1//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains logic for simplifying instructions based on information
10// about how they are used.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/IR/IntrinsicInst.h"
17#include "llvm/IR/IntrinsicsAMDGPU.h"
18#include "llvm/IR/IntrinsicsX86.h"
19#include "llvm/IR/PatternMatch.h"
20#include "llvm/Support/KnownBits.h"
21
22using namespace llvm;
23using namespace llvm::PatternMatch;
24
25#define DEBUG_TYPE "instcombine"
26
27namespace {
28
29struct AMDGPUImageDMaskIntrinsic {
30  unsigned Intr;
31};
32
33#define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
34#include "InstCombineTables.inc"
35
36} // end anonymous namespace
37
38/// Check to see if the specified operand of the specified instruction is a
39/// constant integer. If so, check to see if there are any bits set in the
40/// constant that are not demanded. If so, shrink the constant and return true.
41static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
42                                   const APInt &Demanded) {
43  assert(I && "No instruction?");
44  assert(OpNo < I->getNumOperands() && "Operand index too large");
45
46  // The operand must be a constant integer or splat integer.
47  Value *Op = I->getOperand(OpNo);
48  const APInt *C;
49  if (!match(Op, m_APInt(C)))
50    return false;
51
52  // If there are no bits set that aren't demanded, nothing to do.
53  if (C->isSubsetOf(Demanded))
54    return false;
55
56  // This instruction is producing bits that are not demanded. Shrink the RHS.
57  I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
58
59  return true;
60}
61
62
63
64/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
65/// the instruction has any properties that allow us to simplify its operands.
66bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
67  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
68  KnownBits Known(BitWidth);
69  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
70
71  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
72                                     0, &Inst);
73  if (!V) return false;
74  if (V == &Inst) return true;
75  replaceInstUsesWith(Inst, V);
76  return true;
77}
78
79/// This form of SimplifyDemandedBits simplifies the specified instruction
80/// operand if possible, updating it in place. It returns true if it made any
81/// change and false otherwise.
82bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
83                                        const APInt &DemandedMask,
84                                        KnownBits &Known,
85                                        unsigned Depth) {
86  Use &U = I->getOperandUse(OpNo);
87  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
88                                          Depth, I);
89  if (!NewVal) return false;
90  U = NewVal;
91  return true;
92}
93
94
95/// This function attempts to replace V with a simpler value based on the
96/// demanded bits. When this function is called, it is known that only the bits
97/// set in DemandedMask of the result of V are ever used downstream.
98/// Consequently, depending on the mask and V, it may be possible to replace V
99/// with a constant or one of its operands. In such cases, this function does
100/// the replacement and returns true. In all other cases, it returns false after
101/// analyzing the expression and setting KnownOne and known to be one in the
102/// expression. Known.Zero contains all the bits that are known to be zero in
103/// the expression. These are provided to potentially allow the caller (which
104/// might recursively be SimplifyDemandedBits itself) to simplify the
105/// expression.
106/// Known.One and Known.Zero always follow the invariant that:
107///   Known.One & Known.Zero == 0.
108/// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
109/// Known.Zero may only be accurate for those bits set in DemandedMask. Note
110/// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
111/// be the same.
112///
113/// This returns null if it did not change anything and it permits no
114/// simplification.  This returns V itself if it did some simplification of V's
115/// operands based on the information about what bits are demanded. This returns
116/// some other non-null value if it found out that V is equal to another value
117/// in the context where the specified bits are demanded, but not for all users.
118Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
119                                             KnownBits &Known, unsigned Depth,
120                                             Instruction *CxtI) {
121  assert(V != nullptr && "Null pointer of Value???");
122  assert(Depth <= 6 && "Limit Search Depth");
123  uint32_t BitWidth = DemandedMask.getBitWidth();
124  Type *VTy = V->getType();
125  assert(
126      (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
127      Known.getBitWidth() == BitWidth &&
128      "Value *V, DemandedMask and Known must have same BitWidth");
129
130  if (isa<Constant>(V)) {
131    computeKnownBits(V, Known, Depth, CxtI);
132    return nullptr;
133  }
134
135  Known.resetAll();
136  if (DemandedMask.isNullValue())     // Not demanding any bits from V.
137    return UndefValue::get(VTy);
138
139  if (Depth == 6)        // Limit search depth.
140    return nullptr;
141
142  Instruction *I = dyn_cast<Instruction>(V);
143  if (!I) {
144    computeKnownBits(V, Known, Depth, CxtI);
145    return nullptr;        // Only analyze instructions.
146  }
147
148  // If there are multiple uses of this value and we aren't at the root, then
149  // we can't do any simplifications of the operands, because DemandedMask
150  // only reflects the bits demanded by *one* of the users.
151  if (Depth != 0 && !I->hasOneUse())
152    return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
153
154  KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
155
156  // If this is the root being simplified, allow it to have multiple uses,
157  // just set the DemandedMask to all bits so that we can try to simplify the
158  // operands.  This allows visitTruncInst (for example) to simplify the
159  // operand of a trunc without duplicating all the logic below.
160  if (Depth == 0 && !V->hasOneUse())
161    DemandedMask.setAllBits();
162
163  switch (I->getOpcode()) {
164  default:
165    computeKnownBits(I, Known, Depth, CxtI);
166    break;
167  case Instruction::And: {
168    // If either the LHS or the RHS are Zero, the result is zero.
169    if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
170        SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
171                             Depth + 1))
172      return I;
173    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
174    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
175
176    // Output known-0 are known to be clear if zero in either the LHS | RHS.
177    APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
178    // Output known-1 bits are only known if set in both the LHS & RHS.
179    APInt IKnownOne = RHSKnown.One & LHSKnown.One;
180
181    // If the client is only demanding bits that we know, return the known
182    // constant.
183    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
184      return Constant::getIntegerValue(VTy, IKnownOne);
185
186    // If all of the demanded bits are known 1 on one side, return the other.
187    // These bits cannot contribute to the result of the 'and'.
188    if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
189      return I->getOperand(0);
190    if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
191      return I->getOperand(1);
192
193    // If the RHS is a constant, see if we can simplify it.
194    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
195      return I;
196
197    Known.Zero = std::move(IKnownZero);
198    Known.One  = std::move(IKnownOne);
199    break;
200  }
201  case Instruction::Or: {
202    // If either the LHS or the RHS are One, the result is One.
203    if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
204        SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
205                             Depth + 1))
206      return I;
207    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
208    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
209
210    // Output known-0 bits are only known if clear in both the LHS & RHS.
211    APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
212    // Output known-1 are known. to be set if s.et in either the LHS | RHS.
213    APInt IKnownOne = RHSKnown.One | LHSKnown.One;
214
215    // If the client is only demanding bits that we know, return the known
216    // constant.
217    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
218      return Constant::getIntegerValue(VTy, IKnownOne);
219
220    // If all of the demanded bits are known zero on one side, return the other.
221    // These bits cannot contribute to the result of the 'or'.
222    if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
223      return I->getOperand(0);
224    if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
225      return I->getOperand(1);
226
227    // If the RHS is a constant, see if we can simplify it.
228    if (ShrinkDemandedConstant(I, 1, DemandedMask))
229      return I;
230
231    Known.Zero = std::move(IKnownZero);
232    Known.One  = std::move(IKnownOne);
233    break;
234  }
235  case Instruction::Xor: {
236    if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
237        SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
238      return I;
239    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
240    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
241
242    // Output known-0 bits are known if clear or set in both the LHS & RHS.
243    APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
244                       (RHSKnown.One & LHSKnown.One);
245    // Output known-1 are known to be set if set in only one of the LHS, RHS.
246    APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
247                       (RHSKnown.One & LHSKnown.Zero);
248
249    // If the client is only demanding bits that we know, return the known
250    // constant.
