insns != Other.C.Insns)
1440    return C.Insns < Other.C.Insns;
1441  return TTI->isLSRCostLess(C, Other.C);
1442}
1443
1444#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1445void Cost::print(raw_ostream &OS) const {
1446  if (InsnsCost)
1447    OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1448  OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1449  if (C.AddRecCost != 0)
1450    OS << ", with addrec cost " << C.AddRecCost;
1451  if (C.NumIVMuls != 0)
1452    OS << ", plus " << C.NumIVMuls << " IV mul"
1453       << (C.NumIVMuls == 1 ? "" : "s");
1454  if (C.NumBaseAdds != 0)
1455    OS << ", plus " << C.NumBaseAdds << " base add"
1456       << (C.NumBaseAdds == 1 ? "" : "s");
1457  if (C.ScaleCost != 0)
1458    OS << ", plus " << C.ScaleCost << " scale cost";
1459  if (C.ImmCost != 0)
1460    OS << ", plus " << C.ImmCost << " imm cost";
1461  if (C.SetupCost != 0)
1462    OS << ", plus " << C.SetupCost << " setup cost";
1463}
1464
1465LLVM_DUMP_METHOD void Cost::dump() const {
1466  print(errs()); errs() << '\n';
1467}
1468#endif
1469
1470/// Test whether this fixup always uses its value outside of the given loop.
1471bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1472  // PHI nodes use their value in their incoming blocks.
1473  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1474    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1475      if (PN->getIncomingValue(i) == OperandValToReplace &&
1476          L->contains(PN->getIncomingBlock(i)))
1477        return false;
1478    return true;
1479  }
1480
1481  return !L->contains(UserInst);
1482}
1483
1484#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1485void LSRFixup::print(raw_ostream &OS) const {
1486  OS << "UserInst=";
1487  // Store is common and interesting enough to be worth special-casing.
1488  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1489    OS << "store ";
1490    Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1491  } else if (UserInst->getType()->isVoidTy())
1492    OS << UserInst->getOpcodeName();
1493  else
1494    UserInst->printAsOperand(OS, /*PrintType=*/false);
1495
1496  OS << ", OperandValToReplace=";
1497  OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1498
1499  for (const Loop *PIL : PostIncLoops) {
1500    OS << ", PostIncLoop=";
1501    PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1502  }
1503
1504  if (Offset != 0)
1505    OS << ", Offset=" << Offset;
1506}
1507
1508LLVM_DUMP_METHOD void LSRFixup::dump() const {
1509  print(errs()); errs() << '\n';
1510}
1511#endif
1512
1513/// Test whether this use as a formula which has the same registers as the given
1514/// formula.
1515bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1516  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1517  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1518  // Unstable sort by host order ok, because this is only used for uniquifying.
1519  llvm::sort(Key);
1520  return Uniquifier.count(Key);
1521}
1522
1523/// The function returns a probability of selecting formula without Reg.
1524float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1525  unsigned FNum = 0;
1526  for (const Formula &F : Formulae)
1527    if (F.referencesReg(Reg))
1528      FNum++;
1529  return ((float)(Formulae.size() - FNum)) / Formulae.size();
1530}
1531
1532/// If the given formula has not yet been inserted, add it to the list, and
1533/// return true. Return false otherwise.  The formula must be in canonical form.
1534bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1535  assert(F.isCanonical(L) && "Invalid canonical representation");
1536
1537  if (!Formulae.empty() && RigidFormula)
1538    return false;
1539
1540  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1541  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1542  // Unstable sort by host order ok, because this is only used for uniquifying.
1543  llvm::sort(Key);
1544
1545  if (!Uniquifier.insert(Key).second)
1546    return false;
1547
1548  // Using a register to hold the value of 0 is not profitable.
1549  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1550         "Zero allocated in a scaled register!");
1551#ifndef NDEBUG
1552  for (const SCEV *BaseReg : F.BaseRegs)
1553    assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1554#endif
1555
1556  // Add the formula to the list.
1557  Formulae.push_back(F);
1558
1559  // Record registers now being used by this use.
1560  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1561  if (F.ScaledReg)
1562    Regs.insert(F.ScaledReg);
1563
1564  return true;
1565}
1566
1567/// Remove the given formula from this use's list.
1568void LSRUse::DeleteFormula(Formula &F) {
1569  if (&F != &Formulae.back())
1570    std::swap(F, Formulae.back());
1571  Formulae.pop_back();
1572}
1573
1574/// Recompute the Regs field, and update RegUses.
1575void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1576  // Now that we've filtered out some formulae, recompute the Regs set.
1577  SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1578  Regs.clear();
1579  for (const Formula &F : Formulae) {
1580    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1581    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1582  }
1583
1584  // Update the RegTracker.
1585  for (const SCEV *S : OldRegs)
1586    if (!Regs.count(S))
1587      RegUses.dropRegister(S, LUIdx);
1588}
1589
1590#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1591void LSRUse::print(raw_ostream &OS) const {
1592  OS << "LSR Use: Kind=";
1593  switch (Kind) {
1594  case Basic:    OS << "Basic"; break;
1595  case Special:  OS << "Special"; break;
1596  case ICmpZero: OS << "ICmpZero"; break;
1597  case Address:
1598    OS << "Address of ";
1599    if (AccessTy.MemTy->isPointerTy())
1600      OS << "pointer"; // the full pointer type could be really verbose
1601    else {
1602      OS << *AccessTy.MemTy;
1603    }
1604
1605    OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1606  }
1607
1608  OS << ", Offsets={";
1609  bool NeedComma = false;
1610  for (const LSRFixup &Fixup : Fixups) {
1611    if (NeedComma) OS << ',';
1612    OS << Fixup.Offset;
1613    NeedComma = true;
1614  }
1615  OS << '}';
1616
1617  if (AllFixupsOutsideLoop)
1618    OS << ", all-fixups-outside-loop";
1619
1620  if (WidestFixupType)
1621    OS << ", widest fixup type: " << *WidestFixupType;
1622}
1623
1624LLVM_DUMP_METHOD void LSRUse::dump() const {
1625  print(errs()); errs() << '\n';
1626}
1627#endif
1628
1629static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1630                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1631                                 GlobalValue *BaseGV, int64_t BaseOffset,
1632                                 bool HasBaseReg, int64_t Scale,
1633                                 Instruction *Fixup/*= nullptr*/) {
1634  switch (Kind) {
1635  case LSRUse::Address:
1636    return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1637                                     HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1638
1639  case LSRUse::ICmpZero:
1640    // There's not even a target hook for querying whether it would be legal to
1641    // fold a GV into an ICmp.
1642    if (BaseGV)
1643      return false;
1644
1645    // ICmp only has two operands; don't allow more than two non-trivial parts.
1646    if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1647      return false;
1648
1649    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1650    // putting the scaled register in the other operand of the icmp.
1651    if (Scale != 0 && Scale != -1)
1652      return false;
1653
1654    // If we have low-level target information, ask the target if it can fold an
1655    // integer immediate on an icmp.
1656    if (BaseOffset != 0) {
1657      // We have one of:
1658      // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1659      // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1660      // Offs is the ICmp immediate.
1661      if (Scale == 0)
1662        // The cast does the right thing with
1663        // std::numeric_limits<int64_t>::min().
1664        BaseOffset = -(uint64_t)BaseOffset;
1665      return TTI.isLegalICmpImmediate(BaseOffset);
1666    }
1667
1668    // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1669    return true;
1670
1671  case LSRUse::Basic:
1672    // Only handle single-register values.
1673    return !BaseGV && Scale == 0 && BaseOffset == 0;
1674
1675  case LSRUse::Special:
1676    // Special case Basic to handle -1 scales.
1677    return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1678  }
1679
1680  llvm_unreachable("Invalid LSRUse Kind!");
1681}
1682
1683static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1684                                 int64_t MinOffset, int64_t MaxOffset,
1685                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1686                                 GlobalValue *BaseGV, int64_t BaseOffset,
1687                                 bool HasBaseReg, int64_t Scale) {
1688  // Check for overflow.
1689  if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1690      (MinOffset > 0))
1691    return false;
1692  MinOffset = (uint64_t)BaseOffset + MinOffset;
1693  if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1694      (MaxOffset > 0))
1695    return false;
1696  MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1697
1698  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1699                              HasBaseReg, Scale) &&
1700         isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1701                              HasBaseReg, Scale);
1702}
1703
1704static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1705                                 int64_t MinOffset, int64_t MaxOffset,
1706                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1707                                 const Formula &F, const Loop &L) {
1708  // For the purpose of isAMCompletelyFolded either having a canonical formula
1709  // or a scale not equal to zero is correct.
1710  // Problems may arise from non canonical formulae having a scale == 0.
1711  // Strictly speaking it would best to just rely on canonical formulae.
1712  // However, when we generate the scaled formulae, we first check that the
1713  // scaling factor is profitable before computing the actual ScaledReg for
1714  // compile time sake.
1715  assert((F.isCanonical(L) || F.Scale != 0));
1716  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1717                              F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1718}
1719
1720/// Test whether we know how to expand the current formula.
1721static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1722                       int64_t MaxOffset, LSRUse::KindType Kind,
1723                       MemAccessTy AccessTy, GlobalValue *BaseGV,
1724                       int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1725  // We know how to expand completely foldable formulae.
1726  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1727                              BaseOffset, HasBaseReg, Scale) ||
1728         // Or formulae that use a base register produced by a sum of base
1729         // registers.
1730         (Scale == 1 &&
1731          isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1732                               BaseGV, BaseOffset, true, 0));
1733}
1734
1735static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1736                       int64_t MaxOffset, LSRUse::KindType Kind,
1737                       MemAccessTy AccessTy, const Formula &F) {
1738  return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1739                    F.BaseOffset, F.HasBaseReg, F.Scale);
1740}
1741
1742static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1743                                 const LSRUse &LU, const Formula &F) {
1744  // Target may want to look at the user instructions.
1745  if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1746    for (const LSRFixup &Fixup : LU.Fixups)
1747      if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1748                                (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1749                                F.Scale, Fixup.UserInst))
1750        return false;
1751    return true;
1752  }
1753
1754  return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1755                              LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1756                              F.Scale);
1757}
1758
1759static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1760                                     const LSRUse &LU, const Formula &F,
1761                                     const Loop &L) {
1762  if (!F.Scale)
1763    return 0;
1764
1765  // If the use is not completely folded in that instruction, we will have to
1766  // pay an extra cost only for scale != 1.
1767  if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1768                            LU.AccessTy, F, L))
1769    return F.Scale != 1;
1770
1771  switch (LU.Kind) {
1772  case LSRUse::Address: {
1773    // Check the scaling factor cost with both the min and max offsets.
1774    int ScaleCostMinOffset = TTI.getScalingFactorCost(
1775        LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1776        F.Scale, LU.AccessTy.AddrSpace);
1777    int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1778        LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1779        F.Scale, LU.AccessTy.AddrSpace);
1780
1781    assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1782           "Legal addressing mode has an illegal cost!");
1783    return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1784  }
1785  case LSRUse::ICmpZero:
1786  case LSRUse::Basic:
1787  case LSRUse::Special:
1788    // The use is completely folded, i.e., everything is folded into the
1789    // instruction.
1790    return 0;
1791  }
1792
1793  llvm_unreachable("Invalid LSRUse Kind!");
1794}
1795
1796static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1797                             LSRUse::KindType Kind, MemAccessTy AccessTy,
1798                             GlobalValue *BaseGV, int64_t BaseOffset,
1799                             bool HasBaseReg) {
1800  // Fast-path: zero is always foldable.
1801  if (BaseOffset == 0 && !BaseGV) return true;
1802
1803  // Conservatively, create an address with an immediate and a
1804  // base and a scale.
1805  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1806
1807  // Canonicalize a scale of 1 to a base register if the formula doesn't
1808  // already have a base register.
1809  if (!HasBaseReg && Scale == 1) {
1810    Scale = 0;
1811    HasBaseReg = true;
1812  }
1813
1814  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1815                              HasBaseReg, Scale);
1816}
1817
1818static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1819                             ScalarEvolution &SE, int64_t MinOffset,
1820                             int64_t MaxOffset, LSRUse::KindType Kind,
1821                             MemAccessTy AccessTy, const SCEV *S,
1822                             bool HasBaseReg) {
1823  // Fast-path: zero is always foldable.
1824  if (S->isZero()) return true;
1825
1826  // Conservatively, create an address with an immediate and a
1827  // base and a scale.
1828  int64_t BaseOffset = ExtractImmediate(S, SE);
1829  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1830
1831  // If there's anything else involved, it's not foldable.
1832  if (!S->isZero()) return false;
1833
1834  // Fast-path: zero is always foldable.
1835  if (BaseOffset == 0 && !BaseGV) return true;
1836
1837  // Conservatively, create an address with an immediate and a
1838  // base and a scale.
1839  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1840
1841  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1842                              BaseOffset, HasBaseReg, Scale);
1843}
1844
1845namespace {
1846
1847/// An individual increment in a Chain of IV increments.  Relate an IV user to
1848/// an expression that computes the IV it uses from the IV used by the previous
1849/// link in the Chain.
1850///
1851/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1852/// original IVOperand. The head of the chain's IVOperand is only valid during
1853/// chain collection, before LSR replaces IV users. During chain generation,
1854/// IncExpr can be used to find the new IVOperand that computes the same
1855/// expression.
1856struct IVInc {
1857  Instruction *UserInst;
1858  Value* IVOperand;
1859  const SCEV *IncExpr;
1860
1861  IVInc(Instruction *U, Value *O, const SCEV *E)
1862      : UserInst(U), IVOperand(O), IncExpr(E) {}
1863};
1864
1865// The list of IV increments in program order.  We typically add the head of a
1866// chain without finding subsequent links.
1867struct IVChain {
1868  SmallVector<IVInc, 1> Incs;
1869  const SCEV *ExprBase = nullptr;
1870
1871  IVChain() = default;
1872  IVChain(const IVInc &Head, const SCEV *Base)
1873      : Incs(1, Head), ExprBase(Base) {}
1874
1875  using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1876
1877  // Return the first increment in the chain.
1878  const_iterator begin() const {
1879    assert(!Incs.empty());
1880    return std::next(Incs.begin());
1881  }
1882  const_iterator end() const {
1883    return Incs.end();
1884  }
1885
1886  // Returns true if this chain contains any increments.
1887  bool hasIncs() const { return Incs.size() >= 2; }
1888
1889  // Add an IVInc to the end of this chain.
1890  void add(const IVInc &X) { Incs.push_back(X); }
1891
1892  // Returns the last UserInst in the chain.
1893  Instruction *tailUserInst() const { return Incs.back().UserInst; }
1894
1895  // Returns true if IncExpr can be profitably added to this chain.
1896  bool isProfitableIncrement(const SCEV *OperExpr,
1897                             const SCEV *IncExpr,
1898                             ScalarEvolution&);
1899};
1900
1901/// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1902/// between FarUsers that definitely cross IV increments and NearUsers that may
1903/// be used between IV increments.
1904struct ChainUsers {
1905  SmallPtrSet<Instruction*, 4> FarUsers;
1906  SmallPtrSet<Instruction*, 4> NearUsers;
1907};
1908
1909/// This class holds state for the main loop strength reduction logic.
1910class LSRInstance {
1911  IVUsers &IU;
1912  ScalarEvolution &SE;
1913  DominatorTree &DT;
1914  LoopInfo &LI;
1915  AssumptionCache &AC;
1916  TargetLibraryInfo &LibInfo;
1917  const TargetTransformInfo &TTI;
1918  Loop *const L;
1919  bool FavorBackedgeIndex = false;
1920  bool Changed = false;
1921
1922  /// This is the insert position that the current loop's induction variable
1923  /// increment should be placed. In simple loops, this is the latch block's
1924  /// terminator. But in more complicated cases, this is a position which will
1925  /// dominate all the in-loop post-increment users.
1926  Instruction *IVIncInsertPos = nullptr;
1927
1928  /// Interesting factors between use strides.
1929  ///
1930  /// We explicitly use a SetVector which contains a SmallSet, instead of the
1931  /// default, a SmallDenseSet, because we need to use the full range of
1932  /// int64_ts, and there's currently no good way of doing that with
1933  /// SmallDenseSet.
1934  SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1935
1936  /// Interesting use types, to facilitate truncation reuse.
1937  SmallSetVector<Type *, 4> Types;
1938
1939  /// The list of interesting uses.
1940  mutable SmallVector<LSRUse, 16> Uses;
1941
1942  /// Track which uses use which register candidates.
1943  RegUseTracker RegUses;
1944
1945  // Limit the number of chains to avoid quadratic behavior. We don't expect to
1946  // have more than a few IV increment chains in a loop. Missing a Chain falls
1947  // back to normal LSR behavior for those uses.
1948  static const unsigned MaxChains = 8;
1949
1950  /// IV users can form a chain of IV increments.
1951  SmallVector<IVChain, MaxChains> IVChainVec;
1952
1953  /// IV users that belong to profitable IVChains.
1954  SmallPtrSet<Use*, MaxChains> IVIncSet;
1955
1956  void OptimizeShadowIV();
1957  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1958  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1959  void OptimizeLoopTermCond();
1960
1961  void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1962                        SmallVectorImpl<ChainUsers> &ChainUsersVec);
1963  void FinalizeChain(IVChain &Chain);
1964  void CollectChains();
1965  void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1966                       SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1967
1968  void CollectInterestingTypesAndFactors();
1969  void CollectFixupsAndInitialFormulae();
1970
1971  // Support for sharing of LSRUses between LSRFixups.
