1//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitAnd, visitOr, and visitXor functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/Analysis/CmpInstAnalysis.h"
15#include "llvm/Analysis/InstructionSimplify.h"
16#include "llvm/Transforms/Utils/Local.h"
17#include "llvm/IR/ConstantRange.h"
18#include "llvm/IR/Intrinsics.h"
19#include "llvm/IR/PatternMatch.h"
20using namespace llvm;
21using namespace PatternMatch;
22
23#define DEBUG_TYPE "instcombine"
24
25/// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
26/// a four bit mask.
27static unsigned getFCmpCode(FCmpInst::Predicate CC) {
28  assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
29         "Unexpected FCmp predicate!");
30  // Take advantage of the bit pattern of FCmpInst::Predicate here.
31  //                                                 U L G E
32  static_assert(FCmpInst::FCMP_FALSE ==  0, "");  // 0 0 0 0
33  static_assert(FCmpInst::FCMP_OEQ   ==  1, "");  // 0 0 0 1
34  static_assert(FCmpInst::FCMP_OGT   ==  2, "");  // 0 0 1 0
35  static_assert(FCmpInst::FCMP_OGE   ==  3, "");  // 0 0 1 1
36  static_assert(FCmpInst::FCMP_OLT   ==  4, "");  // 0 1 0 0
37  static_assert(FCmpInst::FCMP_OLE   ==  5, "");  // 0 1 0 1
38  static_assert(FCmpInst::FCMP_ONE   ==  6, "");  // 0 1 1 0
39  static_assert(FCmpInst::FCMP_ORD   ==  7, "");  // 0 1 1 1
40  static_assert(FCmpInst::FCMP_UNO   ==  8, "");  // 1 0 0 0
41  static_assert(FCmpInst::FCMP_UEQ   ==  9, "");  // 1 0 0 1
42  static_assert(FCmpInst::FCMP_UGT   == 10, "");  // 1 0 1 0
43  static_assert(FCmpInst::FCMP_UGE   == 11, "");  // 1 0 1 1
44  static_assert(FCmpInst::FCMP_ULT   == 12, "");  // 1 1 0 0
45  static_assert(FCmpInst::FCMP_ULE   == 13, "");  // 1 1 0 1
46  static_assert(FCmpInst::FCMP_UNE   == 14, "");  // 1 1 1 0
47  static_assert(FCmpInst::FCMP_TRUE  == 15, "");  // 1 1 1 1
48  return CC;
49}
50
51/// This is the complement of getICmpCode, which turns an opcode and two
52/// operands into either a constant true or false, or a brand new ICmp
53/// instruction. The sign is passed in to determine which kind of predicate to
54/// use in the new icmp instruction.
55static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
56                              InstCombiner::BuilderTy &Builder) {
57  ICmpInst::Predicate NewPred;
58  if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
59    return TorF;
60  return Builder.CreateICmp(NewPred, LHS, RHS);
61}
62
63/// This is the complement of getFCmpCode, which turns an opcode and two
64/// operands into either a FCmp instruction, or a true/false constant.
65static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
66                           InstCombiner::BuilderTy &Builder) {
67  const auto Pred = static_cast<FCmpInst::Predicate>(Code);
68  assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
69         "Unexpected FCmp predicate!");
70  if (Pred == FCmpInst::FCMP_FALSE)
71    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
72  if (Pred == FCmpInst::FCMP_TRUE)
73    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
74  return Builder.CreateFCmp(Pred, LHS, RHS);
75}
76
77/// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
78/// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
79/// \param I Binary operator to transform.
80/// \return Pointer to node that must replace the original binary operator, or
81///         null pointer if no transformation was made.
82static Value *SimplifyBSwap(BinaryOperator &I,
83                            InstCombiner::BuilderTy &Builder) {
84  assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
85
86  Value *OldLHS = I.getOperand(0);
87  Value *OldRHS = I.getOperand(1);
88
89  Value *NewLHS;
90  if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
91    return nullptr;
92
93  Value *NewRHS;
94  const APInt *C;
95
96  if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
97    // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
98    if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
99      return nullptr;
100    // NewRHS initialized by the matcher.
101  } else if (match(OldRHS, m_APInt(C))) {
102    // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
103    if (!OldLHS->hasOneUse())
104      return nullptr;
105    NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
106  } else
107    return nullptr;
108
109  Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
110  Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
111                                          I.getType());
112  return Builder.CreateCall(F, BinOp);
113}
114
115/// This handles expressions of the form ((val OP C1) & C2).  Where
116/// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.
117Instruction *InstCombiner::OptAndOp(BinaryOperator *Op,
118                                    ConstantInt *OpRHS,
119                                    ConstantInt *AndRHS,
120                                    BinaryOperator &TheAnd) {
121  Value *X = Op->getOperand(0);
122
123  switch (Op->getOpcode()) {
124  default: break;
125  case Instruction::Add:
126    if (Op->hasOneUse()) {
127      // Adding a one to a single bit bit-field should be turned into an XOR
128      // of the bit.  First thing to check is to see if this AND is with a
129      // single bit constant.
130      const APInt &AndRHSV = AndRHS->getValue();
131
132      // If there is only one bit set.
133      if (AndRHSV.isPowerOf2()) {
134        // Ok, at this point, we know that we are masking the result of the
135        // ADD down to exactly one bit.  If the constant we are adding has
136        // no bits set below this bit, then we can eliminate the ADD.
137        const APInt& AddRHS = OpRHS->getValue();
138
139        // Check to see if any bits below the one bit set in AndRHSV are set.
140        if ((AddRHS & (AndRHSV - 1)).isNullValue()) {
141          // If not, the only thing that can effect the output of the AND is
142          // the bit specified by AndRHSV.  If that bit is set, the effect of
143          // the XOR is to toggle the bit.  If it is clear, then the ADD has
144          // no effect.
145          if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop
146            TheAnd.setOperand(0, X);
147            return &TheAnd;
148          } else {
149            // Pull the XOR out of the AND.
150            Value *NewAnd = Builder.CreateAnd(X, AndRHS);
151            NewAnd->takeName(Op);
152            return BinaryOperator::CreateXor(NewAnd, AndRHS);
153          }
154        }
155      }
156    }
157    break;
158  }
159  return nullptr;
160}
161
162/// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
163/// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
164/// whether to treat V, Lo, and Hi as signed or not.
165Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
166                                     bool isSigned, bool Inside) {
167  assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
168         "Lo is not < Hi in range emission code!");
169
170  Type *Ty = V->getType();
171
172  // V >= Min && V <  Hi --> V <  Hi
173  // V <  Min || V >= Hi --> V >= Hi
174  ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
175  if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
176    Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
177    return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
178  }
179
180  // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo
181  // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo
182  Value *VMinusLo =
183      Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
184  Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
185  return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
186}
187
188/// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
189/// that can be simplified.
190/// One of A and B is considered the mask. The other is the value. This is
191/// described as the "AMask" or "BMask" part of the enum. If the enum contains
192/// only "Mask", then both A and B can be considered masks. If A is the mask,
193/// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
194/// If both A and C are constants, this proof is also easy.
195/// For the following explanations, we assume that A is the mask.
196///
197/// "AllOnes" declares that the comparison is true only if (A & B) == A or all
198/// bits of A are set in B.
199///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
200///
201/// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
202/// bits of A are cleared in B.
203///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
204///
205/// "Mixed" declares that (A & B) == C and C might or might not contain any
206/// number of one bits and zero bits.
207///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed
208///
209/// "Not" means that in above descriptions "==" should be replaced by "!=".
210///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
211///
212/// If the mask A contains a single bit, then the following is equivalent:
213///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
214///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
215enum MaskedICmpType {
216  AMask_AllOnes           =     1,
217  AMask_NotAllOnes        =     2,
218  BMask_AllOnes           =     4,
219  BMask_NotAllOnes        =     8,
220  Mask_AllZeros           =    16,
221  Mask_NotAllZeros        =    32,
222  AMask_Mixed             =    64,
223  AMask_NotMixed          =   128,
224  BMask_Mixed             =   256,
225  BMask_NotMixed          =   512
226};
227
228/// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
229/// satisfies.
230static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
231                                  ICmpInst::Predicate Pred) {
232  ConstantInt *ACst = dyn_cast<ConstantInt>(A);
233  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
234  ConstantInt *CCst = dyn_cast<ConstantInt>(C);
235  bool IsEq = (Pred == ICmpInst::ICMP_EQ);
236  bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2());
237  bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2());
238  unsigned MaskVal = 0;
239  if (CCst && CCst->isZero()) {
240    // if C is zero, then both A and B qualify as mask
241    MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
242                     : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
243    if (IsAPow2)
244      MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
245                       : (AMask_AllOnes | AMask_Mixed));
246    if (IsBPow2)
247      MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
248                       : (BMask_AllOnes | BMask_Mixed));
249    return MaskVal;
250  }
251
252  if (A == C) {
253    MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
254                     : (AMask_NotAllOnes | AMask_NotMixed));
255    if (IsAPow2)
256      MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
257                       : (Mask_AllZeros | AMask_Mixed));
258  } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) {
259    MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
260  }
261
262  if (B == C) {
263    MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
264                     : (BMask_NotAllOnes | BMask_NotMixed));
265    if (IsBPow2)
266      MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
267                       : (Mask_AllZeros | BMask_Mixed));
268  } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) {
269    MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
270  }
271
272  return MaskVal;
273}
274
275/// Convert an analysis of a masked ICmp into its equivalent if all boolean
276/// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
277/// is adjacent to the corresponding normal flag (recording ==), this just
278/// involves swapping those bits over.
279static unsigned conjugateICmpMask(unsigned Mask) {
280  unsigned NewMask;
281  NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
282                     AMask_Mixed | BMask_Mixed))
283            << 1;
284
285  NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
286                      AMask_NotMixed | BMask_NotMixed))
287             >> 1;
288
289  return NewMask;
290}
291
292// Adapts the external decomposeBitTestICmp for local use.
293static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
294                                 Value *&X, Value *&Y, Value *&Z) {
295  APInt Mask;
296  if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
297    return false;
298
299  Y = ConstantInt::get(X->getType(), Mask);
300  Z = ConstantInt::get(X->getType(), 0);
301  return true;
302}
303
304/// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
305/// Return the pattern classes (from MaskedICmpType) for the left hand side and
306/// the right hand side as a pair.
307/// LHS and RHS are the left hand side and the right hand side ICmps and PredL
308/// and PredR are their predicates, respectively.
309static
310Optional<std::pair<unsigned, unsigned>>
311getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
312                         Value *&D, Value *&E, ICmpInst *LHS,
313                         ICmpInst *RHS,
314                         ICmpInst::Predicate &PredL,
315                         ICmpInst::Predicate &PredR) {
316  // vectors are not (yet?) supported. Don't support pointers either.
317  if (!LHS->getOperand(0)->getType()->isIntegerTy() ||
318      !RHS->getOperand(0)->getType()->isIntegerTy())
319    return None;
320
321  // Here comes the tricky part:
322  // LHS might be of the form L11 & L12 == X, X == L21 & L22,
323  // and L11 & L12 == L21 & L22. The same goes for RHS.
324  // Now we must find those components L** and R**, that are equal, so
325  // that we can extract the parameters A, B, C, D, and E for the canonical
326  // above.
327  Value *L1 = LHS->getOperand(0);
328  Value *L2 = LHS->getOperand(1);
329  Value *L11, *L12, *L21, *L22;
330  // Check whether the icmp can be decomposed into a bit test.
331  if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
332    L21 = L22 = L1 = nullptr;
333  } else {
334    // Look for ANDs in the LHS icmp.
335    if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
336      // Any icmp can be viewed as being trivially masked; if it allows us to
337      // remove one, it's worth it.
338      L11 = L1;
339      L12 = Constant::getAllOnesValue(L1->getType());
340    }
341
342    if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
343      L21 = L2;
344      L22 = Constant::getAllOnesValue(L2->getType());
345    }
346  }
347
348  // Bail if LHS was a icmp that can't be decomposed into an equality.
349  if (!ICmpInst::isEquality(PredL))
350    return None;
351
352  Value *R1 = RHS->getOperand(0);
353  Value *R2 = RHS->getOperand(1);
354  Value *R11, *R12;
355  bool Ok = false;
356  if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
357    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
358      A = R11;
359      D = R12;
360    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
361      A = R12;
362      D = R11;
363    } else {
364      return None;
365    }
366    E = R2;
367    R1 = nullptr;
368    Ok = true;
369  } else {
370    if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
371      // As before, model no mask as a trivial mask if it'll let us do an
372      // optimization.
373      R11 = R1;
374      R12 = Constant::getAllOnesValue(R1->getType());
375    }
376
377    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
378      A = R11;
379      D = R12;
380      E = R2;
381      Ok = true;
382    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
383      A = R12;
384      D = R11;
385      E = R2;
386      Ok = true;
387    }
388  }
389
390  // Bail if RHS was a icmp that can't be decomposed into an equality.
391  if (!ICmpInst::isEquality(PredR))
392    return None;
393
394  // Look for ANDs on the right side of the RHS icmp.
395  if (!Ok) {
396    if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
397      R11 = R2;
398      R12 = Constant::getAllOnesValue(R2->getType());
399    }
400
401    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
402      A = R11;
403      D = R12;
404      E = R1;
405      Ok = true;
406    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
407      A = R12;
408      D = R11;
409      E = R1;
410      Ok = true;
411    } else {
412      return None;
413    }
414  }
415  if (!Ok)
416    return None;
417
418  if (L11 == A) {
419    B = L12;
420    C = L2;
421  } else if (L12 == A) {
422    B = L11;
423    C = L2;
424  } else if (L21 == A) {
425    B = L22;
426    C = L1;
427  } else if (L22 == A) {
428    B = L21;
429    C = L1;
430  }
431
432  unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
433  unsigned RightType = getMaskedICmpType(A, D, E, PredR);
434  return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
435}
436
437/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
438/// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
439/// and the right hand side is of type BMask_Mixed. For example,
440/// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
441static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
442    ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
443    Value *A, Value *B, Value *C, Value *D, Value *E,
444    ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
445    llvm::InstCombiner::BuilderTy &Builder) {
446  // We are given the canonical form:
447  //   (icmp ne (A & B), 0) & (icmp eq (A & D), E).
