1//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Define several functions to decode x86 specific shuffle semantics into a
10// generic vector mask.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86ShuffleDecode.h"
15#include "llvm/ADT/ArrayRef.h"
16
17//===----------------------------------------------------------------------===//
18//  Vector Mask Decoding
19//===----------------------------------------------------------------------===//
20
21namespace llvm {
22
23void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
24  // Defaults the copying the dest value.
25  ShuffleMask.push_back(0);
26  ShuffleMask.push_back(1);
27  ShuffleMask.push_back(2);
28  ShuffleMask.push_back(3);
29
30  // Decode the immediate.
31  unsigned ZMask = Imm & 15;
32  unsigned CountD = (Imm >> 4) & 3;
33  unsigned CountS = (Imm >> 6) & 3;
34
35  // CountS selects which input element to use.
36  unsigned InVal = 4 + CountS;
37  // CountD specifies which element of destination to update.
38  ShuffleMask[CountD] = InVal;
39  // ZMask zaps values, potentially overriding the CountD elt.
40  if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
41  if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
42  if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
43  if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
44}
45
46void DecodeInsertElementMask(unsigned NumElts, unsigned Idx, unsigned Len,
47                             SmallVectorImpl<int> &ShuffleMask) {
48  assert((Idx + Len) <= NumElts && "Insertion out of range");
49
50  for (unsigned i = 0; i != NumElts; ++i)
51    ShuffleMask.push_back(i);
52  for (unsigned i = 0; i != Len; ++i)
53    ShuffleMask[Idx + i] = NumElts + i;
54}
55
56// <3,1> or <6,7,2,3>
57void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
58  for (unsigned i = NElts / 2; i != NElts; ++i)
59    ShuffleMask.push_back(NElts + i);
60
61  for (unsigned i = NElts / 2; i != NElts; ++i)
62    ShuffleMask.push_back(i);
63}
64
65// <0,2> or <0,1,4,5>
66void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
67  for (unsigned i = 0; i != NElts / 2; ++i)
68    ShuffleMask.push_back(i);
69
70  for (unsigned i = 0; i != NElts / 2; ++i)
71    ShuffleMask.push_back(NElts + i);
72}
73
74void DecodeMOVSLDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
75  for (int i = 0, e = NumElts / 2; i < e; ++i) {
76    ShuffleMask.push_back(2 * i);
77    ShuffleMask.push_back(2 * i);
78  }
79}
80
81void DecodeMOVSHDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
82  for (int i = 0, e = NumElts / 2; i < e; ++i) {
83    ShuffleMask.push_back(2 * i + 1);
84    ShuffleMask.push_back(2 * i + 1);
85  }
86}
87
88void DecodeMOVDDUPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
89  const unsigned NumLaneElts = 2;
90
91  for (unsigned l = 0; l < NumElts; l += NumLaneElts)
92    for (unsigned i = 0; i < NumLaneElts; ++i)
93      ShuffleMask.push_back(l);
94}
95
96void DecodePSLLDQMask(unsigned NumElts, unsigned Imm,
97                      SmallVectorImpl<int> &ShuffleMask) {
98  const unsigned NumLaneElts = 16;
99
100  for (unsigned l = 0; l < NumElts; l += NumLaneElts)
101    for (unsigned i = 0; i < NumLaneElts; ++i) {
102      int M = SM_SentinelZero;
103      if (i >= Imm) M = i - Imm + l;
104      ShuffleMask.push_back(M);
105    }
106}
107
108void DecodePSRLDQMask(unsigned NumElts, unsigned Imm,
109                      SmallVectorImpl<int> &ShuffleMask) {
110  const unsigned NumLaneElts = 16;
111
112  for (unsigned l = 0; l < NumElts; l += NumLaneElts)
113    for (unsigned i = 0; i < NumLaneElts; ++i) {
114      unsigned Base = i + Imm;
115      int M = Base + l;
116      if (Base >= NumLaneElts) M = SM_SentinelZero;
117      ShuffleMask.push_back(M);
118    }
119}
120
121void DecodePALIGNRMask(unsigned NumElts, unsigned Imm,
122                       SmallVectorImpl<int> &ShuffleMask) {
123  const unsigned NumLaneElts = 16;
124
125  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
126    for (unsigned i = 0; i != NumLaneElts; ++i) {
127      unsigned Base = i + Imm;
128      // if i+imm is out of this lane then we actually need the other source
129      if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
130      ShuffleMask.push_back(Base + l);
131    }
132  }
133}
134
135void DecodeVALIGNMask(unsigned NumElts, unsigned Imm,
136                      SmallVectorImpl<int> &ShuffleMask) {
137  // Not all bits of the immediate are used so mask it.