1972  using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1973  UseMapTy UseMap;
1974
1975  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1976                          LSRUse::KindType Kind, MemAccessTy AccessTy);
1977
1978  std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1979                                    MemAccessTy AccessTy);
1980
1981  void DeleteUse(LSRUse &LU, size_t LUIdx);
1982
1983  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1984
1985  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1986  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1987  void CountRegisters(const Formula &F, size_t LUIdx);
1988  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1989
1990  void CollectLoopInvariantFixupsAndFormulae();
1991
1992  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1993                              unsigned Depth = 0);
1994
1995  void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1996                                  const Formula &Base, unsigned Depth,
1997                                  size_t Idx, bool IsScaledReg = false);
1998  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1999  void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2000                                   const Formula &Base, size_t Idx,
2001                                   bool IsScaledReg = false);
2002  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2003  void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2004                                   const Formula &Base,
2005                                   const SmallVectorImpl<int64_t> &Worklist,
2006                                   size_t Idx, bool IsScaledReg = false);
2007  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2008  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2009  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2010  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2011  void GenerateCrossUseConstantOffsets();
2012  void GenerateAllReuseFormulae();
2013
2014  void FilterOutUndesirableDedicatedRegisters();
2015
2016  size_t EstimateSearchSpaceComplexity() const;
2017  void NarrowSearchSpaceByDetectingSupersets();
2018  void NarrowSearchSpaceByCollapsingUnrolledCode();
2019  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2020  void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2021  void NarrowSearchSpaceByDeletingCostlyFormulas();
2022  void NarrowSearchSpaceByPickingWinnerRegs();
2023  void NarrowSearchSpaceUsingHeuristics();
2024
2025  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2026                    Cost &SolutionCost,
2027                    SmallVectorImpl<const Formula *> &Workspace,
2028                    const Cost &CurCost,
2029                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
2030                    DenseSet<const SCEV *> &VisitedRegs) const;
2031  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2032
2033  BasicBlock::iterator
2034    HoistInsertPosition(BasicBlock::iterator IP,
2035                        const SmallVectorImpl<Instruction *> &Inputs) const;
2036  BasicBlock::iterator
2037    AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2038                                  const LSRFixup &LF,
2039                                  const LSRUse &LU,
2040                                  SCEVExpander &Rewriter) const;
2041
2042  Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2043                BasicBlock::iterator IP, SCEVExpander &Rewriter,
2044                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2045  void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2046                     const Formula &F, SCEVExpander &Rewriter,
2047                     SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2048  void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2049               SCEVExpander &Rewriter,
2050               SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2051  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2052
2053public:
2054  LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2055              LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2056              TargetLibraryInfo &LibInfo);
2057
2058  bool getChanged() const { return Changed; }
2059
2060  void print_factors_and_types(raw_ostream &OS) const;
2061  void print_fixups(raw_ostream &OS) const;
2062  void print_uses(raw_ostream &OS) const;
2063  void print(raw_ostream &OS) const;
2064  void dump() const;
2065};
2066
2067} // end anonymous namespace
2068
2069/// If IV is used in a int-to-float cast inside the loop then try to eliminate
2070/// the cast operation.
2071void LSRInstance::OptimizeShadowIV() {
2072  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2073  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2074    return;
2075
2076  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2077       UI != E; /* empty */) {
2078    IVUsers::const_iterator CandidateUI = UI;
2079    ++UI;
2080    Instruction *ShadowUse = CandidateUI->getUser();
2081    Type *DestTy = nullptr;
2082    bool IsSigned = false;
2083
2084    /* If shadow use is a int->float cast then insert a second IV
2085       to eliminate this cast.
2086
2087         for (unsigned i = 0; i < n; ++i)
2088           foo((double)i);
2089
2090       is transformed into
2091
2092         double d = 0.0;
2093         for (unsigned i = 0; i < n; ++i, ++d)
2094           foo(d);
2095    */
2096    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2097      IsSigned = false;
2098      DestTy = UCast->getDestTy();
2099    }
2100    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2101      IsSigned = true;
2102      DestTy = SCast->getDestTy();
2103    }
2104    if (!DestTy) continue;
2105
2106    // If target does not support DestTy natively then do not apply
2107    // this transformation.
2108    if (!TTI.isTypeLegal(DestTy)) continue;
2109
2110    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2111    if (!PH) continue;
2112    if (PH->getNumIncomingValues() != 2) continue;
2113
2114    // If the calculation in integers overflows, the result in FP type will
2115    // differ. So we only can do this transformation if we are guaranteed to not
2116    // deal with overflowing values
2117    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2118    if (!AR) continue;
2119    if (IsSigned && !AR->hasNoSignedWrap()) continue;
2120    if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2121
2122    Type *SrcTy = PH->getType();
2123    int Mantissa = DestTy->getFPMantissaWidth();
2124    if (Mantissa == -1) continue;
2125    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2126      continue;
2127
2128    unsigned Entry, Latch;
2129    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2130      Entry = 0;
2131      Latch = 1;
2132    } else {
2133      Entry = 1;
2134      Latch = 0;
2135    }
2136
2137    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2138    if (!Init) continue;
2139    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2140                                        (double)Init->getSExtValue() :
2141                                        (double)Init->getZExtValue());
2142
2143    BinaryOperator *Incr =
2144      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2145    if (!Incr) continue;
2146    if (Incr->getOpcode() != Instruction::Add
2147        && Incr->getOpcode() != Instruction::Sub)
2148      continue;
2149
2150    /* Initialize new IV, double d = 0.0 in above example. */
2151    ConstantInt *C = nullptr;
2152    if (Incr->getOperand(0) == PH)
2153      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2154    else if (Incr->getOperand(1) == PH)
2155      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2156    else
2157      continue;
2158
2159    if (!C) continue;
2160
2161    // Ignore negative constants, as the code below doesn't handle them
2162    // correctly. TODO: Remove this restriction.
2163    if (!C->getValue().isStrictlyPositive()) continue;
2164
2165    /* Add new PHINode. */
2166    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2167
2168    /* create new increment. '++d' in above example. */
2169    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2170    BinaryOperator *NewIncr =
2171      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2172                               Instruction::FAdd : Instruction::FSub,
2173                             NewPH, CFP, "IV.S.next.", Incr);
2174
2175    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2176    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2177
2178    /* Remove cast operation */
2179    ShadowUse->replaceAllUsesWith(NewPH);
2180    ShadowUse->eraseFromParent();
2181    Changed = true;
2182    break;
2183  }
2184}
2185
2186/// If Cond has an operand that is an expression of an IV, set the IV user and
2187/// stride information and return true, otherwise return false.
2188bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2189  for (IVStrideUse &U : IU)
2190    if (U.getUser() == Cond) {
2191      // NOTE: we could handle setcc instructions with multiple uses here, but
2192      // InstCombine does it as well for simple uses, it's not clear that it
2193      // occurs enough in real life to handle.
2194      CondUse = &U;
2195      return true;
2196    }
2197  return false;
2198}
2199
2200/// Rewrite the loop's terminating condition if it uses a max computation.
2201///
2202/// This is a narrow solution to a specific, but acute, problem. For loops
2203/// like this:
2204///
2205///   i = 0;
2206///   do {
2207///     p[i] = 0.0;
2208///   } while (++i < n);
2209///
2210/// the trip count isn't just 'n', because 'n' might not be positive. And
2211/// unfortunately this can come up even for loops where the user didn't use
2212/// a C do-while loop. For example, seemingly well-behaved top-test loops
2213/// will commonly be lowered like this:
2214///
2215///   if (n > 0) {
2216///     i = 0;
2217///     do {
2218///       p[i] = 0.0;
2219///     } while (++i < n);
2220///   }
2221///
2222/// and then it's possible for subsequent optimization to obscure the if
2223/// test in such a way that indvars can't find it.
2224///
2225/// When indvars can't find the if test in loops like this, it creates a
2226/// max expression, which allows it to give the loop a canonical
2227/// induction variable:
2228///
2229///   i = 0;
2230///   max = n < 1 ? 1 : n;
2231///   do {
2232///     p[i] = 0.0;
2233///   } while (++i != max);
2234///
2235/// Canonical induction variables are necessary because the loop passes
2236/// are designed around them. The most obvious example of this is the
2237/// LoopInfo analysis, which doesn't remember trip count values. It
2238/// expects to be able to rediscover the trip count each time it is
2239/// needed, and it does this using a simple analysis that only succeeds if
2240/// the loop has a canonical induction variable.
2241///
2242/// However, when it comes time to generate code, the maximum operation
2243/// can be quite costly, especially if it's inside of an outer loop.
2244///
2245/// This function solves this problem by detecting this type of loop and
2246/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2247/// the instructions for the maximum computation.
2248ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2249  // Check that the loop matches the pattern we're looking for.
2250  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2251      Cond->getPredicate() != CmpInst::ICMP_NE)
2252    return Cond;
2253
2254  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2255  if (!Sel || !Sel->hasOneUse()) return Cond;
2256
2257  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2258  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2259    return Cond;
2260  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2261
2262  // Add one to the backedge-taken count to get the trip count.
2263  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2264  if (IterationCount != SE.getSCEV(Sel)) return Cond;
2265
2266  // Check for a max calculation that matches the pattern. There's no check
2267  // for ICMP_ULE here because the comparison would be with zero, which
2268  // isn't interesting.
2269  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2270  const SCEVNAryExpr *Max = nullptr;
2271  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2272    Pred = ICmpInst::ICMP_SLE;
2273    Max = S;
2274  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2275    Pred = ICmpInst::ICMP_SLT;
2276    Max = S;
2277  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2278    Pred = ICmpInst::ICMP_ULT;
2279    Max = U;
2280  } else {
2281    // No match; bail.
2282    return Cond;
2283  }
2284
2285  // To handle a max with more than two operands, this optimization would
2286  // require additional checking and setup.
2287  if (Max->getNumOperands() != 2)
2288    return Cond;
2289
2290  const SCEV *MaxLHS = Max->getOperand(0);
2291  const SCEV *MaxRHS = Max->getOperand(1);
2292
2293  // ScalarEvolution canonicalizes constants to the left. For < and >, look
2294  // for a comparison with 1. For <= and >=, a comparison with zero.
2295  if (!MaxLHS ||
2296      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2297    return Cond;
2298
2299  // Check the relevant induction variable for conformance to
2300  // the pattern.
2301  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2302  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2303  if (!AR || !AR->isAffine() ||
2304      AR->getStart() != One ||
2305      AR->getStepRecurrence(SE) != One)
2306    return Cond;
2307
2308  assert(AR->getLoop() == L &&
2309         "Loop condition operand is an addrec in a different loop!");
2310
2311  // Check the right operand of the select, and remember it, as it will
2312  // be used in the new comparison instruction.
2313  Value *NewRHS = nullptr;
2314  if (ICmpInst::isTrueWhenEqual(Pred)) {
2315    // Look for n+1, and grab n.
2316    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2317      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2318         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2319           NewRHS = BO->getOperand(0);
2320    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2321      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2322        if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2323          NewRHS = BO->getOperand(0);
2324    if (!NewRHS)
2325      return Cond;
2326  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2327    NewRHS = Sel->getOperand(1);
2328  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2329    NewRHS = Sel->getOperand(2);
2330  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2331    NewRHS = SU->getValue();
2332  else
2333    // Max doesn't match expected pattern.
2334    return Cond;
2335
2336  // Determine the new comparison opcode. It may be signed or unsigned,
2337  // and the original comparison may be either equality or inequality.
2338  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2339    Pred = CmpInst::getInversePredicate(Pred);
2340
2341  // Ok, everything looks ok to change the condition into an SLT or SGE and
2342  // delete the max calculation.
2343  ICmpInst *NewCond =
2344    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2345
2346  // Delete the max calculation instructions.
2347  Cond->replaceAllUsesWith(NewCond);
2348  CondUse->setUser(NewCond);
2349  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2350  Cond->eraseFromParent();
2351  Sel->eraseFromParent();
2352  if (Cmp->use_empty())
2353    Cmp->eraseFromParent();
2354  return NewCond;
2355}
2356
2357/// Change loop terminating condition to use the postinc iv when possible.
2358void
2359LSRInstance::OptimizeLoopTermCond() {
2360  SmallPtrSet<Instruction *, 4> PostIncs;
2361
2362  // We need a different set of heuristics for rotated and non-rotated loops.
2363  // If a loop is rotated then the latch is also the backedge, so inserting
2364  // post-inc expressions just before the latch is ideal. To reduce live ranges
2365  // it also makes sense to rewrite terminating conditions to use post-inc
2366  // expressions.
2367  //
2368  // If the loop is not rotated then the latch is not a backedge; the latch
2369  // check is done in the loop head. Adding post-inc expressions before the
2370  // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2371  // in the loop body. In this case we do *not* want to use post-inc expressions
2372  // in the latch check, and we want to insert post-inc expressions before
2373  // the backedge.
2374  BasicBlock *LatchBlock = L->getLoopLatch();
2375  SmallVector<BasicBlock*, 8> ExitingBlocks;
2376  L->getExitingBlocks(ExitingBlocks);
2377  if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2378        return LatchBlock != BB;
2379      })) {
2380    // The backedge doesn't exit the loop; treat this as a head-tested loop.
2381    IVIncInsertPos = LatchBlock->getTerminator();
2382    return;
2383  }
2384
2385  // Otherwise treat this as a rotated loop.
2386  for (BasicBlock *ExitingBlock : ExitingBlocks) {
2387    // Get the terminating condition for the loop if possible.  If we
2388    // can, we want to change it to use a post-incremented version of its
2389    // induction variable, to allow coalescing the live ranges for the IV into
2390    // one register value.
2391
2392    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2393    if (!TermBr)
2394      continue;
2395    // FIXME: Overly conservative, termination condition could be an 'or' etc..
2396    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2397      continue;
2398
2399    // Search IVUsesByStride to find Cond's IVUse if there is one.
2400    IVStrideUse *CondUse = nullptr;
2401    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2402    if (!FindIVUserForCond(Cond, CondUse))
2403      continue;
2404
2405    // If the trip count is computed in terms of a max (due to ScalarEvolution
2406    // being unable to find a sufficient guard, for example), change the loop
2407    // comparison to use SLT or ULT instead of NE.
2408    // One consequence of doing this now is that it disrupts the count-down
2409    // optimization. That's not always a bad thing though, because in such
2410    // cases it may still be worthwhile to avoid a max.
2411    Cond = OptimizeMax(Cond, CondUse);
2412
2413    // If this exiting block dominates the latch block, it may also use
2414    // the post-inc value if it won't be shared with other uses.
2415    // Check for dominance.
2416    if (!DT.dominates(ExitingBlock, LatchBlock))
2417      continue;
2418
2419    // Conservatively avoid trying to use the post-inc value in non-latch
2420    // exits if there may be pre-inc users in intervening blocks.
2421    if (LatchBlock != ExitingBlock)
2422      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2423        // Test if the use is reachable from the exiting block. This dominator
2424        // query is a conservative approximation of reachability.
2425        if (&*UI != CondUse &&
2426            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2427          // Conservatively assume there may be reuse if the quotient of their
2428          // strides could be a legal scale.
2429          const SCEV *A = IU.getStride(*CondUse, L);
2430          const SCEV *B = IU.getStride(*UI, L);
2431          if (!A || !B) continue;
2432          if (SE.getTypeSizeInBits(A->getType()) !=
2433              SE.getTypeSizeInBits(B->getType())) {
2434            if (SE.getTypeSizeInBits(A->getType()) >
2435                SE.getTypeSizeInBits(B->getType()))
2436              B = SE.getSignExtendExpr(B, A->getType());
2437            else
2438              A = SE.getSignExtendExpr(A, B->getType());
2439          }
2440          if (const SCEVConstant *D =
2441                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2442            const ConstantInt *C = D->getValue();
2443            // Stride of one or negative one can have reuse with non-addresses.
2444            if (C->isOne() || C->isMinusOne())
2445              goto decline_post_inc;
2446            // Avoid weird situations.
2447            if (C->getValue().getMinSignedBits() >= 64 ||
2448                C->getValue().isMinSignedValue())
2449              goto decline_post_inc;
2450            // Check for possible scaled-address reuse.
2451            if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2452              MemAccessTy AccessTy = getAccessType(
2453                  TTI, UI->getUser(), UI->getOperandValToReplace());
2454              int64_t Scale = C->getSExtValue();
2455              if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2456                                            /*BaseOffset=*/0,
2457                                            /*HasBaseReg=*/false, Scale,
2458                                            AccessTy.AddrSpace))
2459                goto decline_post_inc;
2460              Scale = -Scale;
2461              if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2462                                            /*BaseOffset=*/0,
2463                                            /*HasBaseReg=*/false, Scale,
2464                                            AccessTy.AddrSpace))
2465                goto decline_post_inc;
2466            }
2467          }
2468        }
2469
2470    LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2471                      << *Cond << '\n');
2472
2473    // It's possible for the setcc instruction to be anywhere in the loop, and
2474    // possible for it to have multiple users.  If it is not immediately before
2475    // the exiting block branch, move it.
2476    if (&*++BasicBlock::iterator(Cond) != TermBr) {
2477      if (Cond->hasOneUse()) {
2478        Cond->moveBefore(TermBr);
2479      } else {
2480        // Clone the terminating condition and insert into the loopend.
2481        ICmpInst *OldCond = Cond;
2482        Cond = cast<ICmpInst>(Cond->clone());
2483        Cond->setName(L->getHeader()->getName() + ".termcond");
2484        ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2485
2486        // Clone the IVUse, as the old use still exists!
2487        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2488        TermBr->replaceUsesOfWith(OldCond, Cond);
2489      }
2490    }
2491
2492    // If we get to here, we know that we can transform the setcc instruction to
2493    // use the post-incremented version of the IV, allowing us to coalesce the
2494    // live ranges for the IV correctly.
2495    CondUse->transformToPostInc(L);
2496    Changed = true;
2497
2498    PostIncs.insert(Cond);
2499  decline_post_inc:;
2500  }
2501
2502  // Determine an insertion point for the loop induction variable increment. It
2503  // must dominate all the post-inc comparisons we just set up, and it must
2504  // dominate the loop latch edge.
2505  IVIncInsertPos = L->getLoopLatch()->getTerminator();
2506  for (Instruction *Inst : PostIncs) {
2507    BasicBlock *BB =
2508      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2509                                    Inst->getParent());
2510    if (BB == Inst->getParent())
2511      IVIncInsertPos = Inst;
2512    else if (BB != IVIncInsertPos->getParent())
2513      IVIncInsertPos = BB->getTerminator();
2514  }
2515}
2516
2517/// Determine if the given use can accommodate a fixup at the given offset and
2518/// other details. If so, update the use and return true.