448  // where D & E == E.
449  //
450  // If IsAnd is false, we get it in negated form:
451  //   (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
452  //      !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
453  //
454  // We currently handle the case of B, C, D, E are constant.
455  //
456  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
457  if (!BCst)
458    return nullptr;
459  ConstantInt *CCst = dyn_cast<ConstantInt>(C);
460  if (!CCst)
461    return nullptr;
462  ConstantInt *DCst = dyn_cast<ConstantInt>(D);
463  if (!DCst)
464    return nullptr;
465  ConstantInt *ECst = dyn_cast<ConstantInt>(E);
466  if (!ECst)
467    return nullptr;
468
469  ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
470
471  // Update E to the canonical form when D is a power of two and RHS is
472  // canonicalized as,
473  // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
474  // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
475  if (PredR != NewCC)
476    ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
477
478  // If B or D is zero, skip because if LHS or RHS can be trivially folded by
479  // other folding rules and this pattern won't apply any more.
480  if (BCst->getValue() == 0 || DCst->getValue() == 0)
481    return nullptr;
482
483  // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
484  // deduce anything from it.
485  // For example,
486  // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
487  if ((BCst->getValue() & DCst->getValue()) == 0)
488    return nullptr;
489
490  // If the following two conditions are met:
491  //
492  // 1. mask B covers only a single bit that's not covered by mask D, that is,
493  // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
494  // B and D has only one bit set) and,
495  //
496  // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
497  // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
498  //
499  // then that single bit in B must be one and thus the whole expression can be
500  // folded to
501  //   (A & (B | D)) == (B & (B ^ D)) | E.
502  //
503  // For example,
504  // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
505  // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
506  if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) &&
507      (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) {
508    APInt BorD = BCst->getValue() | DCst->getValue();
509    APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) |
510        ECst->getValue();
511    Value *NewMask = ConstantInt::get(BCst->getType(), BorD);
512    Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE);
513    Value *NewAnd = Builder.CreateAnd(A, NewMask);
514    return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
515  }
516
517  auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
518    return (C1->getValue() & C2->getValue()) == C1->getValue();
519  };
520  auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
521    return (C1->getValue() & C2->getValue()) == C2->getValue();
522  };
523
524  // In the following, we consider only the cases where B is a superset of D, B
525  // is a subset of D, or B == D because otherwise there's at least one bit
526  // covered by B but not D, in which case we can't deduce much from it, so
527  // no folding (aside from the single must-be-one bit case right above.)
528  // For example,
529  // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
530  if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
531    return nullptr;
532
533  // At this point, either B is a superset of D, B is a subset of D or B == D.
534
535  // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
536  // and the whole expression becomes false (or true if negated), otherwise, no
537  // folding.
538  // For example,
539  // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
540  // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
541  if (ECst->isZero()) {
542    if (IsSubSetOrEqual(BCst, DCst))
543      return ConstantInt::get(LHS->getType(), !IsAnd);
544    return nullptr;
545  }
546
547  // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
548  // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
549  // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
550  // RHS. For example,
551  // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
552  // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
553  if (IsSuperSetOrEqual(BCst, DCst))
554    return RHS;
555  // Otherwise, B is a subset of D. If B and E have a common bit set,
556  // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
557  // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
558  assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
559  if ((BCst->getValue() & ECst->getValue()) != 0)
560    return RHS;
561  // Otherwise, LHS and RHS contradict and the whole expression becomes false
562  // (or true if negated.) For example,
563  // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
564  // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
565  return ConstantInt::get(LHS->getType(), !IsAnd);
566}
567
568/// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
569/// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
570/// aren't of the common mask pattern type.
571static Value *foldLogOpOfMaskedICmpsAsymmetric(
572    ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
573    Value *A, Value *B, Value *C, Value *D, Value *E,
574    ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
575    unsigned LHSMask, unsigned RHSMask,
576    llvm::InstCombiner::BuilderTy &Builder) {
577  assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
578         "Expected equality predicates for masked type of icmps.");
579  // Handle Mask_NotAllZeros-BMask_Mixed cases.
580  // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
581  // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
582  //    which gets swapped to
583  //    (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
584  if (!IsAnd) {
585    LHSMask = conjugateICmpMask(LHSMask);
586    RHSMask = conjugateICmpMask(RHSMask);
587  }
588  if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
589    if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
590            LHS, RHS, IsAnd, A, B, C, D, E,
591            PredL, PredR, Builder)) {
592      return V;
593    }
594  } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
595    if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
596            RHS, LHS, IsAnd, A, D, E, B, C,
597            PredR, PredL, Builder)) {
598      return V;
599    }
600  }
601  return nullptr;
602}
603
604/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
605/// into a single (icmp(A & X) ==/!= Y).
606static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
607                                     llvm::InstCombiner::BuilderTy &Builder) {
608  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
609  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
610  Optional<std::pair<unsigned, unsigned>> MaskPair =
611      getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
612  if (!MaskPair)
613    return nullptr;
614  assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
615         "Expected equality predicates for masked type of icmps.");
616  unsigned LHSMask = MaskPair->first;
617  unsigned RHSMask = MaskPair->second;
618  unsigned Mask = LHSMask & RHSMask;
619  if (Mask == 0) {
620    // Even if the two sides don't share a common pattern, check if folding can
621    // still happen.
622    if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
623            LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
624            Builder))
625      return V;
626    return nullptr;
627  }
628
629  // In full generality:
630  //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
631  // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
632  //
633  // If the latter can be converted into (icmp (A & X) Op Y) then the former is
634  // equivalent to (icmp (A & X) !Op Y).
635  //
636  // Therefore, we can pretend for the rest of this function that we're dealing
637  // with the conjunction, provided we flip the sense of any comparisons (both
638  // input and output).
639
640  // In most cases we're going to produce an EQ for the "&&" case.
641  ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
642  if (!IsAnd) {
643    // Convert the masking analysis into its equivalent with negated
644    // comparisons.
645    Mask = conjugateICmpMask(Mask);
646  }
647
648  if (Mask & Mask_AllZeros) {
649    // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
650    // -> (icmp eq (A & (B|D)), 0)
651    Value *NewOr = Builder.CreateOr(B, D);
652    Value *NewAnd = Builder.CreateAnd(A, NewOr);
653    // We can't use C as zero because we might actually handle
654    //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
655    // with B and D, having a single bit set.
656    Value *Zero = Constant::getNullValue(A->getType());
657    return Builder.CreateICmp(NewCC, NewAnd, Zero);
658  }
659  if (Mask & BMask_AllOnes) {
660    // (icmp eq (A & B), B) & (icmp eq (A & D), D)
661    // -> (icmp eq (A & (B|D)), (B|D))
662    Value *NewOr = Builder.CreateOr(B, D);
663    Value *NewAnd = Builder.CreateAnd(A, NewOr);
664    return Builder.CreateICmp(NewCC, NewAnd, NewOr);
665  }
666  if (Mask & AMask_AllOnes) {
667    // (icmp eq (A & B), A) & (icmp eq (A & D), A)
668    // -> (icmp eq (A & (B&D)), A)
669    Value *NewAnd1 = Builder.CreateAnd(B, D);
670    Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
671    return Builder.CreateICmp(NewCC, NewAnd2, A);
672  }
673
674  // Remaining cases assume at least that B and D are constant, and depend on
675  // their actual values. This isn't strictly necessary, just a "handle the
676  // easy cases for now" decision.
677  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
678  if (!BCst)
679    return nullptr;
680  ConstantInt *DCst = dyn_cast<ConstantInt>(D);
681  if (!DCst)
682    return nullptr;
683
684  if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
685    // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
686    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
687    //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
688    // Only valid if one of the masks is a superset of the other (check "B&D" is
689    // the same as either B or D).
690    APInt NewMask = BCst->getValue() & DCst->getValue();
691
692    if (NewMask == BCst->getValue())
693      return LHS;
694    else if (NewMask == DCst->getValue())
695      return RHS;
696  }
697
698  if (Mask & AMask_NotAllOnes) {
699    // (icmp ne (A & B), B) & (icmp ne (A & D), D)
700    //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
701    // Only valid if one of the masks is a superset of the other (check "B|D" is
702    // the same as either B or D).
703    APInt NewMask = BCst->getValue() | DCst->getValue();
704
705    if (NewMask == BCst->getValue())
706      return LHS;
707    else if (NewMask == DCst->getValue())
708      return RHS;
709  }
710
711  if (Mask & BMask_Mixed) {
712    // (icmp eq (A & B), C) & (icmp eq (A & D), E)
713    // We already know that B & C == C && D & E == E.
714    // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
715    // C and E, which are shared by both the mask B and the mask D, don't
716    // contradict, then we can transform to
717    // -> (icmp eq (A & (B|D)), (C|E))
718    // Currently, we only handle the case of B, C, D, and E being constant.
719    // We can't simply use C and E because we might actually handle
720    //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
721    // with B and D, having a single bit set.
722    ConstantInt *CCst = dyn_cast<ConstantInt>(C);
723    if (!CCst)
724      return nullptr;
725    ConstantInt *ECst = dyn_cast<ConstantInt>(E);
726    if (!ECst)
727      return nullptr;
728    if (PredL != NewCC)
729      CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
730    if (PredR != NewCC)
731      ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
732
733    // If there is a conflict, we should actually return a false for the
734    // whole construct.
735    if (((BCst->getValue() & DCst->getValue()) &
736         (CCst->getValue() ^ ECst->getValue())).getBoolValue())
737      return ConstantInt::get(LHS->getType(), !IsAnd);
738
739    Value *NewOr1 = Builder.CreateOr(B, D);
740    Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
741    Value *NewAnd = Builder.CreateAnd(A, NewOr1);
742    return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
743  }
744
745  return nullptr;
746}
747
748/// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
749/// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
750/// If \p Inverted is true then the check is for the inverted range, e.g.
751/// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
752Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
753                                        bool Inverted) {
754  // Check the lower range comparison, e.g. x >= 0
755  // InstCombine already ensured that if there is a constant it's on the RHS.
756  ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
757  if (!RangeStart)
758    return nullptr;
759
760  ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
761                               Cmp0->getPredicate());
762
763  // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
764  if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
765        (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
766    return nullptr;
767
768  ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
769                               Cmp1->getPredicate());
770
771  Value *Input = Cmp0->getOperand(0);
772  Value *RangeEnd;
773  if (Cmp1->getOperand(0) == Input) {
774    // For the upper range compare we have: icmp x, n
775    RangeEnd = Cmp1->getOperand(1);
776  } else if (Cmp1->getOperand(1) == Input) {
777    // For the upper range compare we have: icmp n, x
778    RangeEnd = Cmp1->getOperand(0);
779    Pred1 = ICmpInst::getSwappedPredicate(Pred1);
780  } else {
781    return nullptr;
782  }
783
784  // Check the upper range comparison, e.g. x < n
785  ICmpInst::Predicate NewPred;
786  switch (Pred1) {
787    case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
788    case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
789    default: return nullptr;
790  }
791
792  // This simplification is only valid if the upper range is not negative.
793  KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
794  if (!Known.isNonNegative())
795    return nullptr;
796
797  if (Inverted)
798    NewPred = ICmpInst::getInversePredicate(NewPred);
799
800  return Builder.CreateICmp(NewPred, Input, RangeEnd);
801}
802
803static Value *
804foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
805                                     bool JoinedByAnd,
806                                     InstCombiner::BuilderTy &Builder) {
807  Value *X = LHS->getOperand(0);
808  if (X != RHS->getOperand(0))
809    return nullptr;
810
811  const APInt *C1, *C2;
812  if (!match(LHS->getOperand(1), m_APInt(C1)) ||
813      !match(RHS->getOperand(1), m_APInt(C2)))
814    return nullptr;
815
816  // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
817  ICmpInst::Predicate Pred = LHS->getPredicate();
818  if (Pred !=  RHS->getPredicate())
819    return nullptr;
820  if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
821    return nullptr;
822  if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
823    return nullptr;
824
825  // The larger unsigned constant goes on the right.
826  if (C1->ugt(*C2))
827    std::swap(C1, C2);
828
829  APInt Xor = *C1 ^ *C2;
830  if (Xor.isPowerOf2()) {
831    // If LHSC and RHSC differ by only one bit, then set that bit in X and
832    // compare against the larger constant:
833    // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
834    // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
835    // We choose an 'or' with a Pow2 constant rather than the inverse mask with
836    // 'and' because that may lead to smaller codegen from a smaller constant.
837    Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
838    return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
839  }
840
841  // Special case: get the ordering right when the values wrap around zero.
842  // Ie, we assumed the constants were unsigned when swapping earlier.
843  if (C1->isNullValue() && C2->isAllOnesValue())
844    std::swap(C1, C2);
845
846  if (*C1 == *C2 - 1) {
847    // (X == 13 || X == 14) --> X - 13 <=u 1
848    // (X != 13 && X != 14) --> X - 13  >u 1
849    // An 'add' is the canonical IR form, so favor that over a 'sub'.
