1//===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10// basic loop CFG cleanup, primarily to assist other loop passes. If you
11// encounter a noncanonical CFG construct that causes another loop pass to
12// perform suboptimally, this is the place to fix it up.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/AssumptionCache.h"
21#include "llvm/Analysis/BasicAliasAnalysis.h"
22#include "llvm/Analysis/DependenceAnalysis.h"
23#include "llvm/Analysis/DomTreeUpdater.h"
24#include "llvm/Analysis/GlobalsModRef.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/LoopPass.h"
27#include "llvm/Analysis/MemorySSA.h"
28#include "llvm/Analysis/MemorySSAUpdater.h"
29#include "llvm/Analysis/ScalarEvolution.h"
30#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31#include "llvm/Analysis/TargetTransformInfo.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/InitializePasses.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Transforms/Scalar/LoopPassManager.h"
37#include "llvm/Transforms/Utils.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include "llvm/Transforms/Utils/Local.h"
40#include "llvm/Transforms/Utils/LoopUtils.h"
41using namespace llvm;
42
43#define DEBUG_TYPE "loop-simplifycfg"
44
45static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
46                                       cl::init(true));
47
48STATISTIC(NumTerminatorsFolded,
49          "Number of terminators folded to unconditional branches");
50STATISTIC(NumLoopBlocksDeleted,
51          "Number of loop blocks deleted");
52STATISTIC(NumLoopExitsDeleted,
53          "Number of loop exiting edges deleted");
54
55/// If \p BB is a switch or a conditional branch, but only one of its successors
56/// can be reached from this block in runtime, return this successor. Otherwise,
57/// return nullptr.
58static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
59  Instruction *TI = BB->getTerminator();
60  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
61    if (BI->isUnconditional())
62      return nullptr;
63    if (BI->getSuccessor(0) == BI->getSuccessor(1))
64      return BI->getSuccessor(0);
65    ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
66    if (!Cond)
67      return nullptr;
68    return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
69  }
70
71  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
72    auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
73    if (!CI)
74      return nullptr;
75    for (auto Case : SI->cases())
76      if (Case.getCaseValue() == CI)
77        return Case.getCaseSuccessor();
78    return SI->getDefaultDest();
79  }
80
81  return nullptr;
82}
83
84/// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
85static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
86                                 Loop *LastLoop = nullptr) {
87  assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
88         "First loop is supposed to be inside of last loop!");
89  assert(FirstLoop->contains(BB) && "Must be a loop block!");
90  for (Loop *Current = FirstLoop; Current != LastLoop;
91       Current = Current->getParentLoop())
92    Current->removeBlockFromLoop(BB);
93}
94
95/// Find innermost loop that contains at least one block from \p BBs and
96/// contains the header of loop \p L.
97static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
98                                 Loop &L, LoopInfo &LI) {
99  Loop *Innermost = nullptr;
100  for (BasicBlock *BB : BBs) {
101    Loop *BBL = LI.getLoopFor(BB);
102    while (BBL && !BBL->contains(L.getHeader()))
103      BBL = BBL->getParentLoop();
104    if (BBL == &L)
105      BBL = BBL->getParentLoop();
106    if (!BBL)
107      continue;
108    if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
109      Innermost = BBL;
110  }
111  return Innermost;
112}
113
114namespace {
115/// Helper class that can turn branches and switches with constant conditions
116/// into unconditional branches.
117class ConstantTerminatorFoldingImpl {
118private:
119  Loop &L;
120  LoopInfo &LI;
121  DominatorTree &DT;
122  ScalarEvolution &SE;
123  MemorySSAUpdater *MSSAU;
124  LoopBlocksDFS DFS;
125  DomTreeUpdater DTU;
126  SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
127
128  // Whether or not the current loop has irreducible CFG.
129  bool HasIrreducibleCFG = false;
130  // Whether or not the current loop will still exist after terminator constant
131  // folding will be done. In theory, there are two ways how it can happen:
132  // 1. Loop's latch(es) become unreachable from loop header;
133  // 2. Loop's header becomes unreachable from method entry.
134  // In practice, the second situation is impossible because we only modify the
135  // current loop and its preheader and do not affect preheader's reachibility
136  // from any other block. So this variable set to true means that loop's latch
137  // has become unreachable from loop header.