2519bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2520                                     bool HasBaseReg, LSRUse::KindType Kind,
2521                                     MemAccessTy AccessTy) {
2522  int64_t NewMinOffset = LU.MinOffset;
2523  int64_t NewMaxOffset = LU.MaxOffset;
2524  MemAccessTy NewAccessTy = AccessTy;
2525
2526  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2527  // something conservative, however this can pessimize in the case that one of
2528  // the uses will have all its uses outside the loop, for example.
2529  if (LU.Kind != Kind)
2530    return false;
2531
2532  // Check for a mismatched access type, and fall back conservatively as needed.
2533  // TODO: Be less conservative when the type is similar and can use the same
2534  // addressing modes.
2535  if (Kind == LSRUse::Address) {
2536    if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2537      NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2538                                            AccessTy.AddrSpace);
2539    }
2540  }
2541
2542  // Conservatively assume HasBaseReg is true for now.
2543  if (NewOffset < LU.MinOffset) {
2544    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2545                          LU.MaxOffset - NewOffset, HasBaseReg))
2546      return false;
2547    NewMinOffset = NewOffset;
2548  } else if (NewOffset > LU.MaxOffset) {
2549    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2550                          NewOffset - LU.MinOffset, HasBaseReg))
2551      return false;
2552    NewMaxOffset = NewOffset;
2553  }
2554
2555  // Update the use.
2556  LU.MinOffset = NewMinOffset;
2557  LU.MaxOffset = NewMaxOffset;
2558  LU.AccessTy = NewAccessTy;
2559  return true;
2560}
2561
2562/// Return an LSRUse index and an offset value for a fixup which needs the given
2563/// expression, with the given kind and optional access type.  Either reuse an
2564/// existing use or create a new one, as needed.
2565std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2566                                               LSRUse::KindType Kind,
2567                                               MemAccessTy AccessTy) {
2568  const SCEV *Copy = Expr;
2569  int64_t Offset = ExtractImmediate(Expr, SE);
2570
2571  // Basic uses can't accept any offset, for example.
2572  if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2573                        Offset, /*HasBaseReg=*/ true)) {
2574    Expr = Copy;
2575    Offset = 0;
2576  }
2577
2578  std::pair<UseMapTy::iterator, bool> P =
2579    UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2580  if (!P.second) {
2581    // A use already existed with this base.
2582    size_t LUIdx = P.first->second;
2583    LSRUse &LU = Uses[LUIdx];
2584    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2585      // Reuse this use.
2586      return std::make_pair(LUIdx, Offset);
2587  }
2588
2589  // Create a new use.
2590  size_t LUIdx = Uses.size();
2591  P.first->second = LUIdx;
2592  Uses.push_back(LSRUse(Kind, AccessTy));
2593  LSRUse &LU = Uses[LUIdx];
2594
2595  LU.MinOffset = Offset;
2596  LU.MaxOffset = Offset;
2597  return std::make_pair(LUIdx, Offset);
2598}
2599
2600/// Delete the given use from the Uses list.
2601void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2602  if (&LU != &Uses.back())
2603    std::swap(LU, Uses.back());
2604  Uses.pop_back();
2605
2606  // Update RegUses.
2607  RegUses.swapAndDropUse(LUIdx, Uses.size());
2608}
2609
2610/// Look for a use distinct from OrigLU which is has a formula that has the same
2611/// registers as the given formula.
2612LSRUse *
2613LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2614                                       const LSRUse &OrigLU) {
2615  // Search all uses for the formula. This could be more clever.
2616  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2617    LSRUse &LU = Uses[LUIdx];
2618    // Check whether this use is close enough to OrigLU, to see whether it's
2619    // worthwhile looking through its formulae.
2620    // Ignore ICmpZero uses because they may contain formulae generated by
2621    // GenerateICmpZeroScales, in which case adding fixup offsets may
2622    // be invalid.
2623    if (&LU != &OrigLU &&
2624        LU.Kind != LSRUse::ICmpZero &&
2625        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2626        LU.WidestFixupType == OrigLU.WidestFixupType &&
2627        LU.HasFormulaWithSameRegs(OrigF)) {
2628      // Scan through this use's formulae.
2629      for (const Formula &F : LU.Formulae) {
2630        // Check to see if this formula has the same registers and symbols
2631        // as OrigF.
2632        if (F.BaseRegs == OrigF.BaseRegs &&
2633            F.ScaledReg == OrigF.ScaledReg &&
2634            F.BaseGV == OrigF.BaseGV &&
2635            F.Scale == OrigF.Scale &&
2636            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2637          if (F.BaseOffset == 0)
2638            return &LU;
2639          // This is the formula where all the registers and symbols matched;
2640          // there aren't going to be any others. Since we declined it, we
2641          // can skip the rest of the formulae and proceed to the next LSRUse.
2642          break;
2643        }
2644      }
2645    }
2646  }
2647
2648  // Nothing looked good.
2649  return nullptr;
2650}
2651
2652void LSRInstance::CollectInterestingTypesAndFactors() {
2653  SmallSetVector<const SCEV *, 4> Strides;
2654
2655  // Collect interesting types and strides.
2656  SmallVector<const SCEV *, 4> Worklist;
2657  for (const IVStrideUse &U : IU) {
2658    const SCEV *Expr = IU.getExpr(U);
2659
2660    // Collect interesting types.
2661    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2662
2663    // Add strides for mentioned loops.
2664    Worklist.push_back(Expr);
2665    do {
2666      const SCEV *S = Worklist.pop_back_val();
2667      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2668        if (AR->getLoop() == L)
2669          Strides.insert(AR->getStepRecurrence(SE));
2670        Worklist.push_back(AR->getStart());
2671      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2672        Worklist.append(Add->op_begin(), Add->op_end());
2673      }
2674    } while (!Worklist.empty());
2675  }
2676
2677  // Compute interesting factors from the set of interesting strides.
2678  for (SmallSetVector<const SCEV *, 4>::const_iterator
2679       I = Strides.begin(), E = Strides.end(); I != E; ++I)
2680    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2681         std::next(I); NewStrideIter != E; ++NewStrideIter) {
2682      const SCEV *OldStride = *I;
2683      const SCEV *NewStride = *NewStrideIter;
2684
2685      if (SE.getTypeSizeInBits(OldStride->getType()) !=
2686          SE.getTypeSizeInBits(NewStride->getType())) {
2687        if (SE.getTypeSizeInBits(OldStride->getType()) >
2688            SE.getTypeSizeInBits(NewStride->getType()))
2689          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2690        else
2691          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2692      }
2693      if (const SCEVConstant *Factor =
2694            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2695                                                        SE, true))) {
2696        if (Factor->getAPInt().getMinSignedBits() <= 64)
2697          Factors.insert(Factor->getAPInt().getSExtValue());
2698      } else if (const SCEVConstant *Factor =
2699                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2700                                                               NewStride,
2701                                                               SE, true))) {
2702        if (Factor->getAPInt().getMinSignedBits() <= 64)
2703          Factors.insert(Factor->getAPInt().getSExtValue());
2704      }
2705    }
2706
2707  // If all uses use the same type, don't bother looking for truncation-based
2708  // reuse.
2709  if (Types.size() == 1)
2710    Types.clear();
2711
2712  LLVM_DEBUG(print_factors_and_types(dbgs()));
2713}
2714
2715/// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2716/// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2717/// IVStrideUses, we could partially skip this.
2718static User::op_iterator
2719findIVOperand(User::op_iterator OI, User::op_iterator OE,
2720              Loop *L, ScalarEvolution &SE) {
2721  for(; OI != OE; ++OI) {
2722    if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2723      if (!SE.isSCEVable(Oper->getType()))
2724        continue;
2725
2726      if (const SCEVAddRecExpr *AR =
2727          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2728        if (AR->getLoop() == L)
2729          break;
2730      }
2731    }
2732  }
2733  return OI;
2734}
2735
2736/// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2737/// a convenient helper.
2738static Value *getWideOperand(Value *Oper) {
2739  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2740    return Trunc->getOperand(0);
2741  return Oper;
2742}
2743
2744/// Return true if we allow an IV chain to include both types.
2745static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2746  Type *LType = LVal->getType();
2747  Type *RType = RVal->getType();
2748  return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2749                              // Different address spaces means (possibly)
2750                              // different types of the pointer implementation,
2751                              // e.g. i16 vs i32 so disallow that.
2752                              (LType->getPointerAddressSpace() ==
2753                               RType->getPointerAddressSpace()));
2754}
2755
2756/// Return an approximation of this SCEV expression's "base", or NULL for any
2757/// constant. Returning the expression itself is conservative. Returning a
2758/// deeper subexpression is more precise and valid as long as it isn't less
2759/// complex than another subexpression. For expressions involving multiple
2760/// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2761/// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2762/// IVInc==b-a.
2763///
2764/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2765/// SCEVUnknown, we simply return the rightmost SCEV operand.
2766static const SCEV *getExprBase(const SCEV *S) {
2767  switch (S->getSCEVType()) {
2768  default: // uncluding scUnknown.
2769    return S;
2770  case scConstant:
2771    return nullptr;
2772  case scTruncate:
2773    return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2774  case scZeroExtend:
2775    return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2776  case scSignExtend:
2777    return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2778  case scAddExpr: {
2779    // Skip over scaled operands (scMulExpr) to follow add operands as long as
2780    // there's nothing more complex.
2781    // FIXME: not sure if we want to recognize negation.
2782    const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2783    for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2784           E(Add->op_begin()); I != E; ++I) {
2785      const SCEV *SubExpr = *I;
2786      if (SubExpr->getSCEVType() == scAddExpr)
2787        return getExprBase(SubExpr);
2788
2789      if (SubExpr->getSCEVType() != scMulExpr)
2790        return SubExpr;
2791    }
2792    return S; // all operands are scaled, be conservative.
2793  }
2794  case scAddRecExpr:
2795    return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2796  }
2797}
2798
2799/// Return true if the chain increment is profitable to expand into a loop
2800/// invariant value, which may require its own register. A profitable chain
2801/// increment will be an offset relative to the same base. We allow such offsets
2802/// to potentially be used as chain increment as long as it's not obviously
2803/// expensive to expand using real instructions.
2804bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2805                                    const SCEV *IncExpr,
2806                                    ScalarEvolution &SE) {
2807  // Aggressively form chains when -stress-ivchain.
2808  if (StressIVChain)
2809    return true;
2810
2811  // Do not replace a constant offset from IV head with a nonconstant IV
2812  // increment.
2813  if (!isa<SCEVConstant>(IncExpr)) {
2814    const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2815    if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2816      return false;
2817  }
2818
2819  SmallPtrSet<const SCEV*, 8> Processed;
2820  return !isHighCostExpansion(IncExpr, Processed, SE);
2821}
2822
2823/// Return true if the number of registers needed for the chain is estimated to
2824/// be less than the number required for the individual IV users. First prohibit
2825/// any IV users that keep the IV live across increments (the Users set should
2826/// be empty). Next count the number and type of increments in the chain.
2827///
2828/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2829/// effectively use postinc addressing modes. Only consider it profitable it the
2830/// increments can be computed in fewer registers when chained.
2831///
2832/// TODO: Consider IVInc free if it's already used in another chains.
2833static bool
2834isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2835                  ScalarEvolution &SE) {
2836  if (StressIVChain)
2837    return true;
2838
2839  if (!Chain.hasIncs())
2840    return false;
2841
2842  if (!Users.empty()) {
2843    LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2844               for (Instruction *Inst
2845                    : Users) { dbgs() << "  " << *Inst << "\n"; });
2846    return false;
2847  }
2848  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2849
2850  // The chain itself may require a register, so intialize cost to 1.
2851  int cost = 1;
2852
2853  // A complete chain likely eliminates the need for keeping the original IV in
2854  // a register. LSR does not currently know how to form a complete chain unless
2855  // the header phi already exists.
2856  if (isa<PHINode>(Chain.tailUserInst())
2857      && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2858    --cost;
2859  }
2860  const SCEV *LastIncExpr = nullptr;
2861  unsigned NumConstIncrements = 0;
2862  unsigned NumVarIncrements = 0;
2863  unsigned NumReusedIncrements = 0;
2864  for (const IVInc &Inc : Chain) {
2865    if (Inc.IncExpr->isZero())
2866      continue;
2867
2868    // Incrementing by zero or some constant is neutral. We assume constants can
2869    // be folded into an addressing mode or an add's immediate operand.
2870    if (isa<SCEVConstant>(Inc.IncExpr)) {
2871      ++NumConstIncrements;
2872      continue;
2873    }
2874
2875    if (Inc.IncExpr == LastIncExpr)
2876      ++NumReusedIncrements;
2877    else
2878      ++NumVarIncrements;
2879
2880    LastIncExpr = Inc.IncExpr;
2881  }
2882  // An IV chain with a single increment is handled by LSR's postinc
2883  // uses. However, a chain with multiple increments requires keeping the IV's
2884  // value live longer than it needs to be if chained.
2885  if (NumConstIncrements > 1)
2886    --cost;
2887
2888  // Materializing increment expressions in the preheader that didn't exist in
2889  // the original code may cost a register. For example, sign-extended array
2890  // indices can produce ridiculous increments like this:
2891  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2892  cost += NumVarIncrements;
2893
2894  // Reusing variable increments likely saves a register to hold the multiple of
2895  // the stride.
2896  cost -= NumReusedIncrements;
2897
2898  LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2899                    << "\n");
2900
2901  return cost < 0;
2902}
2903
2904/// Add this IV user to an existing chain or make it the head of a new chain.
2905void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2906                                   SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2907  // When IVs are used as types of varying widths, they are generally converted
2908  // to a wider type with some uses remaining narrow under a (free) trunc.
2909  Value *const NextIV = getWideOperand(IVOper);
2910  const SCEV *const OperExpr = SE.getSCEV(NextIV);
2911  const SCEV *const OperExprBase = getExprBase(OperExpr);
2912
2913  // Visit all existing chains. Check if its IVOper can be computed as a
2914  // profitable loop invariant increment from the last link in the Chain.
2915  unsigned ChainIdx = 0, NChains = IVChainVec.size();
2916  const SCEV *LastIncExpr = nullptr;
2917  for (; ChainIdx < NChains; ++ChainIdx) {
2918    IVChain &Chain = IVChainVec[ChainIdx];
2919
2920    // Prune the solution space aggressively by checking that both IV operands
2921    // are expressions that operate on the same unscaled SCEVUnknown. This
2922    // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2923    // first avoids creating extra SCEV expressions.
2924    if (!StressIVChain && Chain.ExprBase != OperExprBase)
2925      continue;
2926
2927    Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2928    if (!isCompatibleIVType(PrevIV, NextIV))
2929      continue;
2930
2931    // A phi node terminates a chain.
2932    if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2933      continue;
2934
2935    // The increment must be loop-invariant so it can be kept in a register.
2936    const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2937    const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2938    if (!SE.isLoopInvariant(IncExpr, L))
2939      continue;
2940
2941    if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2942      LastIncExpr = IncExpr;
2943      break;
2944    }
2945  }
2946  // If we haven't found a chain, create a new one, unless we hit the max. Don't
2947  // bother for phi nodes, because they must be last in the chain.
2948  if (ChainIdx == NChains) {
2949    if (isa<PHINode>(UserInst))
2950      return;
2951    if (NChains >= MaxChains && !StressIVChain) {
2952      LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2953      return;
2954    }
2955    LastIncExpr = OperExpr;
2956    // IVUsers may have skipped over sign/zero extensions. We don't currently
2957    // attempt to form chains involving extensions unless they can be hoisted
2958    // into this loop's AddRec.
2959    if (!isa<SCEVAddRecExpr>(LastIncExpr))
2960      return;
2961    ++NChains;
2962    IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2963                                 OperExprBase));
2964    ChainUsersVec.resize(NChains);
2965    LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2966                      << ") IV=" << *LastIncExpr << "\n");
2967  } else {
2968    LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2969                      << ") IV+" << *LastIncExpr << "\n");
2970    // Add this IV user to the end of the chain.
2971    IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2972  }
2973  IVChain &Chain = IVChainVec[ChainIdx];
2974
2975  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2976  // This chain's NearUsers become FarUsers.
2977  if (!LastIncExpr->isZero()) {
2978    ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2979                                            NearUsers.end());
2980    NearUsers.clear();
2981  }
2982
2983  // All other uses of IVOperand become near uses of the chain.
2984  // We currently ignore intermediate values within SCEV expressions, assuming
2985  // they will eventually be used be the current chain, or can be computed
2986  // from one of the chain increments. To be more precise we could
2987  // transitively follow its user and only add leaf IV users to the set.
2988  for (User *U : IVOper->users()) {
2989    Instruction *OtherUse = dyn_cast<Instruction>(U);
2990    if (!OtherUse)
2991      continue;
2992    // Uses in the chain will no longer be uses if the chain is formed.
2993    // Include the head of the chain in this iteration (not Chain.begin()).
2994    IVChain::const_iterator IncIter = Chain.Incs.begin();
2995    IVChain::const_iterator IncEnd = Chain.Incs.end();
2996    for( ; IncIter != IncEnd; ++IncIter) {
2997      if (IncIter->UserInst == OtherUse)
2998        break;
2999    }
3000    if (IncIter != IncEnd)
3001      continue;
3002
3003    if (SE.isSCEVable(OtherUse->getType())
3004        && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3005        && IU.isIVUserOrOperand(OtherUse)) {
3006      continue;
3007    }
3008    NearUsers.insert(OtherUse);
3009  }
3010
3011  // Since this user is part of the chain, it's no longer considered a use
3012  // of the chain.
3013  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3014}
3015
3016/// Populate the vector of Chains.
3017///
3018/// This decreases ILP at the architecture level. Targets with ample registers,
3019/// multiple memory ports, and no register renaming probably don't want
3020/// this. However, such targets should probably disable LSR altogether.
3021///
3022/// The job of LSR is to make a reasonable choice of induction variables across
3023/// the loop. Subsequent passes can easily "unchain" computation exposing more
3024/// ILP *within the loop* if the target wants it.
3025///
3026/// Finding the best IV chain is potentially a scheduling problem. Since LSR
3027/// will not reorder memory operations, it will recognize this as a chain, but
3028/// will generate redundant IV increments. Ideally this would be corrected later
3029/// by a smart scheduler:
3030///        = A[i]
3031///        = A[i+x]
3032/// A[i]   =
3033/// A[i+x] =
3034///
3035/// TODO: Walk the entire domtree within this loop, not just the path to the
3036/// loop latch. This will discover chains on side paths, but requires
3037/// maintaining multiple copies of the Chains state.