850    Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1)));
851    auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
852    return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1));
853  }
854
855  return nullptr;
856}
857
858// Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
859// Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
860Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
861                                                   bool JoinedByAnd,
862                                                   Instruction &CxtI) {
863  ICmpInst::Predicate Pred = LHS->getPredicate();
864  if (Pred != RHS->getPredicate())
865    return nullptr;
866  if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
867    return nullptr;
868  if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
869    return nullptr;
870
871  // TODO support vector splats
872  ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
873  ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
874  if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero())
875    return nullptr;
876
877  Value *A, *B, *C, *D;
878  if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) &&
879      match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) {
880    if (A == D || B == D)
881      std::swap(C, D);
882    if (B == C)
883      std::swap(A, B);
884
885    if (A == C &&
886        isKnownToBeAPowerOfTwo(B, false, 0, &CxtI) &&
887        isKnownToBeAPowerOfTwo(D, false, 0, &CxtI)) {
888      Value *Mask = Builder.CreateOr(B, D);
889      Value *Masked = Builder.CreateAnd(A, Mask);
890      auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
891      return Builder.CreateICmp(NewPred, Masked, Mask);
892    }
893  }
894
895  return nullptr;
896}
897
898/// General pattern:
899///   X & Y
900///
901/// Where Y is checking that all the high bits (covered by a mask 4294967168)
902/// are uniform, i.e.  %arg & 4294967168  can be either  4294967168  or  0
903/// Pattern can be one of:
904///   %t = add        i32 %arg,    128
905///   %r = icmp   ult i32 %t,      256
906/// Or
907///   %t0 = shl       i32 %arg,    24
908///   %t1 = ashr      i32 %t0,     24
909///   %r  = icmp  eq  i32 %t1,     %arg
910/// Or
911///   %t0 = trunc     i32 %arg  to i8
912///   %t1 = sext      i8  %t0   to i32
913///   %r  = icmp  eq  i32 %t1,     %arg
914/// This pattern is a signed truncation check.
915///
916/// And X is checking that some bit in that same mask is zero.
917/// I.e. can be one of:
918///   %r = icmp sgt i32   %arg,    -1
919/// Or
920///   %t = and      i32   %arg,    2147483648
921///   %r = icmp eq  i32   %t,      0
922///
923/// Since we are checking that all the bits in that mask are the same,
924/// and a particular bit is zero, what we are really checking is that all the
925/// masked bits are zero.
926/// So this should be transformed to:
927///   %r = icmp ult i32 %arg, 128
928static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
929                                        Instruction &CxtI,
930                                        InstCombiner::BuilderTy &Builder) {
931  assert(CxtI.getOpcode() == Instruction::And);
932
933  // Match  icmp ult (add %arg, C01), C1   (C1 == C01 << 1; powers of two)
934  auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
935                                            APInt &SignBitMask) -> bool {
936    CmpInst::Predicate Pred;
937    const APInt *I01, *I1; // powers of two; I1 == I01 << 1
938    if (!(match(ICmp,
939                m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
940          Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
941      return false;
942    // Which bit is the new sign bit as per the 'signed truncation' pattern?
943    SignBitMask = *I01;
944    return true;
945  };
946
947  // One icmp needs to be 'signed truncation check'.
948  // We need to match this first, else we will mismatch commutative cases.
949  Value *X1;
950  APInt HighestBit;
951  ICmpInst *OtherICmp;
952  if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
953    OtherICmp = ICmp0;
954  else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
955    OtherICmp = ICmp1;
956  else
957    return nullptr;
958
959  assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
960
961  // Try to match/decompose into:  icmp eq (X & Mask), 0
962  auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
963                           APInt &UnsetBitsMask) -> bool {
964    CmpInst::Predicate Pred = ICmp->getPredicate();
965    // Can it be decomposed into  icmp eq (X & Mask), 0  ?
966    if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
967                                   Pred, X, UnsetBitsMask,
968                                   /*LookThroughTrunc=*/false) &&
969        Pred == ICmpInst::ICMP_EQ)
970      return true;
971    // Is it  icmp eq (X & Mask), 0  already?
972    const APInt *Mask;
973    if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
974        Pred == ICmpInst::ICMP_EQ) {
975      UnsetBitsMask = *Mask;
976      return true;
977    }
978    return false;
979  };
980
981  // And the other icmp needs to be decomposable into a bit test.
982  Value *X0;
983  APInt UnsetBitsMask;
984  if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
985    return nullptr;
986
987  assert(!UnsetBitsMask.isNullValue() && "empty mask makes no sense.");
988
989  // Are they working on the same value?
990  Value *X;
991  if (X1 == X0) {
992    // Ok as is.
993    X = X1;
994  } else if (match(X0, m_Trunc(m_Specific(X1)))) {
995    UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
996    X = X1;
997  } else
998    return nullptr;
999
1000  // So which bits should be uniform as per the 'signed truncation check'?
1001  // (all the bits starting with (i.e. including) HighestBit)
1002  APInt SignBitsMask = ~(HighestBit - 1U);
1003
1004  // UnsetBitsMask must have some common bits with SignBitsMask,
1005  if (!UnsetBitsMask.intersects(SignBitsMask))
1006    return nullptr;
1007
1008  // Does UnsetBitsMask contain any bits outside of SignBitsMask?
1009  if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
1010    APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
1011    if (!OtherHighestBit.isPowerOf2())
1012      return nullptr;
1013    HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
1014  }
1015  // Else, if it does not, then all is ok as-is.
1016
1017  // %r = icmp ult %X, SignBit
1018  return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
1019                               CxtI.getName() + ".simplified");
1020}
1021
1022/// Reduce a pair of compares that check if a value has exactly 1 bit set.
1023static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
1024                             InstCombiner::BuilderTy &Builder) {
1025  // Handle 'and' / 'or' commutation: make the equality check the first operand.
1026  if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
1027    std::swap(Cmp0, Cmp1);
1028  else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
1029    std::swap(Cmp0, Cmp1);
1030
1031  // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
1032  CmpInst::Predicate Pred0, Pred1;
1033  Value *X;
1034  if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
1035      match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
1036                         m_SpecificInt(2))) &&
1037      Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
1038    Value *CtPop = Cmp1->getOperand(0);
1039    return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
1040  }
1041  // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
1042  if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
1043      match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
1044                         m_SpecificInt(1))) &&
1045      Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
1046    Value *CtPop = Cmp1->getOperand(0);
1047    return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
1048  }
1049  return nullptr;
1050}
1051
1052/// Commuted variants are assumed to be handled by calling this function again
1053/// with the parameters swapped.
1054static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
1055                                         ICmpInst *UnsignedICmp, bool IsAnd,
1056                                         const SimplifyQuery &Q,
1057                                         InstCombiner::BuilderTy &Builder) {
1058  Value *ZeroCmpOp;
1059  ICmpInst::Predicate EqPred;
1060  if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
1061      !ICmpInst::isEquality(EqPred))
1062    return nullptr;
1063
1064  auto IsKnownNonZero = [&](Value *V) {
1065    return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1066  };
1067
1068  ICmpInst::Predicate UnsignedPred;
1069
1070  Value *A, *B;
1071  if (match(UnsignedICmp,
1072            m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
1073      match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
1074      (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
1075    if (UnsignedICmp->getOperand(0) != ZeroCmpOp)
1076      UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1077
1078    auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
1079      if (!IsKnownNonZero(NonZero))
1080        std::swap(NonZero, Other);
1081      return IsKnownNonZero(NonZero);
1082    };
1083
1084    // Given  ZeroCmpOp = (A + B)
1085    //   ZeroCmpOp <= A && ZeroCmpOp != 0  -->  (0-B) <  A
1086    //   ZeroCmpOp >  A || ZeroCmpOp == 0  -->  (0-B) >= A
1087    //
1088    //   ZeroCmpOp <  A && ZeroCmpOp != 0  -->  (0-X) <  Y  iff
1089    //   ZeroCmpOp >= A || ZeroCmpOp == 0  -->  (0-X) >= Y  iff
1090    //     with X being the value (A/B) that is known to be non-zero,
1091    //     and Y being remaining value.
1092    if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1093        IsAnd)
1094      return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1095    if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
1096        IsAnd && GetKnownNonZeroAndOther(B, A))
1097      return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1098    if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1099        !IsAnd)
1100      return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1101    if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
1102        !IsAnd && GetKnownNonZeroAndOther(B, A))
1103      return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1104  }
1105
1106  Value *Base, *Offset;
1107  if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
1108    return nullptr;
1109
1110  if (!match(UnsignedICmp,
1111             m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
1112      !ICmpInst::isUnsigned(UnsignedPred))
1113    return nullptr;
1114  if (UnsignedICmp->getOperand(0) != Base)
1115    UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1116
1117  // Base >=/> Offset && (Base - Offset) != 0  <-->  Base > Offset
1118  // (no overflow and not null)
1119  if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1120       UnsignedPred == ICmpInst::ICMP_UGT) &&
1121      EqPred == ICmpInst::ICMP_NE && IsAnd)
1122    return Builder.CreateICmpUGT(Base, Offset);
1123
1124  // Base <=/< Offset || (Base - Offset) == 0  <-->  Base <= Offset
1125  // (overflow or null)
1126  if ((UnsignedPred == ICmpInst::ICMP_ULE ||
1127       UnsignedPred == ICmpInst::ICMP_ULT) &&
1128      EqPred == ICmpInst::ICMP_EQ && !IsAnd)
1129    return Builder.CreateICmpULE(Base, Offset);
1130
1131  // Base <= Offset && (Base - Offset) != 0  -->  Base < Offset
1132  if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1133      IsAnd)
1134    return Builder.CreateICmpULT(Base, Offset);
1135
1136  // Base > Offset || (Base - Offset) == 0  -->  Base >= Offset
1137  if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1138      !IsAnd)
1139    return Builder.CreateICmpUGE(Base, Offset);
1140
1141  return nullptr;
1142}
1143
1144/// Fold (icmp)&(icmp) if possible.
1145Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
1146                                    Instruction &CxtI) {
1147  const SimplifyQuery Q = SQ.getWithInstruction(&CxtI);
1148
1149  // Fold (!iszero(A & K1) & !iszero(A & K2)) ->  (A & (K1 | K2)) == (K1 | K2)
1150  // if K1 and K2 are a one-bit mask.
1151  if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, true, CxtI))
1152    return V;
1153
1154  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1155
1156  // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
1157  if (predicatesFoldable(PredL, PredR)) {
1158    if (LHS->getOperand(0) == RHS->getOperand(1) &&
1159        LHS->getOperand(1) == RHS->getOperand(0))
1160      LHS->swapOperands();
1161    if (LHS->getOperand(0) == RHS->getOperand(0) &&
1162        LHS->getOperand(1) == RHS->getOperand(1)) {
1163      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1164      unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
1165      bool IsSigned = LHS->isSigned() || RHS->isSigned();
1166      return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
1167    }
1168  }
1169
1170  // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
1171  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
1172    return V;
1173
1174  // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
1175  if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
1176    return V;
1177
1178  // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
1179  if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
1180    return V;
1181
1182  if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
1183    return V;
1184
1185  if (Value *V = foldSignedTruncationCheck(LHS, RHS, CxtI, Builder))
1186    return V;
1187
1188  if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder))
1189    return V;
1190
1191  if (Value *X =
1192          foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/true, Q, Builder))
1193    return X;
1194  if (Value *X =
1195          foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/true, Q, Builder))
1196    return X;
1197
1198  // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
1199  Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
1200  ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
1201  ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
1202  if (!LHSC || !RHSC)
1203    return nullptr;
1204
1205  if (LHSC == RHSC && PredL == PredR) {
1206    // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
1207    // where C is a power of 2 or
1208    // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
1209    if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) ||
1210        (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) {
1211      Value *NewOr = Builder.CreateOr(LHS0, RHS0);
1212      return Builder.CreateICmp(PredL, NewOr, LHSC);
1213    }
1214  }
1215
1216  // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
1217  // where CMAX is the all ones value for the truncated type,
1218  // iff the lower bits of C2 and CA are zero.
1219  if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
1220      RHS->hasOneUse()) {
1221    Value *V;
1222    ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr;
1223
1224    // (trunc x) == C1 & (and x, CA) == C2
1225    // (and x, CA) == C2 & (trunc x) == C1
1226    if (match(RHS0, m_Trunc(m_Value(V))) &&
1227        match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
1228      SmallC = RHSC;
1229      BigC = LHSC;
1230    } else if (match(LHS0, m_Trunc(m_Value(V))) &&
1231               match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
1232      SmallC = LHSC;
1233      BigC = RHSC;
1234    }
1235
1236    if (SmallC && BigC) {
1237      unsigned BigBitSize = BigC->getType()->getBitWidth();
1238      unsigned SmallBitSize = SmallC->getType()->getBitWidth();
1239
1240      // Check that the low bits are zero.
1241      APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
1242      if ((Low & AndC->getValue()).isNullValue() &&
1243          (Low & BigC->getValue()).isNullValue()) {
1244        Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue());
1245        APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue();
1246        Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N);
1247        return Builder.CreateICmp(PredL, NewAnd, NewVal);
1248      }
1249    }
1250  }
1251
1252  // From here on, we only handle:
1253  //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
1254  if (LHS0 != RHS0)
1255    return nullptr;
1256
1257  // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
1258  if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
1259      PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
1260      PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
1261      PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
1262    return nullptr;
1263
1264  // We can't fold (ugt x, C) & (sgt x, C2).
1265  if (!predicatesFoldable(PredL, PredR))
1266    return nullptr;
1267
1268  // Ensure that the larger constant is on the RHS.
