1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs loop invariant code motion, attempting to remove as much
10// code from the body of a loop as possible.  It does this by either hoisting
11// code into the preheader block, or by sinking code to the exit blocks if it is
12// safe.  This pass also promotes must-aliased memory locations in the loop to
13// live in registers, thus hoisting and sinking "invariant" loads and stores.
14//
15// This pass uses alias analysis for two purposes:
16//
17//  1. Moving loop invariant loads and calls out of loops.  If we can determine
18//     that a load or call inside of a loop never aliases anything stored to,
19//     we can hoist it or sink it like any other instruction.
20//  2. Scalar Promotion of Memory - If there is a store instruction inside of
21//     the loop, we try to move the store to happen AFTER the loop instead of
22//     inside of the loop.  This can only happen if a few conditions are true:
23//       A. The pointer stored through is loop invariant
24//       B. There are no stores or loads in the loop which _may_ alias the
25//          pointer.  There are no calls in the loop which mod/ref the pointer.
26//     If these conditions are true, we can promote the loads and stores in the
27//     loop of the pointer to use a temporary alloca'd variable.  We then use
28//     the SSAUpdater to construct the appropriate SSA form for the value.
29//
30//===----------------------------------------------------------------------===//
31
32#include "llvm/Transforms/Scalar/LICM.h"
33#include "llvm/ADT/SetOperations.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Analysis/BasicAliasAnalysis.h"
38#include "llvm/Analysis/CaptureTracking.h"
39#include "llvm/Analysis/ConstantFolding.h"
40#include "llvm/Analysis/GlobalsModRef.h"
41#include "llvm/Analysis/GuardUtils.h"
42#include "llvm/Analysis/Loads.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Analysis/LoopIterator.h"
45#include "llvm/Analysis/LoopPass.h"
46#include "llvm/Analysis/MemoryBuiltins.h"
47#include "llvm/Analysis/MemorySSA.h"
48#include "llvm/Analysis/MemorySSAUpdater.h"
49#include "llvm/Analysis/OptimizationRemarkEmitter.h"
50#include "llvm/Analysis/ScalarEvolution.h"
51#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
52#include "llvm/Analysis/TargetLibraryInfo.h"
53#include "llvm/Analysis/ValueTracking.h"
54#include "llvm/IR/CFG.h"
55#include "llvm/IR/Constants.h"
56#include "llvm/IR/DataLayout.h"
57#include "llvm/IR/DebugInfoMetadata.h"
58#include "llvm/IR/DerivedTypes.h"
59#include "llvm/IR/Dominators.h"
60#include "llvm/IR/Instructions.h"
61#include "llvm/IR/IntrinsicInst.h"
62#include "llvm/IR/LLVMContext.h"
63#include "llvm/IR/Metadata.h"
64#include "llvm/IR/PatternMatch.h"
65#include "llvm/IR/PredIteratorCache.h"
66#include "llvm/InitializePasses.h"
67#include "llvm/Support/CommandLine.h"
68#include "llvm/Support/Debug.h"
69#include "llvm/Support/raw_ostream.h"
70#include "llvm/Transforms/Scalar.h"
71#include "llvm/Transforms/Scalar/LoopPassManager.h"
72#include "llvm/Transforms/Utils/BasicBlockUtils.h"
73#include "llvm/Transforms/Utils/Local.h"
74#include "llvm/Transforms/Utils/LoopUtils.h"
75#include "llvm/Transforms/Utils/SSAUpdater.h"
76#include <algorithm>
77#include <utility>
78using namespace llvm;
79
80#define DEBUG_TYPE "licm"
81
82STATISTIC(NumCreatedBlocks, "Number of blocks created");
83STATISTIC(NumClonedBranches, "Number of branches cloned");
84STATISTIC(NumSunk, "Number of instructions sunk out of loop");
85STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
86STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
87STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
88STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
89
90/// Memory promotion is enabled by default.
91static cl::opt<bool>
92    DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
93                     cl::desc("Disable memory promotion in LICM pass"));
94
95static cl::opt<bool> ControlFlowHoisting(
96    "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
97    cl::desc("Enable control flow (and PHI) hoisting in LICM"));
98
99static cl::opt<uint32_t> MaxNumUsesTraversed(
100    "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
101    cl::desc("Max num uses visited for identifying load "
102             "invariance in loop using invariant start (default = 8)"));
103
104// Default value of zero implies we use the regular alias set tracker mechanism
105// instead of the cross product using AA to identify aliasing of the memory
106// location we are interested in.
107static cl::opt<int>
108LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
109               cl::desc("How many instruction to cross product using AA"));
110
111// Experimental option to allow imprecision in LICM in pathological cases, in
112// exchange for faster compile. This is to be removed if MemorySSA starts to
113// address the same issue. This flag applies only when LICM uses MemorySSA
114// instead on AliasSetTracker. LICM calls MemorySSAWalker's
115// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
116// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
117// which may not be precise, since optimizeUses is capped. The result is
118// correct, but we may not get as "far up" as possible to get which access is
119// clobbering the one queried.
120cl::opt<unsigned> llvm::SetLicmMssaOptCap(
121    "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
122    cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
123             "for faster compile. Caps the MemorySSA clobbering calls."));
124
125// Experimentally, memory promotion carries less importance than sinking and
126// hoisting. Limit when we do promotion when using MemorySSA, in order to save
127// compile time.
128cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
129    "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
130    cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
131             "effect. When MSSA in LICM is enabled, then this is the maximum "
132             "number of accesses allowed to be present in a loop in order to "
133             "enable memory promotion."));
134
135static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
136static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
137                                  const LoopSafetyInfo *SafetyInfo,
138                                  TargetTransformInfo *TTI, bool &FreeInLoop);
139static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
140                  BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
141                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
142                  OptimizationRemarkEmitter *ORE);
143static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
144                 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
145                 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
146static bool isSafeToExecuteUnconditionally(Instruction &Inst,
147                                           const DominatorTree *DT,
148                                           const Loop *CurLoop,
149                                           const LoopSafetyInfo *SafetyInfo,
150                                           OptimizationRemarkEmitter *ORE,
151                                           const Instruction *CtxI = nullptr);
152static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
153                                     AliasSetTracker *CurAST, Loop *CurLoop,
154                                     AliasAnalysis *AA);
155static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
156                                             Loop *CurLoop,
157                                             SinkAndHoistLICMFlags &Flags);
158static Instruction *CloneInstructionInExitBlock(
159    Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
160    const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
161
162static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
163                             AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
164
165static void moveInstructionBefore(Instruction &I, Instruction &Dest,
166                                  ICFLoopSafetyInfo &SafetyInfo,
167                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
168
169namespace {
170struct LoopInvariantCodeMotion {
171  using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>;
172  bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
173                 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
174                 ScalarEvolution *SE, MemorySSA *MSSA,
175                 OptimizationRemarkEmitter *ORE, bool DeleteAST);
176
177  ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; }
178  LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
179                          unsigned LicmMssaNoAccForPromotionCap)
180      : LicmMssaOptCap(LicmMssaOptCap),
181        LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
182
183private:
184  ASTrackerMapTy LoopToAliasSetMap;
185  unsigned LicmMssaOptCap;
186  unsigned LicmMssaNoAccForPromotionCap;
187
188  std::unique_ptr<AliasSetTracker>
189  collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA);
190  std::unique_ptr<AliasSetTracker>
191  collectAliasInfoForLoopWithMSSA(Loop *L, AliasAnalysis *AA,
192                                  MemorySSAUpdater *MSSAU);
193};
194
195struct LegacyLICMPass : public LoopPass {
196  static char ID; // Pass identification, replacement for typeid
197  LegacyLICMPass(
198      unsigned LicmMssaOptCap = SetLicmMssaOptCap,
199      unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
200      : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
201    initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
202  }
203
204  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
205    if (skipLoop(L)) {
206      // If we have run LICM on a previous loop but now we are skipping
207      // (because we've hit the opt-bisect limit), we need to clear the
208      // loop alias information.
209      LICM.getLoopToAliasSetMap().clear();
210      return false;
211    }
212
213    auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
214    MemorySSA *MSSA = EnableMSSALoopDependency
215                          ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
216                          : nullptr;
217    // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
218    // pass.  Function analyses need to be preserved across loop transformations
219    // but ORE cannot be preserved (see comment before the pass definition).
220    OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
221    return LICM.runOnLoop(L,
222                          &getAnalysis<AAResultsWrapperPass>().getAAResults(),
223                          &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
224                          &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
225                          &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
226                              *L->getHeader()->getParent()),
227                          &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
228                              *L->getHeader()->getParent()),
229                          SE ? &SE->getSE() : nullptr, MSSA, &ORE, false);
230  }
231
232  /// This transformation requires natural loop information & requires that
233  /// loop preheaders be inserted into the CFG...
234  ///
235  void getAnalysisUsage(AnalysisUsage &AU) const override {
236    AU.addPreserved<DominatorTreeWrapperPass>();
237    AU.addPreserved<LoopInfoWrapperPass>();
238    AU.addRequired<TargetLibraryInfoWrapperPass>();
239    if (EnableMSSALoopDependency) {
240      AU.addRequired<MemorySSAWrapperPass>();
241      AU.addPreserved<MemorySSAWrapperPass>();
242    }
243    AU.addRequired<TargetTransformInfoWrapperPass>();
244    getLoopAnalysisUsage(AU);
245  }
246
247  using llvm::Pass::doFinalization;
248
249  bool doFinalization() override {
250    auto &AliasSetMap = LICM.getLoopToAliasSetMap();
251    // All loops in the AliasSetMap should be cleaned up already. The only case
252    // where we fail to do so is if an outer loop gets deleted before LICM
253    // visits it.
254    assert(all_of(AliasSetMap,
255                  [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) {
256                    return !KV.first->getParentLoop();
257                  }) &&
258           "Didn't free loop alias sets");
259    AliasSetMap.clear();
260    return false;
261  }
262
263private:
264  LoopInvariantCodeMotion LICM;
265
266  /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
267  void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
268                               Loop *L) override;
269
270  /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
271  /// set.
272  void deleteAnalysisValue(Value *V, Loop *L) override;
273
274  /// Simple Analysis hook. Delete loop L from alias set map.
275  void deleteAnalysisLoop(Loop *L) override;
276};
277} // namespace
278
279PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
280                                LoopStandardAnalysisResults &AR, LPMUpdater &) {
281  const auto &FAM =
282      AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
283  Function *F = L.getHeader()->getParent();
284
285  auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
286  // FIXME: This should probably be optional rather than required.