3038void LSRInstance::CollectChains() {
3039  LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3040  SmallVector<ChainUsers, 8> ChainUsersVec;
3041
3042  SmallVector<BasicBlock *,8> LatchPath;
3043  BasicBlock *LoopHeader = L->getHeader();
3044  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3045       Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3046    LatchPath.push_back(Rung->getBlock());
3047  }
3048  LatchPath.push_back(LoopHeader);
3049
3050  // Walk the instruction stream from the loop header to the loop latch.
3051  for (BasicBlock *BB : reverse(LatchPath)) {
3052    for (Instruction &I : *BB) {
3053      // Skip instructions that weren't seen by IVUsers analysis.
3054      if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3055        continue;
3056
3057      // Ignore users that are part of a SCEV expression. This way we only
3058      // consider leaf IV Users. This effectively rediscovers a portion of
3059      // IVUsers analysis but in program order this time.
3060      if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3061          continue;
3062
3063      // Remove this instruction from any NearUsers set it may be in.
3064      for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3065           ChainIdx < NChains; ++ChainIdx) {
3066        ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3067      }
3068      // Search for operands that can be chained.
3069      SmallPtrSet<Instruction*, 4> UniqueOperands;
3070      User::op_iterator IVOpEnd = I.op_end();
3071      User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3072      while (IVOpIter != IVOpEnd) {
3073        Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3074        if (UniqueOperands.insert(IVOpInst).second)
3075          ChainInstruction(&I, IVOpInst, ChainUsersVec);
3076        IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3077      }
3078    } // Continue walking down the instructions.
3079  } // Continue walking down the domtree.
3080  // Visit phi backedges to determine if the chain can generate the IV postinc.
3081  for (PHINode &PN : L->getHeader()->phis()) {
3082    if (!SE.isSCEVable(PN.getType()))
3083      continue;
3084
3085    Instruction *IncV =
3086        dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3087    if (IncV)
3088      ChainInstruction(&PN, IncV, ChainUsersVec);
3089  }
3090  // Remove any unprofitable chains.
3091  unsigned ChainIdx = 0;
3092  for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3093       UsersIdx < NChains; ++UsersIdx) {
3094    if (!isProfitableChain(IVChainVec[UsersIdx],
3095                           ChainUsersVec[UsersIdx].FarUsers, SE))
3096      continue;
3097    // Preserve the chain at UsesIdx.
3098    if (ChainIdx != UsersIdx)
3099      IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3100    FinalizeChain(IVChainVec[ChainIdx]);
3101    ++ChainIdx;
3102  }
3103  IVChainVec.resize(ChainIdx);
3104}
3105
3106void LSRInstance::FinalizeChain(IVChain &Chain) {
3107  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3108  LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3109
3110  for (const IVInc &Inc : Chain) {
3111    LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3112    auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3113    assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3114    IVIncSet.insert(UseI);
3115  }
3116}
3117
3118/// Return true if the IVInc can be folded into an addressing mode.
3119static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3120                             Value *Operand, const TargetTransformInfo &TTI) {
3121  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3122  if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3123    return false;
3124
3125  if (IncConst->getAPInt().getMinSignedBits() > 64)
3126    return false;
3127
3128  MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3129  int64_t IncOffset = IncConst->getValue()->getSExtValue();
3130  if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3131                        IncOffset, /*HasBaseReg=*/false))
3132    return false;
3133
3134  return true;
3135}
3136
3137/// Generate an add or subtract for each IVInc in a chain to materialize the IV
3138/// user's operand from the previous IV user's operand.
3139void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3140                                  SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3141  // Find the new IVOperand for the head of the chain. It may have been replaced
3142  // by LSR.
3143  const IVInc &Head = Chain.Incs[0];
3144  User::op_iterator IVOpEnd = Head.UserInst->op_end();
3145  // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3146  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3147                                             IVOpEnd, L, SE);
3148  Value *IVSrc = nullptr;
3149  while (IVOpIter != IVOpEnd) {
3150    IVSrc = getWideOperand(*IVOpIter);
3151
3152    // If this operand computes the expression that the chain needs, we may use
3153    // it. (Check this after setting IVSrc which is used below.)
3154    //
3155    // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3156    // narrow for the chain, so we can no longer use it. We do allow using a
3157    // wider phi, assuming the LSR checked for free truncation. In that case we
3158    // should already have a truncate on this operand such that
3159    // getSCEV(IVSrc) == IncExpr.
3160    if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3161        || SE.getSCEV(IVSrc) == Head.IncExpr) {
3162      break;
3163    }
3164    IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3165  }
3166  if (IVOpIter == IVOpEnd) {
3167    // Gracefully give up on this chain.
3168    LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3169    return;
3170  }
3171  assert(IVSrc && "Failed to find IV chain source");
3172
3173  LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3174  Type *IVTy = IVSrc->getType();
3175  Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3176  const SCEV *LeftOverExpr = nullptr;
3177  for (const IVInc &Inc : Chain) {
3178    Instruction *InsertPt = Inc.UserInst;
3179    if (isa<PHINode>(InsertPt))
3180      InsertPt = L->getLoopLatch()->getTerminator();
3181
3182    // IVOper will replace the current IV User's operand. IVSrc is the IV
3183    // value currently held in a register.
3184    Value *IVOper = IVSrc;
3185    if (!Inc.IncExpr->isZero()) {
3186      // IncExpr was the result of subtraction of two narrow values, so must
3187      // be signed.
3188      const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3189      LeftOverExpr = LeftOverExpr ?
3190        SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3191    }
3192    if (LeftOverExpr && !LeftOverExpr->isZero()) {
3193      // Expand the IV increment.
3194      Rewriter.clearPostInc();
3195      Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3196      const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3197                                             SE.getUnknown(IncV));
3198      IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3199
3200      // If an IV increment can't be folded, use it as the next IV value.
3201      if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3202        assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3203        IVSrc = IVOper;
3204        LeftOverExpr = nullptr;
3205      }
3206    }
3207    Type *OperTy = Inc.IVOperand->getType();
3208    if (IVTy != OperTy) {
3209      assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3210             "cannot extend a chained IV");
3211      IRBuilder<> Builder(InsertPt);
3212      IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3213    }
3214    Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3215    DeadInsts.emplace_back(Inc.IVOperand);
3216  }
3217  // If LSR created a new, wider phi, we may also replace its postinc. We only
3218  // do this if we also found a wide value for the head of the chain.
3219  if (isa<PHINode>(Chain.tailUserInst())) {
3220    for (PHINode &Phi : L->getHeader()->phis()) {
3221      if (!isCompatibleIVType(&Phi, IVSrc))
3222        continue;
3223      Instruction *PostIncV = dyn_cast<Instruction>(
3224          Phi.getIncomingValueForBlock(L->getLoopLatch()));
3225      if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3226        continue;
3227      Value *IVOper = IVSrc;
3228      Type *PostIncTy = PostIncV->getType();
3229      if (IVTy != PostIncTy) {
3230        assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3231        IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3232        Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3233        IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3234      }
3235      Phi.replaceUsesOfWith(PostIncV, IVOper);
3236      DeadInsts.emplace_back(PostIncV);
3237    }
3238  }
3239}
3240
3241void LSRInstance::CollectFixupsAndInitialFormulae() {
3242  BranchInst *ExitBranch = nullptr;
3243  bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &LibInfo);
3244
3245  for (const IVStrideUse &U : IU) {
3246    Instruction *UserInst = U.getUser();
3247    // Skip IV users that are part of profitable IV Chains.
3248    User::op_iterator UseI =
3249        find(UserInst->operands(), U.getOperandValToReplace());
3250    assert(UseI != UserInst->op_end() && "cannot find IV operand");
3251    if (IVIncSet.count(UseI)) {
3252      LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3253      continue;
3254    }
3255
3256    LSRUse::KindType Kind = LSRUse::Basic;
3257    MemAccessTy AccessTy;
3258    if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3259      Kind = LSRUse::Address;
3260      AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3261    }
3262
3263    const SCEV *S = IU.getExpr(U);
3264    PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3265
3266    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3267    // (N - i == 0), and this allows (N - i) to be the expression that we work
3268    // with rather than just N or i, so we can consider the register
3269    // requirements for both N and i at the same time. Limiting this code to
3270    // equality icmps is not a problem because all interesting loops use
3271    // equality icmps, thanks to IndVarSimplify.
3272    if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3273      // If CI can be saved in some target, like replaced inside hardware loop
3274      // in PowerPC, no need to generate initial formulae for it.
3275      if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3276        continue;
3277      if (CI->isEquality()) {
3278        // Swap the operands if needed to put the OperandValToReplace on the
3279        // left, for consistency.
3280        Value *NV = CI->getOperand(1);
3281        if (NV == U.getOperandValToReplace()) {
3282          CI->setOperand(1, CI->getOperand(0));
3283          CI->setOperand(0, NV);
3284          NV = CI->getOperand(1);
3285          Changed = true;
3286        }
3287
3288        // x == y  -->  x - y == 0
3289        const SCEV *N = SE.getSCEV(NV);
3290        if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3291          // S is normalized, so normalize N before folding it into S
3292          // to keep the result normalized.
3293          N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3294          Kind = LSRUse::ICmpZero;
3295          S = SE.getMinusSCEV(N, S);
3296        }
3297
3298        // -1 and the negations of all interesting strides (except the negation
3299        // of -1) are now also interesting.
3300        for (size_t i = 0, e = Factors.size(); i != e; ++i)
3301          if (Factors[i] != -1)
3302            Factors.insert(-(uint64_t)Factors[i]);
3303        Factors.insert(-1);
3304      }
3305    }
3306
3307    // Get or create an LSRUse.
3308    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3309    size_t LUIdx = P.first;
3310    int64_t Offset = P.second;
3311    LSRUse &LU = Uses[LUIdx];
3312
3313    // Record the fixup.
3314    LSRFixup &LF = LU.getNewFixup();
3315    LF.UserInst = UserInst;
3316    LF.OperandValToReplace = U.getOperandValToReplace();
3317    LF.PostIncLoops = TmpPostIncLoops;
3318    LF.Offset = Offset;
3319    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3320
3321    if (!LU.WidestFixupType ||
3322        SE.getTypeSizeInBits(LU.WidestFixupType) <
3323        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3324      LU.WidestFixupType = LF.OperandValToReplace->getType();
3325
3326    // If this is the first use of this LSRUse, give it a formula.
3327    if (LU.Formulae.empty()) {
3328      InsertInitialFormula(S, LU, LUIdx);
3329      CountRegisters(LU.Formulae.back(), LUIdx);
3330    }
3331  }
3332
3333  LLVM_DEBUG(print_fixups(dbgs()));
3334}
3335
3336/// Insert a formula for the given expression into the given use, separating out
3337/// loop-variant portions from loop-invariant and loop-computable portions.
3338void
3339LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3340  // Mark uses whose expressions cannot be expanded.
3341  if (!isSafeToExpand(S, SE))
3342    LU.RigidFormula = true;
3343
3344  Formula F;
3345  F.initialMatch(S, L, SE);
3346  bool Inserted = InsertFormula(LU, LUIdx, F);
3347  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3348}
3349
3350/// Insert a simple single-register formula for the given expression into the
3351/// given use.
3352void
3353LSRInstance::InsertSupplementalFormula(const SCEV *S,
3354                                       LSRUse &LU, size_t LUIdx) {
3355  Formula F;
3356  F.BaseRegs.push_back(S);
3357  F.HasBaseReg = true;
3358  bool Inserted = InsertFormula(LU, LUIdx, F);
3359  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3360}
3361
3362/// Note which registers are used by the given formula, updating RegUses.
3363void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3364  if (F.ScaledReg)
3365    RegUses.countRegister(F.ScaledReg, LUIdx);
3366  for (const SCEV *BaseReg : F.BaseRegs)
3367    RegUses.countRegister(BaseReg, LUIdx);
3368}
3369
3370/// If the given formula has not yet been inserted, add it to the list, and
3371/// return true. Return false otherwise.
3372bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3373  // Do not insert formula that we will not be able to expand.
3374  assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3375         "Formula is illegal");
3376
3377  if (!LU.InsertFormula(F, *L))
3378    return false;
3379
3380  CountRegisters(F, LUIdx);
3381  return true;
3382}
3383
3384/// Check for other uses of loop-invariant values which we're tracking. These
3385/// other uses will pin these values in registers, making them less profitable
3386/// for elimination.
3387/// TODO: This currently misses non-constant addrec step registers.
3388/// TODO: Should this give more weight to users inside the loop?
3389void
3390LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3391  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3392  SmallPtrSet<const SCEV *, 32> Visited;
3393
3394  while (!Worklist.empty()) {
3395    const SCEV *S = Worklist.pop_back_val();
3396
3397    // Don't process the same SCEV twice
3398    if (!Visited.insert(S).second)
3399      continue;
3400
3401    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3402      Worklist.append(N->op_begin(), N->op_end());
3403    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3404      Worklist.push_back(C->getOperand());
3405    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3406      Worklist.push_back(D->getLHS());
3407      Worklist.push_back(D->getRHS());
3408    } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3409      const Value *V = US->getValue();
3410      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3411        // Look for instructions defined outside the loop.
3412        if (L->contains(Inst)) continue;
3413      } else if (isa<UndefValue>(V))
3414        // Undef doesn't have a live range, so it doesn't matter.
3415        continue;
3416      for (const Use &U : V->uses()) {
3417        const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3418        // Ignore non-instructions.
3419        if (!UserInst)
3420          continue;
3421        // Ignore instructions in other functions (as can happen with
3422        // Constants).
3423        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3424          continue;
3425        // Ignore instructions not dominated by the loop.
3426        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3427          UserInst->getParent() :
3428          cast<PHINode>(UserInst)->getIncomingBlock(
3429            PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3430        if (!DT.dominates(L->getHeader(), UseBB))
3431          continue;
3432        // Don't bother if the instruction is in a BB which ends in an EHPad.
3433        if (UseBB->getTerminator()->isEHPad())
3434          continue;
3435        // Don't bother rewriting PHIs in catchswitch blocks.
3436        if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3437          continue;
3438        // Ignore uses which are part of other SCEV expressions, to avoid
3439        // analyzing them multiple times.
3440        if (SE.isSCEVable(UserInst->getType())) {
3441          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3442          // If the user is a no-op, look through to its uses.
3443          if (!isa<SCEVUnknown>(UserS))
3444            continue;
3445          if (UserS == US) {
3446            Worklist.push_back(
3447              SE.getUnknown(const_cast<Instruction *>(UserInst)));
3448            continue;
3449          }
3450        }
3451        // Ignore icmp instructions which are already being analyzed.
3452        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3453          unsigned OtherIdx = !U.getOperandNo();
3454          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3455          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3456            continue;
3457        }
3458
3459        std::pair<size_t, int64_t> P = getUse(
3460            S, LSRUse::Basic, MemAccessTy());
3461        size_t LUIdx = P.first;
3462        int64_t Offset = P.second;
3463        LSRUse &LU = Uses[LUIdx];
3464        LSRFixup &LF = LU.getNewFixup();
3465        LF.UserInst = const_cast<Instruction *>(UserInst);
3466        LF.OperandValToReplace = U;
3467        LF.Offset = Offset;
3468        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3469        if (!LU.WidestFixupType ||
3470            SE.getTypeSizeInBits(LU.WidestFixupType) <
3471            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3472          LU.WidestFixupType = LF.OperandValToReplace->getType();
3473        InsertSupplementalFormula(US, LU, LUIdx);
3474        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3475        break;
3476      }
3477    }
3478  }
3479}
3480
3481/// Split S into subexpressions which can be pulled out into separate
3482/// registers. If C is non-null, multiply each subexpression by C.
3483///
3484/// Return remainder expression after factoring the subexpressions captured by
3485/// Ops. If Ops is complete, return NULL.
3486static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3487                                   SmallVectorImpl<const SCEV *> &Ops,
3488                                   const Loop *L,
3489                                   ScalarEvolution &SE,
3490                                   unsigned Depth = 0) {
3491  // Arbitrarily cap recursion to protect compile time.
3492  if (Depth >= 3)
3493    return S;
3494
3495  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3496    // Break out add operands.
3497    for (const SCEV *S : Add->operands()) {
3498      const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3499      if (Remainder)
3500        Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3501    }
3502    return nullptr;
3503  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3504    // Split a non-zero base out of an addrec.
3505    if (AR->getStart()->isZero() || !AR->isAffine())
3506      return S;
3507
3508    const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3509                                            C, Ops, L, SE, Depth+1);
3510    // Split the non-zero AddRec unless it is part of a nested recurrence that
3511    // does not pertain to this loop.
3512    if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3513      Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3514      Remainder = nullptr;
3515    }
3516    if (Remainder != AR->getStart()) {
3517      if (!Remainder)
3518        Remainder = SE.getConstant(AR->getType(), 0);
3519      return SE.getAddRecExpr(Remainder,
3520                              AR->getStepRecurrence(SE),
3521                              AR->getLoop(),
3522                              //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3523                              SCEV::FlagAnyWrap);
3524    }
3525  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3526    // Break (C * (a + b + c)) into C*a + C*b + C*c.
3527    if (Mul->getNumOperands() != 2)
3528      return S;
3529    if (const SCEVConstant *Op0 =
3530        dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3531      C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3532      const SCEV *Remainder =
3533        CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3534      if (Remainder)
3535        Ops.push_back(SE.getMulExpr(C, Remainder));
3536      return nullptr;
3537    }
3538  }
3539  return S;
3540}
3541
3542/// Return true if the SCEV represents a value that may end up as a
3543/// post-increment operation.
3544static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3545                              LSRUse &LU, const SCEV *S, const Loop *L,
3546                              ScalarEvolution &SE) {
3547  if (LU.Kind != LSRUse::Address ||
3548      !LU.AccessTy.getType()->isIntOrIntVectorTy())
3549    return false;
3550  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3551  if (!AR)
3552    return false;
3553  const SCEV *LoopStep = AR->getStepRecurrence(SE);
3554  if (!isa<SCEVConstant>(LoopStep))
3555    return false;
3556  if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3557      LoopStep->getType()->getScalarSizeInBits())
3558    return false;
3559  // Check if a post-indexed load/store can be used.