138  bool DeleteCurrentLoop = false;
139
140  // The blocks of the original loop that will still be reachable from entry
141  // after the constant folding.
142  SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
143  // The blocks of the original loop that will become unreachable from entry
144  // after the constant folding.
145  SmallVector<BasicBlock *, 8> DeadLoopBlocks;
146  // The exits of the original loop that will still be reachable from entry
147  // after the constant folding.
148  SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
149  // The exits of the original loop that will become unreachable from entry
150  // after the constant folding.
151  SmallVector<BasicBlock *, 8> DeadExitBlocks;
152  // The blocks that will still be a part of the current loop after folding.
153  SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
154  // The blocks that have terminators with constant condition that can be
155  // folded. Note: fold candidates should be in L but not in any of its
156  // subloops to avoid complex LI updates.
157  SmallVector<BasicBlock *, 8> FoldCandidates;
158
159  void dump() const {
160    dbgs() << "Constant terminator folding for loop " << L << "\n";
161    dbgs() << "After terminator constant-folding, the loop will";
162    if (!DeleteCurrentLoop)
163      dbgs() << " not";
164    dbgs() << " be destroyed\n";
165    auto PrintOutVector = [&](const char *Message,
166                           const SmallVectorImpl<BasicBlock *> &S) {
167      dbgs() << Message << "\n";
168      for (const BasicBlock *BB : S)
169        dbgs() << "\t" << BB->getName() << "\n";
170    };
171    auto PrintOutSet = [&](const char *Message,
172                           const SmallPtrSetImpl<BasicBlock *> &S) {
173      dbgs() << Message << "\n";
174      for (const BasicBlock *BB : S)
175        dbgs() << "\t" << BB->getName() << "\n";
176    };
177    PrintOutVector("Blocks in which we can constant-fold terminator:",
178                   FoldCandidates);
179    PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
180    PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
181    PrintOutSet("Live exit blocks:", LiveExitBlocks);
182    PrintOutVector("Dead exit blocks:", DeadExitBlocks);
183    if (!DeleteCurrentLoop)
184      PrintOutSet("The following blocks will still be part of the loop:",
185                  BlocksInLoopAfterFolding);
186  }
187
188  /// Whether or not the current loop has irreducible CFG.
189  bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
190    assert(DFS.isComplete() && "DFS is expected to be finished");
191    // Index of a basic block in RPO traversal.
192    DenseMap<const BasicBlock *, unsigned> RPO;
193    unsigned Current = 0;
194    for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
195      RPO[*I] = Current++;
196
197    for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
198      BasicBlock *BB = *I;
199      for (auto *Succ : successors(BB))
200        if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
201          // If an edge goes from a block with greater order number into a block
202          // with lesses number, and it is not a loop backedge, then it can only
203          // be a part of irreducible non-loop cycle.
204          return true;
205    }
206    return false;
207  }
208
209  /// Fill all information about status of blocks and exits of the current loop
210  /// if constant folding of all branches will be done.
211  void analyze() {
212    DFS.perform(&LI);
213    assert(DFS.isComplete() && "DFS is expected to be finished");
214
215    // TODO: The algorithm below relies on both RPO and Postorder traversals.
216    // When the loop has only reducible CFG inside, then the invariant "all
217    // predecessors of X are processed before X in RPO" is preserved. However
218    // an irreducible loop can break this invariant (e.g. latch does not have to
219    // be the last block in the traversal in this case, and the algorithm relies
220    // on this). We can later decide to support such cases by altering the
221    // algorithms, but so far we just give up analyzing them.
222    if (hasIrreducibleCFG(DFS)) {
223      HasIrreducibleCFG = true;
224      return;
225    }
226
227    // Collect live and dead loop blocks and exits.
228    LiveLoopBlocks.insert(L.getHeader());
229    for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
230      BasicBlock *BB = *I;
231
232      // If a loop block wasn't marked as live so far, then it's dead.
233      if (!LiveLoopBlocks.count(BB)) {
234        DeadLoopBlocks.push_back(BB);
235        continue;
236      }
237
238      BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
239
240      // If a block has only one live successor, it's a candidate on constant
241      // folding. Only handle blocks from current loop: branches in child loops
242      // are skipped because if they can be folded, they should be folded during
243      // the processing of child loops.