287  if (!ORE)
288    report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not "
289                       "cached at a higher level");
290
291  LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
292  if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE,
293                      AR.MSSA, ORE, true))
294    return PreservedAnalyses::all();
295
296  auto PA = getLoopPassPreservedAnalyses();
297
298  PA.preserve<DominatorTreeAnalysis>();
299  PA.preserve<LoopAnalysis>();
300  if (AR.MSSA)
301    PA.preserve<MemorySSAAnalysis>();
302
303  return PA;
304}
305
306char LegacyLICMPass::ID = 0;
307INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
308                      false, false)
309INITIALIZE_PASS_DEPENDENCY(LoopPass)
310INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
311INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
312INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
313INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
314                    false)
315
316Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
317Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
318                           unsigned LicmMssaNoAccForPromotionCap) {
319  return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
320}
321
322/// Hoist expressions out of the specified loop. Note, alias info for inner
323/// loop is not preserved so it is not a good idea to run LICM multiple
324/// times on one loop.
325/// We should delete AST for inner loops in the new pass manager to avoid
326/// memory leak.
327///
328bool LoopInvariantCodeMotion::runOnLoop(
329    Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
330    TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE,
331    MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) {
332  bool Changed = false;
333
334  assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
335
336  // If this loop has metadata indicating that LICM is not to be performed then
337  // just exit.
338  if (hasDisableLICMTransformsHint(L)) {
339    return false;
340  }
341
342  std::unique_ptr<AliasSetTracker> CurAST;
343  std::unique_ptr<MemorySSAUpdater> MSSAU;
344  bool NoOfMemAccTooLarge = false;
345  unsigned LicmMssaOptCounter = 0;
346
347  if (!MSSA) {
348    LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
349    CurAST = collectAliasInfoForLoop(L, LI, AA);
350  } else {
351    LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
352    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
353
354    unsigned AccessCapCount = 0;
355    for (auto *BB : L->getBlocks()) {
356      if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
357        for (const auto &MA : *Accesses) {
358          (void)MA;
359          AccessCapCount++;
360          if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
361            NoOfMemAccTooLarge = true;
362            break;
363          }
364        }
365      }
366      if (NoOfMemAccTooLarge)
367        break;
368    }
369  }
370
371  // Get the preheader block to move instructions into...
372  BasicBlock *Preheader = L->getLoopPreheader();
373
374  // Compute loop safety information.
375  ICFLoopSafetyInfo SafetyInfo(DT);
376  SafetyInfo.computeLoopSafetyInfo(L);
377
378  // We want to visit all of the instructions in this loop... that are not parts
379  // of our subloops (they have already had their invariants hoisted out of
380  // their loop, into this loop, so there is no need to process the BODIES of
381  // the subloops).
382  //
383  // Traverse the body of the loop in depth first order on the dominator tree so
384  // that we are guaranteed to see definitions before we see uses.  This allows
385  // us to sink instructions in one pass, without iteration.  After sinking
386  // instructions, we perform another pass to hoist them out of the loop.
387  SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
388                                 LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
389                                 /*IsSink=*/true};
390  if (L->hasDedicatedExits())
391    Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
392                          CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
393  Flags.IsSink = false;
394  if (Preheader)
395    Changed |=
396        hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
397                    CurAST.get(), MSSAU.get(), SE, &SafetyInfo, Flags, ORE);
398
399  // Now that all loop invariants have been removed from the loop, promote any
400  // memory references to scalars that we can.
401  // Don't sink stores from loops without dedicated block exits. Exits
402  // containing indirect branches are not transformed by loop simplify,
403  // make sure we catch that. An additional load may be generated in the
404  // preheader for SSA updater, so also avoid sinking when no preheader
405  // is available.
406  if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
407      !NoOfMemAccTooLarge) {
408    // Figure out the loop exits and their insertion points
409    SmallVector<BasicBlock *, 8> ExitBlocks;
410    L->getUniqueExitBlocks(ExitBlocks);
411
412    // We can't insert into a catchswitch.
413    bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
414      return isa<CatchSwitchInst>(Exit->getTerminator());
415    });
416
417    if (!HasCatchSwitch) {
418      SmallVector<Instruction *, 8> InsertPts;
419      SmallVector<MemoryAccess *, 8> MSSAInsertPts;
420      InsertPts.reserve(ExitBlocks.size());
421      if (MSSAU)
422        MSSAInsertPts.reserve(ExitBlocks.size());
423      for (BasicBlock *ExitBlock : ExitBlocks) {
424        InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
425        if (MSSAU)
426          MSSAInsertPts.push_back(nullptr);
427      }
428
429      PredIteratorCache PIC;
430
431      bool Promoted = false;
432
433      // Build an AST using MSSA.
434      if (!CurAST.get())
435        CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
436
437      // Loop over all of the alias sets in the tracker object.
438      for (AliasSet &AS : *CurAST) {
439        // We can promote this alias set if it has a store, if it is a "Must"
440        // alias set, if the pointer is loop invariant, and if we are not
441        // eliminating any volatile loads or stores.
442        if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
443            !L->isLoopInvariant(AS.begin()->getValue()))
444          continue;
445
446        assert(
447            !AS.empty() &&
448            "Must alias set should have at least one pointer element in it!");
449
450        SmallSetVector<Value *, 8> PointerMustAliases;
451        for (const auto &ASI : AS)
452          PointerMustAliases.insert(ASI.getValue());
453
454        Promoted |= promoteLoopAccessesToScalars(
455            PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
456            DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
457      }
458
459      // Once we have promoted values across the loop body we have to
460      // recursively reform LCSSA as any nested loop may now have values defined
461      // within the loop used in the outer loop.
462      // FIXME: This is really heavy handed. It would be a bit better to use an
463      // SSAUpdater strategy during promotion that was LCSSA aware and reformed
464      // it as it went.
465      if (Promoted)
466        formLCSSARecursively(*L, *DT, LI, SE);
467
468      Changed |= Promoted;
469    }
470  }
471
472  // Check that neither this loop nor its parent have had LCSSA broken. LICM is
473  // specifically moving instructions across the loop boundary and so it is
474  // especially in need of sanity checking here.
475  assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
476  assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
477         "Parent loop not left in LCSSA form after LICM!");
478
479  // If this loop is nested inside of another one, save the alias information
480  // for when we process the outer loop.
481  if (!MSSAU.get() && CurAST.get() && L->getParentLoop() && !DeleteAST)
482    LoopToAliasSetMap[L] = std::move(CurAST);
483
484  if (MSSAU.get() && VerifyMemorySSA)
485    MSSAU->getMemorySSA()->verifyMemorySSA();
486
487  if (Changed && SE)
488    SE->forgetLoopDispositions(L);
489  return Changed;
490}
491
492/// Walk the specified region of the CFG (defined by all blocks dominated by
493/// the specified block, and that are in the current loop) in reverse depth
494/// first order w.r.t the DominatorTree.  This allows us to visit uses before
495/// definitions, allowing us to sink a loop body in one pass without iteration.
496///
497bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
498                      DominatorTree *DT, TargetLibraryInfo *TLI,
499                      TargetTransformInfo *TTI, Loop *CurLoop,
500                      AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
501                      ICFLoopSafetyInfo *SafetyInfo,
502                      SinkAndHoistLICMFlags &Flags,
503                      OptimizationRemarkEmitter *ORE) {
504
505  // Verify inputs.
506  assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
507         CurLoop != nullptr && SafetyInfo != nullptr &&
508         "Unexpected input to sinkRegion.");
509  assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
510         "Either AliasSetTracker or MemorySSA should be initialized.");
511
512  // We want to visit children before parents. We will enque all the parents
513  // before their children in the worklist and process the worklist in reverse
514  // order.
515  SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
516
517  bool Changed = false;
518  for (DomTreeNode *DTN : reverse(Worklist)) {
519    BasicBlock *BB = DTN->getBlock();
520    // Only need to process the contents of this block if it is not part of a
521    // subloop (which would already have been processed).
522    if (inSubLoop(BB, CurLoop, LI))
523      continue;
524
525    for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
526      Instruction &I = *--II;
527
528      // If the instruction is dead, we would try to sink it because it isn't
529      // used in the loop, instead, just delete it.
530      if (isInstructionTriviallyDead(&I, TLI)) {
531        LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
532        salvageDebugInfo(I);
533        ++II;
534        eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
535        Changed = true;
536        continue;
537      }
538
539      // Check to see if we can sink this instruction to the exit blocks
540      // of the loop.  We can do this if the all users of the instruction are
541      // outside of the loop.  In this case, it doesn't even matter if the
542      // operands of the instruction are loop invariant.
543      //
544      bool FreeInLoop = false;
545      if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
546          canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
547                             ORE) &&
548          !I.mayHaveSideEffects()) {
549        if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
550          if (!FreeInLoop) {
551            ++II;
552            eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
553          }
554          Changed = true;
555        }
556      }
557    }
558  }
559  if (MSSAU && VerifyMemorySSA)
560    MSSAU->getMemorySSA()->verifyMemorySSA();
561  return Changed;
562}
563
564namespace {
565// This is a helper class for hoistRegion to make it able to hoist control flow
566// in order to be able to hoist phis. The way this works is that we initially
567// start hoisting to the loop preheader, and when we see a loop invariant branch
568// we make note of this. When we then come to hoist an instruction that's
569// conditional on such a branch we duplicate the branch and the relevant control
570// flow, then hoist the instruction into the block corresponding to its original
571// block in the duplicated control flow.
572class ControlFlowHoister {
573private:
574  // Information about the loop we are hoisting from
575  LoopInfo *LI;
576  DominatorTree *DT;
577  Loop *CurLoop;
578  MemorySSAUpdater *MSSAU;
579
580  // A map of blocks in the loop to the block their instructions will be hoisted
581  // to.
582  DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
583
584  // The branches that we can hoist, mapped to the block that marks a
585  // convergence point of their control flow.
586  DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
587
588public:
589  ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
590                     MemorySSAUpdater *MSSAU)
591      : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
592
593  void registerPossiblyHoistableBranch(BranchInst *BI) {
594    // We can only hoist conditional branches with loop invariant operands.
595    if (!ControlFlowHoisting || !BI->isConditional() ||
596        !CurLoop->hasLoopInvariantOperands(BI))
597      return;
598
599    // The branch destinations need to be in the loop, and we don't gain
600    // anything by duplicating conditional branches with duplicate successors,
601    // as it's essentially the same as an unconditional branch.