3560  if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3561      TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3562    const SCEV *LoopStart = AR->getStart();
3563    if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3564      return true;
3565  }
3566  return false;
3567}
3568
3569/// Helper function for LSRInstance::GenerateReassociations.
3570void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3571                                             const Formula &Base,
3572                                             unsigned Depth, size_t Idx,
3573                                             bool IsScaledReg) {
3574  const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3575  // Don't generate reassociations for the base register of a value that
3576  // may generate a post-increment operator. The reason is that the
3577  // reassociations cause extra base+register formula to be created,
3578  // and possibly chosen, but the post-increment is more efficient.
3579  if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3580    return;
3581  SmallVector<const SCEV *, 8> AddOps;
3582  const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3583  if (Remainder)
3584    AddOps.push_back(Remainder);
3585
3586  if (AddOps.size() == 1)
3587    return;
3588
3589  for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3590                                                     JE = AddOps.end();
3591       J != JE; ++J) {
3592    // Loop-variant "unknown" values are uninteresting; we won't be able to
3593    // do anything meaningful with them.
3594    if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3595      continue;
3596
3597    // Don't pull a constant into a register if the constant could be folded
3598    // into an immediate field.
3599    if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3600                         LU.AccessTy, *J, Base.getNumRegs() > 1))
3601      continue;
3602
3603    // Collect all operands except *J.
3604    SmallVector<const SCEV *, 8> InnerAddOps(
3605        ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3606    InnerAddOps.append(std::next(J),
3607                       ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3608
3609    // Don't leave just a constant behind in a register if the constant could
3610    // be folded into an immediate field.
3611    if (InnerAddOps.size() == 1 &&
3612        isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3613                         LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3614      continue;
3615
3616    const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3617    if (InnerSum->isZero())
3618      continue;
3619    Formula F = Base;
3620
3621    // Add the remaining pieces of the add back into the new formula.
3622    const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3623    if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3624        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3625                                InnerSumSC->getValue()->getZExtValue())) {
3626      F.UnfoldedOffset =
3627          (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3628      if (IsScaledReg)
3629        F.ScaledReg = nullptr;
3630      else
3631        F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3632    } else if (IsScaledReg)
3633      F.ScaledReg = InnerSum;
3634    else
3635      F.BaseRegs[Idx] = InnerSum;
3636
3637    // Add J as its own register, or an unfolded immediate.
3638    const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3639    if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3640        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3641                                SC->getValue()->getZExtValue()))
3642      F.UnfoldedOffset =
3643          (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3644    else
3645      F.BaseRegs.push_back(*J);
3646    // We may have changed the number of register in base regs, adjust the
3647    // formula accordingly.
3648    F.canonicalize(*L);
3649
3650    if (InsertFormula(LU, LUIdx, F))
3651      // If that formula hadn't been seen before, recurse to find more like
3652      // it.
3653      // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3654      // Because just Depth is not enough to bound compile time.
3655      // This means that every time AddOps.size() is greater 16^x we will add
3656      // x to Depth.
3657      GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3658                             Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3659  }
3660}
3661
3662/// Split out subexpressions from adds and the bases of addrecs.
3663void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3664                                         Formula Base, unsigned Depth) {
3665  assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3666  // Arbitrarily cap recursion to protect compile time.
3667  if (Depth >= 3)
3668    return;
3669
3670  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3671    GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3672
3673  if (Base.Scale == 1)
3674    GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3675                               /* Idx */ -1, /* IsScaledReg */ true);
3676}
3677
3678///  Generate a formula consisting of all of the loop-dominating registers added
3679/// into a single register.
3680void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3681                                       Formula Base) {
3682  // This method is only interesting on a plurality of registers.
3683  if (Base.BaseRegs.size() + (Base.Scale == 1) +
3684      (Base.UnfoldedOffset != 0) <= 1)
3685    return;
3686
3687  // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3688  // processing the formula.
3689  Base.unscale();
3690  SmallVector<const SCEV *, 4> Ops;
3691  Formula NewBase = Base;
3692  NewBase.BaseRegs.clear();
3693  Type *CombinedIntegerType = nullptr;
3694  for (const SCEV *BaseReg : Base.BaseRegs) {
3695    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3696        !SE.hasComputableLoopEvolution(BaseReg, L)) {
3697      if (!CombinedIntegerType)
3698        CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3699      Ops.push_back(BaseReg);
3700    }
3701    else
3702      NewBase.BaseRegs.push_back(BaseReg);
3703  }
3704
3705  // If no register is relevant, we're done.
3706  if (Ops.size() == 0)
3707    return;
3708
3709  // Utility function for generating the required variants of the combined
3710  // registers.
3711  auto GenerateFormula = [&](const SCEV *Sum) {
3712    Formula F = NewBase;
3713
3714    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3715    // opportunity to fold something. For now, just ignore such cases
3716    // rather than proceed with zero in a register.
3717    if (Sum->isZero())
3718      return;
3719
3720    F.BaseRegs.push_back(Sum);
3721    F.canonicalize(*L);
3722    (void)InsertFormula(LU, LUIdx, F);
3723  };
3724
3725  // If we collected at least two registers, generate a formula combining them.
3726  if (Ops.size() > 1) {
3727    SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3728    GenerateFormula(SE.getAddExpr(OpsCopy));
3729  }
3730
3731  // If we have an unfolded offset, generate a formula combining it with the
3732  // registers collected.
3733  if (NewBase.UnfoldedOffset) {
3734    assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3735    Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3736                                 true));
3737    NewBase.UnfoldedOffset = 0;
3738    GenerateFormula(SE.getAddExpr(Ops));
3739  }
3740}
3741
3742/// Helper function for LSRInstance::GenerateSymbolicOffsets.
3743void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3744                                              const Formula &Base, size_t Idx,
3745                                              bool IsScaledReg) {
3746  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3747  GlobalValue *GV = ExtractSymbol(G, SE);
3748  if (G->isZero() || !GV)
3749    return;
3750  Formula F = Base;
3751  F.BaseGV = GV;
3752  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3753    return;
3754  if (IsScaledReg)
3755    F.ScaledReg = G;
3756  else
3757    F.BaseRegs[Idx] = G;
3758  (void)InsertFormula(LU, LUIdx, F);
3759}
3760
3761/// Generate reuse formulae using symbolic offsets.
3762void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3763                                          Formula Base) {
3764  // We can't add a symbolic offset if the address already contains one.
3765  if (Base.BaseGV) return;
3766
3767  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3768    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3769  if (Base.Scale == 1)
3770    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3771                                /* IsScaledReg */ true);
3772}
3773
3774/// Helper function for LSRInstance::GenerateConstantOffsets.
3775void LSRInstance::GenerateConstantOffsetsImpl(
3776    LSRUse &LU, unsigned LUIdx, const Formula &Base,
3777    const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3778
3779  auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3780    Formula F = Base;
3781    F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3782
3783    if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3784                   LU.AccessTy, F)) {
3785      // Add the offset to the base register.
3786      const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3787      // If it cancelled out, drop the base register, otherwise update it.
3788      if (NewG->isZero()) {
3789        if (IsScaledReg) {
3790          F.Scale = 0;
3791          F.ScaledReg = nullptr;
3792        } else
3793          F.deleteBaseReg(F.BaseRegs[Idx]);
3794        F.canonicalize(*L);
3795      } else if (IsScaledReg)
3796        F.ScaledReg = NewG;
3797      else
3798        F.BaseRegs[Idx] = NewG;
3799
3800      (void)InsertFormula(LU, LUIdx, F);
3801    }
3802  };
3803
3804  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3805
3806  // With constant offsets and constant steps, we can generate pre-inc
3807  // accesses by having the offset equal the step. So, for access #0 with a
3808  // step of 8, we generate a G - 8 base which would require the first access
3809  // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3810  // for itself and hopefully becomes the base for other accesses. This means
3811  // means that a single pre-indexed access can be generated to become the new
3812  // base pointer for each iteration of the loop, resulting in no extra add/sub
3813  // instructions for pointer updating.
3814  if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3815    if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3816      if (auto *StepRec =
3817          dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3818        const APInt &StepInt = StepRec->getAPInt();
3819        int64_t Step = StepInt.isNegative() ?
3820          StepInt.getSExtValue() : StepInt.getZExtValue();
3821
3822        for (int64_t Offset : Worklist) {
3823          Offset -= Step;
3824          GenerateOffset(G, Offset);
3825        }
3826      }
3827    }
3828  }
3829  for (int64_t Offset : Worklist)
3830    GenerateOffset(G, Offset);
3831
3832  int64_t Imm = ExtractImmediate(G, SE);
3833  if (G->isZero() || Imm == 0)
3834    return;
3835  Formula F = Base;
3836  F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3837  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3838    return;
3839  if (IsScaledReg)
3840    F.ScaledReg = G;
3841  else
3842    F.BaseRegs[Idx] = G;
3843  (void)InsertFormula(LU, LUIdx, F);
3844}
3845
3846/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3847void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3848                                          Formula Base) {
3849  // TODO: For now, just add the min and max offset, because it usually isn't
3850  // worthwhile looking at everything inbetween.
3851  SmallVector<int64_t, 2> Worklist;
3852  Worklist.push_back(LU.MinOffset);
3853  if (LU.MaxOffset != LU.MinOffset)
3854    Worklist.push_back(LU.MaxOffset);
3855
3856  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3857    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3858  if (Base.Scale == 1)
3859    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3860                                /* IsScaledReg */ true);
3861}
3862
3863/// For ICmpZero, check to see if we can scale up the comparison. For example, x
3864/// == y -> x*c == y*c.
3865void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3866                                         Formula Base) {
3867  if (LU.Kind != LSRUse::ICmpZero) return;
3868
3869  // Determine the integer type for the base formula.
3870  Type *IntTy = Base.getType();
3871  if (!IntTy) return;
3872  if (SE.getTypeSizeInBits(IntTy) > 64) return;
3873
3874  // Don't do this if there is more than one offset.
3875  if (LU.MinOffset != LU.MaxOffset) return;
3876
3877  // Check if transformation is valid. It is illegal to multiply pointer.
3878  if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3879    return;
3880  for (const SCEV *BaseReg : Base.BaseRegs)
3881    if (BaseReg->getType()->isPointerTy())
3882      return;
3883  assert(!Base.BaseGV && "ICmpZero use is not legal!");
3884
3885  // Check each interesting stride.
3886  for (int64_t Factor : Factors) {
3887    // Check that the multiplication doesn't overflow.
3888    if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3889      continue;
3890    int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3891    if (NewBaseOffset / Factor != Base.BaseOffset)
3892      continue;
3893    // If the offset will be truncated at this use, check that it is in bounds.
3894    if (!IntTy->isPointerTy() &&
3895        !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3896      continue;
3897
3898    // Check that multiplying with the use offset doesn't overflow.
3899    int64_t Offset = LU.MinOffset;
3900    if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3901      continue;
3902    Offset = (uint64_t)Offset * Factor;
3903    if (Offset / Factor != LU.MinOffset)
3904      continue;
3905    // If the offset will be truncated at this use, check that it is in bounds.
3906    if (!IntTy->isPointerTy() &&
3907        !ConstantInt::isValueValidForType(IntTy, Offset))
3908      continue;
3909
3910    Formula F = Base;
3911    F.BaseOffset = NewBaseOffset;
3912
3913    // Check that this scale is legal.
3914    if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3915      continue;
3916
3917    // Compensate for the use having MinOffset built into it.
3918    F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3919
3920    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3921
3922    // Check that multiplying with each base register doesn't overflow.
3923    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3924      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3925      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3926        goto next;
3927    }
3928
3929    // Check that multiplying with the scaled register doesn't overflow.
3930    if (F.ScaledReg) {
3931      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3932      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3933        continue;
3934    }
3935
3936    // Check that multiplying with the unfolded offset doesn't overflow.
3937    if (F.UnfoldedOffset != 0) {
3938      if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3939          Factor == -1)
3940        continue;
3941      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3942      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3943        continue;
3944      // If the offset will be truncated, check that it is in bounds.
3945      if (!IntTy->isPointerTy() &&
3946          !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3947        continue;
3948    }
3949
3950    // If we make it here and it's legal, add it.
3951    (void)InsertFormula(LU, LUIdx, F);
3952  next:;
3953  }
3954}
3955
3956/// Generate stride factor reuse formulae by making use of scaled-offset address
3957/// modes, for example.
3958void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3959  // Determine the integer type for the base formula.
3960  Type *IntTy = Base.getType();
3961  if (!IntTy) return;
3962
3963  // If this Formula already has a scaled register, we can't add another one.
3964  // Try to unscale the formula to generate a better scale.
3965  if (Base.Scale != 0 && !Base.unscale())
3966    return;
3967
3968  assert(Base.Scale == 0 && "unscale did not did its job!");
3969
3970  // Check each interesting stride.
3971  for (int64_t Factor : Factors) {
3972    Base.Scale = Factor;
3973    Base.HasBaseReg = Base.BaseRegs.size() > 1;
3974    // Check whether this scale is going to be legal.
3975    if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3976                    Base)) {
3977      // As a special-case, handle special out-of-loop Basic users specially.
3978      // TODO: Reconsider this special case.
3979      if (LU.Kind == LSRUse::Basic &&
3980          isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3981                     LU.AccessTy, Base) &&
3982          LU.AllFixupsOutsideLoop)
3983        LU.Kind = LSRUse::Special;
3984      else
3985        continue;
3986    }
3987    // For an ICmpZero, negating a solitary base register won't lead to
3988    // new solutions.
3989    if (LU.Kind == LSRUse::ICmpZero &&
3990        !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3991      continue;
3992    // For each addrec base reg, if its loop is current loop, apply the scale.
3993    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3994      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3995      if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3996        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3997        if (FactorS->isZero())
3998          continue;
3999        // Divide out the factor, ignoring high bits, since we'll be
4000        // scaling the value back up in the end.
4001        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4002          // TODO: This could be optimized to avoid all the copying.
4003          Formula F = Base;
4004          F.ScaledReg = Quotient;
4005          F.deleteBaseReg(F.BaseRegs[i]);
4006          // The canonical representation of 1*reg is reg, which is already in
4007          // Base. In that case, do not try to insert the formula, it will be
4008          // rejected anyway.
4009          if (F.Scale == 1 && (F.BaseRegs.empty() ||
4010                               (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4011            continue;
4012          // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4013          // non canonical Formula with ScaledReg's loop not being L.
4014          if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4015            F.canonicalize(*L);
4016          (void)InsertFormula(LU, LUIdx, F);
4017        }
4018      }
4019    }
4020  }
4021}
4022
4023/// Generate reuse formulae from different IV types.
4024void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4025  // Don't bother truncating symbolic values.
4026  if (Base.BaseGV) return;
4027
4028  // Determine the integer type for the base formula.
4029  Type *DstTy = Base.getType();
4030  if (!DstTy) return;
4031  DstTy = SE.getEffectiveSCEVType(DstTy);
4032
4033  for (Type *SrcTy : Types) {
4034    if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4035      Formula F = Base;
4036
4037      // Sometimes SCEV is able to prove zero during ext transform. It may
4038      // happen if SCEV did not do all possible transforms while creating the
4039      // initial node (maybe due to depth limitations), but it can do them while
4040      // taking ext.
4041      if (F.ScaledReg) {
4042        const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4043        if (NewScaledReg->isZero())
4044         continue;
4045        F.ScaledReg = NewScaledReg;
4046      }
4047      bool HasZeroBaseReg = false;
4048      for (const SCEV *&BaseReg : F.BaseRegs) {
4049        const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4050        if (NewBaseReg->isZero()) {
4051          HasZeroBaseReg = true;
4052          break;
4053        }
4054        BaseReg = NewBaseReg;
4055      }
4056      if (HasZeroBaseReg)
4057        continue;
4058
4059      // TODO: This assumes we've done basic processing on all uses and
4060      // have an idea what the register usage is.
4061      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4062        continue;
4063
4064      F.canonicalize(*L);
4065      (void)InsertFormula(LU, LUIdx, F);
4066    }
4067  }
4068}
4069
4070namespace {
4071
4072/// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4073/// modifications so that the search phase doesn't have to worry about the data
4074/// structures moving underneath it.
4075struct WorkItem {
4076  size_t LUIdx;
4077  int64_t Imm;
4078  const SCEV *OrigReg;
4079
4080  WorkItem(size_t LI, int64_t I, const SCEV *R)
4081      : LUIdx(LI), Imm(I), OrigReg(R) {}
4082
4083  void print(raw_ostream &OS) const;
4084  void dump() const;
4085};
4086
4087} // end anonymous namespace
4088
4089#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4090void WorkItem::print(raw_ostream &OS) const {
4091  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4092     << " , add offset " << Imm;
4093}
4094
4095LLVM_DUMP_METHOD void WorkItem::dump() const {
4096  print(errs()); errs() << '\n';
4097}
4098#endif
4099
4100/// Look for registers which are a constant distance apart and try to form reuse
4101/// opportunities between them.
4102void LSRInstance::GenerateCrossUseConstantOffsets() {
4103  // Group the registers by their value without any added constant offset.
4104  using ImmMapTy = std::map<int64_t, const SCEV *>;
4105
4106  DenseMap<const SCEV *, ImmMapTy> Map;
4107  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4108  SmallVector<const SCEV *, 8> Sequence;
4109  for (const SCEV *Use : RegUses) {
4110    const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4111    int64_t Imm = ExtractImmediate(Reg, SE);
4112    auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4113    if (Pair.second)
4114      Sequence.push_back(Reg);
4115    Pair.first->second.insert(std::make_pair(Imm, Use));
4116    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4117  }
4118
4119  // Now examine each set of registers with the same base value. Build up
4120  // a list of work to do and do the work in a separate step so that we're
4121  // not adding formulae and register counts while we're searching.
4122  SmallVector<WorkItem, 32> WorkItems;
4123  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4124  for (const SCEV *Reg : Sequence) {
4125    const ImmMapTy &Imms = Map.find(Reg)->second;
4126
4127    // It's not worthwhile looking for reuse if there's only one offset.