251    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
252      return Constant::getIntegerValue(VTy, IKnownOne);
253
254    // If all of the demanded bits are known zero on one side, return the other.
255    // These bits cannot contribute to the result of the 'xor'.
256    if (DemandedMask.isSubsetOf(RHSKnown.Zero))
257      return I->getOperand(0);
258    if (DemandedMask.isSubsetOf(LHSKnown.Zero))
259      return I->getOperand(1);
260
261    // If all of the demanded bits are known to be zero on one side or the
262    // other, turn this into an *inclusive* or.
263    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
264    if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
265      Instruction *Or =
266        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
267                                 I->getName());
268      return InsertNewInstWith(Or, *I);
269    }
270
271    // If all of the demanded bits on one side are known, and all of the set
272    // bits on that side are also known to be set on the other side, turn this
273    // into an AND, as we know the bits will be cleared.
274    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
275    if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
276        RHSKnown.One.isSubsetOf(LHSKnown.One)) {
277      Constant *AndC = Constant::getIntegerValue(VTy,
278                                                 ~RHSKnown.One & DemandedMask);
279      Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
280      return InsertNewInstWith(And, *I);
281    }
282
283    // If the RHS is a constant, see if we can simplify it.
284    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
285    if (ShrinkDemandedConstant(I, 1, DemandedMask))
286      return I;
287
288    // If our LHS is an 'and' and if it has one use, and if any of the bits we
289    // are flipping are known to be set, then the xor is just resetting those
290    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
291    // simplifying both of them.
292    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
293      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
294          isa<ConstantInt>(I->getOperand(1)) &&
295          isa<ConstantInt>(LHSInst->getOperand(1)) &&
296          (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
297        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
298        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
299        APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
300
301        Constant *AndC =
302          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
303        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
304        InsertNewInstWith(NewAnd, *I);
305
306        Constant *XorC =
307          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
308        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
309        return InsertNewInstWith(NewXor, *I);
310      }
311
312    // Output known-0 bits are known if clear or set in both the LHS & RHS.
313    Known.Zero = std::move(IKnownZero);
314    // Output known-1 are known to be set if set in only one of the LHS, RHS.
315    Known.One  = std::move(IKnownOne);
316    break;
317  }
318  case Instruction::Select: {
319    Value *LHS, *RHS;
320    SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
321    if (SPF == SPF_UMAX) {
322      // UMax(A, C) == A if ...
323      // The lowest non-zero bit of DemandMask is higher than the highest
324      // non-zero bit of C.
325      const APInt *C;
326      unsigned CTZ = DemandedMask.countTrailingZeros();
327      if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
328        return LHS;
329    } else if (SPF == SPF_UMIN) {
330      // UMin(A, C) == A if ...
331      // The lowest non-zero bit of DemandMask is higher than the highest
332      // non-one bit of C.
333      // This comes from using DeMorgans on the above umax example.
334      const APInt *C;
335      unsigned CTZ = DemandedMask.countTrailingZeros();
336      if (match(RHS, m_APInt(C)) &&
337          CTZ >= C->getBitWidth() - C->countLeadingOnes())
338        return LHS;
339    }
340
341    // If this is a select as part of any other min/max pattern, don't simplify
342    // any further in case we break the structure.
343    if (SPF != SPF_UNKNOWN)
344      return nullptr;
345
346    if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
347        SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
348      return I;
349    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
350    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
351
352    // If the operands are constants, see if we can simplify them.
353    // This is similar to ShrinkDemandedConstant, but for a select we want to
354    // try to keep the selected constants the same as icmp value constants, if
355    // we can. This helps not break apart (or helps put back together)
356    // canonical patterns like min and max.
357    auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
358                                         APInt DemandedMask) {
359      const APInt *SelC;
360      if (!match(I->getOperand(OpNo), m_APInt(SelC)))
361        return false;
362
363      // Get the constant out of the ICmp, if there is one.
364      const APInt *CmpC;
365      ICmpInst::Predicate Pred;
366      if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) ||
367          CmpC->getBitWidth() != SelC->getBitWidth())
368        return ShrinkDemandedConstant(I, OpNo, DemandedMask);
369
370      // If the constant is already the same as the ICmp, leave it as-is.
371      if (*CmpC == *SelC)
372        return false;
373      // If the constants are not already the same, but can be with the demand
374      // mask, use the constant value from the ICmp.
375      if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
376        I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
377        return true;
378      }
379      return ShrinkDemandedConstant(I, OpNo, DemandedMask);
380    };
381    if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
382        CanonicalizeSelectConstant(I, 2, DemandedMask))
383      return I;
384
385    // Only known if known in both the LHS and RHS.
386    Known.One = RHSKnown.One & LHSKnown.One;
387    Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
388    break;
389  }
390  case Instruction::ZExt:
391  case Instruction::Trunc: {
392    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
393
394    APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
395    KnownBits InputKnown(SrcBitWidth);
396    if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
397      return I;
398    assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
399    Known = InputKnown.zextOrTrunc(BitWidth,
400                                   true /* ExtendedBitsAreKnownZero */);
401    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
402    break;
403  }
404  case Instruction::BitCast:
405    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
406      return nullptr;  // vector->int or fp->int?
407
408    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
409      if (VectorType *SrcVTy =
410            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
411        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
412          // Don't touch a bitcast between vectors of different element counts.
413          return nullptr;
414      } else
415        // Don't touch a scalar-to-vector bitcast.
416        return nullptr;
417    } else if (I->getOperand(0)->getType()->isVectorTy())
418      // Don't touch a vector-to-scalar bitcast.
419      return nullptr;
420
421    if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
422      return I;
423    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
424    break;
425  case Instruction::SExt: {
426    // Compute the bits in the result that are not present in the input.
427    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
428
429    APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
430
431    // If any of the sign extended bits are demanded, we know that the sign
432    // bit is demanded.
433    if (DemandedMask.getActiveBits() > SrcBitWidth)
434      InputDemandedBits.setBit(SrcBitWidth-1);
435
436    KnownBits InputKnown(SrcBitWidth);
437    if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
438      return I;
439
440    // If the input sign bit is known zero, or if the NewBits are not demanded
441    // convert this into a zero extension.
442    if (InputKnown.isNonNegative() ||
443        DemandedMask.getActiveBits() <= SrcBitWidth) {
444      // Convert to ZExt cast.
445      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
446      return InsertNewInstWith(NewCast, *I);
447     }
448
449    // If the sign bit of the input is known set or clear, then we know the
450    // top bits of the result.
451    Known = InputKnown.sext(BitWidth);
452    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
453    break;
454  }
455  case Instruction::Add:
456  case Instruction::Sub: {
457    /// If the high-bits of an ADD/SUB are not demanded, then we do not care
458    /// about the high bits of the operands.
459    unsigned NLZ = DemandedMask.countLeadingZeros();
460    // Right fill the mask of bits for this ADD/SUB to demand the most
461    // significant bit and all those below it.
462    APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
463    if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
464        SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
465        ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
466        SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
467      if (NLZ > 0) {
468        // Disable the nsw and nuw flags here: We can no longer guarantee that
469        // we won't wrap after simplification. Removing the nsw/nuw flags is
470        // legal here because the top bit is not demanded.
471        BinaryOperator &BinOP = *cast<BinaryOperator>(I);
472        BinOP.setHasNoSignedWrap(false);
473        BinOP.setHasNoUnsignedWrap(false);
474      }
475      return I;
476    }
477
478    // If we are known to be adding/subtracting zeros to every bit below
479    // the highest demanded bit, we just return the other side.
480    if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
481      return I->getOperand(0);
482    // We can't do this with the LHS for subtraction, unless we are only
483    // demanding the LSB.