1269  bool ShouldSwap;
1270  if (CmpInst::isSigned(PredL) ||
1271      (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
1272    ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
1273  else
1274    ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
1275
1276  if (ShouldSwap) {
1277    std::swap(LHS, RHS);
1278    std::swap(LHSC, RHSC);
1279    std::swap(PredL, PredR);
1280  }
1281
1282  // At this point, we know we have two icmp instructions
1283  // comparing a value against two constants and and'ing the result
1284  // together.  Because of the above check, we know that we only have
1285  // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
1286  // (from the icmp folding check above), that the two constants
1287  // are not equal and that the larger constant is on the RHS
1288  assert(LHSC != RHSC && "Compares not folded above?");
1289
1290  switch (PredL) {
1291  default:
1292    llvm_unreachable("Unknown integer condition code!");
1293  case ICmpInst::ICMP_NE:
1294    switch (PredR) {
1295    default:
1296      llvm_unreachable("Unknown integer condition code!");
1297    case ICmpInst::ICMP_ULT:
1298      // (X != 13 & X u< 14) -> X < 13
1299      if (LHSC->getValue() == (RHSC->getValue() - 1))
1300        return Builder.CreateICmpULT(LHS0, LHSC);
1301      if (LHSC->isZero()) // (X != 0 & X u< C) -> X-1 u< C-1
1302        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1303                               false, true);
1304      break; // (X != 13 & X u< 15) -> no change
1305    case ICmpInst::ICMP_SLT:
1306      // (X != 13 & X s< 14) -> X < 13
1307      if (LHSC->getValue() == (RHSC->getValue() - 1))
1308        return Builder.CreateICmpSLT(LHS0, LHSC);
1309      // (X != INT_MIN & X s< C) -> X-(INT_MIN+1) u< (C-(INT_MIN+1))
1310      if (LHSC->isMinValue(true))
1311        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1312                               true, true);
1313      break; // (X != 13 & X s< 15) -> no change
1314    case ICmpInst::ICMP_NE:
1315      // Potential folds for this case should already be handled.
1316      break;
1317    }
1318    break;
1319  case ICmpInst::ICMP_UGT:
1320    switch (PredR) {
1321    default:
1322      llvm_unreachable("Unknown integer condition code!");
1323    case ICmpInst::ICMP_NE:
1324      // (X u> 13 & X != 14) -> X u> 14
1325      if (RHSC->getValue() == (LHSC->getValue() + 1))
1326        return Builder.CreateICmp(PredL, LHS0, RHSC);
1327      // X u> C & X != UINT_MAX -> (X-(C+1)) u< UINT_MAX-(C+1)
1328      if (RHSC->isMaxValue(false))
1329        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1330                               false, true);
1331      break;                 // (X u> 13 & X != 15) -> no change
1332    case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) u< 1
1333      return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1334                             false, true);
1335    }
1336    break;
1337  case ICmpInst::ICMP_SGT:
1338    switch (PredR) {
1339    default:
1340      llvm_unreachable("Unknown integer condition code!");
1341    case ICmpInst::ICMP_NE:
1342      // (X s> 13 & X != 14) -> X s> 14
1343      if (RHSC->getValue() == (LHSC->getValue() + 1))
1344        return Builder.CreateICmp(PredL, LHS0, RHSC);
1345      // X s> C & X != INT_MAX -> (X-(C+1)) u< INT_MAX-(C+1)
1346      if (RHSC->isMaxValue(true))
1347        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1348                               true, true);
1349      break;                 // (X s> 13 & X != 15) -> no change
1350    case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) u< 1
1351      return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true,
1352                             true);
1353    }
1354    break;
1355  }
1356
1357  return nullptr;
1358}
1359
1360Value *InstCombiner::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1361  Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1362  Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1363  FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1364
1365  if (LHS0 == RHS1 && RHS0 == LHS1) {
1366    // Swap RHS operands to match LHS.
1367    PredR = FCmpInst::getSwappedPredicate(PredR);
1368    std::swap(RHS0, RHS1);
1369  }
1370
1371  // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1372  // Suppose the relation between x and y is R, where R is one of
1373  // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1374  // testing the desired relations.
1375  //
1376  // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1377  //    bool(R & CC0) && bool(R & CC1)
1378  //  = bool((R & CC0) & (R & CC1))
1379  //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1380  //
1381  // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1382  //    bool(R & CC0) || bool(R & CC1)
1383  //  = bool((R & CC0) | (R & CC1))
1384  //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1385  if (LHS0 == RHS0 && LHS1 == RHS1) {
1386    unsigned FCmpCodeL = getFCmpCode(PredL);
1387    unsigned FCmpCodeR = getFCmpCode(PredR);
1388    unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1389    return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1390  }
1391
1392  if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1393      (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1394    if (LHS0->getType() != RHS0->getType())
1395      return nullptr;
1396
1397    // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1398    // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1399    if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1400      // Ignore the constants because they are obviously not NANs:
1401      // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y)
1402      // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y)
1403      return Builder.CreateFCmp(PredL, LHS0, RHS0);
1404  }
1405
1406  return nullptr;
1407}
1408
1409/// This a limited reassociation for a special case (see above) where we are
1410/// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1411/// This could be handled more generally in '-reassociation', but it seems like
1412/// an unlikely pattern for a large number of logic ops and fcmps.
1413static Instruction *reassociateFCmps(BinaryOperator &BO,
1414                                     InstCombiner::BuilderTy &Builder) {
1415  Instruction::BinaryOps Opcode = BO.getOpcode();
1416  assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1417         "Expecting and/or op for fcmp transform");
1418
1419  // There are 4 commuted variants of the pattern. Canonicalize operands of this
1420  // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1421  Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1422  FCmpInst::Predicate Pred;
1423  if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
1424    std::swap(Op0, Op1);
1425
1426  // Match inner binop and the predicate for combining 2 NAN checks into 1.
1427  BinaryOperator *BO1;
1428  FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1429                                                           : FCmpInst::FCMP_UNO;
1430  if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
1431      !match(Op1, m_BinOp(BO1)) || BO1->getOpcode() != Opcode)
1432    return nullptr;
1433
1434  // The inner logic op must have a matching fcmp operand.
1435  Value *BO10 = BO1->getOperand(0), *BO11 = BO1->getOperand(1), *Y;
1436  if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1437      Pred != NanPred || X->getType() != Y->getType())
1438    std::swap(BO10, BO11);
1439
1440  if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1441      Pred != NanPred || X->getType() != Y->getType())
1442    return nullptr;
1443
1444  // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1445  // or  (fcmp uno X, 0), (or  (fcmp uno Y, 0), Z) --> or  (fcmp uno X, Y), Z
1446  Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
1447  if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
1448    // Intersect FMF from the 2 source fcmps.
1449    NewFCmpInst->copyIRFlags(Op0);
1450    NewFCmpInst->andIRFlags(BO10);
1451  }
1452  return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1453}
1454
1455/// Match De Morgan's Laws:
1456/// (~A & ~B) == (~(A | B))
1457/// (~A | ~B) == (~(A & B))
1458static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1459                                       InstCombiner::BuilderTy &Builder) {
1460  auto Opcode = I.getOpcode();
1461  assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1462         "Trying to match De Morgan's Laws with something other than and/or");
1463
1464  // Flip the logic operation.
1465  Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1466
1467  Value *A, *B;
1468  if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) &&
1469      match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) &&
1470      !isFreeToInvert(A, A->hasOneUse()) &&
1471      !isFreeToInvert(B, B->hasOneUse())) {
1472    Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan");
1473    return BinaryOperator::CreateNot(AndOr);
1474  }
1475
1476  return nullptr;
1477}
1478
1479bool InstCombiner::shouldOptimizeCast(CastInst *CI) {
1480  Value *CastSrc = CI->getOperand(0);
1481
1482  // Noop casts and casts of constants should be eliminated trivially.
1483  if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1484    return false;
1485
1486  // If this cast is paired with another cast that can be eliminated, we prefer
1487  // to have it eliminated.
1488  if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1489    if (isEliminableCastPair(PrecedingCI, CI))
1490      return false;
1491
1492  return true;
1493}
1494
1495/// Fold {and,or,xor} (cast X), C.
1496static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1497                                          InstCombiner::BuilderTy &Builder) {
1498  Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1499  if (!C)
1500    return nullptr;
1501
1502  auto LogicOpc = Logic.getOpcode();
1503  Type *DestTy = Logic.getType();
1504  Type *SrcTy = Cast->getSrcTy();
1505
1506  // Move the logic operation ahead of a zext or sext if the constant is
1507  // unchanged in the smaller source type. Performing the logic in a smaller
1508  // type may provide more information to later folds, and the smaller logic
1509  // instruction may be cheaper (particularly in the case of vectors).
1510  Value *X;
1511  if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1512    Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1513    Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
1514    if (ZextTruncC == C) {
1515      // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1516      Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1517      return new ZExtInst(NewOp, DestTy);
1518    }
1519  }
1520
1521  if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1522    Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1523    Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
1524    if (SextTruncC == C) {
1525      // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1526      Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1527      return new SExtInst(NewOp, DestTy);
1528    }
1529  }
1530
1531  return nullptr;
1532}
1533
1534/// Fold {and,or,xor} (cast X), Y.
1535Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
1536  auto LogicOpc = I.getOpcode();
1537  assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1538
1539  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1540  CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1541  if (!Cast0)
1542    return nullptr;
1543
1544  // This must be a cast from an integer or integer vector source type to allow
1545  // transformation of the logic operation to the source type.
1546  Type *DestTy = I.getType();
1547  Type *SrcTy = Cast0->getSrcTy();
1548  if (!SrcTy->isIntOrIntVectorTy())
1549    return nullptr;
1550
1551  if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
1552    return Ret;
1553
1554  CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1555  if (!Cast1)
1556    return nullptr;
1557
1558  // Both operands of the logic operation are casts. The casts must be of the
1559  // same type for reduction.
1560  auto CastOpcode = Cast0->getOpcode();
1561  if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
1562    return nullptr;
1563
1564  Value *Cast0Src = Cast0->getOperand(0);
1565  Value *Cast1Src = Cast1->getOperand(0);
1566
1567  // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1568  if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1569    Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1570                                        I.getName());
1571    return CastInst::Create(CastOpcode, NewOp, DestTy);
1572  }
1573
1574  // For now, only 'and'/'or' have optimizations after this.
1575  if (LogicOpc == Instruction::Xor)
1576    return nullptr;
1577
1578  // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1579  // cast is otherwise not optimizable.  This happens for vector sexts.
1580  ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1581  ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1582  if (ICmp0 && ICmp1) {
1583    Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
1584                                              : foldOrOfICmps(ICmp0, ICmp1, I);
1585    if (Res)
1586      return CastInst::Create(CastOpcode, Res, DestTy);
1587    return nullptr;
1588  }
1589
1590  // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1591  // cast is otherwise not optimizable.  This happens for vector sexts.
1592  FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1593  FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1594  if (FCmp0 && FCmp1)
1595    if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
1596      return CastInst::Create(CastOpcode, R, DestTy);
1597
1598  return nullptr;
1599}
1600
1601static Instruction *foldAndToXor(BinaryOperator &I,
1602                                 InstCombiner::BuilderTy &Builder) {
1603  assert(I.getOpcode() == Instruction::And);
1604  Value *Op0 = I.getOperand(0);
1605  Value *Op1 = I.getOperand(1);
1606  Value *A, *B;
1607
1608  // Operand complexity canonicalization guarantees that the 'or' is Op0.
1609  // (A | B) & ~(A & B) --> A ^ B
1610  // (A | B) & ~(B & A) --> A ^ B
1611  if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1612                        m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1613    return BinaryOperator::CreateXor(A, B);
1614
1615  // (A | ~B) & (~A | B) --> ~(A ^ B)
1616  // (A | ~B) & (B | ~A) --> ~(A ^ B)
1617  // (~B | A) & (~A | B) --> ~(A ^ B)
1618  // (~B | A) & (B | ~A) --> ~(A ^ B)
1619  if (Op0->hasOneUse() || Op1->hasOneUse())
1620    if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1621                          m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1622      return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1623
1624  return nullptr;
1625}
1626
1627static Instruction *foldOrToXor(BinaryOperator &I,
1628                                InstCombiner::BuilderTy &Builder) {
1629  assert(I.getOpcode() == Instruction::Or);
1630  Value *Op0 = I.getOperand(0);
1631  Value *Op1 = I.getOperand(1);
1632  Value *A, *B;
1633
1634  // Operand complexity canonicalization guarantees that the 'and' is Op0.
1635  // (A & B) | ~(A | B) --> ~(A ^ B)
1636  // (A & B) | ~(B | A) --> ~(A ^ B)
1637  if (Op0->hasOneUse() || Op1->hasOneUse())
1638    if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1639        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1640      return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1641
1642  // (A & ~B) | (~A & B) --> A ^ B
1643  // (A & ~B) | (B & ~A) --> A ^ B
1644  // (~B & A) | (~A & B) --> A ^ B
1645  // (~B & A) | (B & ~A) --> A ^ B
1646  if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1647      match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1648    return BinaryOperator::CreateXor(A, B);
1649
1650  return nullptr;
1651}
1652
1653/// Return true if a constant shift amount is always less than the specified
1654/// bit-width. If not, the shift could create poison in the narrower type.
1655static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1656  if (auto *ScalarC = dyn_cast<ConstantInt>(C))
1657    return ScalarC->getZExtValue() < BitWidth;
1658
1659  if (C->getType()->isVectorTy()) {
1660    // Check each element of a constant vector.
1661    unsigned NumElts = C->getType()->getVectorNumElements();
1662    for (unsigned i = 0; i != NumElts; ++i) {
1663      Constant *Elt = C->getAggregateElement(i);
1664      if (!Elt)
1665        return false;
1666      if (isa<UndefValue>(Elt))
1667        continue;
1668      auto *CI = dyn_cast<ConstantInt>(Elt);
1669      if (!CI || CI->getZExtValue() >= BitWidth)
1670        return false;
1671    }
1672    return true;
1673  }
1674
1675  // The constant is a constant expression or unknown.
1676  return false;
1677}
1678
1679/// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1680/// a common zext operand: and (binop (zext X), C), (zext X).
1681Instruction *InstCombiner::narrowMaskedBinOp(BinaryOperator &And) {
1682  // This transform could also apply to {or, and, xor}, but there are better
1683  // folds for those cases, so we don't expect those patterns here. AShr is not
1684  // handled because it should always be transformed to LShr in this sequence.
1685  // The subtract transform is different because it has a constant on the left.