602    BasicBlock *TrueDest = BI->getSuccessor(0);
603    BasicBlock *FalseDest = BI->getSuccessor(1);
604    if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
605        TrueDest == FalseDest)
606      return;
607
608    // We can hoist BI if one branch destination is the successor of the other,
609    // or both have common successor which we check by seeing if the
610    // intersection of their successors is non-empty.
611    // TODO: This could be expanded to allowing branches where both ends
612    // eventually converge to a single block.
613    SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
614    TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
615    FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
616    BasicBlock *CommonSucc = nullptr;
617    if (TrueDestSucc.count(FalseDest)) {
618      CommonSucc = FalseDest;
619    } else if (FalseDestSucc.count(TrueDest)) {
620      CommonSucc = TrueDest;
621    } else {
622      set_intersect(TrueDestSucc, FalseDestSucc);
623      // If there's one common successor use that.
624      if (TrueDestSucc.size() == 1)
625        CommonSucc = *TrueDestSucc.begin();
626      // If there's more than one pick whichever appears first in the block list
627      // (we can't use the value returned by TrueDestSucc.begin() as it's
628      // unpredicatable which element gets returned).
629      else if (!TrueDestSucc.empty()) {
630        Function *F = TrueDest->getParent();
631        auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
632        auto It = std::find_if(F->begin(), F->end(), IsSucc);
633        assert(It != F->end() && "Could not find successor in function");
634        CommonSucc = &*It;
635      }
636    }
637    // The common successor has to be dominated by the branch, as otherwise
638    // there will be some other path to the successor that will not be
639    // controlled by this branch so any phi we hoist would be controlled by the
640    // wrong condition. This also takes care of avoiding hoisting of loop back
641    // edges.
642    // TODO: In some cases this could be relaxed if the successor is dominated
643    // by another block that's been hoisted and we can guarantee that the
644    // control flow has been replicated exactly.
645    if (CommonSucc && DT->dominates(BI, CommonSucc))
646      HoistableBranches[BI] = CommonSucc;
647  }
648
649  bool canHoistPHI(PHINode *PN) {
650    // The phi must have loop invariant operands.
651    if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
652      return false;
653    // We can hoist phis if the block they are in is the target of hoistable
654    // branches which cover all of the predecessors of the block.
655    SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
656    BasicBlock *BB = PN->getParent();
657    for (BasicBlock *PredBB : predecessors(BB))
658      PredecessorBlocks.insert(PredBB);
659    // If we have less predecessor blocks than predecessors then the phi will
660    // have more than one incoming value for the same block which we can't
661    // handle.
662    // TODO: This could be handled be erasing some of the duplicate incoming
663    // values.
664    if (PredecessorBlocks.size() != pred_size(BB))
665      return false;
666    for (auto &Pair : HoistableBranches) {
667      if (Pair.second == BB) {
668        // Which blocks are predecessors via this branch depends on if the
669        // branch is triangle-like or diamond-like.
670        if (Pair.first->getSuccessor(0) == BB) {
671          PredecessorBlocks.erase(Pair.first->getParent());
672          PredecessorBlocks.erase(Pair.first->getSuccessor(1));
673        } else if (Pair.first->getSuccessor(1) == BB) {
674          PredecessorBlocks.erase(Pair.first->getParent());
675          PredecessorBlocks.erase(Pair.first->getSuccessor(0));
676        } else {
677          PredecessorBlocks.erase(Pair.first->getSuccessor(0));
678          PredecessorBlocks.erase(Pair.first->getSuccessor(1));
679        }
680      }
681    }
682    // PredecessorBlocks will now be empty if for every predecessor of BB we
683    // found a hoistable branch source.
684    return PredecessorBlocks.empty();
685  }
686
687  BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
688    if (!ControlFlowHoisting)
689      return CurLoop->getLoopPreheader();
690    // If BB has already been hoisted, return that
691    if (HoistDestinationMap.count(BB))
692      return HoistDestinationMap[BB];
693
694    // Check if this block is conditional based on a pending branch
695    auto HasBBAsSuccessor =
696        [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
697          return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
698                                       Pair.first->getSuccessor(1) == BB);
699        };
700    auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
701                           HasBBAsSuccessor);
702
703    // If not involved in a pending branch, hoist to preheader
704    BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
705    if (It == HoistableBranches.end()) {
706      LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()
707                        << " as hoist destination for " << BB->getName()
708                        << "\n");
709      HoistDestinationMap[BB] = InitialPreheader;
710      return InitialPreheader;
711    }
712    BranchInst *BI = It->first;
713    assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
714               HoistableBranches.end() &&
715           "BB is expected to be the target of at most one branch");
716
717    LLVMContext &C = BB->getContext();
718    BasicBlock *TrueDest = BI->getSuccessor(0);
719    BasicBlock *FalseDest = BI->getSuccessor(1);
720    BasicBlock *CommonSucc = HoistableBranches[BI];
721    BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
722
723    // Create hoisted versions of blocks that currently don't have them
724    auto CreateHoistedBlock = [&](BasicBlock *Orig) {
725      if (HoistDestinationMap.count(Orig))
726        return HoistDestinationMap[Orig];
727      BasicBlock *New =
728          BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
729      HoistDestinationMap[Orig] = New;
730      DT->addNewBlock(New, HoistTarget);
731      if (CurLoop->getParentLoop())
732        CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
733      ++NumCreatedBlocks;
734      LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
735                        << " as hoist destination for " << Orig->getName()
736                        << "\n");
737      return New;
738    };
739    BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
740    BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
741    BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
742
743    // Link up these blocks with branches.
744    if (!HoistCommonSucc->getTerminator()) {
745      // The new common successor we've generated will branch to whatever that
746      // hoist target branched to.
747      BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
748      assert(TargetSucc && "Expected hoist target to have a single successor");
749      HoistCommonSucc->moveBefore(TargetSucc);
750      BranchInst::Create(TargetSucc, HoistCommonSucc);
751    }
752    if (!HoistTrueDest->getTerminator()) {
753      HoistTrueDest->moveBefore(HoistCommonSucc);
754      BranchInst::Create(HoistCommonSucc, HoistTrueDest);
755    }
756    if (!HoistFalseDest->getTerminator()) {
757      HoistFalseDest->moveBefore(HoistCommonSucc);
758      BranchInst::Create(HoistCommonSucc, HoistFalseDest);
759    }
760
761    // If BI is being cloned to what was originally the preheader then
762    // HoistCommonSucc will now be the new preheader.
763    if (HoistTarget == InitialPreheader) {
764      // Phis in the loop header now need to use the new preheader.
765      InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
766      if (MSSAU)
767        MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
768            HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
769      // The new preheader dominates the loop header.
770      DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
771      DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
772      DT->changeImmediateDominator(HeaderNode, PreheaderNode);
773      // The preheader hoist destination is now the new preheader, with the
774      // exception of the hoist destination of this branch.
775      for (auto &Pair : HoistDestinationMap)
776        if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
777          Pair.second = HoistCommonSucc;
778    }
779
780    // Now finally clone BI.
781    ReplaceInstWithInst(
782        HoistTarget->getTerminator(),
783        BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
784    ++NumClonedBranches;
785
786    assert(CurLoop->getLoopPreheader() &&
787           "Hoisting blocks should not have destroyed preheader");
788    return HoistDestinationMap[BB];
789  }
790};
791} // namespace
792
793/// Walk the specified region of the CFG (defined by all blocks dominated by
794/// the specified block, and that are in the current loop) in depth first
795/// order w.r.t the DominatorTree.  This allows us to visit definitions before
796/// uses, allowing us to hoist a loop body in one pass without iteration.
797///
798bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
799                       DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
800                       AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
801                       ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
802                       SinkAndHoistLICMFlags &Flags,
803                       OptimizationRemarkEmitter *ORE) {
804  // Verify inputs.
805  assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
806         CurLoop != nullptr && SafetyInfo != nullptr &&
807         "Unexpected input to hoistRegion.");
808  assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
809         "Either AliasSetTracker or MemorySSA should be initialized.");
810
811  ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
812
813  // Keep track of instructions that have been hoisted, as they may need to be
814  // re-hoisted if they end up not dominating all of their uses.
815  SmallVector<Instruction *, 16> HoistedInstructions;
816
817  // For PHI hoisting to work we need to hoist blocks before their successors.
818  // We can do this by iterating through the blocks in the loop in reverse
819  // post-order.
820  LoopBlocksRPO Worklist(CurLoop);
821  Worklist.perform(LI);
822  bool Changed = false;
823  for (BasicBlock *BB : Worklist) {
824    // Only need to process the contents of this block if it is not part of a
825    // subloop (which would already have been processed).
826    if (inSubLoop(BB, CurLoop, LI))
827      continue;
828
829    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
830      Instruction &I = *II++;
831      // Try constant folding this instruction.  If all the operands are
832      // constants, it is technically hoistable, but it would be better to
833      // just fold it.
834      if (Constant *C = ConstantFoldInstruction(
835              &I, I.getModule()->getDataLayout(), TLI)) {
836        LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C
837                          << '\n');
838        if (CurAST)
839          CurAST->copyValue(&I, C);
840        // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
841        I.replaceAllUsesWith(C);
842        if (isInstructionTriviallyDead(&I, TLI))
843          eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
844        Changed = true;
845        continue;
846      }
847
848      // Try hoisting the instruction out to the preheader.  We can only do
849      // this if all of the operands of the instruction are loop invariant and
850      // if it is safe to hoist the instruction.
851      // TODO: It may be safe to hoist if we are hoisting to a conditional block
852      // and we have accurately duplicated the control flow from the loop header
853      // to that block.
854      if (CurLoop->hasLoopInvariantOperands(&I) &&
855          canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
856                             ORE) &&
857          isSafeToExecuteUnconditionally(
858              I, DT, CurLoop, SafetyInfo, ORE,
859              CurLoop->getLoopPreheader()->getTerminator())) {
860        hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
861              MSSAU, SE, ORE);
862        HoistedInstructions.push_back(&I);
863        Changed = true;
864        continue;
865      }
866
867      // Attempt to remove floating point division out of the loop by
868      // converting it to a reciprocal multiplication.