484    if ((I->getOpcode() == Instruction::Add ||
485         DemandedFromOps.isOneValue()) &&
486        DemandedFromOps.isSubsetOf(LHSKnown.Zero))
487      return I->getOperand(1);
488
489    // Otherwise just compute the known bits of the result.
490    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
491    Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
492                                        NSW, LHSKnown, RHSKnown);
493    break;
494  }
495  case Instruction::Shl: {
496    const APInt *SA;
497    if (match(I->getOperand(1), m_APInt(SA))) {
498      const APInt *ShrAmt;
499      if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
500        if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
501          if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
502                                                    DemandedMask, Known))
503            return R;
504
505      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
506      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
507
508      // If the shift is NUW/NSW, then it does demand the high bits.
509      ShlOperator *IOp = cast<ShlOperator>(I);
510      if (IOp->hasNoSignedWrap())
511        DemandedMaskIn.setHighBits(ShiftAmt+1);
512      else if (IOp->hasNoUnsignedWrap())
513        DemandedMaskIn.setHighBits(ShiftAmt);
514
515      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
516        return I;
517      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
518      Known.Zero <<= ShiftAmt;
519      Known.One  <<= ShiftAmt;
520      // low bits known zero.
521      if (ShiftAmt)
522        Known.Zero.setLowBits(ShiftAmt);
523    }
524    break;
525  }
526  case Instruction::LShr: {
527    const APInt *SA;
528    if (match(I->getOperand(1), m_APInt(SA))) {
529      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
530
531      // Unsigned shift right.
532      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
533
534      // If the shift is exact, then it does demand the low bits (and knows that
535      // they are zero).
536      if (cast<LShrOperator>(I)->isExact())
537        DemandedMaskIn.setLowBits(ShiftAmt);
538
539      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
540        return I;
541      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
542      Known.Zero.lshrInPlace(ShiftAmt);
543      Known.One.lshrInPlace(ShiftAmt);
544      if (ShiftAmt)
545        Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
546    }
547    break;
548  }
549  case Instruction::AShr: {
550    // If this is an arithmetic shift right and only the low-bit is set, we can
551    // always convert this into a logical shr, even if the shift amount is
552    // variable.  The low bit of the shift cannot be an input sign bit unless
553    // the shift amount is >= the size of the datatype, which is undefined.
554    if (DemandedMask.isOneValue()) {
555      // Perform the logical shift right.
556      Instruction *NewVal = BinaryOperator::CreateLShr(
557                        I->getOperand(0), I->getOperand(1), I->getName());
558      return InsertNewInstWith(NewVal, *I);
559    }
560
561    // If the sign bit is the only bit demanded by this ashr, then there is no
562    // need to do it, the shift doesn't change the high bit.
563    if (DemandedMask.isSignMask())
564      return I->getOperand(0);
565
566    const APInt *SA;
567    if (match(I->getOperand(1), m_APInt(SA))) {
568      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
569
570      // Signed shift right.
571      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
572      // If any of the high bits are demanded, we should set the sign bit as
573      // demanded.
574      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
575        DemandedMaskIn.setSignBit();
576
577      // If the shift is exact, then it does demand the low bits (and knows that
578      // they are zero).
579      if (cast<AShrOperator>(I)->isExact())
580        DemandedMaskIn.setLowBits(ShiftAmt);
581
582      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
583        return I;
584
585      unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
586
587      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
588      // Compute the new bits that are at the top now plus sign bits.
589      APInt HighBits(APInt::getHighBitsSet(
590          BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
591      Known.Zero.lshrInPlace(ShiftAmt);
592      Known.One.lshrInPlace(ShiftAmt);
593
594      // If the input sign bit is known to be zero, or if none of the top bits
595      // are demanded, turn this into an unsigned shift right.
596      assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
597      if (Known.Zero[BitWidth-ShiftAmt-1] ||
598          !DemandedMask.intersects(HighBits)) {
599        BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
600                                                          I->getOperand(1));
601        LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
602        return InsertNewInstWith(LShr, *I);
603      } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
604        Known.One |= HighBits;
605      }
606    }
607    break;
608  }
609  case Instruction::UDiv: {
610    // UDiv doesn't demand low bits that are zero in the divisor.
611    const APInt *SA;
612    if (match(I->getOperand(1), m_APInt(SA))) {
613      // If the shift is exact, then it does demand the low bits.
614      if (cast<UDivOperator>(I)->isExact())
615        break;
616
617      // FIXME: Take the demanded mask of the result into account.
618      unsigned RHSTrailingZeros = SA->countTrailingZeros();
619      APInt DemandedMaskIn =
620          APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
621      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
622        return I;
623
624      // Propagate zero bits from the input.
625      Known.Zero.setHighBits(std::min(
626          BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
627    }
628    break;
629  }
630  case Instruction::SRem:
631    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
632      // X % -1 demands all the bits because we don't want to introduce
633      // INT_MIN % -1 (== undef) by accident.
634      if (Rem->isMinusOne())
635        break;
636      APInt RA = Rem->getValue().abs();
637      if (RA.isPowerOf2()) {
638        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
639          return I->getOperand(0);
640
641        APInt LowBits = RA - 1;
642        APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
643        if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
644          return I;
645
646        // The low bits of LHS are unchanged by the srem.
647        Known.Zero = LHSKnown.Zero & LowBits;
648        Known.One = LHSKnown.One & LowBits;
649
650        // If LHS is non-negative or has all low bits zero, then the upper bits
651        // are all zero.
652        if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
653          Known.Zero |= ~LowBits;
654
655        // If LHS is negative and not all low bits are zero, then the upper bits
656        // are all one.
657        if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
658          Known.One |= ~LowBits;
659
660        assert(!Known.hasConflict() && "Bits known to be one AND zero?");
661        break;
662      }
663    }
664
665    // The sign bit is the LHS's sign bit, except when the result of the
666    // remainder is zero.
667    if (DemandedMask.isSignBitSet()) {
668      computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
669      // If it's known zero, our sign bit is also zero.
670      if (LHSKnown.isNonNegative())
671        Known.makeNonNegative();
672    }
673    break;
674  case Instruction::URem: {
675    KnownBits Known2(BitWidth);
676    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
677    if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
678        SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
679      return I;
680
681    unsigned Leaders = Known2.countMinLeadingZeros();
682    Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
683    break;
684  }
685  case Instruction::Call:
686    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
687      switch (II->getIntrinsicID()) {
688      default: break;
689      case Intrinsic::bswap: {
690        // If the only bits demanded come from one byte of the bswap result,
691        // just shift the input byte into position to eliminate the bswap.
692        unsigned NLZ = DemandedMask.countLeadingZeros();
693        unsigned NTZ = DemandedMask.countTrailingZeros();
694
695        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
696        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
697        // have 14 leading zeros, round to 8.
698        NLZ &= ~7;
699        NTZ &= ~7;
700        // If we need exactly one byte, we can do this transformation.
701        if (BitWidth-NLZ-NTZ == 8) {
702          unsigned ResultBit = NTZ;
703          unsigned InputBit = BitWidth-NTZ-8;
704
705          // Replace this with either a left or right shift to get the byte into
706          // the right place.
707          Instruction *NewVal;
708          if (InputBit > ResultBit)
709            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
710                    ConstantInt::get(I->getType(), InputBit-ResultBit));
711          else
712            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
713                    ConstantInt::get(I->getType(), ResultBit-InputBit));
714          NewVal->takeName(I);
715          return InsertNewInstWith(NewVal, *I);
716        }
717
718        // TODO: Could compute known zero/one bits based on the input.
719        break;
720      }
721      case Intrinsic::fshr:
722      case Intrinsic::fshl: {
723        const APInt *SA;
724        if (!match(I->getOperand(2), m_APInt(SA)))
725          break;
726
727        // Normalize to funnel shift left. APInt shifts of BitWidth are well-
728        // defined, so no need to special-case zero shifts here.