244      bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
245      if (TakeFoldCandidate)
246        FoldCandidates.push_back(BB);
247
248      // Handle successors.
249      for (BasicBlock *Succ : successors(BB))
250        if (!TakeFoldCandidate || TheOnlySucc == Succ) {
251          if (L.contains(Succ))
252            LiveLoopBlocks.insert(Succ);
253          else
254            LiveExitBlocks.insert(Succ);
255        }
256    }
257
258    // Sanity check: amount of dead and live loop blocks should match the total
259    // number of blocks in loop.
260    assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
261           "Malformed block sets?");
262
263    // Now, all exit blocks that are not marked as live are dead.
264    SmallVector<BasicBlock *, 8> ExitBlocks;
265    L.getExitBlocks(ExitBlocks);
266    SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
267    for (auto *ExitBlock : ExitBlocks)
268      if (!LiveExitBlocks.count(ExitBlock) &&
269          UniqueDeadExits.insert(ExitBlock).second)
270        DeadExitBlocks.push_back(ExitBlock);
271
272    // Whether or not the edge From->To will still be present in graph after the
273    // folding.
274    auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
275      if (!LiveLoopBlocks.count(From))
276        return false;
277      BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
278      return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
279    };
280
281    // The loop will not be destroyed if its latch is live.
282    DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
283
284    // If we are going to delete the current loop completely, no extra analysis
285    // is needed.
286    if (DeleteCurrentLoop)
287      return;
288
289    // Otherwise, we should check which blocks will still be a part of the
290    // current loop after the transform.
291    BlocksInLoopAfterFolding.insert(L.getLoopLatch());
292    // If the loop is live, then we should compute what blocks are still in
293    // loop after all branch folding has been done. A block is in loop if
294    // it has a live edge to another block that is in the loop; by definition,
295    // latch is in the loop.
296    auto BlockIsInLoop = [&](BasicBlock *BB) {
297      return any_of(successors(BB), [&](BasicBlock *Succ) {
298        return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
299      });
300    };
301    for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
302      BasicBlock *BB = *I;
303      if (BlockIsInLoop(BB))
304        BlocksInLoopAfterFolding.insert(BB);
305    }
306
307    // Sanity check: header must be in loop.
308    assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
309           "Header not in loop?");
310    assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
311           "All blocks that stay in loop should be live!");
312  }
313
314  /// We need to preserve static reachibility of all loop exit blocks (this is)
315  /// required by loop pass manager. In order to do it, we make the following
316  /// trick:
317  ///
318  ///  preheader:
319  ///    <preheader code>
320  ///    br label %loop_header
321  ///
322  ///  loop_header:
323  ///    ...
324  ///    br i1 false, label %dead_exit, label %loop_block
325  ///    ...
326  ///
327  /// We cannot simply remove edge from the loop to dead exit because in this
328  /// case dead_exit (and its successors) may become unreachable. To avoid that,
329  /// we insert the following fictive preheader:
330  ///
331  ///  preheader:
332  ///    <preheader code>
333  ///    switch i32 0, label %preheader-split,
334  ///                  [i32 1, label %dead_exit_1],
335  ///                  [i32 2, label %dead_exit_2],
336  ///                  ...
337  ///                  [i32 N, label %dead_exit_N],
338  ///
339  ///  preheader-split:
340  ///    br label %loop_header
341  ///
342  ///  loop_header:
343  ///    ...
344  ///    br i1 false, label %dead_exit_N, label %loop_block
345  ///    ...
346  ///
347  /// Doing so, we preserve static reachibility of all dead exits and can later
348  /// remove edges from the loop to these blocks.
349  void handleDeadExits() {
350    // If no dead exits, nothing to do.
351    if (DeadExitBlocks.empty())
352      return;
353
354    // Construct split preheader and the dummy switch to thread edges from it to
355    // dead exits.
356    BasicBlock *Preheader = L.getLoopPreheader();
357    BasicBlock *NewPreheader = llvm::SplitBlock(
358        Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
359
360    IRBuilder<> Builder(Preheader->getTerminator());
361    SwitchInst *DummySwitch =
362        Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
363    Preheader->getTerminator()->eraseFromParent();
364
365    unsigned DummyIdx = 1;
366    for (BasicBlock *BB : DeadExitBlocks) {
367      SmallVector<Instruction *, 4> DeadPhis;
368      for (auto &PN : BB->phis())
369        DeadPhis.push_back(&PN);
370
371      // Eliminate all Phis from dead exits.