1686  // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1687  Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1688  Constant *C;
1689  if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1690      !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1691      !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1692      !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1693      !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1694    return nullptr;
1695
1696  Value *X;
1697  if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1698    return nullptr;
1699
1700  Type *Ty = And.getType();
1701  if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1702    return nullptr;
1703
1704  // If we're narrowing a shift, the shift amount must be safe (less than the
1705  // width) in the narrower type. If the shift amount is greater, instsimplify
1706  // usually handles that case, but we can't guarantee/assert it.
1707  Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1708  if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1709    if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1710      return nullptr;
1711
1712  // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1713  // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1714  Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1715  Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1716                                         : Builder.CreateBinOp(Opc, X, NewC);
1717  return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1718}
1719
1720// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1721// here. We should standardize that construct where it is needed or choose some
1722// other way to ensure that commutated variants of patterns are not missed.
1723Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1724  if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1),
1725                                 SQ.getWithInstruction(&I)))
1726    return replaceInstUsesWith(I, V);
1727
1728  if (SimplifyAssociativeOrCommutative(I))
1729    return &I;
1730
1731  if (Instruction *X = foldVectorBinop(I))
1732    return X;
1733
1734  // See if we can simplify any instructions used by the instruction whose sole
1735  // purpose is to compute bits we don't care about.
1736  if (SimplifyDemandedInstructionBits(I))
1737    return &I;
1738
1739  // Do this before using distributive laws to catch simple and/or/not patterns.
1740  if (Instruction *Xor = foldAndToXor(I, Builder))
1741    return Xor;
1742
1743  // (A|B)&(A|C) -> A|(B&C) etc
1744  if (Value *V = SimplifyUsingDistributiveLaws(I))
1745    return replaceInstUsesWith(I, V);
1746
1747  if (Value *V = SimplifyBSwap(I, Builder))
1748    return replaceInstUsesWith(I, V);
1749
1750  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1751  const APInt *C;
1752  if (match(Op1, m_APInt(C))) {
1753    Value *X, *Y;
1754    if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
1755        C->isOneValue()) {
1756      // (1 << X) & 1 --> zext(X == 0)
1757      // (1 >> X) & 1 --> zext(X == 0)
1758      Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0));
1759      return new ZExtInst(IsZero, I.getType());
1760    }
1761
1762    const APInt *XorC;
1763    if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
1764      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1765      Constant *NewC = ConstantInt::get(I.getType(), *C & *XorC);
1766      Value *And = Builder.CreateAnd(X, Op1);
1767      And->takeName(Op0);
1768      return BinaryOperator::CreateXor(And, NewC);
1769    }
1770
1771    const APInt *OrC;
1772    if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
1773      // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
1774      // NOTE: This reduces the number of bits set in the & mask, which
1775      // can expose opportunities for store narrowing for scalars.
1776      // NOTE: SimplifyDemandedBits should have already removed bits from C1
1777      // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
1778      // above, but this feels safer.
1779      APInt Together = *C & *OrC;
1780      Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(),
1781                                                         Together ^ *C));
1782      And->takeName(Op0);
1783      return BinaryOperator::CreateOr(And, ConstantInt::get(I.getType(),
1784                                                            Together));
1785    }
1786
1787    // If the mask is only needed on one incoming arm, push the 'and' op up.
1788    if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
1789        match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
1790      APInt NotAndMask(~(*C));
1791      BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
1792      if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
1793        // Not masking anything out for the LHS, move mask to RHS.
1794        // and ({x}or X, Y), C --> {x}or X, (and Y, C)
1795        Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
1796        return BinaryOperator::Create(BinOp, X, NewRHS);
1797      }
1798      if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
1799        // Not masking anything out for the RHS, move mask to LHS.
1800        // and ({x}or X, Y), C --> {x}or (and X, C), Y
1801        Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
1802        return BinaryOperator::Create(BinOp, NewLHS, Y);
1803      }
1804    }
1805
1806  }
1807
1808  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1809    const APInt &AndRHSMask = AndRHS->getValue();
1810
1811    // Optimize a variety of ((val OP C1) & C2) combinations...
1812    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1813      // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
1814      // of X and OP behaves well when given trunc(C1) and X.
1815      // TODO: Do this for vectors by using m_APInt isntead of m_ConstantInt.
1816      switch (Op0I->getOpcode()) {
1817      default:
1818        break;
1819      case Instruction::Xor:
1820      case Instruction::Or:
1821      case Instruction::Mul:
1822      case Instruction::Add:
1823      case Instruction::Sub:
1824        Value *X;
1825        ConstantInt *C1;
1826        // TODO: The one use restrictions could be relaxed a little if the AND
1827        // is going to be removed.
1828        if (match(Op0I, m_OneUse(m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))),
1829                                           m_ConstantInt(C1))))) {
1830          if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) {
1831            auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType());
1832            Value *BinOp;
1833            Value *Op0LHS = Op0I->getOperand(0);
1834            if (isa<ZExtInst>(Op0LHS))
1835              BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1);
1836            else
1837              BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X);
1838            auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType());
1839            auto *And = Builder.CreateAnd(BinOp, TruncC2);
1840            return new ZExtInst(And, I.getType());
1841          }
1842        }
1843      }
1844
1845      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1846        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1847          return Res;
1848    }
1849
1850    // If this is an integer truncation, and if the source is an 'and' with
1851    // immediate, transform it.  This frequently occurs for bitfield accesses.
1852    {
1853      Value *X = nullptr; ConstantInt *YC = nullptr;
1854      if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1855        // Change: and (trunc (and X, YC) to T), C2
1856        // into  : and (trunc X to T), trunc(YC) & C2
1857        // This will fold the two constants together, which may allow
1858        // other simplifications.
1859        Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk");
1860        Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1861        C3 = ConstantExpr::getAnd(C3, AndRHS);
1862        return BinaryOperator::CreateAnd(NewCast, C3);
1863      }
1864    }
1865  }
1866
1867  if (Instruction *Z = narrowMaskedBinOp(I))
1868    return Z;
1869
1870  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
1871    return FoldedLogic;
1872
1873  if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
1874    return DeMorgan;
1875
1876  {
1877    Value *A, *B, *C;
1878    // A & (A ^ B) --> A & ~B
1879    if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
1880      return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
1881    // (A ^ B) & A --> A & ~B
1882    if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
1883      return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
1884
1885    // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1886    if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
1887      if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
1888        if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
1889          return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
1890
1891    // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1892    if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
1893      if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
1894        if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
1895          return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
1896
1897    // (A | B) & ((~A) ^ B) -> (A & B)
1898    // (A | B) & (B ^ (~A)) -> (A & B)
1899    // (B | A) & ((~A) ^ B) -> (A & B)
1900    // (B | A) & (B ^ (~A)) -> (A & B)
1901    if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1902        match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1903      return BinaryOperator::CreateAnd(A, B);
1904
1905    // ((~A) ^ B) & (A | B) -> (A & B)
1906    // ((~A) ^ B) & (B | A) -> (A & B)
1907    // (B ^ (~A)) & (A | B) -> (A & B)
1908    // (B ^ (~A)) & (B | A) -> (A & B)
1909    if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1910        match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
1911      return BinaryOperator::CreateAnd(A, B);
1912  }
1913
1914  {
1915    ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
1916    ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
1917    if (LHS && RHS)
1918      if (Value *Res = foldAndOfICmps(LHS, RHS, I))
1919        return replaceInstUsesWith(I, Res);
1920
1921    // TODO: Make this recursive; it's a little tricky because an arbitrary
1922    // number of 'and' instructions might have to be created.
1923    Value *X, *Y;
1924    if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1925      if (auto *Cmp = dyn_cast<ICmpInst>(X))
1926        if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1927          return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1928      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1929        if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1930          return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1931    }
1932    if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1933      if (auto *Cmp = dyn_cast<ICmpInst>(X))
1934        if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1935          return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1936      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1937        if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1938          return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1939    }
1940  }
1941
1942  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1943    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1944      if (Value *Res = foldLogicOfFCmps(LHS, RHS, true))
1945        return replaceInstUsesWith(I, Res);
1946
1947  if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
1948    return FoldedFCmps;
1949
1950  if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
1951    return CastedAnd;
1952
1953  // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
1954  Value *A;
1955  if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
1956      A->getType()->isIntOrIntVectorTy(1))
1957    return SelectInst::Create(A, Op1, Constant::getNullValue(I.getType()));
1958  if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
1959      A->getType()->isIntOrIntVectorTy(1))
1960    return SelectInst::Create(A, Op0, Constant::getNullValue(I.getType()));
1961
1962  // and(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? X : 0.
1963  {
1964    Value *X, *Y;
1965    const APInt *ShAmt;
1966    Type *Ty = I.getType();
1967    if (match(&I, m_c_And(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)),
1968                                          m_APInt(ShAmt))),
1969                          m_Deferred(X))) &&
1970        *ShAmt == Ty->getScalarSizeInBits() - 1) {
1971      Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
1972      return SelectInst::Create(NewICmpInst, X, ConstantInt::getNullValue(Ty));
1973    }
1974  }
1975
1976  return nullptr;
1977}
1978
1979Instruction *InstCombiner::matchBSwap(BinaryOperator &Or) {
1980  assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
1981  Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
1982
1983  // Look through zero extends.
1984  if (Instruction *Ext = dyn_cast<ZExtInst>(Op0))
1985    Op0 = Ext->getOperand(0);
1986
1987  if (Instruction *Ext = dyn_cast<ZExtInst>(Op1))
1988    Op1 = Ext->getOperand(0);
1989
1990  // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
1991  bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
1992                 match(Op1, m_Or(m_Value(), m_Value()));
1993
1994  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
1995  bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1996                    match(Op1, m_LogicalShift(m_Value(), m_Value()));
1997
1998  // (A & B) | (C & D)                              -> bswap if possible.
1999  bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
2000                  match(Op1, m_And(m_Value(), m_Value()));
2001
2002  // (A << B) | (C & D)                              -> bswap if possible.
2003  // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a
2004  // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935,
2005  // C2 = 8 for i32).
2006  // This pattern can occur when the operands of the 'or' are not canonicalized
2007  // for some reason (not having only one use, for example).
2008  bool OrOfAndAndSh = (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
2009                       match(Op1, m_And(m_Value(), m_Value()))) ||
2010                      (match(Op0, m_And(m_Value(), m_Value())) &&
2011                       match(Op1, m_LogicalShift(m_Value(), m_Value())));
2012
2013  if (!OrOfOrs && !OrOfShifts && !OrOfAnds && !OrOfAndAndSh)
2014    return nullptr;
2015
2016  SmallVector<Instruction*, 4> Insts;
2017  if (!recognizeBSwapOrBitReverseIdiom(&Or, true, false, Insts))
2018    return nullptr;
2019  Instruction *LastInst = Insts.pop_back_val();
2020  LastInst->removeFromParent();
2021
2022  for (auto *Inst : Insts)
2023    Worklist.Add(Inst);
2024  return LastInst;
2025}
2026
2027/// Transform UB-safe variants of bitwise rotate to the funnel shift intrinsic.
2028static Instruction *matchRotate(Instruction &Or) {
2029  // TODO: Can we reduce the code duplication between this and the related
2030  // rotate matching code under visitSelect and visitTrunc?
2031  unsigned Width = Or.getType()->getScalarSizeInBits();
2032  if (!isPowerOf2_32(Width))
2033    return nullptr;
2034
2035  // First, find an or'd pair of opposite shifts with the same shifted operand:
2036  // or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)
2037  BinaryOperator *Or0, *Or1;
2038  if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
2039      !match(Or.getOperand(1), m_BinOp(Or1)))
2040    return nullptr;
2041
2042  Value *ShVal, *ShAmt0, *ShAmt1;
2043  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
2044      !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
2045    return nullptr;
2046
2047  BinaryOperator::BinaryOps ShiftOpcode0 = Or0->getOpcode();
2048  BinaryOperator::BinaryOps ShiftOpcode1 = Or1->getOpcode();
2049  if (ShiftOpcode0 == ShiftOpcode1)
2050    return nullptr;
2051
2052  // Match the shift amount operands for a rotate pattern. This always matches
2053  // a subtraction on the R operand.
2054  auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
2055    // The shift amount may be masked with negation:
2056    // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
2057    Value *X;
2058    unsigned Mask = Width - 1;
2059    if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
2060        match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
2061      return X;
2062
2063    // Similar to above, but the shift amount may be extended after masking,
2064    // so return the extended value as the parameter for the intrinsic.
2065    if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2066        match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
2067                       m_SpecificInt(Mask))))
2068      return L;
2069
2070    return nullptr;
2071  };
2072
2073  Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
2074  bool SubIsOnLHS = false;
2075  if (!ShAmt) {
2076    ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
2077    SubIsOnLHS = true;
2078  }
2079  if (!ShAmt)
2080    return nullptr;
2081
2082  bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
2083                (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
2084  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2085  Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
2086  return IntrinsicInst::Create(F, { ShVal, ShVal, ShAmt });
2087}
2088
2089/// If all elements of two constant vectors are 0/-1 and inverses, return true.
2090static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
2091  unsigned NumElts = C1->getType()->getVectorNumElements();
2092  for (unsigned i = 0; i != NumElts; ++i) {
2093    Constant *EltC1 = C1->getAggregateElement(i);
2094    Constant *EltC2 = C2->getAggregateElement(i);
2095    if (!EltC1 || !EltC2)
2096      return false;
2097
2098    // One element must be all ones, and the other must be all zeros.
2099    if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
2100          (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
2101      return false;
2102  }
2103  return true;
2104}
2105
2106/// We have an expression of the form (A & C) | (B & D). If A is a scalar or
2107/// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
2108/// B, it can be used as the condition operand of a select instruction.
2109Value *InstCombiner::getSelectCondition(Value *A, Value *B) {
2110  // Step 1: We may have peeked through bitcasts in the caller.
2111  // Exit immediately if we don't have (vector) integer types.