729        uint64_t ShiftAmt = SA->urem(BitWidth);
730        if (II->getIntrinsicID() == Intrinsic::fshr)
731          ShiftAmt = BitWidth - ShiftAmt;
732
733        APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
734        APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
735        if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
736            SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
737          return I;
738
739        Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
740                     RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
741        Known.One = LHSKnown.One.shl(ShiftAmt) |
742                    RHSKnown.One.lshr(BitWidth - ShiftAmt);
743        break;
744      }
745      case Intrinsic::x86_mmx_pmovmskb:
746      case Intrinsic::x86_sse_movmsk_ps:
747      case Intrinsic::x86_sse2_movmsk_pd:
748      case Intrinsic::x86_sse2_pmovmskb_128:
749      case Intrinsic::x86_avx_movmsk_ps_256:
750      case Intrinsic::x86_avx_movmsk_pd_256:
751      case Intrinsic::x86_avx2_pmovmskb: {
752        // MOVMSK copies the vector elements' sign bits to the low bits
753        // and zeros the high bits.
754        unsigned ArgWidth;
755        if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
756          ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
757        } else {
758          auto Arg = II->getArgOperand(0);
759          auto ArgType = cast<VectorType>(Arg->getType());
760          ArgWidth = ArgType->getNumElements();
761        }
762
763        // If we don't need any of low bits then return zero,
764        // we know that DemandedMask is non-zero already.
765        APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
766        if (DemandedElts.isNullValue())
767          return ConstantInt::getNullValue(VTy);
768
769        // We know that the upper bits are set to zero.
770        Known.Zero.setBitsFrom(ArgWidth);
771        return nullptr;
772      }
773      case Intrinsic::x86_sse42_crc32_64_64:
774        Known.Zero.setBitsFrom(32);
775        return nullptr;
776      }
777    }
778    computeKnownBits(V, Known, Depth, CxtI);
779    break;
780  }
781
782  // If the client is only demanding bits that we know, return the known
783  // constant.
784  if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
785    return Constant::getIntegerValue(VTy, Known.One);
786  return nullptr;
787}
788
789/// Helper routine of SimplifyDemandedUseBits. It computes Known
790/// bits. It also tries to handle simplifications that can be done based on
791/// DemandedMask, but without modifying the Instruction.
792Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
793                                                     const APInt &DemandedMask,
794                                                     KnownBits &Known,
795                                                     unsigned Depth,
796                                                     Instruction *CxtI) {
797  unsigned BitWidth = DemandedMask.getBitWidth();
798  Type *ITy = I->getType();
799
800  KnownBits LHSKnown(BitWidth);
801  KnownBits RHSKnown(BitWidth);
802
803  // Despite the fact that we can't simplify this instruction in all User's
804  // context, we can at least compute the known bits, and we can
805  // do simplifications that apply to *just* the one user if we know that
806  // this instruction has a simpler value in that context.
807  switch (I->getOpcode()) {
808  case Instruction::And: {
809    // If either the LHS or the RHS are Zero, the result is zero.
810    computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
811    computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
812                     CxtI);
813
814    // Output known-0 are known to be clear if zero in either the LHS | RHS.
815    APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
816    // Output known-1 bits are only known if set in both the LHS & RHS.
817    APInt IKnownOne = RHSKnown.One & LHSKnown.One;
818
819    // If the client is only demanding bits that we know, return the known
820    // constant.
821    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
822      return Constant::getIntegerValue(ITy, IKnownOne);
823
824    // If all of the demanded bits are known 1 on one side, return the other.
825    // These bits cannot contribute to the result of the 'and' in this
826    // context.
827    if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
828      return I->getOperand(0);
829    if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
830      return I->getOperand(1);
831
832    Known.Zero = std::move(IKnownZero);
833    Known.One  = std::move(IKnownOne);
834    break;
835  }
836  case Instruction::Or: {
837    // We can simplify (X|Y) -> X or Y in the user's context if we know that
838    // only bits from X or Y are demanded.
839
840    // If either the LHS or the RHS are One, the result is One.
841    computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
842    computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
843                     CxtI);
844
845    // Output known-0 bits are only known if clear in both the LHS & RHS.
846    APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
847    // Output known-1 are known to be set if set in either the LHS | RHS.
848    APInt IKnownOne = RHSKnown.One | LHSKnown.One;
849
850    // If the client is only demanding bits that we know, return the known
851    // constant.
852    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
853      return Constant::getIntegerValue(ITy, IKnownOne);
854
855    // If all of the demanded bits are known zero on one side, return the
856    // other.  These bits cannot contribute to the result of the 'or' in this
857    // context.
858    if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
859      return I->getOperand(0);
860    if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
861      return I->getOperand(1);
862
863    Known.Zero = std::move(IKnownZero);
864    Known.One  = std::move(IKnownOne);
865    break;
866  }
867  case Instruction::Xor: {
868    // We can simplify (X^Y) -> X or Y in the user's context if we know that
869    // only bits from X or Y are demanded.
870
871    computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
872    computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
873                     CxtI);
874
875    // Output known-0 bits are known if clear or set in both the LHS & RHS.
876    APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
877                       (RHSKnown.One & LHSKnown.One);
878    // Output known-1 are known to be set if set in only one of the LHS, RHS.
879    APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
880                       (RHSKnown.One & LHSKnown.Zero);
881
882    // If the client is only demanding bits that we know, return the known
883    // constant.
884    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
885      return Constant::getIntegerValue(ITy, IKnownOne);
886
887    // If all of the demanded bits are known zero on one side, return the
888    // other.
889    if (DemandedMask.isSubsetOf(RHSKnown.Zero))
890      return I->getOperand(0);
891    if (DemandedMask.isSubsetOf(LHSKnown.Zero))
892      return I->getOperand(1);
893
894    // Output known-0 bits are known if clear or set in both the LHS & RHS.
895    Known.Zero = std::move(IKnownZero);
896    // Output known-1 are known to be set if set in only one of the LHS, RHS.
897    Known.One  = std::move(IKnownOne);
898    break;
899  }
900  default:
901    // Compute the Known bits to simplify things downstream.
902    computeKnownBits(I, Known, Depth, CxtI);
903
904    // If this user is only demanding bits that we know, return the known
905    // constant.
906    if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
907      return Constant::getIntegerValue(ITy, Known.One);
908
909    break;
910  }
911
912  return nullptr;
913}
914
915
916/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
917/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
918/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
919/// of "C2-C1".
920///
921/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
922/// ..., bn}, without considering the specific value X is holding.
923/// This transformation is legal iff one of following conditions is hold:
924///  1) All the bit in S are 0, in this case E1 == E2.
925///  2) We don't care those bits in S, per the input DemandedMask.
926///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
927///     rest bits.
928///
929/// Currently we only test condition 2).
930///
931/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
932/// not successful.
933Value *
934InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
935                                         Instruction *Shl, const APInt &ShlOp1,
936                                         const APInt &DemandedMask,
937                                         KnownBits &Known) {
938  if (!ShlOp1 || !ShrOp1)
939    return nullptr; // No-op.
940
941  Value *VarX = Shr->getOperand(0);
942  Type *Ty = VarX->getType();
943  unsigned BitWidth = Ty->getScalarSizeInBits();
944  if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
945    return nullptr; // Undef.