138  assert(isPowerOf2_32(NumElts) && "NumElts should be power of 2");
139  Imm = Imm & (NumElts - 1);
140  for (unsigned i = 0; i != NumElts; ++i)
141    ShuffleMask.push_back(i + Imm);
142}
143
144/// DecodePSHUFMask - This decodes the shuffle masks for pshufw, pshufd, and vpermilp*.
145/// VT indicates the type of the vector allowing it to handle different
146/// datatypes and vector widths.
147void DecodePSHUFMask(unsigned NumElts, unsigned ScalarBits, unsigned Imm,
148                     SmallVectorImpl<int> &ShuffleMask) {
149  unsigned Size = NumElts * ScalarBits;
150  unsigned NumLanes = Size / 128;
151  if (NumLanes == 0) NumLanes = 1;  // Handle MMX
152  unsigned NumLaneElts = NumElts / NumLanes;
153
154  uint32_t SplatImm = (Imm & 0xff) * 0x01010101;
155  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
156    for (unsigned i = 0; i != NumLaneElts; ++i) {
157      ShuffleMask.push_back(SplatImm % NumLaneElts + l);
158      SplatImm /= NumLaneElts;
159    }
160  }
161}
162
163void DecodePSHUFHWMask(unsigned NumElts, unsigned Imm,
164                       SmallVectorImpl<int> &ShuffleMask) {
165  for (unsigned l = 0; l != NumElts; l += 8) {
166    unsigned NewImm = Imm;
167    for (unsigned i = 0, e = 4; i != e; ++i) {
168      ShuffleMask.push_back(l + i);
169    }
170    for (unsigned i = 4, e = 8; i != e; ++i) {
171      ShuffleMask.push_back(l + 4 + (NewImm & 3));
172      NewImm >>= 2;
173    }
174  }
175}
176
177void DecodePSHUFLWMask(unsigned NumElts, unsigned Imm,
178                       SmallVectorImpl<int> &ShuffleMask) {
179  for (unsigned l = 0; l != NumElts; l += 8) {
180    unsigned NewImm = Imm;
181    for (unsigned i = 0, e = 4; i != e; ++i) {
182      ShuffleMask.push_back(l + (NewImm & 3));
183      NewImm >>= 2;
184    }
185    for (unsigned i = 4, e = 8; i != e; ++i) {
186      ShuffleMask.push_back(l + i);
187    }
188  }
189}
190
191void DecodePSWAPMask(unsigned NumElts, SmallVectorImpl<int> &ShuffleMask) {
192  unsigned NumHalfElts = NumElts / 2;
193
194  for (unsigned l = 0; l != NumHalfElts; ++l)
195    ShuffleMask.push_back(l + NumHalfElts);
196  for (unsigned h = 0; h != NumHalfElts; ++h)
197    ShuffleMask.push_back(h);
198}
199
200/// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates
201/// the type of the vector allowing it to handle different datatypes and vector
202/// widths.
