1//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass eliminates allocas by either converting them into vectors or
10// by migrating them to local address space.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AMDGPU.h"
15#include "AMDGPUSubtarget.h"
16#include "Utils/AMDGPUBaseInfo.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/None.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/Analysis/CaptureTracking.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/CodeGen/TargetPassConfig.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/Constant.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/GlobalValue.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/Intrinsics.h"
40#include "llvm/IR/IntrinsicsAMDGPU.h"
41#include "llvm/IR/IntrinsicsR600.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Metadata.h"
44#include "llvm/IR/Module.h"
45#include "llvm/IR/Type.h"
46#include "llvm/IR/User.h"
47#include "llvm/IR/Value.h"
48#include "llvm/Pass.h"
49#include "llvm/Support/Casting.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetMachine.h"
55#include <algorithm>
56#include <cassert>
57#include <cstdint>
58#include <map>
59#include <tuple>
60#include <utility>
61#include <vector>
62
63#define DEBUG_TYPE "amdgpu-promote-alloca"
64
65using namespace llvm;
66
67namespace {
68
69static cl::opt<bool> DisablePromoteAllocaToVector(
70  "disable-promote-alloca-to-vector",
71  cl::desc("Disable promote alloca to vector"),
72  cl::init(false));
73
74static cl::opt<bool> DisablePromoteAllocaToLDS(
75  "disable-promote-alloca-to-lds",
76  cl::desc("Disable promote alloca to LDS"),
77  cl::init(false));
78
79// FIXME: This can create globals so should be a module pass.
80class AMDGPUPromoteAlloca : public FunctionPass {
81private:
82  const TargetMachine *TM;
83  Module *Mod = nullptr;
84  const DataLayout *DL = nullptr;
85
86  // FIXME: This should be per-kernel.
87  uint32_t LocalMemLimit = 0;
88  uint32_t CurrentLocalMemUsage = 0;
89
90  bool IsAMDGCN = false;
91  bool IsAMDHSA = false;
92
93  std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
94  Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
95
96  /// BaseAlloca is the alloca root the search started from.
97  /// Val may be that alloca or a recursive user of it.
98  bool collectUsesWithPtrTypes(Value *BaseAlloca,
99                               Value *Val,
100                               std::vector<Value*> &WorkList) const;
101
102  /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
103  /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
104  /// Returns true if both operands are derived from the same alloca. Val should
105  /// be the same value as one of the input operands of UseInst.
106  bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
107                                       Instruction *UseInst,
108                                       int OpIdx0, int OpIdx1) const;
109
110  /// Check whether we have enough local memory for promotion.
111  bool hasSufficientLocalMem(const Function &F);
112
113public:
114  static char ID;
115
116  AMDGPUPromoteAlloca() : FunctionPass(ID) {}
117
118  bool doInitialization(Module &M) override;
119  bool runOnFunction(Function &F) override;
120
121  StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
122
123  bool handleAlloca(AllocaInst &I, bool SufficientLDS);
124
125  void getAnalysisUsage(AnalysisUsage &AU) const override {
126    AU.setPreservesCFG();
127    FunctionPass::getAnalysisUsage(AU);
128  }
129};
130
131} // end anonymous namespace
132
133char AMDGPUPromoteAlloca::ID = 0;
134
135INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
136                "AMDGPU promote alloca to vector or LDS", false, false)
137
138char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
139
140bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
141  Mod = &M;
142  DL = &Mod->getDataLayout();
143
144  return false;
145}
146
147bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
148  if (skipFunction(F))
149    return false;
150
151  if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
152    TM = &TPC->getTM<TargetMachine>();
153  else
154    return false;
155
156  const Triple &TT = TM->getTargetTriple();
157  IsAMDGCN = TT.getArch() == Triple::amdgcn;
158  IsAMDHSA = TT.getOS() == Triple::AMDHSA;
159
160  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
161  if (!ST.isPromoteAllocaEnabled())
162    return false;
163
164  bool SufficientLDS = hasSufficientLocalMem(F);
165  bool Changed = false;
166  BasicBlock &EntryBB = *F.begin();
167
168  SmallVector<AllocaInst *, 16> Allocas;
169  for (Instruction &I : EntryBB) {
170    if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
171      Allocas.push_back(AI);
172  }
173
174  for (AllocaInst *AI : Allocas) {
175    if (handleAlloca(*AI, SufficientLDS))
176      Changed = true;
177  }
178
179  return Changed;
180}
181
182std::pair<Value *, Value *>
183AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
184  const Function &F = *Builder.GetInsertBlock()->getParent();
185  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
186
187  if (!IsAMDHSA) {
188    Function *LocalSizeYFn
189      = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
190    Function *LocalSizeZFn
191      = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
192
193    CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
194    CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
195
196    ST.makeLIDRangeMetadata(LocalSizeY);
197    ST.makeLIDRangeMetadata(LocalSizeZ);
198
199    return std::make_pair(LocalSizeY, LocalSizeZ);
200  }
201
202  // We must read the size out of the dispatch pointer.