946
947  unsigned ShlAmt = ShlOp1.getZExtValue();
948  unsigned ShrAmt = ShrOp1.getZExtValue();
949
950  Known.One.clearAllBits();
951  Known.Zero.setLowBits(ShlAmt - 1);
952  Known.Zero &= DemandedMask;
953
954  APInt BitMask1(APInt::getAllOnesValue(BitWidth));
955  APInt BitMask2(APInt::getAllOnesValue(BitWidth));
956
957  bool isLshr = (Shr->getOpcode() == Instruction::LShr);
958  BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
959                      (BitMask1.ashr(ShrAmt) << ShlAmt);
960
961  if (ShrAmt <= ShlAmt) {
962    BitMask2 <<= (ShlAmt - ShrAmt);
963  } else {
964    BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
965                        BitMask2.ashr(ShrAmt - ShlAmt);
966  }
967
968  // Check if condition-2 (see the comment to this function) is satified.
969  if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
970    if (ShrAmt == ShlAmt)
971      return VarX;
972
973    if (!Shr->hasOneUse())
974      return nullptr;
975
976    BinaryOperator *New;
977    if (ShrAmt < ShlAmt) {
978      Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
979      New = BinaryOperator::CreateShl(VarX, Amt);
980      BinaryOperator *Orig = cast<BinaryOperator>(Shl);
981      New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
982      New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
983    } else {
984      Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
985      New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
986                     BinaryOperator::CreateAShr(VarX, Amt);
987      if (cast<BinaryOperator>(Shr)->isExact())
988        New->setIsExact(true);
989    }
990
991    return InsertNewInstWith(New, *Shl);
992  }
993
994  return nullptr;
995}
996
997/// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
998///
999/// Note: This only supports non-TFE/LWE image intrinsic calls; those have
1000///       struct returns.
1001Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
1002                                                           APInt DemandedElts,
1003                                                           int DMaskIdx) {
1004
1005  // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported.
1006  if (DMaskIdx < 0 &&
1007      II->getType()->getScalarSizeInBits() != 32 &&
1008      DemandedElts.getActiveBits() == 3)
1009    return nullptr;
1010
1011  unsigned VWidth = II->getType()->getVectorNumElements();
1012  if (VWidth == 1)
1013    return nullptr;
1014
1015  ConstantInt *NewDMask = nullptr;
1016
1017  if (DMaskIdx < 0) {
1018    // Pretend that a prefix of elements is demanded to simplify the code
1019    // below.
1020    DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
1021  } else {
1022    ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx));
1023    unsigned DMaskVal = DMask->getZExtValue() & 0xf;
1024
1025    // Mask off values that are undefined because the dmask doesn't cover them
1026    DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
1027
1028    unsigned NewDMaskVal = 0;
1029    unsigned OrigLoadIdx = 0;
1030    for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
1031      const unsigned Bit = 1 << SrcIdx;
1032      if (!!(DMaskVal & Bit)) {
1033        if (!!DemandedElts[OrigLoadIdx])
1034          NewDMaskVal |= Bit;
1035        OrigLoadIdx++;
1036      }
1037    }
1038
1039    if (DMaskVal != NewDMaskVal)
1040      NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
1041  }
1042
1043  unsigned NewNumElts = DemandedElts.countPopulation();
1044  if (!NewNumElts)
1045    return UndefValue::get(II->getType());
1046
1047  if (NewNumElts >= VWidth && DemandedElts.isMask()) {
1048    if (NewDMask)
1049      II->setArgOperand(DMaskIdx, NewDMask);
1050    return nullptr;
1051  }
1052
1053  // Determine the overload types of the original intrinsic.
1054  auto IID = II->getIntrinsicID();
1055  SmallVector<Intrinsic::IITDescriptor, 16> Table;
1056  getIntrinsicInfoTableEntries(IID, Table);
1057  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1058
1059  // Validate function argument and return types, extracting overloaded types
1060  // along the way.
1061  FunctionType *FTy = II->getCalledFunction()->getFunctionType();
1062  SmallVector<Type *, 6> OverloadTys;
1063  Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys);
1064
1065  Module *M = II->getParent()->getParent()->getParent();
1066  Type *EltTy = II->getType()->getVectorElementType();
1067  Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
1068
1069  OverloadTys[0] = NewTy;
1070  Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
1071
1072  SmallVector<Value *, 16> Args;
1073  for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1074    Args.push_back(II->getArgOperand(I));
1075
1076  if (NewDMask)
1077    Args[DMaskIdx] = NewDMask;
1078
1079  IRBuilderBase::InsertPointGuard Guard(Builder);
1080  Builder.SetInsertPoint(II);
1081
1082  CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
1083  NewCall->takeName(II);
1084  NewCall->copyMetadata(*II);
1085
1086  if (NewNumElts == 1) {
1087    return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
1088                                       DemandedElts.countTrailingZeros());
1089  }
1090
1091  SmallVector<uint32_t, 8> EltMask;
1092  unsigned NewLoadIdx = 0;
1093  for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1094    if (!!DemandedElts[OrigLoadIdx])
1095      EltMask.push_back(NewLoadIdx++);
1096    else
1097      EltMask.push_back(NewNumElts);
1098  }
1099
1100  Value *Shuffle =
1101      Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
1102
1103  return Shuffle;
1104}
1105
1106/// The specified value produces a vector with any number of elements.
1107/// This method analyzes which elements of the operand are undef and returns
1108/// that information in UndefElts.
1109///
1110/// DemandedElts contains the set of elements that are actually used by the
1111/// caller, and by default (AllowMultipleUsers equals false) the value is
1112/// simplified only if it has a single caller. If AllowMultipleUsers is set
1113/// to true, DemandedElts refers to the union of sets of elements that are
1114/// used by all callers.
1115///
1116/// If the information about demanded elements can be used to simplify the
1117/// operation, the operation is simplified, then the resultant value is
1118/// returned.  This returns null if no change was made.
1119Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
1120                                                APInt &UndefElts,
1121                                                unsigned Depth,
1122                                                bool AllowMultipleUsers) {
1123  unsigned VWidth = V->getType()->getVectorNumElements();
1124  APInt EltMask(APInt::getAllOnesValue(VWidth));
1125  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1126
1127  if (isa<UndefValue>(V)) {
1128    // If the entire vector is undefined, just return this info.
1129    UndefElts = EltMask;
1130    return nullptr;
1131  }
1132
1133  if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1134    UndefElts = EltMask;
1135    return UndefValue::get(V->getType());
1136  }
1137
1138  UndefElts = 0;
1139
1140  if (auto *C = dyn_cast<Constant>(V)) {
1141    // Check if this is identity. If so, return 0 since we are not simplifying
1142    // anything.
1143    if (DemandedElts.isAllOnesValue())
1144      return nullptr;
1145
1146    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1147    Constant *Undef = UndefValue::get(EltTy);
1148    SmallVector<Constant*, 16> Elts;
1149    for (unsigned i = 0; i != VWidth; ++i) {
1150      if (!DemandedElts[i]) {   // If not demanded, set to undef.
1151        Elts.push_back(Undef);
1152        UndefElts.setBit(i);
1153        continue;
1154      }
1155
1156      Constant *Elt = C->getAggregateElement(i);
1157      if (!Elt) return nullptr;
1158
1159      if (isa<UndefValue>(Elt)) {   // Already undef.
1160        Elts.push_back(Undef);
1161        UndefElts.setBit(i);
1162      } else {                               // Otherwise, defined.
1163        Elts.push_back(Elt);
1164      }
1165    }
1166
1167    // If we changed the constant, return it.
1168    Constant *NewCV = ConstantVector::get(Elts);
1169    return NewCV != C ? NewCV : nullptr;
1170  }
1171
1172  // Limit search depth.
1173  if (Depth == 10)
1174    return nullptr;
1175
1176  if (!AllowMultipleUsers) {
1177    // If multiple users are using the root value, proceed with
1178    // simplification conservatively assuming that all elements
1179    // are needed.
1180    if (!V->hasOneUse()) {
1181      // Quit if we find multiple users of a non-root value though.