372      for (Instruction *PN : DeadPhis) {
373        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
374        PN->eraseFromParent();
375      }
376      assert(DummyIdx != 0 && "Too many dead exits!");
377      DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
378      DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
379      ++NumLoopExitsDeleted;
380    }
381
382    assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
383    if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
384      // When we break dead edges, the outer loop may become unreachable from
385      // the current loop. We need to fix loop info accordingly. For this, we
386      // find the most nested loop that still contains L and remove L from all
387      // loops that are inside of it.
388      Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
389
390      // Okay, our loop is no longer in the outer loop (and maybe not in some of
391      // its parents as well). Make the fixup.
392      if (StillReachable != OuterLoop) {
393        LI.changeLoopFor(NewPreheader, StillReachable);
394        removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
395        for (auto *BB : L.blocks())
396          removeBlockFromLoops(BB, OuterLoop, StillReachable);
397        OuterLoop->removeChildLoop(&L);
398        if (StillReachable)
399          StillReachable->addChildLoop(&L);
400        else
401          LI.addTopLevelLoop(&L);
402
403        // Some values from loops in [OuterLoop, StillReachable) could be used
404        // in the current loop. Now it is not their child anymore, so such uses
405        // require LCSSA Phis.
406        Loop *FixLCSSALoop = OuterLoop;
407        while (FixLCSSALoop->getParentLoop() != StillReachable)
408          FixLCSSALoop = FixLCSSALoop->getParentLoop();
409        assert(FixLCSSALoop && "Should be a loop!");
410        // We need all DT updates to be done before forming LCSSA.
411        DTU.applyUpdates(DTUpdates);
412        if (MSSAU)
413          MSSAU->applyUpdates(DTUpdates, DT);
414        DTUpdates.clear();
415        formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
416      }
417    }
418
419    if (MSSAU) {
420      // Clear all updates now. Facilitates deletes that follow.
421      DTU.applyUpdates(DTUpdates);
422      MSSAU->applyUpdates(DTUpdates, DT);
423      DTUpdates.clear();
424      if (VerifyMemorySSA)
425        MSSAU->getMemorySSA()->verifyMemorySSA();
426    }
427  }
428
429  /// Delete loop blocks that have become unreachable after folding. Make all
430  /// relevant updates to DT and LI.
431  void deleteDeadLoopBlocks() {
432    if (MSSAU) {
433      SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
434                                                        DeadLoopBlocks.end());
435      MSSAU->removeBlocks(DeadLoopBlocksSet);
436    }
437
438    // The function LI.erase has some invariants that need to be preserved when
439    // it tries to remove a loop which is not the top-level loop. In particular,
440    // it requires loop's preheader to be strictly in loop's parent. We cannot
441    // just remove blocks one by one, because after removal of preheader we may
442    // break this invariant for the dead loop. So we detatch and erase all dead
443    // loops beforehand.
444    for (auto *BB : DeadLoopBlocks)
445      if (LI.isLoopHeader(BB)) {
446        assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
447        Loop *DL = LI.getLoopFor(BB);
448        if (DL->getParentLoop()) {
449          for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
450            for (auto *BB : DL->getBlocks())
451              PL->removeBlockFromLoop(BB);
452          DL->getParentLoop()->removeChildLoop(DL);
453          LI.addTopLevelLoop(DL);
454        }
455        LI.erase(DL);
456      }
457
458    for (auto *BB : DeadLoopBlocks) {
459      assert(BB != L.getHeader() &&
460             "Header of the current loop cannot be dead!");
461      LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
462                        << "\n");
463      LI.removeBlock(BB);
464    }
465
466    DetatchDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
467    DTU.applyUpdates(DTUpdates);
468    DTUpdates.clear();
469    for (auto *BB : DeadLoopBlocks)
470      DTU.deleteBB(BB);
471
472    NumLoopBlocksDeleted += DeadLoopBlocks.size();
473  }
474
475  /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
476  /// unconditional branches.