869      if (I.getOpcode() == Instruction::FDiv &&
870          CurLoop->isLoopInvariant(I.getOperand(1)) &&
871          I.hasAllowReciprocal()) {
872        auto Divisor = I.getOperand(1);
873        auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
874        auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
875        ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
876        SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
877        ReciprocalDivisor->insertBefore(&I);
878
879        auto Product =
880            BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
881        Product->setFastMathFlags(I.getFastMathFlags());
882        SafetyInfo->insertInstructionTo(Product, I.getParent());
883        Product->insertAfter(&I);
884        I.replaceAllUsesWith(Product);
885        eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
886
887        hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
888              SafetyInfo, MSSAU, SE, ORE);
889        HoistedInstructions.push_back(ReciprocalDivisor);
890        Changed = true;
891        continue;
892      }
893
894      auto IsInvariantStart = [&](Instruction &I) {
895        using namespace PatternMatch;
896        return I.use_empty() &&
897               match(&I, m_Intrinsic<Intrinsic::invariant_start>());
898      };
899      auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
900        return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
901               SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
902      };
903      if ((IsInvariantStart(I) || isGuard(&I)) &&
904          CurLoop->hasLoopInvariantOperands(&I) &&
905          MustExecuteWithoutWritesBefore(I)) {
906        hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
907              MSSAU, SE, ORE);
908        HoistedInstructions.push_back(&I);
909        Changed = true;
910        continue;
911      }
912
913      if (PHINode *PN = dyn_cast<PHINode>(&I)) {
914        if (CFH.canHoistPHI(PN)) {
915          // Redirect incoming blocks first to ensure that we create hoisted
916          // versions of those blocks before we hoist the phi.
917          for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
918            PN->setIncomingBlock(
919                i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
920          hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
921                MSSAU, SE, ORE);
922          assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
923          Changed = true;
924          continue;
925        }
926      }
927
928      // Remember possibly hoistable branches so we can actually hoist them
929      // later if needed.
930      if (BranchInst *BI = dyn_cast<BranchInst>(&I))
931        CFH.registerPossiblyHoistableBranch(BI);
932    }
933  }
934
935  // If we hoisted instructions to a conditional block they may not dominate
936  // their uses that weren't hoisted (such as phis where some operands are not
937  // loop invariant). If so make them unconditional by moving them to their
938  // immediate dominator. We iterate through the instructions in reverse order
939  // which ensures that when we rehoist an instruction we rehoist its operands,
940  // and also keep track of where in the block we are rehoisting to to make sure
941  // that we rehoist instructions before the instructions that use them.
942  Instruction *HoistPoint = nullptr;
943  if (ControlFlowHoisting) {
944    for (Instruction *I : reverse(HoistedInstructions)) {
945      if (!llvm::all_of(I->uses(),
946                        [&](Use &U) { return DT->dominates(I, U); })) {
947        BasicBlock *Dominator =
948            DT->getNode(I->getParent())->getIDom()->getBlock();
949        if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
950          if (HoistPoint)
951            assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
952                   "New hoist point expected to dominate old hoist point");
953          HoistPoint = Dominator->getTerminator();
954        }
955        LLVM_DEBUG(dbgs() << "LICM rehoisting to "
956                          << HoistPoint->getParent()->getName()
957                          << ": " << *I << "\n");
958        moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
959        HoistPoint = I;
960        Changed = true;
961      }
962    }
963  }
964  if (MSSAU && VerifyMemorySSA)
965    MSSAU->getMemorySSA()->verifyMemorySSA();
966
967    // Now that we've finished hoisting make sure that LI and DT are still
968    // valid.
969#ifdef EXPENSIVE_CHECKS
970  if (Changed) {
971    assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
972           "Dominator tree verification failed");
973    LI->verify(*DT);
974  }
975#endif
976
977  return Changed;
978}
979
980// Return true if LI is invariant within scope of the loop. LI is invariant if
981// CurLoop is dominated by an invariant.start representing the same memory
982// location and size as the memory location LI loads from, and also the
983// invariant.start has no uses.
984static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
985                                  Loop *CurLoop) {
986  Value *Addr = LI->getOperand(0);
987  const DataLayout &DL = LI->getModule()->getDataLayout();
988  const uint32_t LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
989
990  // if the type is i8 addrspace(x)*, we know this is the type of
991  // llvm.invariant.start operand
992  auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
993                                     LI->getPointerAddressSpace());
994  unsigned BitcastsVisited = 0;
995  // Look through bitcasts until we reach the i8* type (this is invariant.start
996  // operand type).
997  while (Addr->getType() != PtrInt8Ty) {
998    auto *BC = dyn_cast<BitCastInst>(Addr);
999    // Avoid traversing high number of bitcast uses.
1000    if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1001      return false;
1002    Addr = BC->getOperand(0);
1003  }
1004
1005  unsigned UsesVisited = 0;
1006  // Traverse all uses of the load operand value, to see if invariant.start is
1007  // one of the uses, and whether it dominates the load instruction.
1008  for (auto *U : Addr->users()) {
1009    // Avoid traversing for Load operand with high number of users.
1010    if (++UsesVisited > MaxNumUsesTraversed)
1011      return false;
1012    IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1013    // If there are escaping uses of invariant.start instruction, the load maybe
1014    // non-invariant.
1015    if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1016        !II->use_empty())
1017      continue;
1018    unsigned InvariantSizeInBits =
1019        cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8;
1020    // Confirm the invariant.start location size contains the load operand size
1021    // in bits. Also, the invariant.start should dominate the load, and we
1022    // should not hoist the load out of a loop that contains this dominating
1023    // invariant.start.
1024    if (LocSizeInBits <= InvariantSizeInBits &&
1025        DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1026      return true;
1027  }
1028
1029  return false;
1030}
1031
1032namespace {
1033/// Return true if-and-only-if we know how to (mechanically) both hoist and
1034/// sink a given instruction out of a loop.  Does not address legality
1035/// concerns such as aliasing or speculation safety.
1036bool isHoistableAndSinkableInst(Instruction &I) {
1037  // Only these instructions are hoistable/sinkable.
1038  return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
1039          isa<FenceInst>(I) || isa<CastInst>(I) ||
1040          isa<UnaryOperator>(I) || isa<BinaryOperator>(I) ||
1041          isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1042          isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1043          isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1044          isa<InsertValueInst>(I));
1045}
1046/// Return true if all of the alias sets within this AST are known not to
1047/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
1048bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1049                const Loop *L) {
1050  if (CurAST) {
1051    for (AliasSet &AS : *CurAST) {
1052      if (!AS.isForwardingAliasSet() && AS.isMod()) {
1053        return false;
1054      }
1055    }
1056    return true;
1057  } else { /*MSSAU*/
1058    for (auto *BB : L->getBlocks())
1059      if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1060        return false;
1061    return true;
1062  }
1063}
1064
1065/// Return true if I is the only Instruction with a MemoryAccess in L.
1066bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1067                        const MemorySSAUpdater *MSSAU) {
1068  for (auto *BB : L->getBlocks())
1069    if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1070      int NotAPhi = 0;
1071      for (const auto &Acc : *Accs) {
1072        if (isa<MemoryPhi>(&Acc))
1073          continue;
1074        const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1075        if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1076          return false;
1077      }
1078    }
1079  return true;
1080}
1081}
1082
1083bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1084                              Loop *CurLoop, AliasSetTracker *CurAST,
1085                              MemorySSAUpdater *MSSAU,
1086                              bool TargetExecutesOncePerLoop,
1087                              SinkAndHoistLICMFlags *Flags,
1088                              OptimizationRemarkEmitter *ORE) {
1089  // If we don't understand the instruction, bail early.
1090  if (!isHoistableAndSinkableInst(I))
1091    return false;
1092
1093  MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
1094  if (MSSA)
1095    assert(Flags != nullptr && "Flags cannot be null.");
1096
1097  // Loads have extra constraints we have to verify before we can hoist them.
1098  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1099    if (!LI->isUnordered())
1100      return false; // Don't sink/hoist volatile or ordered atomic loads!
1101
1102    // Loads from constant memory are always safe to move, even if they end up
1103    // in the same alias set as something that ends up being modified.
1104    if (AA->pointsToConstantMemory(LI->getOperand(0)))
1105      return true;
1106    if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1107      return true;
1108
1109    if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1110      return false; // Don't risk duplicating unordered loads
1111
1112    // This checks for an invariant.start dominating the load.
1113    if (isLoadInvariantInLoop(LI, DT, CurLoop))
1114      return true;
1115
1116    bool Invalidated;
1117    if (CurAST)
1118      Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1119                                             CurLoop, AA);
1120    else
1121      Invalidated = pointerInvalidatedByLoopWithMSSA(
1122          MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
1123    // Check loop-invariant address because this may also be a sinkable load
1124    // whose address is not necessarily loop-invariant.
1125    if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1126      ORE->emit([&]() {
1127        return OptimizationRemarkMissed(
1128                   DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1129               << "failed to move load with loop-invariant address "
1130                  "because the loop may invalidate its value";
1131      });
1132
1133    return !Invalidated;
1134  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1135    // Don't sink or hoist dbg info; it's legal, but not useful.
1136    if (isa<DbgInfoIntrinsic>(I))
1137      return false;
1138
1139    // Don't sink calls which can throw.
1140    if (CI->mayThrow())
1141      return false;
1142
1143    using namespace PatternMatch;
1144    if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1145      // Assumes don't actually alias anything or throw
1146      return true;
1147
1148    if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1149      // Widenable conditions don't actually alias anything or throw
1150      return true;
1151
1152    // Handle simple cases by querying alias analysis.
1153    FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1154    if (Behavior == FMRB_DoesNotAccessMemory)
1155      return true;
1156    if (AliasAnalysis::onlyReadsMemory(Behavior)) {
1157      // A readonly argmemonly function only reads from memory pointed to by
1158      // it's arguments with arbitrary offsets.  If we can prove there are no
1159      // writes to this memory in the loop, we can hoist or sink.
1160      if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) {
1161        // TODO: expand to writeable arguments
1162        for (Value *Op : CI->arg_operands())
1163          if (Op->getType()->isPointerTy()) {
1164            bool Invalidated;
1165            if (CurAST)
1166              Invalidated = pointerInvalidatedByLoop(
1167                  MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
1168                  CurAST, CurLoop, AA);
1169            else
1170              Invalidated = pointerInvalidatedByLoopWithMSSA(
1171                  MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
1172                  *Flags);
1173            if (Invalidated)
1174              return false;
1175          }
1176        return true;
1177      }
1178
1179      // If this call only reads from memory and there are no writes to memory
1180      // in the loop, we can hoist or sink the call as appropriate.
1181      if (isReadOnly(CurAST, MSSAU, CurLoop))
1182        return true;
1183    }
1184
1185    // FIXME: This should use mod/ref information to see if we can hoist or
1186    // sink the call.
1187
1188    return false;
1189  } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1190    // Fences alias (most) everything to provide ordering.  For the moment,
1191    // just give up if there are any other memory operations in the loop.