203void DecodeSHUFPMask(unsigned NumElts, unsigned ScalarBits,
204                     unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
205  unsigned NumLaneElts = 128 / ScalarBits;
206
207  unsigned NewImm = Imm;
208  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
209    // each half of a lane comes from different source
210    for (unsigned s = 0; s != NumElts * 2; s += NumElts) {
211      for (unsigned i = 0; i != NumLaneElts / 2; ++i) {
212        ShuffleMask.push_back(NewImm % NumLaneElts + s + l);
213        NewImm /= NumLaneElts;
214      }
215    }
216    if (NumLaneElts == 4) NewImm = Imm; // reload imm
217  }
218}
219
220/// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
221/// and punpckh*. VT indicates the type of the vector allowing it to handle
222/// different datatypes and vector widths.
223void DecodeUNPCKHMask(unsigned NumElts, unsigned ScalarBits,
224                      SmallVectorImpl<int> &ShuffleMask) {
225  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
226  // independently on 128-bit lanes.
227  unsigned NumLanes = (NumElts * ScalarBits) / 128;
228  if (NumLanes == 0) NumLanes = 1;  // Handle MMX
229  unsigned NumLaneElts = NumElts / NumLanes;
230
231  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
232    for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) {
233      ShuffleMask.push_back(i);           // Reads from dest/src1
234      ShuffleMask.push_back(i + NumElts); // Reads from src/src2
235    }
236  }
237}
238
239/// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
240/// and punpckl*. VT indicates the type of the vector allowing it to handle
241/// different datatypes and vector widths.
242void DecodeUNPCKLMask(unsigned NumElts, unsigned ScalarBits,
243                      SmallVectorImpl<int> &ShuffleMask) {
244  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
245  // independently on 128-bit lanes.
246  unsigned NumLanes = (NumElts * ScalarBits) / 128;
247  if (NumLanes == 0 ) NumLanes = 1;  // Handle MMX
248  unsigned NumLaneElts = NumElts / NumLanes;
249
250  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
251    for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) {
252      ShuffleMask.push_back(i);           // Reads from dest/src1
253      ShuffleMask.push_back(i + NumElts); // Reads from src/src2
254    }
255  }
256}
257
258/// Decodes a broadcast of the first element of a vector.
259void DecodeVectorBroadcast(unsigned NumElts,
260                           SmallVectorImpl<int> &ShuffleMask) {
261  ShuffleMask.append(NumElts, 0);
262}
263
264/// Decodes a broadcast of a subvector to a larger vector type.
265void DecodeSubVectorBroadcast(unsigned DstNumElts, unsigned SrcNumElts,
266                              SmallVectorImpl<int> &ShuffleMask) {
267  unsigned Scale = DstNumElts / SrcNumElts;
268
269  for (unsigned i = 0; i != Scale; ++i)
270    for (unsigned j = 0; j != SrcNumElts; ++j)
271      ShuffleMask.push_back(j);
272}
273
274/// Decode a shuffle packed values at 128-bit granularity
275/// (SHUFF32x4/SHUFF64x2/SHUFI32x4/SHUFI64x2)
276/// immediate mask into a shuffle mask.
277void decodeVSHUF64x2FamilyMask(unsigned NumElts, unsigned ScalarSize,
278                               unsigned Imm,
279                               SmallVectorImpl<int> &ShuffleMask) {
280  unsigned NumElementsInLane = 128 / ScalarSize;
281  unsigned NumLanes = NumElts / NumElementsInLane;
282
283  for (unsigned l = 0; l != NumElts; l += NumElementsInLane) {
284    unsigned Index = (Imm % NumLanes) * NumElementsInLane;
285    Imm /= NumLanes; // Discard the bits we just used.
286    // We actually need the other source.
287    if (l >= (NumElts / 2))
288      Index += NumElts;
289    for (unsigned i = 0; i != NumElementsInLane; ++i)
290      ShuffleMask.push_back(Index + i);
291  }
292}
293
294void DecodeVPERM2X128Mask(unsigned NumElts, unsigned Imm,
295                          SmallVectorImpl<int> &ShuffleMask) {
296  unsigned HalfSize = NumElts / 2;
297
298  for (unsigned l = 0; l != 2; ++l) {
299    unsigned HalfMask = Imm >> (l * 4);
300    unsigned HalfBegin = (HalfMask & 0x3) * HalfSize;
301    for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i)
302      ShuffleMask.push_back((HalfMask & 8) ? SM_SentinelZero : (int)i);
303  }
304}
305
306void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
307                      SmallVectorImpl<int> &ShuffleMask) {
308  for (int i = 0, e = RawMask.size(); i < e; ++i) {
309    uint64_t M = RawMask[i];
310    if (UndefElts[i]) {
311      ShuffleMask.push_back(SM_SentinelUndef);
312      continue;
313    }
314    // For 256/512-bit vectors the base of the shuffle is the 128-bit
315    // subvector we're inside.