1182      // They'll be handled when it's their turn to be visited by
1183      // the main instcombine process.
1184      if (Depth != 0)
1185        // TODO: Just compute the UndefElts information recursively.
1186        return nullptr;
1187
1188      // Conservatively assume that all elements are needed.
1189      DemandedElts = EltMask;
1190    }
1191  }
1192
1193  Instruction *I = dyn_cast<Instruction>(V);
1194  if (!I) return nullptr;        // Only analyze instructions.
1195
1196  bool MadeChange = false;
1197  auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1198                              APInt Demanded, APInt &Undef) {
1199    auto *II = dyn_cast<IntrinsicInst>(Inst);
1200    Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1201    if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1202      if (II)
1203        II->setArgOperand(OpNum, V);
1204      else
1205        Inst->setOperand(OpNum, V);
1206      MadeChange = true;
1207    }
1208  };
1209
1210  APInt UndefElts2(VWidth, 0);
1211  APInt UndefElts3(VWidth, 0);
1212  switch (I->getOpcode()) {
1213  default: break;
1214
1215  case Instruction::GetElementPtr: {
1216    // The LangRef requires that struct geps have all constant indices.  As
1217    // such, we can't convert any operand to partial undef.
1218    auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1219      for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1220           I != E; I++)
1221        if (I.isStruct())
1222          return true;;
1223      return false;
1224    };
1225    if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1226      break;
1227
1228    // Conservatively track the demanded elements back through any vector
1229    // operands we may have.  We know there must be at least one, or we
1230    // wouldn't have a vector result to get here. Note that we intentionally
1231    // merge the undef bits here since gepping with either an undef base or
1232    // index results in undef.
1233    for (unsigned i = 0; i < I->getNumOperands(); i++) {
1234      if (isa<UndefValue>(I->getOperand(i))) {
1235        // If the entire vector is undefined, just return this info.
1236        UndefElts = EltMask;
1237        return nullptr;
1238      }
1239      if (I->getOperand(i)->getType()->isVectorTy()) {
1240        APInt UndefEltsOp(VWidth, 0);
1241        simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1242        UndefElts |= UndefEltsOp;
1243      }
1244    }
1245
1246    break;
1247  }
1248  case Instruction::InsertElement: {
1249    // If this is a variable index, we don't know which element it overwrites.
1250    // demand exactly the same input as we produce.
1251    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1252    if (!Idx) {
1253      // Note that we can't propagate undef elt info, because we don't know
1254      // which elt is getting updated.
1255      simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1256      break;
1257    }
1258
1259    // The element inserted overwrites whatever was there, so the input demanded
1260    // set is simpler than the output set.
1261    unsigned IdxNo = Idx->getZExtValue();
1262    APInt PreInsertDemandedElts = DemandedElts;
1263    if (IdxNo < VWidth)
1264      PreInsertDemandedElts.clearBit(IdxNo);
1265
1266    simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1267
1268    // If this is inserting an element that isn't demanded, remove this
1269    // insertelement.
1270    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1271      Worklist.Add(I);
1272      return I->getOperand(0);
1273    }
1274
1275    // The inserted element is defined.
1276    UndefElts.clearBit(IdxNo);
1277    break;
1278  }
1279  case Instruction::ShuffleVector: {
1280    auto *Shuffle = cast<ShuffleVectorInst>(I);
1281    assert(Shuffle->getOperand(0)->getType() ==
1282           Shuffle->getOperand(1)->getType() &&
1283           "Expected shuffle operands to have same type");
1284    unsigned OpWidth =
1285        Shuffle->getOperand(0)->getType()->getVectorNumElements();
1286    APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1287    for (unsigned i = 0; i < VWidth; i++) {
1288      if (DemandedElts[i]) {
1289        unsigned MaskVal = Shuffle->getMaskValue(i);
1290        if (MaskVal != -1u) {
1291          assert(MaskVal < OpWidth * 2 &&
1292                 "shufflevector mask index out of range!");
1293          if (MaskVal < OpWidth)
1294            LeftDemanded.setBit(MaskVal);
1295          else
1296            RightDemanded.setBit(MaskVal - OpWidth);
1297        }
1298      }
1299    }
1300
1301    APInt LHSUndefElts(OpWidth, 0);
1302    simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1303
1304    APInt RHSUndefElts(OpWidth, 0);
1305    simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1306
1307    // If this shuffle does not change the vector length and the elements
1308    // demanded by this shuffle are an identity mask, then this shuffle is
1309    // unnecessary.
1310    //
1311    // We are assuming canonical form for the mask, so the source vector is
1312    // operand 0 and operand 1 is not used.
1313    //
1314    // Note that if an element is demanded and this shuffle mask is undefined
1315    // for that element, then the shuffle is not considered an identity
1316    // operation. The shuffle prevents poison from the operand vector from
1317    // leaking to the result by replacing poison with an undefined value.
1318    if (VWidth == OpWidth) {
1319      bool IsIdentityShuffle = true;
1320      for (unsigned i = 0; i < VWidth; i++) {
1321        unsigned MaskVal = Shuffle->getMaskValue(i);
1322        if (DemandedElts[i] && i != MaskVal) {
1323          IsIdentityShuffle = false;
1324          break;
1325        }
1326      }
1327      if (IsIdentityShuffle)
1328        return Shuffle->getOperand(0);
1329    }
1330
1331    bool NewUndefElts = false;
1332    unsigned LHSIdx = -1u, LHSValIdx = -1u;
1333    unsigned RHSIdx = -1u, RHSValIdx = -1u;
1334    bool LHSUniform = true;
1335    bool RHSUniform = true;
1336    for (unsigned i = 0; i < VWidth; i++) {
1337      unsigned MaskVal = Shuffle->getMaskValue(i);
1338      if (MaskVal == -1u) {
1339        UndefElts.setBit(i);
1340      } else if (!DemandedElts[i]) {
1341        NewUndefElts = true;
1342        UndefElts.setBit(i);
1343      } else if (MaskVal < OpWidth) {
1344        if (LHSUndefElts[MaskVal]) {
1345          NewUndefElts = true;
1346          UndefElts.setBit(i);
1347        } else {
1348          LHSIdx = LHSIdx == -1u ? i : OpWidth;
1349          LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1350          LHSUniform = LHSUniform && (MaskVal == i);
1351        }
1352      } else {
1353        if (RHSUndefElts[MaskVal - OpWidth]) {
1354          NewUndefElts = true;
1355          UndefElts.setBit(i);
1356        } else {
1357          RHSIdx = RHSIdx == -1u ? i : OpWidth;
1358          RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1359          RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1360        }
1361      }
1362    }
1363
1364    // Try to transform shuffle with constant vector and single element from
1365    // this constant vector to single insertelement instruction.
1366    // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1367    // insertelement V, C[ci], ci-n
1368    if (OpWidth == Shuffle->getType()->getNumElements()) {
1369      Value *Op = nullptr;
1370      Constant *Value = nullptr;
1371      unsigned Idx = -1u;
1372
1373      // Find constant vector with the single element in shuffle (LHS or RHS).
1374      if (LHSIdx < OpWidth && RHSUniform) {
1375        if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1376          Op = Shuffle->getOperand(1);
1377          Value = CV->getOperand(LHSValIdx);
1378          Idx = LHSIdx;
1379        }
1380      }
1381      if (RHSIdx < OpWidth && LHSUniform) {
1382        if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1383          Op = Shuffle->getOperand(0);
1384          Value = CV->getOperand(RHSValIdx);
1385          Idx = RHSIdx;
1386        }
1387      }
1388      // Found constant vector with single element - convert to insertelement.