1192    if (CurAST) {
1193      auto Begin = CurAST->begin();
1194      assert(Begin != CurAST->end() && "must contain FI");
1195      if (std::next(Begin) != CurAST->end())
1196        // constant memory for instance, TODO: handle better
1197        return false;
1198      auto *UniqueI = Begin->getUniqueInstruction();
1199      if (!UniqueI)
1200        // other memory op, give up
1201        return false;
1202      (void)FI; // suppress unused variable warning
1203      assert(UniqueI == FI && "AS must contain FI");
1204      return true;
1205    } else // MSSAU
1206      return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1207  } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1208    if (!SI->isUnordered())
1209      return false; // Don't sink/hoist volatile or ordered atomic store!
1210
1211    // We can only hoist a store that we can prove writes a value which is not
1212    // read or overwritten within the loop.  For those cases, we fallback to
1213    // load store promotion instead.  TODO: We can extend this to cases where
1214    // there is exactly one write to the location and that write dominates an
1215    // arbitrary number of reads in the loop.
1216    if (CurAST) {
1217      auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1218
1219      if (AS.isRef() || !AS.isMustAlias())
1220        // Quick exit test, handled by the full path below as well.
1221        return false;
1222      auto *UniqueI = AS.getUniqueInstruction();
1223      if (!UniqueI)
1224        // other memory op, give up
1225        return false;
1226      assert(UniqueI == SI && "AS must contain SI");
1227      return true;
1228    } else { // MSSAU
1229      if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1230        return true;
1231      // If there are more accesses than the Promotion cap, give up, we're not
1232      // walking a list that long.
1233      if (Flags->NoOfMemAccTooLarge)
1234        return false;
1235      // Check store only if there's still "quota" to check clobber.
1236      if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
1237        return false;
1238      // If there are interfering Uses (i.e. their defining access is in the
1239      // loop), or ordered loads (stored as Defs!), don't move this store.
1240      // Could do better here, but this is conservatively correct.
1241      // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1242      // moving accesses. Can also extend to dominating uses.
1243      auto *SIMD = MSSA->getMemoryAccess(SI);
1244      for (auto *BB : CurLoop->getBlocks())
1245        if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1246          for (const auto &MA : *Accesses)
1247            if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1248              auto *MD = MU->getDefiningAccess();
1249              if (!MSSA->isLiveOnEntryDef(MD) &&
1250                  CurLoop->contains(MD->getBlock()))
1251                return false;
1252              // Disable hoisting past potentially interfering loads. Optimized
1253              // Uses may point to an access outside the loop, as getClobbering
1254              // checks the previous iteration when walking the backedge.
1255              // FIXME: More precise: no Uses that alias SI.
1256              if (!Flags->IsSink && !MSSA->dominates(SIMD, MU))
1257                return false;
1258            } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1259              if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1260                (void)LI; // Silence warning.
1261                assert(!LI->isUnordered() && "Expected unordered load");
1262                return false;
1263              }
1264              // Any call, while it may not be clobbering SI, it may be a use.
1265              if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1266                // Check if the call may read from the memory locattion written
1267                // to by SI. Check CI's attributes and arguments; the number of
1268                // such checks performed is limited above by NoOfMemAccTooLarge.
1269                ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1270                if (isModOrRefSet(MRI))
1271                  return false;
1272              }
1273            }
1274        }
1275
1276      auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1277      Flags->LicmMssaOptCounter++;
1278      // If there are no clobbering Defs in the loop, store is safe to hoist.
1279      return MSSA->isLiveOnEntryDef(Source) ||
1280             !CurLoop->contains(Source->getBlock());
1281    }
1282  }
1283
1284  assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1285
1286  // We've established mechanical ability and aliasing, it's up to the caller
1287  // to check fault safety
1288  return true;
1289}
1290
1291/// Returns true if a PHINode is a trivially replaceable with an
1292/// Instruction.
1293/// This is true when all incoming values are that instruction.
1294/// This pattern occurs most often with LCSSA PHI nodes.
1295///
1296static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1297  for (const Value *IncValue : PN.incoming_values())
1298    if (IncValue != &I)
1299      return false;
1300
1301  return true;
1302}
1303
1304/// Return true if the instruction is free in the loop.
1305static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1306                         const TargetTransformInfo *TTI) {
1307
1308  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1309    if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free)
1310      return false;
1311    // For a GEP, we cannot simply use getUserCost because currently it
1312    // optimistically assume that a GEP will fold into addressing mode
1313    // regardless of its users.
1314    const BasicBlock *BB = GEP->getParent();
1315    for (const User *U : GEP->users()) {
1316      const Instruction *UI = cast<Instruction>(U);
1317      if (CurLoop->contains(UI) &&
1318          (BB != UI->getParent() ||
1319           (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1320        return false;
1321    }
1322    return true;
1323  } else
1324    return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free;
1325}
1326
1327/// Return true if the only users of this instruction are outside of
1328/// the loop. If this is true, we can sink the instruction to the exit
1329/// blocks of the loop.
1330///
1331/// We also return true if the instruction could be folded away in lowering.
1332/// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
1333static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1334                                  const LoopSafetyInfo *SafetyInfo,
1335                                  TargetTransformInfo *TTI, bool &FreeInLoop) {
1336  const auto &BlockColors = SafetyInfo->getBlockColors();
1337  bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1338  for (const User *U : I.users()) {
1339    const Instruction *UI = cast<Instruction>(U);
1340    if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1341      const BasicBlock *BB = PN->getParent();
1342      // We cannot sink uses in catchswitches.
1343      if (isa<CatchSwitchInst>(BB->getTerminator()))
1344        return false;
1345
1346      // We need to sink a callsite to a unique funclet.  Avoid sinking if the
1347      // phi use is too muddled.
1348      if (isa<CallInst>(I))
1349        if (!BlockColors.empty() &&
1350            BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1351          return false;
1352    }
1353
1354    if (CurLoop->contains(UI)) {
1355      if (IsFree) {
1356        FreeInLoop = true;
1357        continue;
1358      }
1359      return false;
1360    }
1361  }
1362  return true;
1363}
1364
1365static Instruction *CloneInstructionInExitBlock(
1366    Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1367    const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1368  Instruction *New;
1369  if (auto *CI = dyn_cast<CallInst>(&I)) {
1370    const auto &BlockColors = SafetyInfo->getBlockColors();
1371
1372    // Sinking call-sites need to be handled differently from other
1373    // instructions.  The cloned call-site needs a funclet bundle operand
1374    // appropriate for its location in the CFG.
1375    SmallVector<OperandBundleDef, 1> OpBundles;
1376    for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1377         BundleIdx != BundleEnd; ++BundleIdx) {
1378      OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1379      if (Bundle.getTagID() == LLVMContext::OB_funclet)
1380        continue;
1381
1382      OpBundles.emplace_back(Bundle);
1383    }
1384
1385    if (!BlockColors.empty()) {
1386      const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1387      assert(CV.size() == 1 && "non-unique color for exit block!");
1388      BasicBlock *BBColor = CV.front();
1389      Instruction *EHPad = BBColor->getFirstNonPHI();
1390      if (EHPad->isEHPad())
1391        OpBundles.emplace_back("funclet", EHPad);
1392    }
1393
1394    New = CallInst::Create(CI, OpBundles);
1395  } else {
1396    New = I.clone();
1397  }
1398
1399  ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1400  if (!I.getName().empty())
1401    New->setName(I.getName() + ".le");
1402
1403  if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1404    // Create a new MemoryAccess and let MemorySSA set its defining access.
1405    MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1406        New, nullptr, New->getParent(), MemorySSA::Beginning);
1407    if (NewMemAcc) {
1408      if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1409        MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1410      else {
1411        auto *MemUse = cast<MemoryUse>(NewMemAcc);
1412        MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1413      }
1414    }
1415  }
1416
1417  // Build LCSSA PHI nodes for any in-loop operands. Note that this is
1418  // particularly cheap because we can rip off the PHI node that we're
1419  // replacing for the number and blocks of the predecessors.
1420  // OPT: If this shows up in a profile, we can instead finish sinking all
1421  // invariant instructions, and then walk their operands to re-establish
1422  // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1423  // sinking bottom-up.
1424  for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
1425       ++OI)
1426    if (Instruction *OInst = dyn_cast<Instruction>(*OI))
1427      if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
1428        if (!OLoop->contains(&PN)) {
1429          PHINode *OpPN =
1430              PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1431                              OInst->getName() + ".lcssa", &ExitBlock.front());
1432          for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1433            OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1434          *OI = OpPN;
1435        }
1436  return New;
1437}
1438
1439static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1440                             AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1441  if (AST)
1442    AST->deleteValue(&I);
1443  if (MSSAU)
1444    MSSAU->removeMemoryAccess(&I);
1445  SafetyInfo.removeInstruction(&I);
1446  I.eraseFromParent();
1447}
1448
1449static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1450                                  ICFLoopSafetyInfo &SafetyInfo,
1451                                  MemorySSAUpdater *MSSAU,
1452                                  ScalarEvolution *SE) {
1453  SafetyInfo.removeInstruction(&I);
1454  SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1455  I.moveBefore(&Dest);
1456  if (MSSAU)
1457    if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1458            MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1459      MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1460                         MemorySSA::BeforeTerminator);
1461  if (SE)
1462    SE->forgetValue(&I);
1463}
1464
1465static Instruction *sinkThroughTriviallyReplaceablePHI(
1466    PHINode *TPN, Instruction *I, LoopInfo *LI,
1467    SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1468    const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1469    MemorySSAUpdater *MSSAU) {
1470  assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1471         "Expect only trivially replaceable PHI");
1472  BasicBlock *ExitBlock = TPN->getParent();
1473  Instruction *New;
1474  auto It = SunkCopies.find(ExitBlock);
1475  if (It != SunkCopies.end())
1476    New = It->second;
1477  else
1478    New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock(
1479        *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1480  return New;
1481}
1482
1483static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1484  BasicBlock *BB = PN->getParent();
1485  if (!BB->canSplitPredecessors())
1486    return false;
1487  // It's not impossible to split EHPad blocks, but if BlockColors already exist
1488  // it require updating BlockColors for all offspring blocks accordingly. By
1489  // skipping such corner case, we can make updating BlockColors after splitting
1490  // predecessor fairly simple.