316    int Base = (i / 16) * 16;
317    // If the high bit (7) of the byte is set, the element is zeroed.
318    if (M & (1 << 7))
319      ShuffleMask.push_back(SM_SentinelZero);
320    else {
321      // Only the least significant 4 bits of the byte are used.
322      int Index = Base + (M & 0xf);
323      ShuffleMask.push_back(Index);
324    }
325  }
326}
327
328void DecodeBLENDMask(unsigned NumElts, unsigned Imm,
329                     SmallVectorImpl<int> &ShuffleMask) {
330  for (unsigned i = 0; i < NumElts; ++i) {
331    // If there are more than 8 elements in the vector, then any immediate blend
332    // mask wraps around.
333    unsigned Bit = i % 8;
334    ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElts + i : i);
335  }
336}
337
338void DecodeVPPERMMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
339                      SmallVectorImpl<int> &ShuffleMask) {
340  assert(RawMask.size() == 16 && "Illegal VPPERM shuffle mask size");
341
342  // VPPERM Operation
343  // Bits[4:0] - Byte Index (0 - 31)
344  // Bits[7:5] - Permute Operation
345  //
346  // Permute Operation:
347  // 0 - Source byte (no logical operation).
348  // 1 - Invert source byte.
349  // 2 - Bit reverse of source byte.
350  // 3 - Bit reverse of inverted source byte.
351  // 4 - 00h (zero - fill).
352  // 5 - FFh (ones - fill).
353  // 6 - Most significant bit of source byte replicated in all bit positions.
354  // 7 - Invert most significant bit of source byte and replicate in all bit positions.
355  for (int i = 0, e = RawMask.size(); i < e; ++i) {
356    if (UndefElts[i]) {
357      ShuffleMask.push_back(SM_SentinelUndef);
358      continue;
359    }
360
361    uint64_t M = RawMask[i];
362    uint64_t PermuteOp = (M >> 5) & 0x7;
363    if (PermuteOp == 4) {
364      ShuffleMask.push_back(SM_SentinelZero);
365      continue;
366    }
367    if (PermuteOp != 0) {
368      ShuffleMask.clear();
369      return;
370    }
371
372    uint64_t Index = M & 0x1F;
373    ShuffleMask.push_back((int)Index);
374  }
375}
376
377/// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
378void DecodeVPERMMask(unsigned NumElts, unsigned Imm,
379                     SmallVectorImpl<int> &ShuffleMask) {
380  for (unsigned l = 0; l != NumElts; l += 4)
381    for (unsigned i = 0; i != 4; ++i)
382      ShuffleMask.push_back(l + ((Imm >> (2 * i)) & 3));
383}
384
385void DecodeZeroExtendMask(unsigned SrcScalarBits, unsigned DstScalarBits,
386                          unsigned NumDstElts, bool IsAnyExtend,
387                          SmallVectorImpl<int> &Mask) {
388  unsigned Scale = DstScalarBits / SrcScalarBits;
389  assert(SrcScalarBits < DstScalarBits &&
390         "Expected zero extension mask to increase scalar size");
391
392  for (unsigned i = 0; i != NumDstElts; i++) {
393    Mask.push_back(i);
394    for (unsigned j = 1; j != Scale; j++)
395      Mask.push_back(IsAnyExtend ? SM_SentinelUndef : SM_SentinelZero);
396  }
397}
398
399void DecodeZeroMoveLowMask(unsigned NumElts,
400                           SmallVectorImpl<int> &ShuffleMask) {
401  ShuffleMask.push_back(0);
402  for (unsigned i = 1; i < NumElts; i++)
403    ShuffleMask.push_back(SM_SentinelZero);
404}
405
406void DecodeScalarMoveMask(unsigned NumElts, bool IsLoad,
407                          SmallVectorImpl<int> &Mask) {
408  // First element comes from the first element of second source.