4128    if (Imms.size() == 1)
4129      continue;
4130
4131    LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4132               for (const auto &Entry
4133                    : Imms) dbgs()
4134               << ' ' << Entry.first;
4135               dbgs() << '\n');
4136
4137    // Examine each offset.
4138    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4139         J != JE; ++J) {
4140      const SCEV *OrigReg = J->second;
4141
4142      int64_t JImm = J->first;
4143      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4144
4145      if (!isa<SCEVConstant>(OrigReg) &&
4146          UsedByIndicesMap[Reg].count() == 1) {
4147        LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4148                          << '\n');
4149        continue;
4150      }
4151
4152      // Conservatively examine offsets between this orig reg a few selected
4153      // other orig regs.
4154      int64_t First = Imms.begin()->first;
4155      int64_t Last = std::prev(Imms.end())->first;
4156      // Compute (First + Last)  / 2 without overflow using the fact that
4157      // First + Last = 2 * (First + Last) + (First ^ Last).
4158      int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4159      // If the result is negative and First is odd and Last even (or vice versa),
4160      // we rounded towards -inf. Add 1 in that case, to round towards 0.
4161      Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4162      ImmMapTy::const_iterator OtherImms[] = {
4163          Imms.begin(), std::prev(Imms.end()),
4164         Imms.lower_bound(Avg)};
4165      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4166        ImmMapTy::const_iterator M = OtherImms[i];
4167        if (M == J || M == JE) continue;
4168
4169        // Compute the difference between the two.
4170        int64_t Imm = (uint64_t)JImm - M->first;
4171        for (unsigned LUIdx : UsedByIndices.set_bits())
4172          // Make a memo of this use, offset, and register tuple.
4173          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4174            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4175      }
4176    }
4177  }
4178
4179  Map.clear();
4180  Sequence.clear();
4181  UsedByIndicesMap.clear();
4182  UniqueItems.clear();
4183
4184  // Now iterate through the worklist and add new formulae.
4185  for (const WorkItem &WI : WorkItems) {
4186    size_t LUIdx = WI.LUIdx;
4187    LSRUse &LU = Uses[LUIdx];
4188    int64_t Imm = WI.Imm;
4189    const SCEV *OrigReg = WI.OrigReg;
4190
4191    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4192    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4193    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4194
4195    // TODO: Use a more targeted data structure.
4196    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4197      Formula F = LU.Formulae[L];
4198      // FIXME: The code for the scaled and unscaled registers looks
4199      // very similar but slightly different. Investigate if they
4200      // could be merged. That way, we would not have to unscale the
4201      // Formula.
4202      F.unscale();
4203      // Use the immediate in the scaled register.
4204      if (F.ScaledReg == OrigReg) {
4205        int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4206        // Don't create 50 + reg(-50).
4207        if (F.referencesReg(SE.getSCEV(
4208                   ConstantInt::get(IntTy, -(uint64_t)Offset))))
4209          continue;
4210        Formula NewF = F;
4211        NewF.BaseOffset = Offset;
4212        if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4213                        NewF))
4214          continue;
4215        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4216
4217        // If the new scale is a constant in a register, and adding the constant
4218        // value to the immediate would produce a value closer to zero than the
4219        // immediate itself, then the formula isn't worthwhile.
4220        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4221          if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4222              (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4223                  .ule(std::abs(NewF.BaseOffset)))
4224            continue;
4225
4226        // OK, looks good.
4227        NewF.canonicalize(*this->L);
4228        (void)InsertFormula(LU, LUIdx, NewF);
4229      } else {
4230        // Use the immediate in a base register.
4231        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4232          const SCEV *BaseReg = F.BaseRegs[N];
4233          if (BaseReg != OrigReg)
4234            continue;
4235          Formula NewF = F;
4236          NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4237          if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4238                          LU.Kind, LU.AccessTy, NewF)) {
4239            if (TTI.shouldFavorPostInc() &&
4240                mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4241              continue;
4242            if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4243              continue;
4244            NewF = F;
4245            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4246          }
4247          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4248
4249          // If the new formula has a constant in a register, and adding the
4250          // constant value to the immediate would produce a value closer to
4251          // zero than the immediate itself, then the formula isn't worthwhile.
4252          for (const SCEV *NewReg : NewF.BaseRegs)
4253            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4254              if ((C->getAPInt() + NewF.BaseOffset)
4255                      .abs()
4256                      .slt(std::abs(NewF.BaseOffset)) &&
4257                  (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4258                      countTrailingZeros<uint64_t>(NewF.BaseOffset))
4259                goto skip_formula;
4260
4261          // Ok, looks good.
4262          NewF.canonicalize(*this->L);
4263          (void)InsertFormula(LU, LUIdx, NewF);
4264          break;
4265        skip_formula:;
4266        }
4267      }
4268    }
4269  }
4270}
4271
4272/// Generate formulae for each use.
4273void
4274LSRInstance::GenerateAllReuseFormulae() {
4275  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4276  // queries are more precise.
4277  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4278    LSRUse &LU = Uses[LUIdx];
4279    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4280      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4281    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4282      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4283  }
4284  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4285    LSRUse &LU = Uses[LUIdx];
4286    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4287      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4288    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4289      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4290    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4291      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4292    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4293      GenerateScales(LU, LUIdx, LU.Formulae[i]);
4294  }
4295  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4296    LSRUse &LU = Uses[LUIdx];
4297    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4298      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4299  }
4300
4301  GenerateCrossUseConstantOffsets();
4302
4303  LLVM_DEBUG(dbgs() << "\n"
4304                       "After generating reuse formulae:\n";
4305             print_uses(dbgs()));
4306}
4307
4308/// If there are multiple formulae with the same set of registers used
4309/// by other uses, pick the best one and delete the others.
4310void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4311  DenseSet<const SCEV *> VisitedRegs;
4312  SmallPtrSet<const SCEV *, 16> Regs;
4313  SmallPtrSet<const SCEV *, 16> LoserRegs;
4314#ifndef NDEBUG
4315  bool ChangedFormulae = false;
4316#endif
4317
4318  // Collect the best formula for each unique set of shared registers. This
4319  // is reset for each use.
4320  using BestFormulaeTy =
4321      DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4322
4323  BestFormulaeTy BestFormulae;
4324
4325  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4326    LSRUse &LU = Uses[LUIdx];
4327    LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4328               dbgs() << '\n');
4329
4330    bool Any = false;
4331    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4332         FIdx != NumForms; ++FIdx) {
4333      Formula &F = LU.Formulae[FIdx];
4334
4335      // Some formulas are instant losers. For example, they may depend on
4336      // nonexistent AddRecs from other loops. These need to be filtered
4337      // immediately, otherwise heuristics could choose them over others leading
4338      // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4339      // avoids the need to recompute this information across formulae using the
4340      // same bad AddRec. Passing LoserRegs is also essential unless we remove
4341      // the corresponding bad register from the Regs set.
4342      Cost CostF(L, SE, TTI);
4343      Regs.clear();
4344      CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4345      if (CostF.isLoser()) {
4346        // During initial formula generation, undesirable formulae are generated
4347        // by uses within other loops that have some non-trivial address mode or
4348        // use the postinc form of the IV. LSR needs to provide these formulae
4349        // as the basis of rediscovering the desired formula that uses an AddRec
4350        // corresponding to the existing phi. Once all formulae have been
4351        // generated, these initial losers may be pruned.
4352        LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4353                   dbgs() << "\n");
4354      }
4355      else {
4356        SmallVector<const SCEV *, 4> Key;
4357        for (const SCEV *Reg : F.BaseRegs) {
4358          if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4359            Key.push_back(Reg);
4360        }
4361        if (F.ScaledReg &&
4362            RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4363          Key.push_back(F.ScaledReg);
4364        // Unstable sort by host order ok, because this is only used for
4365        // uniquifying.
4366        llvm::sort(Key);
4367
4368        std::pair<BestFormulaeTy::const_iterator, bool> P =
4369          BestFormulae.insert(std::make_pair(Key, FIdx));
4370        if (P.second)
4371          continue;
4372
4373        Formula &Best = LU.Formulae[P.first->second];
4374
4375        Cost CostBest(L, SE, TTI);
4376        Regs.clear();
4377        CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4378        if (CostF.isLess(CostBest))
4379          std::swap(F, Best);
4380        LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4381                   dbgs() << "\n"
4382                             "    in favor of formula ";
4383                   Best.print(dbgs()); dbgs() << '\n');
4384      }
4385#ifndef NDEBUG
4386      ChangedFormulae = true;
4387#endif
4388      LU.DeleteFormula(F);
4389      --FIdx;
4390      --NumForms;
4391      Any = true;
4392    }
4393
4394    // Now that we've filtered out some formulae, recompute the Regs set.
4395    if (Any)
4396      LU.RecomputeRegs(LUIdx, RegUses);
4397
4398    // Reset this to prepare for the next use.
4399    BestFormulae.clear();
4400  }
4401
4402  LLVM_DEBUG(if (ChangedFormulae) {
4403    dbgs() << "\n"
4404              "After filtering out undesirable candidates:\n";
4405    print_uses(dbgs());
4406  });
4407}
4408
4409/// Estimate the worst-case number of solutions the solver might have to
4410/// consider. It almost never considers this many solutions because it prune the
4411/// search space, but the pruning isn't always sufficient.
4412size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4413  size_t Power = 1;
4414  for (const LSRUse &LU : Uses) {
4415    size_t FSize = LU.Formulae.size();
4416    if (FSize >= ComplexityLimit) {
4417      Power = ComplexityLimit;
4418      break;
4419    }
4420    Power *= FSize;
4421    if (Power >= ComplexityLimit)
4422      break;
4423  }
4424  return Power;
4425}
4426
4427/// When one formula uses a superset of the registers of another formula, it
4428/// won't help reduce register pressure (though it may not necessarily hurt
4429/// register pressure); remove it to simplify the system.
4430void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4431  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4432    LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4433
4434    LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4435                         "which use a superset of registers used by other "
4436                         "formulae.\n");
4437
4438    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4439      LSRUse &LU = Uses[LUIdx];
4440      bool Any = false;
4441      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4442        Formula &F = LU.Formulae[i];
4443        // Look for a formula with a constant or GV in a register. If the use
4444        // also has a formula with that same value in an immediate field,
4445        // delete the one that uses a register.
4446        for (SmallVectorImpl<const SCEV *>::const_iterator
4447             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4448          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4449            Formula NewF = F;
4450            //FIXME: Formulas should store bitwidth to do wrapping properly.
4451            //       See PR41034.
4452            NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4453            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4454                                (I - F.BaseRegs.begin()));
4455            if (LU.HasFormulaWithSameRegs(NewF)) {
4456              LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4457                         dbgs() << '\n');
4458              LU.DeleteFormula(F);
4459              --i;
4460              --e;
4461              Any = true;
4462              break;
4463            }
4464          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4465            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4466              if (!F.BaseGV) {
4467                Formula NewF = F;
4468                NewF.BaseGV = GV;
4469                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4470                                    (I - F.BaseRegs.begin()));
4471                if (LU.HasFormulaWithSameRegs(NewF)) {
4472                  LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4473                             dbgs() << '\n');
4474                  LU.DeleteFormula(F);
4475                  --i;
4476                  --e;
4477                  Any = true;
4478                  break;
4479                }
4480              }
4481          }
4482        }
4483      }
4484      if (Any)
4485        LU.RecomputeRegs(LUIdx, RegUses);
4486    }
4487
4488    LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4489  }
4490}
4491
4492/// When there are many registers for expressions like A, A+1, A+2, etc.,
4493/// allocate a single register for them.
4494void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4495  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4496    return;
4497
4498  LLVM_DEBUG(
4499      dbgs() << "The search space is too complex.\n"
4500                "Narrowing the search space by assuming that uses separated "
4501                "by a constant offset will use the same registers.\n");
4502
4503  // This is especially useful for unrolled loops.
4504
4505  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4506    LSRUse &LU = Uses[LUIdx];
4507    for (const Formula &F : LU.Formulae) {
4508      if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4509        continue;
4510
4511      LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4512      if (!LUThatHas)
4513        continue;
4514
4515      if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4516                              LU.Kind, LU.AccessTy))
4517        continue;
4518
4519      LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4520
4521      LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4522
4523      // Transfer the fixups of LU to LUThatHas.
4524      for (LSRFixup &Fixup : LU.Fixups) {
4525        Fixup.Offset += F.BaseOffset;
4526        LUThatHas->pushFixup(Fixup);
4527        LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4528      }
4529
4530      // Delete formulae from the new use which are no longer legal.
4531      bool Any = false;
4532      for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4533        Formula &F = LUThatHas->Formulae[i];
4534        if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4535                        LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4536          LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4537          LUThatHas->DeleteFormula(F);
4538          --i;
4539          --e;
4540          Any = true;
4541        }
4542      }
4543
4544      if (Any)
4545        LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4546
4547      // Delete the old use.
4548      DeleteUse(LU, LUIdx);
4549      --LUIdx;
4550      --NumUses;
4551      break;
4552    }
4553  }
4554
4555  LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4556}
4557
4558/// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4559/// we've done more filtering, as it may be able to find more formulae to
4560/// eliminate.
4561void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4562  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4563    LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4564
4565    LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4566                         "undesirable dedicated registers.\n");
4567
4568    FilterOutUndesirableDedicatedRegisters();
4569
4570    LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4571  }
4572}
4573
4574/// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4575/// Pick the best one and delete the others.
4576/// This narrowing heuristic is to keep as many formulae with different
4577/// Scale and ScaledReg pair as possible while narrowing the search space.
4578/// The benefit is that it is more likely to find out a better solution
4579/// from a formulae set with more Scale and ScaledReg variations than
4580/// a formulae set with the same Scale and ScaledReg. The picking winner
4581/// reg heuristic will often keep the formulae with the same Scale and
4582/// ScaledReg and filter others, and we want to avoid that if possible.
4583void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4584  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4585    return;
4586
4587  LLVM_DEBUG(
4588      dbgs() << "The search space is too complex.\n"
4589                "Narrowing the search space by choosing the best Formula "
4590                "from the Formulae with the same Scale and ScaledReg.\n");
4591
4592  // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4593  using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4594
4595  BestFormulaeTy BestFormulae;
4596#ifndef NDEBUG
4597  bool ChangedFormulae = false;
4598#endif
4599  DenseSet<const SCEV *> VisitedRegs;
4600  SmallPtrSet<const SCEV *, 16> Regs;
4601
4602  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4603    LSRUse &LU = Uses[LUIdx];
4604    LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4605               dbgs() << '\n');
4606
4607    // Return true if Formula FA is better than Formula FB.
4608    auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4609      // First we will try to choose the Formula with fewer new registers.
4610      // For a register used by current Formula, the more the register is
4611      // shared among LSRUses, the less we increase the register number
4612      // counter of the formula.
4613      size_t FARegNum = 0;
4614      for (const SCEV *Reg : FA.BaseRegs) {
4615        const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4616        FARegNum += (NumUses - UsedByIndices.count() + 1);
4617      }
4618      size_t FBRegNum = 0;
4619      for (const SCEV *Reg : FB.BaseRegs) {
4620        const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4621        FBRegNum += (NumUses - UsedByIndices.count() + 1);
4622      }
4623      if (FARegNum != FBRegNum)
4624        return FARegNum < FBRegNum;
4625
4626      // If the new register numbers are the same, choose the Formula with
4627      // less Cost.
4628      Cost CostFA(L, SE, TTI);
4629      Cost CostFB(L, SE, TTI);
4630      Regs.clear();
4631      CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4632      Regs.clear();
4633      CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4634      return CostFA.isLess(CostFB);
4635    };
4636
4637    bool Any = false;
4638    for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4639         ++FIdx) {
4640      Formula &F = LU.Formulae[FIdx];
4641      if (!F.ScaledReg)
4642        continue;
4643      auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4644      if (P.second)
4645        continue;
4646
4647      Formula &Best = LU.Formulae[P.first->second];
4648      if (IsBetterThan(F, Best))
4649        std::swap(F, Best);
4650      LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4651                 dbgs() << "\n"
4652                           "    in favor of formula ";
4653                 Best.print(dbgs()); dbgs() << '\n');
4654#ifndef NDEBUG
4655      ChangedFormulae = true;
4656#endif
4657      LU.DeleteFormula(F);
4658      --FIdx;
4659      --NumForms;
4660      Any = true;
4661    }
4662    if (Any)
4663      LU.RecomputeRegs(LUIdx, RegUses);
4664
4665    // Reset this to prepare for the next use.
4666    BestFormulae.clear();
4667  }
4668
4669  LLVM_DEBUG(if (ChangedFormulae) {
4670    dbgs() << "\n"
4671              "After filtering out undesirable candidates:\n";
4672    print_uses(dbgs());
4673  });
4674}
4675
4676/// The function delete formulas with high registers number expectation.
4677/// Assuming we don't know the value of each formula (already delete
4678/// all inefficient), generate probability of not selecting for each
4679/// register.
4680/// For example,
4681/// Use1:
4682///  reg(a) + reg({0,+,1})
4683///  reg(a) + reg({-1,+,1}) + 1
4684///  reg({a,+,1})
4685/// Use2:
4686///  reg(b) + reg({0,+,1})
4687///  reg(b) + reg({-1,+,1}) + 1
4688///  reg({b,+,1})
4689/// Use3:
4690///  reg(c) + reg(b) + reg({0,+,1})
4691///  reg(c) + reg({b,+,1})
4692///
4693/// Probability of not selecting
4694///                 Use1   Use2    Use3
4695/// reg(a)         (1/3) *   1   *   1
4696/// reg(b)           1   * (1/3) * (1/2)
4697/// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4698/// reg({-1,+,1})  (2/3) * (2/3) *   1
4699/// reg({a,+,1})   (2/3) *   1   *   1
4700/// reg({b,+,1})     1   * (2/3) * (2/3)
4701/// reg(c)           1   *   1   *   0
4702///
4703/// Now count registers number mathematical expectation for each formula:
4704/// Note that for each use we exclude probability if not selecting for the use.
4705/// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4706/// probabilty 1/3 of not selecting for Use1).