1491  if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1492    return false;
1493  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1494    BasicBlock *BBPred = *PI;
1495    if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1496        isa<CallBrInst>(BBPred->getTerminator()))
1497      return false;
1498  }
1499  return true;
1500}
1501
1502static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1503                                        LoopInfo *LI, const Loop *CurLoop,
1504                                        LoopSafetyInfo *SafetyInfo,
1505                                        MemorySSAUpdater *MSSAU) {
1506#ifndef NDEBUG
1507  SmallVector<BasicBlock *, 32> ExitBlocks;
1508  CurLoop->getUniqueExitBlocks(ExitBlocks);
1509  SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1510                                             ExitBlocks.end());
1511#endif
1512  BasicBlock *ExitBB = PN->getParent();
1513  assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1514
1515  // Split predecessors of the loop exit to make instructions in the loop are
1516  // exposed to exit blocks through trivially replaceable PHIs while keeping the
1517  // loop in the canonical form where each predecessor of each exit block should
1518  // be contained within the loop. For example, this will convert the loop below
1519  // from
1520  //
1521  // LB1:
1522  //   %v1 =
1523  //   br %LE, %LB2
1524  // LB2:
1525  //   %v2 =
1526  //   br %LE, %LB1
1527  // LE:
1528  //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1529  //
1530  // to
1531  //
1532  // LB1:
1533  //   %v1 =
1534  //   br %LE.split, %LB2
1535  // LB2:
1536  //   %v2 =
1537  //   br %LE.split2, %LB1
1538  // LE.split:
1539  //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
1540  //   br %LE
1541  // LE.split2:
1542  //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
1543  //   br %LE
1544  // LE:
1545  //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1546  //
1547  const auto &BlockColors = SafetyInfo->getBlockColors();
1548  SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1549  while (!PredBBs.empty()) {
1550    BasicBlock *PredBB = *PredBBs.begin();
1551    assert(CurLoop->contains(PredBB) &&
1552           "Expect all predecessors are in the loop");
1553    if (PN->getBasicBlockIndex(PredBB) >= 0) {
1554      BasicBlock *NewPred = SplitBlockPredecessors(
1555          ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1556      // Since we do not allow splitting EH-block with BlockColors in
1557      // canSplitPredecessors(), we can simply assign predecessor's color to
1558      // the new block.
1559      if (!BlockColors.empty())
1560        // Grab a reference to the ColorVector to be inserted before getting the
1561        // reference to the vector we are copying because inserting the new
1562        // element in BlockColors might cause the map to be reallocated.
1563        SafetyInfo->copyColors(NewPred, PredBB);
1564    }
1565    PredBBs.remove(PredBB);
1566  }
1567}
1568
1569/// When an instruction is found to only be used outside of the loop, this
1570/// function moves it to the exit blocks and patches up SSA form as needed.
1571/// This method is guaranteed to remove the original instruction from its
1572/// position, and may either delete it or move it to outside of the loop.
1573///
1574static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1575                 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
1576                 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
1577  LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1578  ORE->emit([&]() {
1579    return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1580           << "sinking " << ore::NV("Inst", &I);
1581  });
1582  bool Changed = false;
1583  if (isa<LoadInst>(I))
1584    ++NumMovedLoads;
1585  else if (isa<CallInst>(I))
1586    ++NumMovedCalls;
1587  ++NumSunk;
1588
1589  // Iterate over users to be ready for actual sinking. Replace users via
1590  // unreachable blocks with undef and make all user PHIs trivially replaceable.
1591  SmallPtrSet<Instruction *, 8> VisitedUsers;
1592  for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1593    auto *User = cast<Instruction>(*UI);
1594    Use &U = UI.getUse();
1595    ++UI;
1596
1597    if (VisitedUsers.count(User) || CurLoop->contains(User))
1598      continue;
1599
1600    if (!DT->isReachableFromEntry(User->getParent())) {
1601      U = UndefValue::get(I.getType());
1602      Changed = true;
1603      continue;
1604    }
1605
1606    // The user must be a PHI node.
1607    PHINode *PN = cast<PHINode>(User);
1608
1609    // Surprisingly, instructions can be used outside of loops without any
1610    // exits.  This can only happen in PHI nodes if the incoming block is
1611    // unreachable.
1612    BasicBlock *BB = PN->getIncomingBlock(U);
1613    if (!DT->isReachableFromEntry(BB)) {
1614      U = UndefValue::get(I.getType());
1615      Changed = true;
1616      continue;
1617    }
1618
1619    VisitedUsers.insert(PN);
1620    if (isTriviallyReplaceablePHI(*PN, I))
1621      continue;
1622
1623    if (!canSplitPredecessors(PN, SafetyInfo))
1624      return Changed;
1625
1626    // Split predecessors of the PHI so that we can make users trivially
1627    // replaceable.
1628    splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1629
1630    // Should rebuild the iterators, as they may be invalidated by
1631    // splitPredecessorsOfLoopExit().
1632    UI = I.user_begin();
1633    UE = I.user_end();
1634  }
1635
1636  if (VisitedUsers.empty())
1637    return Changed;
1638
1639#ifndef NDEBUG
1640  SmallVector<BasicBlock *, 32> ExitBlocks;
1641  CurLoop->getUniqueExitBlocks(ExitBlocks);
1642  SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1643                                             ExitBlocks.end());
1644#endif
1645
1646  // Clones of this instruction. Don't create more than one per exit block!
1647  SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1648
1649  // If this instruction is only used outside of the loop, then all users are
1650  // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1651  // the instruction.
1652  SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1653  for (auto *UI : Users) {
1654    auto *User = cast<Instruction>(UI);
1655
1656    if (CurLoop->contains(User))
1657      continue;
1658
1659    PHINode *PN = cast<PHINode>(User);
1660    assert(ExitBlockSet.count(PN->getParent()) &&
1661           "The LCSSA PHI is not in an exit block!");
1662    // The PHI must be trivially replaceable.
1663    Instruction *New = sinkThroughTriviallyReplaceablePHI(
1664        PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1665    PN->replaceAllUsesWith(New);
1666    eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1667    Changed = true;
1668  }
1669  return Changed;
1670}
1671
1672/// When an instruction is found to only use loop invariant operands that
1673/// is safe to hoist, this instruction is called to do the dirty work.
1674///
1675static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1676                  BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1677                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1678                  OptimizationRemarkEmitter *ORE) {
1679  LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I
1680                    << "\n");
1681  ORE->emit([&]() {
1682    return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1683                                                         << ore::NV("Inst", &I);
1684  });
1685
1686  // Metadata can be dependent on conditions we are hoisting above.
1687  // Conservatively strip all metadata on the instruction unless we were
1688  // guaranteed to execute I if we entered the loop, in which case the metadata
1689  // is valid in the loop preheader.
1690  if (I.hasMetadataOtherThanDebugLoc() &&
1691      // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1692      // time in isGuaranteedToExecute if we don't actually have anything to
1693      // drop.  It is a compile time optimization, not required for correctness.
1694      !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1695    I.dropUnknownNonDebugMetadata();
1696
1697  if (isa<PHINode>(I))
1698    // Move the new node to the end of the phi list in the destination block.
1699    moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1700  else
1701    // Move the new node to the destination block, before its terminator.
1702    moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1703
1704  // Apply line 0 debug locations when we are moving instructions to different
1705  // basic blocks because we want to avoid jumpy line tables.
1706  if (const DebugLoc &DL = I.getDebugLoc())
1707    I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1708
1709  if (isa<LoadInst>(I))
1710    ++NumMovedLoads;
1711  else if (isa<CallInst>(I))
1712    ++NumMovedCalls;
1713  ++NumHoisted;
1714}
1715
1716/// Only sink or hoist an instruction if it is not a trapping instruction,
1717/// or if the instruction is known not to trap when moved to the preheader.
1718/// or if it is a trapping instruction and is guaranteed to execute.
1719static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1720                                           const DominatorTree *DT,
1721                                           const Loop *CurLoop,
1722                                           const LoopSafetyInfo *SafetyInfo,
1723                                           OptimizationRemarkEmitter *ORE,
1724                                           const Instruction *CtxI) {
1725  if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
1726    return true;
1727
1728  bool GuaranteedToExecute =
1729      SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1730
1731  if (!GuaranteedToExecute) {
1732    auto *LI = dyn_cast<LoadInst>(&Inst);
1733    if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1734      ORE->emit([&]() {
1735        return OptimizationRemarkMissed(
1736                   DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1737               << "failed to hoist load with loop-invariant address "
1738                  "because load is conditionally executed";
1739      });
1740  }
1741
1742  return GuaranteedToExecute;
1743}
1744
1745namespace {
1746class LoopPromoter : public LoadAndStorePromoter {
1747  Value *SomePtr; // Designated pointer to store to.
1748  const SmallSetVector<Value *, 8> &PointerMustAliases;
1749  SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1750  SmallVectorImpl<Instruction *> &LoopInsertPts;
1751  SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1752  PredIteratorCache &PredCache;
1753  AliasSetTracker &AST;
1754  MemorySSAUpdater *MSSAU;
1755  LoopInfo &LI;
1756  DebugLoc DL;
1757  int Alignment;
1758  bool UnorderedAtomic;
1759  AAMDNodes AATags;
1760  ICFLoopSafetyInfo &SafetyInfo;
1761
1762  Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1763    if (Instruction *I = dyn_cast<Instruction>(V))
1764      if (Loop *L = LI.getLoopFor(I->getParent()))
1765        if (!L->contains(BB)) {
1766          // We need to create an LCSSA PHI node for the incoming value and
1767          // store that.
1768          PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1769                                        I->getName() + ".lcssa", &BB->front());
1770          for (BasicBlock *Pred : PredCache.get(BB))
1771            PN->addIncoming(I, Pred);
1772          return PN;
1773        }
1774    return V;
1775  }
1776
1777public:
1778  LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1779               const SmallSetVector<Value *, 8> &PMA,
1780               SmallVectorImpl<BasicBlock *> &LEB,
1781               SmallVectorImpl<Instruction *> &LIP,
1782               SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1783               AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1784               DebugLoc dl, int alignment, bool UnorderedAtomic,
1785               const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1786      : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1787        LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1788        PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1789        Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1790        SafetyInfo(SafetyInfo) {}
1791
1792  bool isInstInList(Instruction *I,
1793                    const SmallVectorImpl<Instruction *> &) const override {
1794    Value *Ptr;
1795    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1796      Ptr = LI->getOperand(0);
1797    else
1798      Ptr = cast<StoreInst>(I)->getPointerOperand();
1799    return PointerMustAliases.count(Ptr);
1800  }
1801
1802  void doExtraRewritesBeforeFinalDeletion() override {
1803    // Insert stores after in the loop exit blocks.  Each exit block gets a
1804    // store of the live-out values that feed them.  Since we've already told
1805    // the SSA updater about the defs in the loop and the preheader
1806    // definition, it is all set and we can start using it.