2112  Type *Ty = A->getType();
2113  if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
2114    return nullptr;
2115
2116  // Step 2: We need 0 or all-1's bitmasks.
2117  if (ComputeNumSignBits(A) != Ty->getScalarSizeInBits())
2118    return nullptr;
2119
2120  // Step 3: If B is the 'not' value of A, we have our answer.
2121  if (match(A, m_Not(m_Specific(B)))) {
2122    // If these are scalars or vectors of i1, A can be used directly.
2123    if (Ty->isIntOrIntVectorTy(1))
2124      return A;
2125    return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(Ty));
2126  }
2127
2128  // If both operands are constants, see if the constants are inverse bitmasks.
2129  Constant *AConst, *BConst;
2130  if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
2131    if (AConst == ConstantExpr::getNot(BConst))
2132      return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
2133
2134  // Look for more complex patterns. The 'not' op may be hidden behind various
2135  // casts. Look through sexts and bitcasts to find the booleans.
2136  Value *Cond;
2137  Value *NotB;
2138  if (match(A, m_SExt(m_Value(Cond))) &&
2139      Cond->getType()->isIntOrIntVectorTy(1) &&
2140      match(B, m_OneUse(m_Not(m_Value(NotB))))) {
2141    NotB = peekThroughBitcast(NotB, true);
2142    if (match(NotB, m_SExt(m_Specific(Cond))))
2143      return Cond;
2144  }
2145
2146  // All scalar (and most vector) possibilities should be handled now.
2147  // Try more matches that only apply to non-splat constant vectors.
2148  if (!Ty->isVectorTy())
2149    return nullptr;
2150
2151  // If both operands are xor'd with constants using the same sexted boolean
2152  // operand, see if the constants are inverse bitmasks.
2153  // TODO: Use ConstantExpr::getNot()?
2154  if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
2155      match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
2156      Cond->getType()->isIntOrIntVectorTy(1) &&
2157      areInverseVectorBitmasks(AConst, BConst)) {
2158    AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
2159    return Builder.CreateXor(Cond, AConst);
2160  }
2161  return nullptr;
2162}
2163
2164/// We have an expression of the form (A & C) | (B & D). Try to simplify this
2165/// to "A' ? C : D", where A' is a boolean or vector of booleans.
2166Value *InstCombiner::matchSelectFromAndOr(Value *A, Value *C, Value *B,
2167                                          Value *D) {
2168  // The potential condition of the select may be bitcasted. In that case, look
2169  // through its bitcast and the corresponding bitcast of the 'not' condition.
2170  Type *OrigType = A->getType();
2171  A = peekThroughBitcast(A, true);
2172  B = peekThroughBitcast(B, true);
2173  if (Value *Cond = getSelectCondition(A, B)) {
2174    // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
2175    // The bitcasts will either all exist or all not exist. The builder will
2176    // not create unnecessary casts if the types already match.
2177    Value *BitcastC = Builder.CreateBitCast(C, A->getType());
2178    Value *BitcastD = Builder.CreateBitCast(D, A->getType());
2179    Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
2180    return Builder.CreateBitCast(Select, OrigType);
2181  }
2182
2183  return nullptr;
2184}
2185
2186/// Fold (icmp)|(icmp) if possible.
2187Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2188                                   Instruction &CxtI) {
2189  const SimplifyQuery Q = SQ.getWithInstruction(&CxtI);
2190
2191  // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
2192  // if K1 and K2 are a one-bit mask.
2193  if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, false, CxtI))
2194    return V;
2195
2196  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2197
2198  ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
2199  ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
2200
2201  // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
2202  //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
2203  // The original condition actually refers to the following two ranges:
2204  // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
2205  // We can fold these two ranges if:
2206  // 1) C1 and C2 is unsigned greater than C3.
2207  // 2) The two ranges are separated.
2208  // 3) C1 ^ C2 is one-bit mask.
2209  // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
2210  // This implies all values in the two ranges differ by exactly one bit.
2211
2212  if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
2213      PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
2214      LHSC->getType() == RHSC->getType() &&
2215      LHSC->getValue() == (RHSC->getValue())) {
2216
2217    Value *LAdd = LHS->getOperand(0);
2218    Value *RAdd = RHS->getOperand(0);
2219
2220    Value *LAddOpnd, *RAddOpnd;
2221    ConstantInt *LAddC, *RAddC;
2222    if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) &&
2223        match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) &&
2224        LAddC->getValue().ugt(LHSC->getValue()) &&
2225        RAddC->getValue().ugt(LHSC->getValue())) {
2226
2227      APInt DiffC = LAddC->getValue() ^ RAddC->getValue();
2228      if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) {
2229        ConstantInt *MaxAddC = nullptr;
2230        if (LAddC->getValue().ult(RAddC->getValue()))
2231          MaxAddC = RAddC;
2232        else
2233          MaxAddC = LAddC;
2234
2235        APInt RRangeLow = -RAddC->getValue();
2236        APInt RRangeHigh = RRangeLow + LHSC->getValue();
2237        APInt LRangeLow = -LAddC->getValue();
2238        APInt LRangeHigh = LRangeLow + LHSC->getValue();
2239        APInt LowRangeDiff = RRangeLow ^ LRangeLow;
2240        APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
2241        APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
2242                                                   : RRangeLow - LRangeLow;
2243
2244        if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
2245            RangeDiff.ugt(LHSC->getValue())) {
2246          Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC);
2247
2248          Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC);
2249          Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC);
2250          return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC);
2251        }
2252      }
2253    }
2254  }
2255
2256  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
2257  if (predicatesFoldable(PredL, PredR)) {
2258    if (LHS->getOperand(0) == RHS->getOperand(1) &&
2259        LHS->getOperand(1) == RHS->getOperand(0))
2260      LHS->swapOperands();
2261    if (LHS->getOperand(0) == RHS->getOperand(0) &&
2262        LHS->getOperand(1) == RHS->getOperand(1)) {
2263      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2264      unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
2265      bool IsSigned = LHS->isSigned() || RHS->isSigned();
2266      return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
2267    }
2268  }
2269
2270  // handle (roughly):
2271  // (icmp ne (A & B), C) | (icmp ne (A & D), E)
2272  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
2273    return V;
2274
2275  Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
2276  if (LHS->hasOneUse() || RHS->hasOneUse()) {
2277    // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
2278    // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
2279    Value *A = nullptr, *B = nullptr;
2280    if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) {
2281      B = LHS0;
2282      if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1))
2283        A = RHS0;
2284      else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
2285        A = RHS->getOperand(1);
2286    }
2287    // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
2288    // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
2289    else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) {
2290      B = RHS0;
2291      if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1))
2292        A = LHS0;
2293      else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0)
2294        A = LHS->getOperand(1);
2295    }
2296    if (A && B)
2297      return Builder.CreateICmp(
2298          ICmpInst::ICMP_UGE,
2299          Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
2300  }
2301
2302  // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
2303  if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
2304    return V;
2305
2306  // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
2307  if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
2308    return V;
2309
2310  if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
2311    return V;
2312
2313  if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder))
2314    return V;
2315
2316  if (Value *X =
2317          foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/false, Q, Builder))
2318    return X;
2319  if (Value *X =
2320          foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/false, Q, Builder))
2321    return X;
2322
2323  // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
2324  if (!LHSC || !RHSC)
2325    return nullptr;
2326
2327  if (LHSC == RHSC && PredL == PredR) {
2328    // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
2329    if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) {
2330      Value *NewOr = Builder.CreateOr(LHS0, RHS0);
2331      return Builder.CreateICmp(PredL, NewOr, LHSC);
2332    }
2333  }
2334
2335  // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
2336  //   iff C2 + CA == C1.
2337  if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) {
2338    ConstantInt *AddC;
2339    if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC))))
2340      if (RHSC->getValue() + AddC->getValue() == LHSC->getValue())
2341        return Builder.CreateICmpULE(LHS0, LHSC);
2342  }
2343
2344  // From here on, we only handle:
2345  //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
2346  if (LHS0 != RHS0)
2347    return nullptr;
2348
2349  // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
2350  if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
2351      PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
2352      PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
2353      PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
2354    return nullptr;
2355
2356  // We can't fold (ugt x, C) | (sgt x, C2).
2357  if (!predicatesFoldable(PredL, PredR))
2358    return nullptr;
2359
2360  // Ensure that the larger constant is on the RHS.
2361  bool ShouldSwap;
2362  if (CmpInst::isSigned(PredL) ||
2363      (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
2364    ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
2365  else
2366    ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
2367
2368  if (ShouldSwap) {
2369    std::swap(LHS, RHS);
2370    std::swap(LHSC, RHSC);
2371    std::swap(PredL, PredR);
2372  }
2373
2374  // At this point, we know we have two icmp instructions
2375  // comparing a value against two constants and or'ing the result
2376  // together.  Because of the above check, we know that we only have
2377  // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
2378  // icmp folding check above), that the two constants are not
2379  // equal.
2380  assert(LHSC != RHSC && "Compares not folded above?");
2381
2382  switch (PredL) {
2383  default:
2384    llvm_unreachable("Unknown integer condition code!");
2385  case ICmpInst::ICMP_EQ:
2386    switch (PredR) {
2387    default:
2388      llvm_unreachable("Unknown integer condition code!");
2389    case ICmpInst::ICMP_EQ:
2390      // Potential folds for this case should already be handled.
2391      break;
2392    case ICmpInst::ICMP_UGT:
2393      // (X == 0 || X u> C) -> (X-1) u>= C
2394      if (LHSC->isMinValue(false))
2395        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1,
2396                               false, false);
2397      // (X == 13 | X u> 14) -> no change
2398      break;
2399    case ICmpInst::ICMP_SGT:
2400      // (X == INT_MIN || X s> C) -> (X-(INT_MIN+1)) u>= C-INT_MIN
2401      if (LHSC->isMinValue(true))
2402        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1,
2403                               true, false);
2404      // (X == 13 | X s> 14) -> no change
2405      break;
2406    }
2407    break;
2408  case ICmpInst::ICMP_ULT:
2409    switch (PredR) {
2410    default:
2411      llvm_unreachable("Unknown integer condition code!");
2412    case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
2413      // (X u< C || X == UINT_MAX) => (X-C) u>= UINT_MAX-C
2414      if (RHSC->isMaxValue(false))
2415        return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(),
2416                               false, false);
2417      break;
2418    case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
2419      assert(!RHSC->isMaxValue(false) && "Missed icmp simplification");
2420      return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1,
2421                             false, false);
2422    }
2423    break;
2424  case ICmpInst::ICMP_SLT:
2425    switch (PredR) {
2426    default:
2427      llvm_unreachable("Unknown integer condition code!");
2428    case ICmpInst::ICMP_EQ:
2429      // (X s< C || X == INT_MAX) => (X-C) u>= INT_MAX-C
2430      if (RHSC->isMaxValue(true))
2431        return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(),
2432                               true, false);
2433      // (X s< 13 | X == 14) -> no change
2434      break;
2435    case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) u> 2
2436      assert(!RHSC->isMaxValue(true) && "Missed icmp simplification");
2437      return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true,
2438                             false);
2439    }
2440    break;
2441  }
2442  return nullptr;
2443}
2444
2445// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2446// here. We should standardize that construct where it is needed or choose some
2447// other way to ensure that commutated variants of patterns are not missed.
2448Instruction *InstCombiner::visitOr(BinaryOperator &I) {
2449  if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1),
2450                                SQ.getWithInstruction(&I)))
2451    return replaceInstUsesWith(I, V);
2452
2453  if (SimplifyAssociativeOrCommutative(I))
2454    return &I;
2455
2456  if (Instruction *X = foldVectorBinop(I))
2457    return X;
2458
2459  // See if we can simplify any instructions used by the instruction whose sole
2460  // purpose is to compute bits we don't care about.
2461  if (SimplifyDemandedInstructionBits(I))
2462    return &I;
2463
2464  // Do this before using distributive laws to catch simple and/or/not patterns.
2465  if (Instruction *Xor = foldOrToXor(I, Builder))
2466    return Xor;
2467
2468  // (A&B)|(A&C) -> A&(B|C) etc
2469  if (Value *V = SimplifyUsingDistributiveLaws(I))
2470    return replaceInstUsesWith(I, V);
2471
2472  if (Value *V = SimplifyBSwap(I, Builder))
2473    return replaceInstUsesWith(I, V);
2474
2475  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2476    return FoldedLogic;
2477
2478  if (Instruction *BSwap = matchBSwap(I))
2479    return BSwap;
2480
2481  if (Instruction *Rotate = matchRotate(I))
2482    return Rotate;
2483
2484  Value *X, *Y;
2485  const APInt *CV;
2486  if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
2487      !CV->isAllOnesValue() && MaskedValueIsZero(Y, *CV, 0, &I)) {
2488    // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
2489    // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
2490    Value *Or = Builder.CreateOr(X, Y);
2491    return BinaryOperator::CreateXor(Or, ConstantInt::get(I.getType(), *CV));
2492  }
2493
2494  // (A & C)|(B & D)
2495  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2496  Value *A, *B, *C, *D;
2497  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2498      match(Op1, m_And(m_Value(B), m_Value(D)))) {
2499    ConstantInt *C1 = dyn_cast<ConstantInt>(C);
2500    ConstantInt *C2 = dyn_cast<ConstantInt>(D);
2501    if (C1 && C2) {  // (A & C1)|(B & C2)
2502      Value *V1 = nullptr, *V2 = nullptr;
2503      if ((C1->getValue() & C2->getValue()).isNullValue()) {
2504        // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2505        // iff (C1&C2) == 0 and (N&~C1) == 0
2506        if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2507            ((V1 == B &&
2508              MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
2509             (V2 == B &&
2510              MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
2511          return BinaryOperator::CreateAnd(A,
2512                                Builder.getInt(C1->getValue()|C2->getValue()));
2513        // Or commutes, try both ways.