477  void foldTerminators() {
478    for (BasicBlock *BB : FoldCandidates) {
479      assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
480      BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
481      assert(TheOnlySucc && "Should have one live successor!");
482
483      LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
484                        << " with an unconditional branch to the block "
485                        << TheOnlySucc->getName() << "\n");
486
487      SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
488      // Remove all BB's successors except for the live one.
489      unsigned TheOnlySuccDuplicates = 0;
490      for (auto *Succ : successors(BB))
491        if (Succ != TheOnlySucc) {
492          DeadSuccessors.insert(Succ);
493          // If our successor lies in a different loop, we don't want to remove
494          // the one-input Phi because it is a LCSSA Phi.
495          bool PreserveLCSSAPhi = !L.contains(Succ);
496          Succ->removePredecessor(BB, PreserveLCSSAPhi);
497          if (MSSAU)
498            MSSAU->removeEdge(BB, Succ);
499        } else
500          ++TheOnlySuccDuplicates;
501
502      assert(TheOnlySuccDuplicates > 0 && "Should be!");
503      // If TheOnlySucc was BB's successor more than once, after transform it
504      // will be its successor only once. Remove redundant inputs from
505      // TheOnlySucc's Phis.
506      bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
507      for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
508        TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
509      if (MSSAU && TheOnlySuccDuplicates > 1)
510        MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
511
512      IRBuilder<> Builder(BB->getContext());
513      Instruction *Term = BB->getTerminator();
514      Builder.SetInsertPoint(Term);
515      Builder.CreateBr(TheOnlySucc);
516      Term->eraseFromParent();
517
518      for (auto *DeadSucc : DeadSuccessors)
519        DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
520
521      ++NumTerminatorsFolded;
522    }
523  }
524
525public:
526  ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
527                                ScalarEvolution &SE,
528                                MemorySSAUpdater *MSSAU)
529      : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
530        DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
531  bool run() {
532    assert(L.getLoopLatch() && "Should be single latch!");
533
534    // Collect all available information about status of blocks after constant
535    // folding.
536    analyze();
537    BasicBlock *Header = L.getHeader();
538    (void)Header;
539
540    LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
541                      << ": ");
542
543    if (HasIrreducibleCFG) {
544      LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
545      return false;
546    }
547
548    // Nothing to constant-fold.
549    if (FoldCandidates.empty()) {
550      LLVM_DEBUG(
551          dbgs() << "No constant terminator folding candidates found in loop "
552                 << Header->getName() << "\n");
553      return false;
554    }
555
556    // TODO: Support deletion of the current loop.
557    if (DeleteCurrentLoop) {
558      LLVM_DEBUG(
559          dbgs()
560          << "Give up constant terminator folding in loop " << Header->getName()
561          << ": we don't currently support deletion of the current loop.\n");
562      return false;
563    }
564
565    // TODO: Support blocks that are not dead, but also not in loop after the
566    // folding.
567    if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
568        L.getNumBlocks()) {
569      LLVM_DEBUG(
570          dbgs() << "Give up constant terminator folding in loop "
571                 << Header->getName() << ": we don't currently"
572                    " support blocks that are not dead, but will stop "
573                    "being a part of the loop after constant-folding.\n");
574      return false;
575    }
576
577    SE.forgetTopmostLoop(&L);
578    // Dump analysis results.
579    LLVM_DEBUG(dump());
580
581    LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
582                      << " terminators in loop " << Header->getName() << "\n");
583
584    // Make the actual transforms.
585    handleDeadExits();
586    foldTerminators();
587
588    if (!DeadLoopBlocks.empty()) {
589      LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
590                    << " dead blocks in loop " << Header->getName() << "\n");
591      deleteDeadLoopBlocks();
592    } else {
593      // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
594      DTU.applyUpdates(DTUpdates);
595      DTUpdates.clear();
596    }
597
598    if (MSSAU && VerifyMemorySSA)
599      MSSAU->getMemorySSA()->verifyMemorySSA();
600
601#ifndef NDEBUG
602    // Make sure that we have preserved all data structures after the transform.
603#if defined(EXPENSIVE_CHECKS)
604    assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
605           "DT broken after transform!");
606#else
607    assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
608           "DT broken after transform!");
609#endif
610    assert(DT.isReachableFromEntry(Header));
611    LI.verify(DT);
612#endif
613
614    return true;
615  }
616
617  bool foldingBreaksCurrentLoop() const {
618    return DeleteCurrentLoop;
619  }
620};
621} // namespace
622
623/// Turn branches and switches with known constant conditions into unconditional
624/// branches.