1807    for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1808      BasicBlock *ExitBlock = LoopExitBlocks[i];
1809      Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1810      LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1811      Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1812      Instruction *InsertPos = LoopInsertPts[i];
1813      StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1814      if (UnorderedAtomic)
1815        NewSI->setOrdering(AtomicOrdering::Unordered);
1816      NewSI->setAlignment(MaybeAlign(Alignment));
1817      NewSI->setDebugLoc(DL);
1818      if (AATags)
1819        NewSI->setAAMetadata(AATags);
1820
1821      if (MSSAU) {
1822        MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1823        MemoryAccess *NewMemAcc;
1824        if (!MSSAInsertPoint) {
1825          NewMemAcc = MSSAU->createMemoryAccessInBB(
1826              NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1827        } else {
1828          NewMemAcc =
1829              MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1830        }
1831        MSSAInsertPts[i] = NewMemAcc;
1832        MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1833        // FIXME: true for safety, false may still be correct.
1834      }
1835    }
1836  }
1837
1838  void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1839    // Update alias analysis.
1840    AST.copyValue(LI, V);
1841  }
1842  void instructionDeleted(Instruction *I) const override {
1843    SafetyInfo.removeInstruction(I);
1844    AST.deleteValue(I);
1845    if (MSSAU)
1846      MSSAU->removeMemoryAccess(I);
1847  }
1848};
1849
1850
1851/// Return true iff we can prove that a caller of this function can not inspect
1852/// the contents of the provided object in a well defined program.
1853bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
1854  if (isa<AllocaInst>(Object))
1855    // Since the alloca goes out of scope, we know the caller can't retain a
1856    // reference to it and be well defined.  Thus, we don't need to check for
1857    // capture.
1858    return true;
1859
1860  // For all other objects we need to know that the caller can't possibly
1861  // have gotten a reference to the object.  There are two components of
1862  // that:
1863  //   1) Object can't be escaped by this function.  This is what
1864  //      PointerMayBeCaptured checks.
1865  //   2) Object can't have been captured at definition site.  For this, we
1866  //      need to know the return value is noalias.  At the moment, we use a
1867  //      weaker condition and handle only AllocLikeFunctions (which are
1868  //      known to be noalias).  TODO
1869  return isAllocLikeFn(Object, TLI) &&
1870    !PointerMayBeCaptured(Object, true, true);
1871}
1872
1873} // namespace
1874
1875/// Try to promote memory values to scalars by sinking stores out of the
1876/// loop and moving loads to before the loop.  We do this by looping over
1877/// the stores in the loop, looking for stores to Must pointers which are
1878/// loop invariant.
1879///
1880bool llvm::promoteLoopAccessesToScalars(
1881    const SmallSetVector<Value *, 8> &PointerMustAliases,
1882    SmallVectorImpl<BasicBlock *> &ExitBlocks,
1883    SmallVectorImpl<Instruction *> &InsertPts,
1884    SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1885    LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1886    Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
1887    ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
1888  // Verify inputs.
1889  assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1890         CurAST != nullptr && SafetyInfo != nullptr &&
1891         "Unexpected Input to promoteLoopAccessesToScalars");
1892
1893  Value *SomePtr = *PointerMustAliases.begin();
1894  BasicBlock *Preheader = CurLoop->getLoopPreheader();
1895
1896  // It is not safe to promote a load/store from the loop if the load/store is
1897  // conditional.  For example, turning:
1898  //
1899  //    for () { if (c) *P += 1; }
1900  //
1901  // into:
1902  //
1903  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
1904  //
1905  // is not safe, because *P may only be valid to access if 'c' is true.
1906  //
1907  // The safety property divides into two parts:
1908  // p1) The memory may not be dereferenceable on entry to the loop.  In this
1909  //    case, we can't insert the required load in the preheader.
1910  // p2) The memory model does not allow us to insert a store along any dynamic
1911  //    path which did not originally have one.
1912  //
1913  // If at least one store is guaranteed to execute, both properties are
1914  // satisfied, and promotion is legal.
1915  //
1916  // This, however, is not a necessary condition. Even if no store/load is
1917  // guaranteed to execute, we can still establish these properties.
1918  // We can establish (p1) by proving that hoisting the load into the preheader
1919  // is safe (i.e. proving dereferenceability on all paths through the loop). We
1920  // can use any access within the alias set to prove dereferenceability,
1921  // since they're all must alias.
1922  //
1923  // There are two ways establish (p2):
1924  // a) Prove the location is thread-local. In this case the memory model
1925  // requirement does not apply, and stores are safe to insert.
1926  // b) Prove a store dominates every exit block. In this case, if an exit
1927  // blocks is reached, the original dynamic path would have taken us through
1928  // the store, so inserting a store into the exit block is safe. Note that this
1929  // is different from the store being guaranteed to execute. For instance,
1930  // if an exception is thrown on the first iteration of the loop, the original
1931  // store is never executed, but the exit blocks are not executed either.
1932
1933  bool DereferenceableInPH = false;
1934  bool SafeToInsertStore = false;
1935
1936  SmallVector<Instruction *, 64> LoopUses;
1937
1938  // We start with an alignment of one and try to find instructions that allow
1939  // us to prove better alignment.
1940  unsigned Alignment = 1;
1941  // Keep track of which types of access we see
1942  bool SawUnorderedAtomic = false;
1943  bool SawNotAtomic = false;
1944  AAMDNodes AATags;
1945
1946  const DataLayout &MDL = Preheader->getModule()->getDataLayout();
1947
1948  bool IsKnownThreadLocalObject = false;
1949  if (SafetyInfo->anyBlockMayThrow()) {
1950    // If a loop can throw, we have to insert a store along each unwind edge.
1951    // That said, we can't actually make the unwind edge explicit. Therefore,
1952    // we have to prove that the store is dead along the unwind edge.  We do
1953    // this by proving that the caller can't have a reference to the object
1954    // after return and thus can't possibly load from the object.
1955    Value *Object = GetUnderlyingObject(SomePtr, MDL);
1956    if (!isKnownNonEscaping(Object, TLI))
1957      return false;
1958    // Subtlety: Alloca's aren't visible to callers, but *are* potentially
1959    // visible to other threads if captured and used during their lifetimes.
1960    IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
1961  }
1962
1963  // Check that all of the pointers in the alias set have the same type.  We
1964  // cannot (yet) promote a memory location that is loaded and stored in
1965  // different sizes.  While we are at it, collect alignment and AA info.
1966  for (Value *ASIV : PointerMustAliases) {
1967    // Check that all of the pointers in the alias set have the same type.  We
1968    // cannot (yet) promote a memory location that is loaded and stored in
1969    // different sizes.
1970    if (SomePtr->getType() != ASIV->getType())
1971      return false;
1972
1973    for (User *U : ASIV->users()) {
1974      // Ignore instructions that are outside the loop.
1975      Instruction *UI = dyn_cast<Instruction>(U);
1976      if (!UI || !CurLoop->contains(UI))
1977        continue;
1978
1979      // If there is an non-load/store instruction in the loop, we can't promote
1980      // it.
1981      if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
1982        if (!Load->isUnordered())
1983          return false;
1984
1985        SawUnorderedAtomic |= Load->isAtomic();
1986        SawNotAtomic |= !Load->isAtomic();
1987
1988        unsigned InstAlignment = Load->getAlignment();
1989        if (!InstAlignment)
1990          InstAlignment =
1991              MDL.getABITypeAlignment(Load->getType());
1992
1993        // Note that proving a load safe to speculate requires proving
1994        // sufficient alignment at the target location.  Proving it guaranteed
1995        // to execute does as well.  Thus we can increase our guaranteed
1996        // alignment as well.
1997        if (!DereferenceableInPH || (InstAlignment > Alignment))
1998          if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
1999                                             ORE, Preheader->getTerminator())) {
2000            DereferenceableInPH = true;
2001            Alignment = std::max(Alignment, InstAlignment);
2002          }
2003      } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2004        // Stores *of* the pointer are not interesting, only stores *to* the
2005        // pointer.
2006        if (UI->getOperand(1) != ASIV)
2007          continue;
2008        if (!Store->isUnordered())
2009          return false;
2010
2011        SawUnorderedAtomic |= Store->isAtomic();
2012        SawNotAtomic |= !Store->isAtomic();
2013
2014        // If the store is guaranteed to execute, both properties are satisfied.
2015        // We may want to check if a store is guaranteed to execute even if we
2016        // already know that promotion is safe, since it may have higher
2017        // alignment than any other guaranteed stores, in which case we can
2018        // raise the alignment on the promoted store.
2019        unsigned InstAlignment = Store->getAlignment();
2020        if (!InstAlignment)
2021          InstAlignment =
2022              MDL.getABITypeAlignment(Store->getValueOperand()->getType());
2023
2024        if (!DereferenceableInPH || !SafeToInsertStore ||
2025            (InstAlignment > Alignment)) {
2026          if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2027            DereferenceableInPH = true;
2028            SafeToInsertStore = true;
2029            Alignment = std::max(Alignment, InstAlignment);
2030          }
2031        }
2032
2033        // If a store dominates all exit blocks, it is safe to sink.
2034        // As explained above, if an exit block was executed, a dominating
2035        // store must have been executed at least once, so we are not
2036        // introducing stores on paths that did not have them.
2037        // Note that this only looks at explicit exit blocks. If we ever
2038        // start sinking stores into unwind edges (see above), this will break.
2039        if (!SafeToInsertStore)
2040          SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2041            return DT->dominates(Store->getParent(), Exit);
2042          });
2043
2044        // If the store is not guaranteed to execute, we may still get
2045        // deref info through it.
2046        if (!DereferenceableInPH) {
2047          DereferenceableInPH = isDereferenceableAndAlignedPointer(
2048              Store->getPointerOperand(), Store->getValueOperand()->getType(),
2049              MaybeAlign(Store->getAlignment()), MDL,
2050              Preheader->getTerminator(), DT);
2051        }
2052      } else
2053        return false; // Not a load or store.
2054
2055      // Merge the AA tags.
2056      if (LoopUses.empty()) {
2057        // On the first load/store, just take its AA tags.
2058        UI->getAAMetadata(AATags);
2059      } else if (AATags) {
2060        UI->getAAMetadata(AATags, /* Merge = */ true);
2061      }
2062
2063      LoopUses.push_back(UI);
2064    }
2065  }
2066
2067  // If we found both an unordered atomic instruction and a non-atomic memory
2068  // access, bail.  We can't blindly promote non-atomic to atomic since we
2069  // might not be able to lower the result.  We can't downgrade since that
2070  // would violate memory model.  Also, align 0 is an error for atomics.