2514        if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2515            ((V1 == A &&
2516              MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
2517             (V2 == A &&
2518              MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
2519          return BinaryOperator::CreateAnd(B,
2520                                 Builder.getInt(C1->getValue()|C2->getValue()));
2521
2522        // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2523        // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2524        ConstantInt *C3 = nullptr, *C4 = nullptr;
2525        if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2526            (C3->getValue() & ~C1->getValue()).isNullValue() &&
2527            match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2528            (C4->getValue() & ~C2->getValue()).isNullValue()) {
2529          V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2530          return BinaryOperator::CreateAnd(V2,
2531                                 Builder.getInt(C1->getValue()|C2->getValue()));
2532        }
2533      }
2534
2535      if (C1->getValue() == ~C2->getValue()) {
2536        Value *X;
2537
2538        // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2
2539        if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
2540          return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B);
2541        // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2
2542        if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
2543          return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A);
2544
2545        // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2
2546        if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
2547          return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B);
2548        // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2
2549        if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
2550          return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A);
2551      }
2552    }
2553
2554    // Don't try to form a select if it's unlikely that we'll get rid of at
2555    // least one of the operands. A select is generally more expensive than the
2556    // 'or' that it is replacing.
2557    if (Op0->hasOneUse() || Op1->hasOneUse()) {
2558      // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
2559      if (Value *V = matchSelectFromAndOr(A, C, B, D))
2560        return replaceInstUsesWith(I, V);
2561      if (Value *V = matchSelectFromAndOr(A, C, D, B))
2562        return replaceInstUsesWith(I, V);
2563      if (Value *V = matchSelectFromAndOr(C, A, B, D))
2564        return replaceInstUsesWith(I, V);
2565      if (Value *V = matchSelectFromAndOr(C, A, D, B))
2566        return replaceInstUsesWith(I, V);
2567      if (Value *V = matchSelectFromAndOr(B, D, A, C))
2568        return replaceInstUsesWith(I, V);
2569      if (Value *V = matchSelectFromAndOr(B, D, C, A))
2570        return replaceInstUsesWith(I, V);
2571      if (Value *V = matchSelectFromAndOr(D, B, A, C))
2572        return replaceInstUsesWith(I, V);
2573      if (Value *V = matchSelectFromAndOr(D, B, C, A))
2574        return replaceInstUsesWith(I, V);
2575    }
2576  }
2577
2578  // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2579  if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2580    if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2581      return BinaryOperator::CreateOr(Op0, C);
2582
2583  // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2584  if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2585    if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2586      return BinaryOperator::CreateOr(Op1, C);
2587
2588  // ((B | C) & A) | B -> B | (A & C)
2589  if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2590    return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
2591
2592  if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2593    return DeMorgan;
2594
2595  // Canonicalize xor to the RHS.
2596  bool SwappedForXor = false;
2597  if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2598    std::swap(Op0, Op1);
2599    SwappedForXor = true;
2600  }
2601
2602  // A | ( A ^ B) -> A |  B
2603  // A | (~A ^ B) -> A | ~B
2604  // (A & B) | (A ^ B)
2605  if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2606    if (Op0 == A || Op0 == B)
2607      return BinaryOperator::CreateOr(A, B);
2608
2609    if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2610        match(Op0, m_And(m_Specific(B), m_Specific(A))))
2611      return BinaryOperator::CreateOr(A, B);
2612
2613    if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2614      Value *Not = Builder.CreateNot(B, B->getName() + ".not");
2615      return BinaryOperator::CreateOr(Not, Op0);
2616    }
2617    if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2618      Value *Not = Builder.CreateNot(A, A->getName() + ".not");
2619      return BinaryOperator::CreateOr(Not, Op0);
2620    }
2621  }
2622
2623  // A | ~(A | B) -> A | ~B
2624  // A | ~(A ^ B) -> A | ~B
2625  if (match(Op1, m_Not(m_Value(A))))
2626    if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2627      if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2628          Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2629                               B->getOpcode() == Instruction::Xor)) {
2630        Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2631                                                 B->getOperand(0);
2632        Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
2633        return BinaryOperator::CreateOr(Not, Op0);
2634      }
2635
2636  if (SwappedForXor)
2637    std::swap(Op0, Op1);
2638
2639  {
2640    ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2641    ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2642    if (LHS && RHS)
2643      if (Value *Res = foldOrOfICmps(LHS, RHS, I))
2644        return replaceInstUsesWith(I, Res);
2645
2646    // TODO: Make this recursive; it's a little tricky because an arbitrary
2647    // number of 'or' instructions might have to be created.
2648    Value *X, *Y;
2649    if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2650      if (auto *Cmp = dyn_cast<ICmpInst>(X))
2651        if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2652          return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2653      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2654        if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2655          return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2656    }
2657    if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2658      if (auto *Cmp = dyn_cast<ICmpInst>(X))
2659        if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2660          return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2661      if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2662        if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2663          return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2664    }
2665  }
2666
2667  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2668    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2669      if (Value *Res = foldLogicOfFCmps(LHS, RHS, false))
2670        return replaceInstUsesWith(I, Res);
2671
2672  if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2673    return FoldedFCmps;
2674
2675  if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
2676    return CastedOr;
2677
2678  // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
2679  if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2680      A->getType()->isIntOrIntVectorTy(1))
2681    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2682  if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2683      A->getType()->isIntOrIntVectorTy(1))
2684    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2685
2686  // Note: If we've gotten to the point of visiting the outer OR, then the
2687  // inner one couldn't be simplified.  If it was a constant, then it won't
2688  // be simplified by a later pass either, so we try swapping the inner/outer
2689  // ORs in the hopes that we'll be able to simplify it this way.
2690  // (X|C) | V --> (X|V) | C
2691  ConstantInt *CI;
2692  if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2693      match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
2694    Value *Inner = Builder.CreateOr(A, Op1);
2695    Inner->takeName(Op0);
2696    return BinaryOperator::CreateOr(Inner, CI);
2697  }
2698
2699  // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2700  // Since this OR statement hasn't been optimized further yet, we hope
2701  // that this transformation will allow the new ORs to be optimized.
2702  {
2703    Value *X = nullptr, *Y = nullptr;
2704    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2705        match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2706        match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2707      Value *orTrue = Builder.CreateOr(A, C);
2708      Value *orFalse = Builder.CreateOr(B, D);
2709      return SelectInst::Create(X, orTrue, orFalse);
2710    }
2711  }
2712
2713  // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X)  --> X s> Y ? -1 : X.
2714  {
2715    Value *X, *Y;
2716    const APInt *ShAmt;
2717    Type *Ty = I.getType();
2718    if (match(&I, m_c_Or(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)),
2719                                         m_APInt(ShAmt))),
2720                         m_Deferred(X))) &&
2721        *ShAmt == Ty->getScalarSizeInBits() - 1) {
2722      Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
2723      return SelectInst::Create(NewICmpInst, ConstantInt::getAllOnesValue(Ty),
2724                                X);
2725    }
2726  }
2727
2728  if (Instruction *V =
2729          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2730    return V;
2731
2732  return nullptr;
2733}
2734
2735/// A ^ B can be specified using other logic ops in a variety of patterns. We
2736/// can fold these early and efficiently by morphing an existing instruction.
2737static Instruction *foldXorToXor(BinaryOperator &I,
2738                                 InstCombiner::BuilderTy &Builder) {
2739  assert(I.getOpcode() == Instruction::Xor);
2740  Value *Op0 = I.getOperand(0);
2741  Value *Op1 = I.getOperand(1);
2742  Value *A, *B;
2743
2744  // There are 4 commuted variants for each of the basic patterns.
2745
2746  // (A & B) ^ (A | B) -> A ^ B
2747  // (A & B) ^ (B | A) -> A ^ B
2748  // (A | B) ^ (A & B) -> A ^ B
2749  // (A | B) ^ (B & A) -> A ^ B
2750  if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
2751                        m_c_Or(m_Deferred(A), m_Deferred(B))))) {
2752    I.setOperand(0, A);
2753    I.setOperand(1, B);
2754    return &I;
2755  }
2756
2757  // (A | ~B) ^ (~A | B) -> A ^ B
2758  // (~B | A) ^ (~A | B) -> A ^ B
2759  // (~A | B) ^ (A | ~B) -> A ^ B
2760  // (B | ~A) ^ (A | ~B) -> A ^ B
2761  if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
2762                      m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) {
2763    I.setOperand(0, A);
2764    I.setOperand(1, B);
2765    return &I;
2766  }
2767
2768  // (A & ~B) ^ (~A & B) -> A ^ B
2769  // (~B & A) ^ (~A & B) -> A ^ B
2770  // (~A & B) ^ (A & ~B) -> A ^ B
2771  // (B & ~A) ^ (A & ~B) -> A ^ B
2772  if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
2773                      m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) {
2774    I.setOperand(0, A);
2775    I.setOperand(1, B);
2776    return &I;
2777  }
2778
2779  // For the remaining cases we need to get rid of one of the operands.
2780  if (!Op0->hasOneUse() && !Op1->hasOneUse())
2781    return nullptr;
2782
2783  // (A | B) ^ ~(A & B) -> ~(A ^ B)
2784  // (A | B) ^ ~(B & A) -> ~(A ^ B)
2785  // (A & B) ^ ~(A | B) -> ~(A ^ B)
2786  // (A & B) ^ ~(B | A) -> ~(A ^ B)
2787  // Complexity sorting ensures the not will be on the right side.
2788  if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
2789       match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
2790      (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2791       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
2792    return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
2793
2794  return nullptr;
2795}
2796
2797Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2798                                    BinaryOperator &I) {
2799  assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
2800         I.getOperand(1) == RHS && "Should be 'xor' with these operands");
2801
2802  if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2803    if (LHS->getOperand(0) == RHS->getOperand(1) &&
2804        LHS->getOperand(1) == RHS->getOperand(0))
2805      LHS->swapOperands();
2806    if (LHS->getOperand(0) == RHS->getOperand(0) &&
2807        LHS->getOperand(1) == RHS->getOperand(1)) {
2808      // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2809      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2810      unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2811      bool IsSigned = LHS->isSigned() || RHS->isSigned();
2812      return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
2813    }
2814  }
2815
2816  // TODO: This can be generalized to compares of non-signbits using
2817  // decomposeBitTestICmp(). It could be enhanced more by using (something like)
2818  // foldLogOpOfMaskedICmps().
2819  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2820  Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
2821  Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
2822  if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
2823      LHS0->getType() == RHS0->getType() &&
2824      LHS0->getType()->isIntOrIntVectorTy()) {
2825    // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
2826    // (X <  0) ^ (Y <  0) --> (X ^ Y) < 0
2827    if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2828         PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) ||
2829        (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2830         PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) {
2831      Value *Zero = ConstantInt::getNullValue(LHS0->getType());
2832      return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero);
2833    }
2834    // (X > -1) ^ (Y <  0) --> (X ^ Y) > -1
2835    // (X <  0) ^ (Y > -1) --> (X ^ Y) > -1
2836    if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2837         PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) ||
2838        (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2839         PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) {
2840      Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType());
2841      return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne);
2842    }
2843  }
2844
2845  // Instead of trying to imitate the folds for and/or, decompose this 'xor'
2846  // into those logic ops. That is, try to turn this into an and-of-icmps
2847  // because we have many folds for that pattern.
2848  //
2849  // This is based on a truth table definition of xor:
2850  // X ^ Y --> (X | Y) & !(X & Y)
2851  if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
2852    // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
2853    // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
2854    if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
2855      // TODO: Independently handle cases where the 'and' side is a constant.
2856      ICmpInst *X = nullptr, *Y = nullptr;
2857      if (OrICmp == LHS && AndICmp == RHS) {
2858        // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS  --> X & !Y
2859        X = LHS;
2860        Y = RHS;
2861      }
2862      if (OrICmp == RHS && AndICmp == LHS) {
2863        // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS  --> !Y & X
2864        X = RHS;
2865        Y = LHS;
2866      }
2867      if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
2868        // Invert the predicate of 'Y', thus inverting its output.
2869        Y->setPredicate(Y->getInversePredicate());
2870        // So, are there other uses of Y?
2871        if (!Y->hasOneUse()) {
2872          // We need to adapt other uses of Y though. Get a value that matches
2873          // the original value of Y before inversion. While this increases
2874          // immediate instruction count, we have just ensured that all the
2875          // users are freely-invertible, so that 'not' *will* get folded away.
2876          BuilderTy::InsertPointGuard Guard(Builder);
2877          // Set insertion point to right after the Y.
2878          Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
2879          Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
2880          // Replace all uses of Y (excluding the one in NotY!) with NotY.
2881          Y->replaceUsesWithIf(NotY,
2882                               [NotY](Use &U) { return U.getUser() != NotY; });
2883        }
2884        // All done.
2885        return Builder.CreateAnd(LHS, RHS);
2886      }
2887    }
2888  }
2889
2890  return nullptr;
2891}
2892
2893/// If we have a masked merge, in the canonical form of:
2894/// (assuming that A only has one use.)
2895///   |        A  |  |B|
2896///   ((x ^ y) & M) ^ y
2897///    |  D  |
2898/// * If M is inverted:
2899///      |  D  |
2900///     ((x ^ y) & ~M) ^ y
2901///   We can canonicalize by swapping the final xor operand
2902///   to eliminate the 'not' of the mask.
2903///     ((x ^ y) & M) ^ x
2904/// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
2905///   because that shortens the dependency chain and improves analysis:
2906///     (x & M) | (y & ~M)
2907static Instruction *visitMaskedMerge(BinaryOperator &I,
2908                                     InstCombiner::BuilderTy &Builder) {
2909  Value *B, *X, *D;
2910  Value *M;
2911  if (!match(&I, m_c_Xor(m_Value(B),
2912                         m_OneUse(m_c_And(
2913                             m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
2914                                          m_Value(D)),
2915                             m_Value(M))))))
2916    return nullptr;
2917
2918  Value *NotM;
2919  if (match(M, m_Not(m_Value(NotM)))) {
2920    // De-invert the mask and swap the value in B part.