409  // Remaining elements: Load zero extends / Move copies from first source.
410  Mask.push_back(NumElts);
411  for (unsigned i = 1; i < NumElts; i++)
412    Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i);
413}
414
415void DecodeEXTRQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx,
416                      SmallVectorImpl<int> &ShuffleMask) {
417  unsigned HalfElts = NumElts / 2;
418
419  // Only the bottom 6 bits are valid for each immediate.
420  Len &= 0x3F;
421  Idx &= 0x3F;
422
423  // We can only decode this bit extraction instruction as a shuffle if both the
424  // length and index work with whole elements.
425  if (0 != (Len % EltSize) || 0 != (Idx % EltSize))
426    return;
427
428  // A length of zero is equivalent to a bit length of 64.
429  if (Len == 0)
430    Len = 64;
431
432  // If the length + index exceeds the bottom 64 bits the result is undefined.
433  if ((Len + Idx) > 64) {
434    ShuffleMask.append(NumElts, SM_SentinelUndef);
435    return;
436  }
437
438  // Convert index and index to work with elements.
439  Len /= EltSize;
440  Idx /= EltSize;
441
442  // EXTRQ: Extract Len elements starting from Idx. Zero pad the remaining
443  // elements of the lower 64-bits. The upper 64-bits are undefined.
444  for (int i = 0; i != Len; ++i)
445    ShuffleMask.push_back(i + Idx);
446  for (int i = Len; i != (int)HalfElts; ++i)
447    ShuffleMask.push_back(SM_SentinelZero);
448  for (int i = HalfElts; i != (int)NumElts; ++i)
449    ShuffleMask.push_back(SM_SentinelUndef);
450}
451
452void DecodeINSERTQIMask(unsigned NumElts, unsigned EltSize, int Len, int Idx,
453                        SmallVectorImpl<int> &ShuffleMask) {
454  unsigned HalfElts = NumElts / 2;
455
456  // Only the bottom 6 bits are valid for each immediate.
457  Len &= 0x3F;
458  Idx &= 0x3F;
459
460  // We can only decode this bit insertion instruction as a shuffle if both the
461  // length and index work with whole elements.
462  if (0 != (Len % EltSize) || 0 != (Idx % EltSize))
463    return;
464
465  // A length of zero is equivalent to a bit length of 64.
466  if (Len == 0)
467    Len = 64;
468
469  // If the length + index exceeds the bottom 64 bits the result is undefined.
470  if ((Len + Idx) > 64) {
471    ShuffleMask.append(NumElts, SM_SentinelUndef);
472    return;
473  }
474
475  // Convert index and index to work with elements.
476  Len /= EltSize;
477  Idx /= EltSize;
478
479  // INSERTQ: Extract lowest Len elements from lower half of second source and
480  // insert over first source starting at Idx element. The upper 64-bits are
481  // undefined.