2071  if (SawUnorderedAtomic && SawNotAtomic)
2072    return false;
2073
2074  // If we're inserting an atomic load in the preheader, we must be able to
2075  // lower it.  We're only guaranteed to be able to lower naturally aligned
2076  // atomics.
2077  auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2078  if (SawUnorderedAtomic &&
2079      Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2080    return false;
2081
2082  // If we couldn't prove we can hoist the load, bail.
2083  if (!DereferenceableInPH)
2084    return false;
2085
2086  // We know we can hoist the load, but don't have a guaranteed store.
2087  // Check whether the location is thread-local. If it is, then we can insert
2088  // stores along paths which originally didn't have them without violating the
2089  // memory model.
2090  if (!SafeToInsertStore) {
2091    if (IsKnownThreadLocalObject)
2092      SafeToInsertStore = true;
2093    else {
2094      Value *Object = GetUnderlyingObject(SomePtr, MDL);
2095      SafeToInsertStore =
2096          (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2097          !PointerMayBeCaptured(Object, true, true);
2098    }
2099  }
2100
2101  // If we've still failed to prove we can sink the store, give up.
2102  if (!SafeToInsertStore)
2103    return false;
2104
2105  // Otherwise, this is safe to promote, lets do it!
2106  LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
2107                    << '\n');
2108  ORE->emit([&]() {
2109    return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2110                              LoopUses[0])
2111           << "Moving accesses to memory location out of the loop";
2112  });
2113  ++NumPromoted;
2114
2115  // Grab a debug location for the inserted loads/stores; given that the
2116  // inserted loads/stores have little relation to the original loads/stores,
2117  // this code just arbitrarily picks a location from one, since any debug
2118  // location is better than none.
2119  DebugLoc DL = LoopUses[0]->getDebugLoc();
2120
2121  // We use the SSAUpdater interface to insert phi nodes as required.
2122  SmallVector<PHINode *, 16> NewPHIs;
2123  SSAUpdater SSA(&NewPHIs);
2124  LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2125                        InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL,
2126                        Alignment, SawUnorderedAtomic, AATags, *SafetyInfo);
2127
2128  // Set up the preheader to have a definition of the value.  It is the live-out
2129  // value from the preheader that uses in the loop will use.
2130  LoadInst *PreheaderLoad = new LoadInst(
2131      SomePtr->getType()->getPointerElementType(), SomePtr,
2132      SomePtr->getName() + ".promoted", Preheader->getTerminator());
2133  if (SawUnorderedAtomic)
2134    PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2135  PreheaderLoad->setAlignment(MaybeAlign(Alignment));
2136  PreheaderLoad->setDebugLoc(DL);
2137  if (AATags)
2138    PreheaderLoad->setAAMetadata(AATags);
2139  SSA.AddAvailableValue(Preheader, PreheaderLoad);
2140
2141  if (MSSAU) {
2142    MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2143        PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2144    MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2145    MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2146  }
2147
2148  if (MSSAU && VerifyMemorySSA)
2149    MSSAU->getMemorySSA()->verifyMemorySSA();
2150  // Rewrite all the loads in the loop and remember all the definitions from
2151  // stores in the loop.
2152  Promoter.run(LoopUses);
2153
2154  if (MSSAU && VerifyMemorySSA)
2155    MSSAU->getMemorySSA()->verifyMemorySSA();
2156  // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2157  if (PreheaderLoad->use_empty())
2158    eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2159
2160  return true;
2161}
2162
2163/// Returns an owning pointer to an alias set which incorporates aliasing info
2164/// from L and all subloops of L.
2165/// FIXME: In new pass manager, there is no helper function to handle loop
2166/// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed
2167/// from scratch for every loop. Hook up with the helper functions when
2168/// available in the new pass manager to avoid redundant computation.
2169std::unique_ptr<AliasSetTracker>
2170LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2171                                                 AliasAnalysis *AA) {
2172  std::unique_ptr<AliasSetTracker> CurAST;
2173  SmallVector<Loop *, 4> RecomputeLoops;
2174  for (Loop *InnerL : L->getSubLoops()) {
2175    auto MapI = LoopToAliasSetMap.find(InnerL);
2176    // If the AST for this inner loop is missing it may have been merged into
2177    // some other loop's AST and then that loop unrolled, and so we need to
2178    // recompute it.
2179    if (MapI == LoopToAliasSetMap.end()) {
2180      RecomputeLoops.push_back(InnerL);
2181      continue;
2182    }
2183    std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second);
2184
2185    if (CurAST) {
2186      // What if InnerLoop was modified by other passes ?
2187      // Once we've incorporated the inner loop's AST into ours, we don't need
2188      // the subloop's anymore.
2189      CurAST->add(*InnerAST);
2190    } else {
2191      CurAST = std::move(InnerAST);
2192    }
2193    LoopToAliasSetMap.erase(MapI);
2194  }
2195  if (!CurAST)
2196    CurAST = std::make_unique<AliasSetTracker>(*AA);
2197
2198  // Add everything from the sub loops that are no longer directly available.
2199  for (Loop *InnerL : RecomputeLoops)
2200    for (BasicBlock *BB : InnerL->blocks())
2201      CurAST->add(*BB);
2202
2203  // And merge in this loop (without anything from inner loops).
2204  for (BasicBlock *BB : L->blocks())
2205    if (LI->getLoopFor(BB) == L)
2206      CurAST->add(*BB);
2207
2208  return CurAST;
2209}
2210
2211std::unique_ptr<AliasSetTracker>
2212LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
2213    Loop *L, AliasAnalysis *AA, MemorySSAUpdater *MSSAU) {
2214  auto *MSSA = MSSAU->getMemorySSA();
2215  auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
2216  CurAST->addAllInstructionsInLoopUsingMSSA();
2217  return CurAST;
2218}
2219
2220/// Simple analysis hook. Clone alias set info.
2221///
2222void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
2223                                             Loop *L) {
2224  auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
2225  if (ASTIt == LICM.getLoopToAliasSetMap().end())
2226    return;
2227
2228  ASTIt->second->copyValue(From, To);
2229}
2230
2231/// Simple Analysis hook. Delete value V from alias set
2232///
2233void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) {
2234  auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
2235  if (ASTIt == LICM.getLoopToAliasSetMap().end())
2236    return;
2237
2238  ASTIt->second->deleteValue(V);
2239}
2240
2241/// Simple Analysis hook. Delete value L from alias set map.
2242///
2243void LegacyLICMPass::deleteAnalysisLoop(Loop *L) {
2244  if (!LICM.getLoopToAliasSetMap().count(L))
2245    return;
2246
2247  LICM.getLoopToAliasSetMap().erase(L);
2248}
2249
2250static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2251                                     AliasSetTracker *CurAST, Loop *CurLoop,
2252                                     AliasAnalysis *AA) {
2253  // First check to see if any of the basic blocks in CurLoop invalidate *V.
2254  bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2255
2256  if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2257    return isInvalidatedAccordingToAST;
2258
2259  // Check with a diagnostic analysis if we can refine the information above.
2260  // This is to identify the limitations of using the AST.
2261  // The alias set mechanism used by LICM has a major weakness in that it
2262  // combines all things which may alias into a single set *before* asking
2263  // modref questions. As a result, a single readonly call within a loop will
2264  // collapse all loads and stores into a single alias set and report
2265  // invalidation if the loop contains any store. For example, readonly calls
2266  // with deopt states have this form and create a general alias set with all
2267  // loads and stores.  In order to get any LICM in loops containing possible
2268  // deopt states we need a more precise invalidation of checking the mod ref
2269  // info of each instruction within the loop and LI. This has a complexity of
2270  // O(N^2), so currently, it is used only as a diagnostic tool since the
2271  // default value of LICMN2Threshold is zero.
2272
2273  // Don't look at nested loops.
2274  if (CurLoop->begin() != CurLoop->end())
2275    return true;
2276
2277  int N = 0;
2278  for (BasicBlock *BB : CurLoop->getBlocks())
2279    for (Instruction &I : *BB) {
2280      if (N >= LICMN2Theshold) {
2281        LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
2282                          << *(MemLoc.Ptr) << "\n");
2283        return true;
2284      }
2285      N++;
2286      auto Res = AA->getModRefInfo(&I, MemLoc);
2287      if (isModSet(Res)) {
2288        LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
2289                          << *(MemLoc.Ptr) << "\n");
2290        return true;
2291      }
2292    }
2293  LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
2294  return false;
2295}
2296
2297static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2298                                             Loop *CurLoop,
2299                                             SinkAndHoistLICMFlags &Flags) {
2300  // For hoisting, use the walker to determine safety
2301  if (!Flags.IsSink) {
2302    MemoryAccess *Source;
2303    // See declaration of SetLicmMssaOptCap for usage details.
2304    if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
2305      Source = MU->getDefiningAccess();
2306    else {
2307      Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2308      Flags.LicmMssaOptCounter++;
2309    }
2310    return !MSSA->isLiveOnEntryDef(Source) &&
2311           CurLoop->contains(Source->getBlock());
2312  }
2313
2314  // For sinking, we'd need to check all Defs below this use. The getClobbering
2315  // call will look on the backedge of the loop, but will check aliasing with
2316  // the instructions on the previous iteration.
2317  // For example:
2318  // for (i ... )
2319  //   load a[i] ( Use (LoE)
2320  //   store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2321  //   i++;
2322  // The load sees no clobbering inside the loop, as the backedge alias check
2323  // does phi translation, and will check aliasing against store a[i-1].
2324  // However sinking the load outside the loop, below the store is incorrect.
2325
2326  // For now, only sink if there are no Defs in the loop, and the existing ones
2327  // precede the use and are in the same block.
2328  // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2329  // needs PostDominatorTreeAnalysis.
2330  // FIXME: More precise: no Defs that alias this Use.
2331  if (Flags.NoOfMemAccTooLarge)
2332    return true;
2333  for (auto *BB : CurLoop->getBlocks())
2334    if (auto *Accesses = MSSA->getBlockDefs(BB))
2335      for (const auto &MA : *Accesses)
2336        if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2337          if (MU->getBlock() != MD->getBlock() ||
2338              !MSSA->locallyDominates(MD, MU))
2339            return true;
2340  return false;
2341}
2342
2343/// Little predicate that returns true if the specified basic block is in
2344/// a subloop of the current one, not the current one itself.
2345///
2346static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2347  assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2348  return LI->getLoopFor(BB) != CurLoop;
2349}
2350