4707/// Use1:
4708///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4709///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4710///  reg({a,+,1})                   1
4711/// Use2:
4712///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4713///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4714///  reg({b,+,1})                   2/3
4715/// Use3:
4716///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4717///  reg(c) + reg({b,+,1})          1 + 2/3
4718void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4719  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4720    return;
4721  // Ok, we have too many of formulae on our hands to conveniently handle.
4722  // Use a rough heuristic to thin out the list.
4723
4724  // Set of Regs wich will be 100% used in final solution.
4725  // Used in each formula of a solution (in example above this is reg(c)).
4726  // We can skip them in calculations.
4727  SmallPtrSet<const SCEV *, 4> UniqRegs;
4728  LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4729
4730  // Map each register to probability of not selecting
4731  DenseMap <const SCEV *, float> RegNumMap;
4732  for (const SCEV *Reg : RegUses) {
4733    if (UniqRegs.count(Reg))
4734      continue;
4735    float PNotSel = 1;
4736    for (const LSRUse &LU : Uses) {
4737      if (!LU.Regs.count(Reg))
4738        continue;
4739      float P = LU.getNotSelectedProbability(Reg);
4740      if (P != 0.0)
4741        PNotSel *= P;
4742      else
4743        UniqRegs.insert(Reg);
4744    }
4745    RegNumMap.insert(std::make_pair(Reg, PNotSel));
4746  }
4747
4748  LLVM_DEBUG(
4749      dbgs() << "Narrowing the search space by deleting costly formulas\n");
4750
4751  // Delete formulas where registers number expectation is high.
4752  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4753    LSRUse &LU = Uses[LUIdx];
4754    // If nothing to delete - continue.
4755    if (LU.Formulae.size() < 2)
4756      continue;
4757    // This is temporary solution to test performance. Float should be
4758    // replaced with round independent type (based on integers) to avoid
4759    // different results for different target builds.
4760    float FMinRegNum = LU.Formulae[0].getNumRegs();
4761    float FMinARegNum = LU.Formulae[0].getNumRegs();
4762    size_t MinIdx = 0;
4763    for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4764      Formula &F = LU.Formulae[i];
4765      float FRegNum = 0;
4766      float FARegNum = 0;
4767      for (const SCEV *BaseReg : F.BaseRegs) {
4768        if (UniqRegs.count(BaseReg))
4769          continue;
4770        FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4771        if (isa<SCEVAddRecExpr>(BaseReg))
4772          FARegNum +=
4773              RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4774      }
4775      if (const SCEV *ScaledReg = F.ScaledReg) {
4776        if (!UniqRegs.count(ScaledReg)) {
4777          FRegNum +=
4778              RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4779          if (isa<SCEVAddRecExpr>(ScaledReg))
4780            FARegNum +=
4781                RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4782        }
4783      }
4784      if (FMinRegNum > FRegNum ||
4785          (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4786        FMinRegNum = FRegNum;
4787        FMinARegNum = FARegNum;
4788        MinIdx = i;
4789      }
4790    }
4791    LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4792               dbgs() << " with min reg num " << FMinRegNum << '\n');
4793    if (MinIdx != 0)
4794      std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4795    while (LU.Formulae.size() != 1) {
4796      LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4797                 dbgs() << '\n');
4798      LU.Formulae.pop_back();
4799    }
4800    LU.RecomputeRegs(LUIdx, RegUses);
4801    assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4802    Formula &F = LU.Formulae[0];
4803    LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4804    // When we choose the formula, the regs become unique.
4805    UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4806    if (F.ScaledReg)
4807      UniqRegs.insert(F.ScaledReg);
4808  }
4809  LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4810}
4811
4812/// Pick a register which seems likely to be profitable, and then in any use
4813/// which has any reference to that register, delete all formulae which do not
4814/// reference that register.
4815void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4816  // With all other options exhausted, loop until the system is simple
4817  // enough to handle.
4818  SmallPtrSet<const SCEV *, 4> Taken;
4819  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4820    // Ok, we have too many of formulae on our hands to conveniently handle.
4821    // Use a rough heuristic to thin out the list.
4822    LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4823
4824    // Pick the register which is used by the most LSRUses, which is likely
4825    // to be a good reuse register candidate.
4826    const SCEV *Best = nullptr;
4827    unsigned BestNum = 0;
4828    for (const SCEV *Reg : RegUses) {
4829      if (Taken.count(Reg))
4830        continue;
4831      if (!Best) {
4832        Best = Reg;
4833        BestNum = RegUses.getUsedByIndices(Reg).count();
4834      } else {
4835        unsigned Count = RegUses.getUsedByIndices(Reg).count();
4836        if (Count > BestNum) {
4837          Best = Reg;
4838          BestNum = Count;
4839        }
4840      }
4841    }
4842    assert(Best && "Failed to find best LSRUse candidate");
4843
4844    LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4845                      << " will yield profitable reuse.\n");
4846    Taken.insert(Best);
4847
4848    // In any use with formulae which references this register, delete formulae
4849    // which don't reference it.
4850    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4851      LSRUse &LU = Uses[LUIdx];
4852      if (!LU.Regs.count(Best)) continue;
4853
4854      bool Any = false;
4855      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4856        Formula &F = LU.Formulae[i];
4857        if (!F.referencesReg(Best)) {
4858          LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4859          LU.DeleteFormula(F);
4860          --e;
4861          --i;
4862          Any = true;
4863          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4864          continue;
4865        }
4866      }
4867
4868      if (Any)
4869        LU.RecomputeRegs(LUIdx, RegUses);
4870    }
4871
4872    LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4873  }
4874}
4875
4876/// If there are an extraordinary number of formulae to choose from, use some
4877/// rough heuristics to prune down the number of formulae. This keeps the main
4878/// solver from taking an extraordinary amount of time in some worst-case
4879/// scenarios.
4880void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4881  NarrowSearchSpaceByDetectingSupersets();
4882  NarrowSearchSpaceByCollapsingUnrolledCode();
4883  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4884  if (FilterSameScaledReg)
4885    NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4886  if (LSRExpNarrow)
4887    NarrowSearchSpaceByDeletingCostlyFormulas();
4888  else
4889    NarrowSearchSpaceByPickingWinnerRegs();
4890}
4891
4892/// This is the recursive solver.
4893void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4894                               Cost &SolutionCost,
4895                               SmallVectorImpl<const Formula *> &Workspace,
4896                               const Cost &CurCost,
4897                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
4898                               DenseSet<const SCEV *> &VisitedRegs) const {
4899  // Some ideas:
4900  //  - prune more:
4901  //    - use more aggressive filtering
4902  //    - sort the formula so that the most profitable solutions are found first
4903  //    - sort the uses too
4904  //  - search faster:
4905  //    - don't compute a cost, and then compare. compare while computing a cost
4906  //      and bail early.
4907  //    - track register sets with SmallBitVector
4908
4909  const LSRUse &LU = Uses[Workspace.size()];
4910
4911  // If this use references any register that's already a part of the
4912  // in-progress solution, consider it a requirement that a formula must
4913  // reference that register in order to be considered. This prunes out
4914  // unprofitable searching.
4915  SmallSetVector<const SCEV *, 4> ReqRegs;
4916  for (const SCEV *S : CurRegs)
4917    if (LU.Regs.count(S))
4918      ReqRegs.insert(S);
4919
4920  SmallPtrSet<const SCEV *, 16> NewRegs;
4921  Cost NewCost(L, SE, TTI);
4922  for (const Formula &F : LU.Formulae) {
4923    // Ignore formulae which may not be ideal in terms of register reuse of
4924    // ReqRegs.  The formula should use all required registers before
4925    // introducing new ones.
4926    int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4927    for (const SCEV *Reg : ReqRegs) {
4928      if ((F.ScaledReg && F.ScaledReg == Reg) ||
4929          is_contained(F.BaseRegs, Reg)) {
4930        --NumReqRegsToFind;
4931        if (NumReqRegsToFind == 0)
4932          break;
4933      }
4934    }
4935    if (NumReqRegsToFind != 0) {
4936      // If none of the formulae satisfied the required registers, then we could
4937      // clear ReqRegs and try again. Currently, we simply give up in this case.
4938      continue;
4939    }
4940
4941    // Evaluate the cost of the current formula. If it's already worse than
4942    // the current best, prune the search at that point.
4943    NewCost = CurCost;
4944    NewRegs = CurRegs;
4945    NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
4946    if (NewCost.isLess(SolutionCost)) {
4947      Workspace.push_back(&F);
4948      if (Workspace.size() != Uses.size()) {
4949        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4950                     NewRegs, VisitedRegs);
4951        if (F.getNumRegs() == 1 && Workspace.size() == 1)
4952          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4953      } else {
4954        LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4955                   dbgs() << ".\nRegs:\n";
4956                   for (const SCEV *S : NewRegs) dbgs()
4957                      << "- " << *S << "\n";
4958                   dbgs() << '\n');
4959
4960        SolutionCost = NewCost;
4961        Solution = Workspace;
4962      }
4963      Workspace.pop_back();
4964    }
4965  }
4966}
4967
4968/// Choose one formula from each use. Return the results in the given Solution
4969/// vector.
4970void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4971  SmallVector<const Formula *, 8> Workspace;
4972  Cost SolutionCost(L, SE, TTI);
4973  SolutionCost.Lose();
4974  Cost CurCost(L, SE, TTI);
4975  SmallPtrSet<const SCEV *, 16> CurRegs;
4976  DenseSet<const SCEV *> VisitedRegs;
4977  Workspace.reserve(Uses.size());
4978
4979  // SolveRecurse does all the work.
4980  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4981               CurRegs, VisitedRegs);
4982  if (Solution.empty()) {
4983    LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4984    return;
4985  }
4986
4987  // Ok, we've now made all our decisions.
4988  LLVM_DEBUG(dbgs() << "\n"
4989                       "The chosen solution requires ";
4990             SolutionCost.print(dbgs()); dbgs() << ":\n";
4991             for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4992               dbgs() << "  ";
4993               Uses[i].print(dbgs());
4994               dbgs() << "\n"
4995                         "    ";
4996               Solution[i]->print(dbgs());
4997               dbgs() << '\n';
4998             });
4999
5000  assert(Solution.size() == Uses.size() && "Malformed solution!");
5001}
5002
5003/// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5004/// we can go while still being dominated by the input positions. This helps
5005/// canonicalize the insert position, which encourages sharing.
5006BasicBlock::iterator
5007LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5008                                 const SmallVectorImpl<Instruction *> &Inputs)
5009                                                                         const {
5010  Instruction *Tentative = &*IP;
5011  while (true) {
5012    bool AllDominate = true;
5013    Instruction *BetterPos = nullptr;
5014    // Don't bother attempting to insert before a catchswitch, their basic block
5015    // cannot have other non-PHI instructions.
5016    if (isa<CatchSwitchInst>(Tentative))
5017      return IP;
5018
5019    for (Instruction *Inst : Inputs) {
5020      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5021        AllDominate = false;
5022        break;
5023      }
5024      // Attempt to find an insert position in the middle of the block,
5025      // instead of at the end, so that it can be used for other expansions.
5026      if (Tentative->getParent() == Inst->getParent() &&
5027          (!BetterPos || !DT.dominates(Inst, BetterPos)))
5028        BetterPos = &*std::next(BasicBlock::iterator(Inst));
5029    }
5030    if (!AllDominate)
5031      break;
5032    if (BetterPos)
5033      IP = BetterPos->getIterator();
5034    else
5035      IP = Tentative->getIterator();
5036
5037    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5038    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5039
5040    BasicBlock *IDom;
5041    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5042      if (!Rung) return IP;
5043      Rung = Rung->getIDom();
5044      if (!Rung) return IP;
5045      IDom = Rung->getBlock();
5046
5047      // Don't climb into a loop though.
5048      const Loop *IDomLoop = LI.getLoopFor(IDom);
5049      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5050      if (IDomDepth <= IPLoopDepth &&
5051          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5052        break;
5053    }
5054
5055    Tentative = IDom->getTerminator();
5056  }
5057
5058  return IP;
5059}
5060
5061/// Determine an input position which will be dominated by the operands and
5062/// which will dominate the result.
5063BasicBlock::iterator
5064LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5065                                           const LSRFixup &LF,
5066                                           const LSRUse &LU,
5067                                           SCEVExpander &Rewriter) const {
5068  // Collect some instructions which must be dominated by the
5069  // expanding replacement. These must be dominated by any operands that
5070  // will be required in the expansion.
5071  SmallVector<Instruction *, 4> Inputs;
5072  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5073    Inputs.push_back(I);
5074  if (LU.Kind == LSRUse::ICmpZero)
5075    if (Instruction *I =
5076          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5077      Inputs.push_back(I);
5078  if (LF.PostIncLoops.count(L)) {
5079    if (LF.isUseFullyOutsideLoop(L))
5080      Inputs.push_back(L->getLoopLatch()->getTerminator());
5081    else
5082      Inputs.push_back(IVIncInsertPos);
5083  }
5084  // The expansion must also be dominated by the increment positions of any
5085  // loops it for which it is using post-inc mode.
5086  for (const Loop *PIL : LF.PostIncLoops) {
5087    if (PIL == L) continue;
5088
5089    // Be dominated by the loop exit.
5090    SmallVector<BasicBlock *, 4> ExitingBlocks;
5091    PIL->getExitingBlocks(ExitingBlocks);
5092    if (!ExitingBlocks.empty()) {
5093      BasicBlock *BB = ExitingBlocks[0];
5094      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5095        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5096      Inputs.push_back(BB->getTerminator());
5097    }
5098  }
5099
5100  assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5101         && !isa<DbgInfoIntrinsic>(LowestIP) &&
5102         "Insertion point must be a normal instruction");
5103
5104  // Then, climb up the immediate dominator tree as far as we can go while
5105  // still being dominated by the input positions.
5106  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5107
5108  // Don't insert instructions before PHI nodes.
5109  while (isa<PHINode>(IP)) ++IP;
5110
5111  // Ignore landingpad instructions.
5112  while (IP->isEHPad()) ++IP;
5113
5114  // Ignore debug intrinsics.
5115  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5116
5117  // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5118  // IP consistent across expansions and allows the previously inserted
5119  // instructions to be reused by subsequent expansion.
5120  while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5121    ++IP;
5122
5123  return IP;
5124}
5125
5126/// Emit instructions for the leading candidate expression for this LSRUse (this
5127/// is called "expanding").
5128Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5129                           const Formula &F, BasicBlock::iterator IP,
5130                           SCEVExpander &Rewriter,
5131                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5132  if (LU.RigidFormula)
5133    return LF.OperandValToReplace;
5134
5135  // Determine an input position which will be dominated by the operands and
5136  // which will dominate the result.
5137  IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5138  Rewriter.setInsertPoint(&*IP);
5139
5140  // Inform the Rewriter if we have a post-increment use, so that it can
5141  // perform an advantageous expansion.
5142  Rewriter.setPostInc(LF.PostIncLoops);
5143
5144  // This is the type that the user actually needs.
5145  Type *OpTy = LF.OperandValToReplace->getType();
5146  // This will be the type that we'll initially expand to.
5147  Type *Ty = F.getType();
5148  if (!Ty)
5149    // No type known; just expand directly to the ultimate type.
5150    Ty = OpTy;
5151  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5152    // Expand directly to the ultimate type if it's the right size.
5153    Ty = OpTy;
5154  // This is the type to do integer arithmetic in.
5155  Type *IntTy = SE.getEffectiveSCEVType(Ty);
5156
5157  // Build up a list of operands to add together to form the full base.
5158  SmallVector<const SCEV *, 8> Ops;
5159
5160  // Expand the BaseRegs portion.
5161  for (const SCEV *Reg : F.BaseRegs) {
5162    assert(!Reg->isZero() && "Zero allocated in a base register!");
5163
5164    // If we're expanding for a post-inc user, make the post-inc adjustment.
5165    Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5166    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5167  }
5168
5169  // Expand the ScaledReg portion.
5170  Value *ICmpScaledV = nullptr;
5171  if (F.Scale != 0) {
5172    const SCEV *ScaledS = F.ScaledReg;
5173
5174    // If we're expanding for a post-inc user, make the post-inc adjustment.
5175    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5176    ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5177
5178    if (LU.Kind == LSRUse::ICmpZero) {
5179      // Expand ScaleReg as if it was part of the base regs.
5180      if (F.Scale == 1)
5181        Ops.push_back(
5182            SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5183      else {
5184        // An interesting way of "folding" with an icmp is to use a negated
5185        // scale, which we'll implement by inserting it into the other operand
5186        // of the icmp.
5187        assert(F.Scale == -1 &&
5188               "The only scale supported by ICmpZero uses is -1!");
5189        ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5190      }
5191    } else {
5192      // Otherwise just expand the scaled register and an explicit scale,
5193      // which is expected to be matched as part of the address.
5194
5195      // Flush the operand list to suppress SCEVExpander hoisting address modes.
5196      // Unless the addressing mode will not be folded.
5197      if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5198          isAMCompletelyFolded(TTI, LU, F)) {
5199        Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5200        Ops.clear();
5201        Ops.push_back(SE.getUnknown(FullV));
5202      }
5203      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5204      if (F.Scale != 1)
5205        ScaledS =
5206            SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5207      Ops.push_back(ScaledS);
5208    }
5209  }
5210
5211  // Expand the GV portion.
5212  if (F.BaseGV) {
5213    // Flush the operand list to suppress SCEVExpander hoisting.
5214    if (!Ops.empty()) {
5215      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5216      Ops.clear();
5217      Ops.push_back(SE.getUnknown(FullV));
5218    }
5219    Ops.push_back(SE.getUnknown(F.BaseGV));
5220  }
5221
5222  // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5223  // unfolded offsets. LSR assumes they both live next to their uses.
5224  if (!Ops.empty()) {
5225    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5226    Ops.clear();
5227    Ops.push_back(SE.getUnknown(FullV));
5228  }
5229
5230  // Expand the immediate portion.
5231  int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5232  if (Offset != 0) {
5233    if (LU.Kind == LSRUse::ICmpZero) {
5234      // The other interesting way of "folding" with an ICmpZero is to use a
5235      // negated immediate.