2921    Value *NewA = Builder.CreateAnd(D, NotM);
2922    return BinaryOperator::CreateXor(NewA, X);
2923  }
2924
2925  Constant *C;
2926  if (D->hasOneUse() && match(M, m_Constant(C))) {
2927    // Unfold.
2928    Value *LHS = Builder.CreateAnd(X, C);
2929    Value *NotC = Builder.CreateNot(C);
2930    Value *RHS = Builder.CreateAnd(B, NotC);
2931    return BinaryOperator::CreateOr(LHS, RHS);
2932  }
2933
2934  return nullptr;
2935}
2936
2937// Transform
2938//   ~(x ^ y)
2939// into:
2940//   (~x) ^ y
2941// or into
2942//   x ^ (~y)
2943static Instruction *sinkNotIntoXor(BinaryOperator &I,
2944                                   InstCombiner::BuilderTy &Builder) {
2945  Value *X, *Y;
2946  // FIXME: one-use check is not needed in general, but currently we are unable
2947  // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
2948  if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
2949    return nullptr;
2950
2951  // We only want to do the transform if it is free to do.
2952  if (isFreeToInvert(X, X->hasOneUse())) {
2953    // Ok, good.
2954  } else if (isFreeToInvert(Y, Y->hasOneUse())) {
2955    std::swap(X, Y);
2956  } else
2957    return nullptr;
2958
2959  Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
2960  return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
2961}
2962
2963// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2964// here. We should standardize that construct where it is needed or choose some
2965// other way to ensure that commutated variants of patterns are not missed.
2966Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2967  if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1),
2968                                 SQ.getWithInstruction(&I)))
2969    return replaceInstUsesWith(I, V);
2970
2971  if (SimplifyAssociativeOrCommutative(I))
2972    return &I;
2973
2974  if (Instruction *X = foldVectorBinop(I))
2975    return X;
2976
2977  if (Instruction *NewXor = foldXorToXor(I, Builder))
2978    return NewXor;
2979
2980  // (A&B)^(A&C) -> A&(B^C) etc
2981  if (Value *V = SimplifyUsingDistributiveLaws(I))
2982    return replaceInstUsesWith(I, V);
2983
2984  // See if we can simplify any instructions used by the instruction whose sole
2985  // purpose is to compute bits we don't care about.
2986  if (SimplifyDemandedInstructionBits(I))
2987    return &I;
2988
2989  if (Value *V = SimplifyBSwap(I, Builder))
2990    return replaceInstUsesWith(I, V);
2991
2992  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2993
2994  // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
2995  // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
2996  // calls in there are unnecessary as SimplifyDemandedInstructionBits should
2997  // have already taken care of those cases.
2998  Value *M;
2999  if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
3000                        m_c_And(m_Deferred(M), m_Value()))))
3001    return BinaryOperator::CreateOr(Op0, Op1);
3002
3003  // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
3004  Value *X, *Y;
3005
3006  // We must eliminate the and/or (one-use) for these transforms to not increase
3007  // the instruction count.
3008  // ~(~X & Y) --> (X | ~Y)
3009  // ~(Y & ~X) --> (X | ~Y)
3010  if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) {
3011    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3012    return BinaryOperator::CreateOr(X, NotY);
3013  }
3014  // ~(~X | Y) --> (X & ~Y)
3015  // ~(Y | ~X) --> (X & ~Y)
3016  if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) {
3017    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3018    return BinaryOperator::CreateAnd(X, NotY);
3019  }
3020
3021  if (Instruction *Xor = visitMaskedMerge(I, Builder))
3022    return Xor;
3023
3024  // Is this a 'not' (~) fed by a binary operator?
3025  BinaryOperator *NotVal;
3026  if (match(&I, m_Not(m_BinOp(NotVal)))) {
3027    if (NotVal->getOpcode() == Instruction::And ||
3028        NotVal->getOpcode() == Instruction::Or) {
3029      // Apply DeMorgan's Law when inverts are free:
3030      // ~(X & Y) --> (~X | ~Y)
3031      // ~(X | Y) --> (~X & ~Y)
3032      if (isFreeToInvert(NotVal->getOperand(0),
3033                         NotVal->getOperand(0)->hasOneUse()) &&
3034          isFreeToInvert(NotVal->getOperand(1),
3035                         NotVal->getOperand(1)->hasOneUse())) {
3036        Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
3037        Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
3038        if (NotVal->getOpcode() == Instruction::And)
3039          return BinaryOperator::CreateOr(NotX, NotY);
3040        return BinaryOperator::CreateAnd(NotX, NotY);
3041      }
3042    }
3043
3044    // ~(X - Y) --> ~X + Y
3045    if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
3046      if (isa<Constant>(X) || NotVal->hasOneUse())
3047        return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
3048
3049    // ~(~X >>s Y) --> (X >>s Y)
3050    if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
3051      return BinaryOperator::CreateAShr(X, Y);
3052
3053    // If we are inverting a right-shifted constant, we may be able to eliminate
3054    // the 'not' by inverting the constant and using the opposite shift type.
3055    // Canonicalization rules ensure that only a negative constant uses 'ashr',
3056    // but we must check that in case that transform has not fired yet.
3057
3058    // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
3059    Constant *C;
3060    if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
3061        match(C, m_Negative()))
3062      return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
3063
3064    // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
3065    if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
3066        match(C, m_NonNegative()))
3067      return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
3068
3069    // ~(X + C) --> -(C + 1) - X
3070    if (match(Op0, m_Add(m_Value(X), m_Constant(C))))
3071      return BinaryOperator::CreateSub(ConstantExpr::getNeg(AddOne(C)), X);
3072  }
3073
3074  // Use DeMorgan and reassociation to eliminate a 'not' op.
3075  Constant *C1;
3076  if (match(Op1, m_Constant(C1))) {
3077    Constant *C2;
3078    if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
3079      // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
3080      Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
3081      return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
3082    }
3083    if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
3084      // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
3085      Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
3086      return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
3087    }
3088  }
3089
3090  // not (cmp A, B) = !cmp A, B
3091  CmpInst::Predicate Pred;
3092  if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) {
3093    cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred));
3094    return replaceInstUsesWith(I, Op0);
3095  }
3096
3097  {
3098    const APInt *RHSC;
3099    if (match(Op1, m_APInt(RHSC))) {
3100      Value *X;
3101      const APInt *C;
3102      if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) {
3103        // (C - X) ^ signmask -> (C + signmask - X)
3104        Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
3105        return BinaryOperator::CreateSub(NewC, X);
3106      }
3107      if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) {
3108        // (X + C) ^ signmask -> (X + C + signmask)
3109        Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
3110        return BinaryOperator::CreateAdd(X, NewC);
3111      }
3112
3113      // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0
3114      if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
3115          MaskedValueIsZero(X, *C, 0, &I)) {
3116        Constant *NewC = ConstantInt::get(I.getType(), *C ^ *RHSC);
3117        Worklist.Add(cast<Instruction>(Op0));
3118        I.setOperand(0, X);
3119        I.setOperand(1, NewC);
3120        return &I;
3121      }
3122    }
3123  }
3124
3125  if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) {
3126    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
3127      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
3128        if (Op0I->getOpcode() == Instruction::LShr) {
3129          // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
3130          // E1 = "X ^ C1"
3131          BinaryOperator *E1;
3132          ConstantInt *C1;
3133          if (Op0I->hasOneUse() &&
3134              (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
3135              E1->getOpcode() == Instruction::Xor &&
3136              (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
3137            // fold (C1 >> C2) ^ C3
3138            ConstantInt *C2 = Op0CI, *C3 = RHSC;
3139            APInt FoldConst = C1->getValue().lshr(C2->getValue());
3140            FoldConst ^= C3->getValue();
3141            // Prepare the two operands.
3142            Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2);
3143            Opnd0->takeName(Op0I);
3144            cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
3145            Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
3146
3147            return BinaryOperator::CreateXor(Opnd0, FoldVal);
3148          }
3149        }
3150      }
3151    }
3152  }
3153
3154  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
3155    return FoldedLogic;
3156
3157  // Y ^ (X | Y) --> X & ~Y
3158  // Y ^ (Y | X) --> X & ~Y
3159  if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
3160    return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
3161  // (X | Y) ^ Y --> X & ~Y
3162  // (Y | X) ^ Y --> X & ~Y
3163  if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
3164    return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
3165
3166  // Y ^ (X & Y) --> ~X & Y
3167  // Y ^ (Y & X) --> ~X & Y
3168  if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
3169    return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
3170  // (X & Y) ^ Y --> ~X & Y
3171  // (Y & X) ^ Y --> ~X & Y
3172  // Canonical form is (X & C) ^ C; don't touch that.
3173  // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
3174  //       be fixed to prefer that (otherwise we get infinite looping).
3175  if (!match(Op1, m_Constant()) &&
3176      match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
3177    return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
3178
3179  Value *A, *B, *C;
3180  // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
3181  if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
3182                        m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
3183      return BinaryOperator::CreateXor(
3184          Builder.CreateAnd(Builder.CreateNot(A), C), B);
3185
3186  // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
3187  if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
3188                        m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
3189      return BinaryOperator::CreateXor(
3190          Builder.CreateAnd(Builder.CreateNot(B), C), A);
3191
3192  // (A & B) ^ (A ^ B) -> (A | B)
3193  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
3194      match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
3195    return BinaryOperator::CreateOr(A, B);
3196  // (A ^ B) ^ (A & B) -> (A | B)
3197  if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
3198      match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
3199    return BinaryOperator::CreateOr(A, B);
3200
3201  // (A & ~B) ^ ~A -> ~(A & B)
3202  // (~B & A) ^ ~A -> ~(A & B)
3203  if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
3204      match(Op1, m_Not(m_Specific(A))))
3205    return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
3206
3207  if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
3208    if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
3209      if (Value *V = foldXorOfICmps(LHS, RHS, I))
3210        return replaceInstUsesWith(I, V);
3211
3212  if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
3213    return CastedXor;
3214
3215  // Canonicalize a shifty way to code absolute value to the common pattern.
3216  // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
3217  // We're relying on the fact that we only do this transform when the shift has
3218  // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
3219  // instructions).
3220  if (Op0->hasNUses(2))
3221    std::swap(Op0, Op1);
3222
3223  const APInt *ShAmt;
3224  Type *Ty = I.getType();
3225  if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
3226      Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
3227      match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
3228    // B = ashr i32 A, 31 ; smear the sign bit
3229    // xor (add A, B), B  ; add -1 and flip bits if negative
3230    // --> (A < 0) ? -A : A
3231    Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
3232    // Copy the nuw/nsw flags from the add to the negate.
3233    auto *Add = cast<BinaryOperator>(Op0);
3234    Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
3235                                   Add->hasNoSignedWrap());
3236    return SelectInst::Create(Cmp, Neg, A);
3237  }
3238
3239  // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
3240  //
3241  //   %notx = xor i32 %x, -1
3242  //   %cmp1 = icmp sgt i32 %notx, %y
3243  //   %smax = select i1 %cmp1, i32 %notx, i32 %y
3244  //   %res = xor i32 %smax, -1
3245  // =>
3246  //   %noty = xor i32 %y, -1
3247  //   %cmp2 = icmp slt %x, %noty
3248  //   %res = select i1 %cmp2, i32 %x, i32 %noty
3249  //
3250  // Same is applicable for smin/umax/umin.
3251  if (match(Op1, m_AllOnes()) && Op0->hasOneUse()) {
3252    Value *LHS, *RHS;
3253    SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor;
3254    if (SelectPatternResult::isMinOrMax(SPF)) {
3255      // It's possible we get here before the not has been simplified, so make
3256      // sure the input to the not isn't freely invertible.
3257      if (match(LHS, m_Not(m_Value(X))) && !isFreeToInvert(X, X->hasOneUse())) {
3258        Value *NotY = Builder.CreateNot(RHS);
3259        return SelectInst::Create(
3260            Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY);
3261      }
3262
3263      // It's possible we get here before the not has been simplified, so make
3264      // sure the input to the not isn't freely invertible.
3265      if (match(RHS, m_Not(m_Value(Y))) && !isFreeToInvert(Y, Y->hasOneUse())) {
3266        Value *NotX = Builder.CreateNot(LHS);
3267        return SelectInst::Create(
3268            Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y);
3269      }
3270
3271      // If both sides are freely invertible, then we can get rid of the xor
3272      // completely.
3273      if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
3274          isFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) {
3275        Value *NotLHS = Builder.CreateNot(LHS);
3276        Value *NotRHS = Builder.CreateNot(RHS);
3277        return SelectInst::Create(
3278            Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS),
3279            NotLHS, NotRHS);
3280      }
3281    }
3282
3283    // Pull 'not' into operands of select if both operands are one-use compares.
3284    // Inverting the predicates eliminates the 'not' operation.
3285    // Example:
3286    //     not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
3287    //     select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
3288    // TODO: Canonicalize by hoisting 'not' into an arm of the select if only
3289    //       1 select operand is a cmp?
3290    if (auto *Sel = dyn_cast<SelectInst>(Op0)) {
3291      auto *CmpT = dyn_cast<CmpInst>(Sel->getTrueValue());
3292      auto *CmpF = dyn_cast<CmpInst>(Sel->getFalseValue());
3293      if (CmpT && CmpF && CmpT->hasOneUse() && CmpF->hasOneUse()) {
3294        CmpT->setPredicate(CmpT->getInversePredicate());
3295        CmpF->setPredicate(CmpF->getInversePredicate());
3296        return replaceInstUsesWith(I, Sel);
3297      }
3298    }
3299  }
3300
3301  if (Instruction *NewXor = sinkNotIntoXor(I, Builder))
3302    return NewXor;
3303
3304  return nullptr;
3305}
3306