1389      if (Op && Value) {
1390        Instruction *New = InsertElementInst::Create(
1391            Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1392            Shuffle->getName());
1393        InsertNewInstWith(New, *Shuffle);
1394        return New;
1395      }
1396    }
1397    if (NewUndefElts) {
1398      // Add additional discovered undefs.
1399      SmallVector<Constant*, 16> Elts;
1400      for (unsigned i = 0; i < VWidth; ++i) {
1401        if (UndefElts[i])
1402          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1403        else
1404          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1405                                          Shuffle->getMaskValue(i)));
1406      }
1407      I->setOperand(2, ConstantVector::get(Elts));
1408      MadeChange = true;
1409    }
1410    break;
1411  }
1412  case Instruction::Select: {
1413    // If this is a vector select, try to transform the select condition based
1414    // on the current demanded elements.
1415    SelectInst *Sel = cast<SelectInst>(I);
1416    if (Sel->getCondition()->getType()->isVectorTy()) {
1417      // TODO: We are not doing anything with UndefElts based on this call.
1418      // It is overwritten below based on the other select operands. If an
1419      // element of the select condition is known undef, then we are free to
1420      // choose the output value from either arm of the select. If we know that
1421      // one of those values is undef, then the output can be undef.
1422      simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1423    }
1424
1425    // Next, see if we can transform the arms of the select.
1426    APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1427    if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1428      for (unsigned i = 0; i < VWidth; i++) {
1429        // isNullValue() always returns false when called on a ConstantExpr.
1430        // Skip constant expressions to avoid propagating incorrect information.
1431        Constant *CElt = CV->getAggregateElement(i);
1432        if (isa<ConstantExpr>(CElt))
1433          continue;
1434        // TODO: If a select condition element is undef, we can demand from
1435        // either side. If one side is known undef, choosing that side would
1436        // propagate undef.
1437        if (CElt->isNullValue())
1438          DemandedLHS.clearBit(i);
1439        else
1440          DemandedRHS.clearBit(i);
1441      }
1442    }
1443
1444    simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1445    simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1446
1447    // Output elements are undefined if the element from each arm is undefined.
1448    // TODO: This can be improved. See comment in select condition handling.
1449    UndefElts = UndefElts2 & UndefElts3;
1450    break;
1451  }
1452  case Instruction::BitCast: {
1453    // Vector->vector casts only.
1454    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1455    if (!VTy) break;
1456    unsigned InVWidth = VTy->getNumElements();
1457    APInt InputDemandedElts(InVWidth, 0);
1458    UndefElts2 = APInt(InVWidth, 0);
1459    unsigned Ratio;
1460
1461    if (VWidth == InVWidth) {
1462      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1463      // elements as are demanded of us.
1464      Ratio = 1;
1465      InputDemandedElts = DemandedElts;
1466    } else if ((VWidth % InVWidth) == 0) {
1467      // If the number of elements in the output is a multiple of the number of
1468      // elements in the input then an input element is live if any of the
1469      // corresponding output elements are live.
1470      Ratio = VWidth / InVWidth;
1471      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1472        if (DemandedElts[OutIdx])
1473          InputDemandedElts.setBit(OutIdx / Ratio);
1474    } else if ((InVWidth % VWidth) == 0) {
1475      // If the number of elements in the input is a multiple of the number of
1476      // elements in the output then an input element is live if the
1477      // corresponding output element is live.
1478      Ratio = InVWidth / VWidth;
1479      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1480        if (DemandedElts[InIdx / Ratio])
1481          InputDemandedElts.setBit(InIdx);
1482    } else {
1483      // Unsupported so far.
1484      break;
1485    }
1486
1487    simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1488
1489    if (VWidth == InVWidth) {
1490      UndefElts = UndefElts2;
1491    } else if ((VWidth % InVWidth) == 0) {
1492      // If the number of elements in the output is a multiple of the number of
1493      // elements in the input then an output element is undef if the
1494      // corresponding input element is undef.
1495      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1496        if (UndefElts2[OutIdx / Ratio])
1497          UndefElts.setBit(OutIdx);
1498    } else if ((InVWidth % VWidth) == 0) {
1499      // If the number of elements in the input is a multiple of the number of
1500      // elements in the output then an output element is undef if all of the
1501      // corresponding input elements are undef.
1502      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1503        APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1504        if (SubUndef.countPopulation() == Ratio)
1505          UndefElts.setBit(OutIdx);
1506      }
1507    } else {
1508      llvm_unreachable("Unimp");
1509    }
1510    break;
1511  }
1512  case Instruction::FPTrunc:
1513  case Instruction::FPExt:
1514    simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1515    break;
1516
1517  case Instruction::Call: {
1518    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1519    if (!II) break;
1520    switch (II->getIntrinsicID()) {
1521    case Intrinsic::masked_gather: // fallthrough
1522    case Intrinsic::masked_load: {
1523      // Subtlety: If we load from a pointer, the pointer must be valid
1524      // regardless of whether the element is demanded.  Doing otherwise risks
1525      // segfaults which didn't exist in the original program.
1526      APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)),
1527        DemandedPassThrough(DemandedElts);
1528      if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1529        for (unsigned i = 0; i < VWidth; i++) {
1530          Constant *CElt = CV->getAggregateElement(i);
1531          if (CElt->isNullValue())
1532            DemandedPtrs.clearBit(i);
1533          else if (CElt->isAllOnesValue())
1534            DemandedPassThrough.clearBit(i);
1535        }
1536      if (II->getIntrinsicID() == Intrinsic::masked_gather)
1537        simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1538      simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1539
1540      // Output elements are undefined if the element from both sources are.
1541      // TODO: can strengthen via mask as well.
1542      UndefElts = UndefElts2 & UndefElts3;
1543      break;
1544    }
1545    case Intrinsic::x86_xop_vfrcz_ss:
1546    case Intrinsic::x86_xop_vfrcz_sd:
1547      // The instructions for these intrinsics are speced to zero upper bits not
1548      // pass them through like other scalar intrinsics. So we shouldn't just
1549      // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1550      // Instead we should return a zero vector.
1551      if (!DemandedElts[0]) {
1552        Worklist.Add(II);
1553        return ConstantAggregateZero::get(II->getType());
1554      }
1555
1556      // Only the lower element is used.
1557      DemandedElts = 1;
1558      simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1559
1560      // Only the lower element is undefined. The high elements are zero.
1561      UndefElts = UndefElts[0];
1562      break;
1563
1564    // Unary scalar-as-vector operations that work column-wise.
1565    case Intrinsic::x86_sse_rcp_ss:
1566    case Intrinsic::x86_sse_rsqrt_ss:
1567      simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1568
1569      // If lowest element of a scalar op isn't used then use Arg0.
1570      if (!DemandedElts[0]) {
1571        Worklist.Add(II);
1572        return II->getArgOperand(0);
1573      }
1574      // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1575      // checks).
1576      break;
1577
1578    // Binary scalar-as-vector operations that work column-wise. The high
1579    // elements come from operand 0. The low element is a function of both
1580    // operands.
1581    case Intrinsic::x86_sse_min_ss:
1582    case Intrinsic::x86_sse_max_ss:
1583    case Intrinsic::x86_sse_cmp_ss:
1584    case Intrinsic::x86_sse2_min_sd:
1585    case Intrinsic::x86_sse2_max_sd:
1586    case Intrinsic::x86_sse2_cmp_sd: {
1587      simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1588
1589      // If lowest element of a scalar op isn't used then use Arg0.
1590      if (!DemandedElts[0]) {
1591        Worklist.Add(II);
1592        return II->getArgOperand(0);
1593      }
1594
1595      // Only lower element is used for operand 1.
1596      DemandedElts = 1;
1597      simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1598
1599      // Lower element is undefined if both lower elements are undefined.