5236      if (!ICmpScaledV)
5237        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5238      else {
5239        Ops.push_back(SE.getUnknown(ICmpScaledV));
5240        ICmpScaledV = ConstantInt::get(IntTy, Offset);
5241      }
5242    } else {
5243      // Just add the immediate values. These again are expected to be matched
5244      // as part of the address.
5245      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5246    }
5247  }
5248
5249  // Expand the unfolded offset portion.
5250  int64_t UnfoldedOffset = F.UnfoldedOffset;
5251  if (UnfoldedOffset != 0) {
5252    // Just add the immediate values.
5253    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5254                                                       UnfoldedOffset)));
5255  }
5256
5257  // Emit instructions summing all the operands.
5258  const SCEV *FullS = Ops.empty() ?
5259                      SE.getConstant(IntTy, 0) :
5260                      SE.getAddExpr(Ops);
5261  Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5262
5263  // We're done expanding now, so reset the rewriter.
5264  Rewriter.clearPostInc();
5265
5266  // An ICmpZero Formula represents an ICmp which we're handling as a
5267  // comparison against zero. Now that we've expanded an expression for that
5268  // form, update the ICmp's other operand.
5269  if (LU.Kind == LSRUse::ICmpZero) {
5270    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5271    DeadInsts.emplace_back(CI->getOperand(1));
5272    assert(!F.BaseGV && "ICmp does not support folding a global value and "
5273                           "a scale at the same time!");
5274    if (F.Scale == -1) {
5275      if (ICmpScaledV->getType() != OpTy) {
5276        Instruction *Cast =
5277          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5278                                                   OpTy, false),
5279                           ICmpScaledV, OpTy, "tmp", CI);
5280        ICmpScaledV = Cast;
5281      }
5282      CI->setOperand(1, ICmpScaledV);
5283    } else {
5284      // A scale of 1 means that the scale has been expanded as part of the
5285      // base regs.
5286      assert((F.Scale == 0 || F.Scale == 1) &&
5287             "ICmp does not support folding a global value and "
5288             "a scale at the same time!");
5289      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5290                                           -(uint64_t)Offset);
5291      if (C->getType() != OpTy)
5292        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5293                                                          OpTy, false),
5294                                  C, OpTy);
5295
5296      CI->setOperand(1, C);
5297    }
5298  }
5299
5300  return FullV;
5301}
5302
5303/// Helper for Rewrite. PHI nodes are special because the use of their operands
5304/// effectively happens in their predecessor blocks, so the expression may need
5305/// to be expanded in multiple places.
5306void LSRInstance::RewriteForPHI(
5307    PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5308    SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5309  DenseMap<BasicBlock *, Value *> Inserted;
5310  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5311    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5312      bool needUpdateFixups = false;
5313      BasicBlock *BB = PN->getIncomingBlock(i);
5314
5315      // If this is a critical edge, split the edge so that we do not insert
5316      // the code on all predecessor/successor paths.  We do this unless this
5317      // is the canonical backedge for this loop, which complicates post-inc
5318      // users.
5319      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5320          !isa<IndirectBrInst>(BB->getTerminator()) &&
5321          !isa<CatchSwitchInst>(BB->getTerminator())) {
5322        BasicBlock *Parent = PN->getParent();
5323        Loop *PNLoop = LI.getLoopFor(Parent);
5324        if (!PNLoop || Parent != PNLoop->getHeader()) {
5325          // Split the critical edge.
5326          BasicBlock *NewBB = nullptr;
5327          if (!Parent->isLandingPad()) {
5328            NewBB = SplitCriticalEdge(BB, Parent,
5329                                      CriticalEdgeSplittingOptions(&DT, &LI)
5330                                          .setMergeIdenticalEdges()
5331                                          .setKeepOneInputPHIs());
5332          } else {
5333            SmallVector<BasicBlock*, 2> NewBBs;
5334            SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5335            NewBB = NewBBs[0];
5336          }
5337          // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5338          // phi predecessors are identical. The simple thing to do is skip
5339          // splitting in this case rather than complicate the API.
5340          if (NewBB) {
5341            // If PN is outside of the loop and BB is in the loop, we want to
5342            // move the block to be immediately before the PHI block, not
5343            // immediately after BB.
5344            if (L->contains(BB) && !L->contains(PN))
5345              NewBB->moveBefore(PN->getParent());
5346
5347            // Splitting the edge can reduce the number of PHI entries we have.
5348            e = PN->getNumIncomingValues();
5349            BB = NewBB;
5350            i = PN->getBasicBlockIndex(BB);
5351
5352            needUpdateFixups = true;
5353          }
5354        }
5355      }
5356
5357      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5358        Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5359      if (!Pair.second)
5360        PN->setIncomingValue(i, Pair.first->second);
5361      else {
5362        Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5363                              Rewriter, DeadInsts);
5364
5365        // If this is reuse-by-noop-cast, insert the noop cast.
5366        Type *OpTy = LF.OperandValToReplace->getType();
5367        if (FullV->getType() != OpTy)
5368          FullV =
5369            CastInst::Create(CastInst::getCastOpcode(FullV, false,
5370                                                     OpTy, false),
5371                             FullV, LF.OperandValToReplace->getType(),
5372                             "tmp", BB->getTerminator());
5373
5374        PN->setIncomingValue(i, FullV);
5375        Pair.first->second = FullV;
5376      }
5377
5378      // If LSR splits critical edge and phi node has other pending
5379      // fixup operands, we need to update those pending fixups. Otherwise
5380      // formulae will not be implemented completely and some instructions
5381      // will not be eliminated.
5382      if (needUpdateFixups) {
5383        for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5384          for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5385            // If fixup is supposed to rewrite some operand in the phi
5386            // that was just updated, it may be already moved to
5387            // another phi node. Such fixup requires update.
5388            if (Fixup.UserInst == PN) {
5389              // Check if the operand we try to replace still exists in the
5390              // original phi.
5391              bool foundInOriginalPHI = false;
5392              for (const auto &val : PN->incoming_values())
5393                if (val == Fixup.OperandValToReplace) {
5394                  foundInOriginalPHI = true;
5395                  break;
5396                }
5397
5398              // If fixup operand found in original PHI - nothing to do.
5399              if (foundInOriginalPHI)
5400                continue;
5401
5402              // Otherwise it might be moved to another PHI and requires update.
5403              // If fixup operand not found in any of the incoming blocks that
5404              // means we have already rewritten it - nothing to do.
5405              for (const auto &Block : PN->blocks())
5406                for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5407                     ++I) {
5408                  PHINode *NewPN = cast<PHINode>(I);
5409                  for (const auto &val : NewPN->incoming_values())
5410                    if (val == Fixup.OperandValToReplace)
5411                      Fixup.UserInst = NewPN;
5412                }
5413            }
5414      }
5415    }
5416}
5417
5418/// Emit instructions for the leading candidate expression for this LSRUse (this
5419/// is called "expanding"), and update the UserInst to reference the newly
5420/// expanded value.
5421void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5422                          const Formula &F, SCEVExpander &Rewriter,
5423                          SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5424  // First, find an insertion point that dominates UserInst. For PHI nodes,
5425  // find the nearest block which dominates all the relevant uses.
5426  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5427    RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5428  } else {
5429    Value *FullV =
5430      Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5431
5432    // If this is reuse-by-noop-cast, insert the noop cast.
5433    Type *OpTy = LF.OperandValToReplace->getType();
5434    if (FullV->getType() != OpTy) {
5435      Instruction *Cast =
5436        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5437                         FullV, OpTy, "tmp", LF.UserInst);
5438      FullV = Cast;
5439    }
5440
5441    // Update the user. ICmpZero is handled specially here (for now) because
5442    // Expand may have updated one of the operands of the icmp already, and
5443    // its new value may happen to be equal to LF.OperandValToReplace, in
5444    // which case doing replaceUsesOfWith leads to replacing both operands
5445    // with the same value. TODO: Reorganize this.
5446    if (LU.Kind == LSRUse::ICmpZero)
5447      LF.UserInst->setOperand(0, FullV);
5448    else
5449      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5450  }
5451
5452  DeadInsts.emplace_back(LF.OperandValToReplace);
5453}
5454
5455/// Rewrite all the fixup locations with new values, following the chosen
5456/// solution.
5457void LSRInstance::ImplementSolution(
5458    const SmallVectorImpl<const Formula *> &Solution) {
5459  // Keep track of instructions we may have made dead, so that
5460  // we can remove them after we are done working.
5461  SmallVector<WeakTrackingVH, 16> DeadInsts;
5462
5463  SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5464                        "lsr");
5465#ifndef NDEBUG
5466  Rewriter.setDebugType(DEBUG_TYPE);
5467#endif
5468  Rewriter.disableCanonicalMode();
5469  Rewriter.enableLSRMode();
5470  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5471
5472  // Mark phi nodes that terminate chains so the expander tries to reuse them.
5473  for (const IVChain &Chain : IVChainVec) {
5474    if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5475      Rewriter.setChainedPhi(PN);
5476  }
5477
5478  // Expand the new value definitions and update the users.
5479  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5480    for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5481      Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5482      Changed = true;
5483    }
5484
5485  for (const IVChain &Chain : IVChainVec) {
5486    GenerateIVChain(Chain, Rewriter, DeadInsts);
5487    Changed = true;
5488  }
5489  // Clean up after ourselves. This must be done before deleting any
5490  // instructions.
5491  Rewriter.clear();
5492
5493  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5494}
5495
5496LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5497                         DominatorTree &DT, LoopInfo &LI,
5498                         const TargetTransformInfo &TTI, AssumptionCache &AC,
5499                         TargetLibraryInfo &LibInfo)
5500    : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), LibInfo(LibInfo), TTI(TTI), L(L),
5501      FavorBackedgeIndex(EnableBackedgeIndexing &&
5502                         TTI.shouldFavorBackedgeIndex(L)) {
5503  // If LoopSimplify form is not available, stay out of trouble.
5504  if (!L->isLoopSimplifyForm())
5505    return;
5506
5507  // If there's no interesting work to be done, bail early.
5508  if (IU.empty()) return;
5509
5510  // If there's too much analysis to be done, bail early. We won't be able to
5511  // model the problem anyway.
5512  unsigned NumUsers = 0;
5513  for (const IVStrideUse &U : IU) {
5514    if (++NumUsers > MaxIVUsers) {
5515      (void)U;
5516      LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5517                        << "\n");
5518      return;
5519    }
5520    // Bail out if we have a PHI on an EHPad that gets a value from a
5521    // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5522    // no good place to stick any instructions.
5523    if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5524       auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5525       if (isa<FuncletPadInst>(FirstNonPHI) ||
5526           isa<CatchSwitchInst>(FirstNonPHI))
5527         for (BasicBlock *PredBB : PN->blocks())
5528           if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5529             return;
5530    }
5531  }
5532
5533#ifndef NDEBUG
5534  // All dominating loops must have preheaders, or SCEVExpander may not be able
5535  // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5536  //
5537  // IVUsers analysis should only create users that are dominated by simple loop
5538  // headers. Since this loop should dominate all of its users, its user list
5539  // should be empty if this loop itself is not within a simple loop nest.
5540  for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5541       Rung; Rung = Rung->getIDom()) {
5542    BasicBlock *BB = Rung->getBlock();
5543    const Loop *DomLoop = LI.getLoopFor(BB);
5544    if (DomLoop && DomLoop->getHeader() == BB) {
5545      assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5546    }
5547  }
5548#endif // DEBUG
5549
5550  LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5551             L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5552             dbgs() << ":\n");
5553
5554  // First, perform some low-level loop optimizations.
5555  OptimizeShadowIV();
5556  OptimizeLoopTermCond();
5557
5558  // If loop preparation eliminates all interesting IV users, bail.
5559  if (IU.empty()) return;
5560
5561  // Skip nested loops until we can model them better with formulae.
5562  if (!L->empty()) {
5563    LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5564    return;
5565  }
5566
5567  // Start collecting data and preparing for the solver.
5568  CollectChains();
5569  CollectInterestingTypesAndFactors();
5570  CollectFixupsAndInitialFormulae();
5571  CollectLoopInvariantFixupsAndFormulae();
5572
5573  if (Uses.empty())
5574    return;
5575
5576  LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5577             print_uses(dbgs()));
5578
5579  // Now use the reuse data to generate a bunch of interesting ways
5580  // to formulate the values needed for the uses.
5581  GenerateAllReuseFormulae();
5582
5583  FilterOutUndesirableDedicatedRegisters();
5584  NarrowSearchSpaceUsingHeuristics();
5585
5586  SmallVector<const Formula *, 8> Solution;
5587  Solve(Solution);
5588
5589  // Release memory that is no longer needed.
5590  Factors.clear();
5591  Types.clear();
5592  RegUses.clear();
5593
5594  if (Solution.empty())
5595    return;
5596
5597#ifndef NDEBUG
5598  // Formulae should be legal.
5599  for (const LSRUse &LU : Uses) {
5600    for (const Formula &F : LU.Formulae)
5601      assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5602                        F) && "Illegal formula generated!");
5603  };
5604#endif
5605
5606  // Now that we've decided what we want, make it so.
5607  ImplementSolution(Solution);
5608}
5609
5610#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5611void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5612  if (Factors.empty() && Types.empty()) return;
5613
5614  OS << "LSR has identified the following interesting factors and types: ";
5615  bool First = true;
5616
5617  for (int64_t Factor : Factors) {
5618    if (!First) OS << ", ";
5619    First = false;
5620    OS << '*' << Factor;
5621  }
5622
5623  for (Type *Ty : Types) {
5624    if (!First) OS << ", ";
5625    First = false;
5626    OS << '(' << *Ty << ')';
5627  }
5628  OS << '\n';
5629}
5630
5631void LSRInstance::print_fixups(raw_ostream &OS) const {
5632  OS << "LSR is examining the following fixup sites:\n";
5633  for (const LSRUse &LU : Uses)
5634    for (const LSRFixup &LF : LU.Fixups) {
5635      dbgs() << "  ";
5636      LF.print(OS);
5637      OS << '\n';
5638    }
5639}
5640
5641void LSRInstance::print_uses(raw_ostream &OS) const {
5642  OS << "LSR is examining the following uses:\n";
5643  for (const LSRUse &LU : Uses) {
5644    dbgs() << "  ";
5645    LU.print(OS);
5646    OS << '\n';
5647    for (const Formula &F : LU.Formulae) {
5648      OS << "    ";
5649      F.print(OS);
5650      OS << '\n';
5651    }
5652  }
5653}
5654
5655void LSRInstance::print(raw_ostream &OS) const {
5656  print_factors_and_types(OS);
5657  print_fixups(OS);
5658  print_uses(OS);
5659}
5660
5661LLVM_DUMP_METHOD void LSRInstance::dump() const {
5662  print(errs()); errs() << '\n';
5663}
5664#endif
5665
5666namespace {
5667
5668class LoopStrengthReduce : public LoopPass {
5669public:
5670  static char ID; // Pass ID, replacement for typeid
5671
5672  LoopStrengthReduce();
5673
5674private:
5675  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5676  void getAnalysisUsage(AnalysisUsage &AU) const override;
5677};
5678
5679} // end anonymous namespace
5680
5681LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5682  initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5683}
5684
5685void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5686  // We split critical edges, so we change the CFG.  However, we do update
5687  // many analyses if they are around.
5688  AU.addPreservedID(LoopSimplifyID);
5689
5690  AU.addRequired<LoopInfoWrapperPass>();
5691  AU.addPreserved<LoopInfoWrapperPass>();
5692  AU.addRequiredID(LoopSimplifyID);
5693  AU.addRequired<DominatorTreeWrapperPass>();
5694  AU.addPreserved<DominatorTreeWrapperPass>();
5695  AU.addRequired<ScalarEvolutionWrapperPass>();
5696  AU.addPreserved<ScalarEvolutionWrapperPass>();
5697  AU.addRequired<AssumptionCacheTracker>();
5698  AU.addRequired<TargetLibraryInfoWrapperPass>();
5699  // Requiring LoopSimplify a second time here prevents IVUsers from running
5700  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5701  AU.addRequiredID(LoopSimplifyID);
5702  AU.addRequired<IVUsersWrapperPass>();
5703  AU.addPreserved<IVUsersWrapperPass>();
5704  AU.addRequired<TargetTransformInfoWrapperPass>();
5705}
5706
5707static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5708                               DominatorTree &DT, LoopInfo &LI,
5709                               const TargetTransformInfo &TTI,
5710                               AssumptionCache &AC,
5711                               TargetLibraryInfo &LibInfo) {
5712
5713  bool Changed = false;
5714
5715  // Run the main LSR transformation.
5716  Changed |= LSRInstance(L, IU, SE, DT, LI, TTI, AC, LibInfo).getChanged();
5717
5718  // Remove any extra phis created by processing inner loops.
5719  Changed |= DeleteDeadPHIs(L->getHeader());
5720  if (EnablePhiElim && L->isLoopSimplifyForm()) {
5721    SmallVector<WeakTrackingVH, 16> DeadInsts;
5722    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5723    SCEVExpander Rewriter(SE, DL, "lsr");
5724#ifndef NDEBUG
5725    Rewriter.setDebugType(DEBUG_TYPE);
5726#endif
5727    unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5728    if (numFolded) {
5729      Changed = true;
5730      DeleteTriviallyDeadInstructions(DeadInsts);
5731      DeleteDeadPHIs(L->getHeader());
5732    }
5733  }
5734  return Changed;
5735}
5736
5737bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5738  if (skipLoop(L))
5739    return false;
5740
5741  auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5742  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5743  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5744  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5745  const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5746      *L->getHeader()->getParent());
5747  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5748      *L->getHeader()->getParent());
5749  auto &LibInfo = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5750      *L->getHeader()->getParent());
5751  return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, LibInfo);
5752}
5753
5754PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5755                                              LoopStandardAnalysisResults &AR,
5756                                              LPMUpdater &) {
5757  if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5758                          AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI))
5759    return PreservedAnalyses::all();
5760
5761  return getLoopPassPreservedAnalyses();
5762}
5763
5764char LoopStrengthReduce::ID = 0;
5765
5766INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5767                      "Loop Strength Reduction", false, false)
5768INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5769INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5770INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5771INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5772INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5773INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5774INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5775                    "Loop Strength Reduction", false, false)
5776
5777Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5778