482  for (int i = 0; i != Idx; ++i)
483    ShuffleMask.push_back(i);
484  for (int i = 0; i != Len; ++i)
485    ShuffleMask.push_back(i + NumElts);
486  for (int i = Idx + Len; i != (int)HalfElts; ++i)
487    ShuffleMask.push_back(i);
488  for (int i = HalfElts; i != (int)NumElts; ++i)
489    ShuffleMask.push_back(SM_SentinelUndef);
490}
491
492void DecodeVPERMILPMask(unsigned NumElts, unsigned ScalarBits,
493                        ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
494                        SmallVectorImpl<int> &ShuffleMask) {
495  unsigned VecSize = NumElts * ScalarBits;
496  unsigned NumLanes = VecSize / 128;
497  unsigned NumEltsPerLane = NumElts / NumLanes;
498  assert((VecSize == 128 || VecSize == 256 || VecSize == 512) &&
499         "Unexpected vector size");
500  assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size");
501
502  for (unsigned i = 0, e = RawMask.size(); i < e; ++i) {
503    if (UndefElts[i]) {
504      ShuffleMask.push_back(SM_SentinelUndef);
505      continue;
506    }
507    uint64_t M = RawMask[i];
508    M = (ScalarBits == 64 ? ((M >> 1) & 0x1) : (M & 0x3));
509    unsigned LaneOffset = i & ~(NumEltsPerLane - 1);
510    ShuffleMask.push_back((int)(LaneOffset + M));
511  }
512}
513
514void DecodeVPERMIL2PMask(unsigned NumElts, unsigned ScalarBits, unsigned M2Z,
515                         ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
516                         SmallVectorImpl<int> &ShuffleMask) {
517  unsigned VecSize = NumElts * ScalarBits;
518  unsigned NumLanes = VecSize / 128;
519  unsigned NumEltsPerLane = NumElts / NumLanes;
520  assert((VecSize == 128 || VecSize == 256) && "Unexpected vector size");
521  assert((ScalarBits == 32 || ScalarBits == 64) && "Unexpected element size");
522  assert((NumElts == RawMask.size()) && "Unexpected mask size");
523
524  for (unsigned i = 0, e = RawMask.size(); i < e; ++i) {
525    if (UndefElts[i]) {
526      ShuffleMask.push_back(SM_SentinelUndef);
527      continue;
528    }
529
530    // VPERMIL2 Operation.
531    // Bits[3] - Match Bit.
532    // Bits[2:1] - (Per Lane) PD Shuffle Mask.
533    // Bits[2:0] - (Per Lane) PS Shuffle Mask.
534    uint64_t Selector = RawMask[i];
535    unsigned MatchBit = (Selector >> 3) & 0x1;
536
537    // M2Z[0:1]     MatchBit
538    //   0Xb           X        Source selected by Selector index.
539    //   10b           0        Source selected by Selector index.
540    //   10b           1        Zero.
541    //   11b           0        Zero.
542    //   11b           1        Source selected by Selector index.
543    if ((M2Z & 0x2) != 0 && MatchBit != (M2Z & 0x1)) {
544      ShuffleMask.push_back(SM_SentinelZero);
545      continue;
546    }
547
548    int Index = i & ~(NumEltsPerLane - 1);
549    if (ScalarBits == 64)
550      Index += (Selector >> 1) & 0x1;
551    else
552      Index += Selector & 0x3;
553
554    int Src = (Selector >> 2) & 0x1;
555    Index += Src * NumElts;
556    ShuffleMask.push_back(Index);
557  }
558}
559
560void DecodeVPERMVMask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
561                      SmallVectorImpl<int> &ShuffleMask) {
562  uint64_t EltMaskSize = RawMask.size() - 1;
563  for (int i = 0, e = RawMask.size(); i != e; ++i) {
564    if (UndefElts[i]) {
565      ShuffleMask.push_back(SM_SentinelUndef);
566      continue;
567    }
568    uint64_t M = RawMask[i];
569    M &= EltMaskSize;
570    ShuffleMask.push_back((int)M);
571  }
572}
573
574void DecodeVPERMV3Mask(ArrayRef<uint64_t> RawMask, const APInt &UndefElts,
575                      SmallVectorImpl<int> &ShuffleMask) {
576  uint64_t EltMaskSize = (RawMask.size() * 2) - 1;
577  for (int i = 0, e = RawMask.size(); i != e; ++i) {
578    if (UndefElts[i]) {
579      ShuffleMask.push_back(SM_SentinelUndef);
580      continue;
581    }
582    uint64_t M = RawMask[i];
583    M &= EltMaskSize;
584    ShuffleMask.push_back((int)M);
585  }
586}
587
588} // llvm namespace
589