1600      // Consider things like undef&0.  The result is known zero, not undef.
1601      if (!UndefElts2[0])
1602        UndefElts.clearBit(0);
1603
1604      break;
1605    }
1606
1607    // Binary scalar-as-vector operations that work column-wise. The high
1608    // elements come from operand 0 and the low element comes from operand 1.
1609    case Intrinsic::x86_sse41_round_ss:
1610    case Intrinsic::x86_sse41_round_sd: {
1611      // Don't use the low element of operand 0.
1612      APInt DemandedElts2 = DemandedElts;
1613      DemandedElts2.clearBit(0);
1614      simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
1615
1616      // If lowest element of a scalar op isn't used then use Arg0.
1617      if (!DemandedElts[0]) {
1618        Worklist.Add(II);
1619        return II->getArgOperand(0);
1620      }
1621
1622      // Only lower element is used for operand 1.
1623      DemandedElts = 1;
1624      simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1625
1626      // Take the high undef elements from operand 0 and take the lower element
1627      // from operand 1.
1628      UndefElts.clearBit(0);
1629      UndefElts |= UndefElts2[0];
1630      break;
1631    }
1632
1633    // Three input scalar-as-vector operations that work column-wise. The high
1634    // elements come from operand 0 and the low element is a function of all
1635    // three inputs.
1636    case Intrinsic::x86_avx512_mask_add_ss_round:
1637    case Intrinsic::x86_avx512_mask_div_ss_round:
1638    case Intrinsic::x86_avx512_mask_mul_ss_round:
1639    case Intrinsic::x86_avx512_mask_sub_ss_round:
1640    case Intrinsic::x86_avx512_mask_max_ss_round:
1641    case Intrinsic::x86_avx512_mask_min_ss_round:
1642    case Intrinsic::x86_avx512_mask_add_sd_round:
1643    case Intrinsic::x86_avx512_mask_div_sd_round:
1644    case Intrinsic::x86_avx512_mask_mul_sd_round:
1645    case Intrinsic::x86_avx512_mask_sub_sd_round:
1646    case Intrinsic::x86_avx512_mask_max_sd_round:
1647    case Intrinsic::x86_avx512_mask_min_sd_round:
1648      simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1649
1650      // If lowest element of a scalar op isn't used then use Arg0.
1651      if (!DemandedElts[0]) {
1652        Worklist.Add(II);
1653        return II->getArgOperand(0);
1654      }
1655
1656      // Only lower element is used for operand 1 and 2.
1657      DemandedElts = 1;
1658      simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1659      simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
1660
1661      // Lower element is undefined if all three lower elements are undefined.
1662      // Consider things like undef&0.  The result is known zero, not undef.
1663      if (!UndefElts2[0] || !UndefElts3[0])
1664        UndefElts.clearBit(0);
1665
1666      break;
1667
1668    case Intrinsic::x86_sse2_packssdw_128:
1669    case Intrinsic::x86_sse2_packsswb_128:
1670    case Intrinsic::x86_sse2_packuswb_128:
1671    case Intrinsic::x86_sse41_packusdw:
1672    case Intrinsic::x86_avx2_packssdw:
1673    case Intrinsic::x86_avx2_packsswb:
1674    case Intrinsic::x86_avx2_packusdw:
1675    case Intrinsic::x86_avx2_packuswb:
1676    case Intrinsic::x86_avx512_packssdw_512:
1677    case Intrinsic::x86_avx512_packsswb_512:
1678    case Intrinsic::x86_avx512_packusdw_512:
1679    case Intrinsic::x86_avx512_packuswb_512: {
1680      auto *Ty0 = II->getArgOperand(0)->getType();
1681      unsigned InnerVWidth = Ty0->getVectorNumElements();
1682      assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1683
1684      unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1685      unsigned VWidthPerLane = VWidth / NumLanes;
1686      unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1687
1688      // Per lane, pack the elements of the first input and then the second.
1689      // e.g.
1690      // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1691      // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1692      for (int OpNum = 0; OpNum != 2; ++OpNum) {
1693        APInt OpDemandedElts(InnerVWidth, 0);
1694        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1695          unsigned LaneIdx = Lane * VWidthPerLane;
1696          for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1697            unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1698            if (DemandedElts[Idx])
1699              OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1700          }
1701        }
1702
1703        // Demand elements from the operand.
1704        APInt OpUndefElts(InnerVWidth, 0);
1705        simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
1706
1707        // Pack the operand's UNDEF elements, one lane at a time.
1708        OpUndefElts = OpUndefElts.zext(VWidth);
1709        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1710          APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1711          LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1712          LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
1713          UndefElts |= LaneElts;
1714        }
1715      }
1716      break;
1717    }
1718
1719    // PSHUFB
1720    case Intrinsic::x86_ssse3_pshuf_b_128:
1721    case Intrinsic::x86_avx2_pshuf_b:
1722    case Intrinsic::x86_avx512_pshuf_b_512:
1723    // PERMILVAR
1724    case Intrinsic::x86_avx_vpermilvar_ps:
1725    case Intrinsic::x86_avx_vpermilvar_ps_256:
1726    case Intrinsic::x86_avx512_vpermilvar_ps_512:
1727    case Intrinsic::x86_avx_vpermilvar_pd:
1728    case Intrinsic::x86_avx_vpermilvar_pd_256:
1729    case Intrinsic::x86_avx512_vpermilvar_pd_512:
1730    // PERMV
1731    case Intrinsic::x86_avx2_permd:
1732    case Intrinsic::x86_avx2_permps: {
1733      simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
1734      break;
1735    }
1736
1737    // SSE4A instructions leave the upper 64-bits of the 128-bit result
1738    // in an undefined state.
1739    case Intrinsic::x86_sse4a_extrq:
1740    case Intrinsic::x86_sse4a_extrqi:
1741    case Intrinsic::x86_sse4a_insertq:
1742    case Intrinsic::x86_sse4a_insertqi:
1743      UndefElts.setHighBits(VWidth / 2);
1744      break;
1745    case Intrinsic::amdgcn_buffer_load:
1746    case Intrinsic::amdgcn_buffer_load_format:
1747    case Intrinsic::amdgcn_raw_buffer_load:
1748    case Intrinsic::amdgcn_raw_buffer_load_format:
1749    case Intrinsic::amdgcn_raw_tbuffer_load:
1750    case Intrinsic::amdgcn_struct_buffer_load:
1751    case Intrinsic::amdgcn_struct_buffer_load_format:
1752    case Intrinsic::amdgcn_struct_tbuffer_load:
1753    case Intrinsic::amdgcn_tbuffer_load:
1754      return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
1755    default: {
1756      if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
1757        return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
1758
1759      break;
1760    }
1761    } // switch on IntrinsicID
1762    break;
1763  } // case Call
1764  } // switch on Opcode
1765
1766  // TODO: We bail completely on integer div/rem and shifts because they have
1767  // UB/poison potential, but that should be refined.
1768  BinaryOperator *BO;
1769  if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1770    simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1771    simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1772
1773    // Any change to an instruction with potential poison must clear those flags
1774    // because we can not guarantee those constraints now. Other analysis may
1775    // determine that it is safe to re-apply the flags.
1776    if (MadeChange)
1777      BO->dropPoisonGeneratingFlags();
1778
1779    // Output elements are undefined if both are undefined. Consider things
1780    // like undef & 0. The result is known zero, not undef.
1781    UndefElts &= UndefElts2;
1782  }
1783
1784  // If we've proven all of the lanes undef, return an undef value.
1785  // TODO: Intersect w/demanded lanes
1786  if (UndefElts.isAllOnesValue())
1787    return UndefValue::get(I->getType());;
1788
1789  return MadeChange ? I : nullptr;
1790}
1791