625static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
626                                    ScalarEvolution &SE,
627                                    MemorySSAUpdater *MSSAU,
628                                    bool &IsLoopDeleted) {
629  if (!EnableTermFolding)
630    return false;
631
632  // To keep things simple, only process loops with single latch. We
633  // canonicalize most loops to this form. We can support multi-latch if needed.
634  if (!L.getLoopLatch())
635    return false;
636
637  ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
638  bool Changed = BranchFolder.run();
639  IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
640  return Changed;
641}
642
643static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
644                                        LoopInfo &LI, MemorySSAUpdater *MSSAU) {
645  bool Changed = false;
646  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
647  // Copy blocks into a temporary array to avoid iterator invalidation issues
648  // as we remove them.
649  SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
650
651  for (auto &Block : Blocks) {
652    // Attempt to merge blocks in the trivial case. Don't modify blocks which
653    // belong to other loops.
654    BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
655    if (!Succ)
656      continue;
657
658    BasicBlock *Pred = Succ->getSinglePredecessor();
659    if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
660      continue;
661
662    // Merge Succ into Pred and delete it.
663    MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
664
665    if (MSSAU && VerifyMemorySSA)
666      MSSAU->getMemorySSA()->verifyMemorySSA();
667
668    Changed = true;
669  }
670
671  return Changed;
672}
673
674static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
675                            ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
676                            bool &isLoopDeleted) {
677  bool Changed = false;
678
679  // Constant-fold terminators with known constant conditions.
680  Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, isLoopDeleted);
681
682  if (isLoopDeleted)
683    return true;
684
685  // Eliminate unconditional branches by merging blocks into their predecessors.
686  Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
687
688  if (Changed)
689    SE.forgetTopmostLoop(&L);
690
691  return Changed;
692}
693
694PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
695                                           LoopStandardAnalysisResults &AR,
696                                           LPMUpdater &LPMU) {
697  Optional<MemorySSAUpdater> MSSAU;
698  if (AR.MSSA)
699    MSSAU = MemorySSAUpdater(AR.MSSA);
700  bool DeleteCurrentLoop = false;
701  if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
702                       MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
703                       DeleteCurrentLoop))
704    return PreservedAnalyses::all();
705
706  if (DeleteCurrentLoop)
707    LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
708
709  auto PA = getLoopPassPreservedAnalyses();
710  if (AR.MSSA)
711    PA.preserve<MemorySSAAnalysis>();
712  return PA;
713}
714
715namespace {
716class LoopSimplifyCFGLegacyPass : public LoopPass {
717public:
718  static char ID; // Pass ID, replacement for typeid
719  LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
720    initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
721  }
722
723  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
724    if (skipLoop(L))
725      return false;
726
727    DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
728    LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
729    ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
730    Optional<MemorySSAUpdater> MSSAU;
731    if (EnableMSSALoopDependency) {
732      MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
733      MSSAU = MemorySSAUpdater(MSSA);
734      if (VerifyMemorySSA)
735        MSSA->verifyMemorySSA();
736    }
737    bool DeleteCurrentLoop = false;
738    bool Changed = simplifyLoopCFG(
739        *L, DT, LI, SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
740        DeleteCurrentLoop);
741    if (DeleteCurrentLoop)
742      LPM.markLoopAsDeleted(*L);
743    return Changed;
744  }
745
746  void getAnalysisUsage(AnalysisUsage &AU) const override {
747    if (EnableMSSALoopDependency) {
748      AU.addRequired<MemorySSAWrapperPass>();
749      AU.addPreserved<MemorySSAWrapperPass>();
750    }
751    AU.addPreserved<DependenceAnalysisWrapperPass>();
752    getLoopAnalysisUsage(AU);
753  }
754};
755}
756
757char LoopSimplifyCFGLegacyPass::ID = 0;
758INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
759                      "Simplify loop CFG", false, false)
760INITIALIZE_PASS_DEPENDENCY(LoopPass)
761INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
762INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
763                    "Simplify loop CFG", false, false)
764
765Pass *llvm::createLoopSimplifyCFGPass() {
766  return new LoopSimplifyCFGLegacyPass();
767}
768