203  assert(IsAMDGCN);
204
205  // We are indexing into this struct, and want to extract the workgroup_size_*
206  // fields.
207  //
208  //   typedef struct hsa_kernel_dispatch_packet_s {
209  //     uint16_t header;
210  //     uint16_t setup;
211  //     uint16_t workgroup_size_x ;
212  //     uint16_t workgroup_size_y;
213  //     uint16_t workgroup_size_z;
214  //     uint16_t reserved0;
215  //     uint32_t grid_size_x ;
216  //     uint32_t grid_size_y ;
217  //     uint32_t grid_size_z;
218  //
219  //     uint32_t private_segment_size;
220  //     uint32_t group_segment_size;
221  //     uint64_t kernel_object;
222  //
223  // #ifdef HSA_LARGE_MODEL
224  //     void *kernarg_address;
225  // #elif defined HSA_LITTLE_ENDIAN
226  //     void *kernarg_address;
227  //     uint32_t reserved1;
228  // #else
229  //     uint32_t reserved1;
230  //     void *kernarg_address;
231  // #endif
232  //     uint64_t reserved2;
233  //     hsa_signal_t completion_signal; // uint64_t wrapper
234  //   } hsa_kernel_dispatch_packet_t
235  //
236  Function *DispatchPtrFn
237    = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
238
239  CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
240  DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
241  DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
242
243  // Size of the dispatch packet struct.
244  DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);
245
246  Type *I32Ty = Type::getInt32Ty(Mod->getContext());
247  Value *CastDispatchPtr = Builder.CreateBitCast(
248    DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
249
250  // We could do a single 64-bit load here, but it's likely that the basic
251  // 32-bit and extract sequence is already present, and it is probably easier
252  // to CSE this. The loads should be mergable later anyway.
253  Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
254  LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, 4);
255
256  Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
257  LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, 4);
258
259  MDNode *MD = MDNode::get(Mod->getContext(), None);
260  LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
261  LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
262  ST.makeLIDRangeMetadata(LoadZU);
263
264  // Extract y component. Upper half of LoadZU should be zero already.
265  Value *Y = Builder.CreateLShr(LoadXY, 16);
266
267  return std::make_pair(Y, LoadZU);
268}
269
270Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
271  const AMDGPUSubtarget &ST =
272      AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent());
273  Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
274
275  switch (N) {
276  case 0:
277    IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
278                      : (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
279    break;
280  case 1:
281    IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
282                      : (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
283    break;
284
285  case 2:
286    IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
287                      : (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
288    break;
289  default:
290    llvm_unreachable("invalid dimension");
291  }
292
293  Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
294  CallInst *CI = Builder.CreateCall(WorkitemIdFn);
295  ST.makeLIDRangeMetadata(CI);
296
297  return CI;
298}
299
300static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
301  return VectorType::get(ArrayTy->getElementType(),
302                         ArrayTy->getNumElements());
303}
304
305static Value *
306calculateVectorIndex(Value *Ptr,
307                     const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
308  GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
309
310  auto I = GEPIdx.find(GEP);
311  return I == GEPIdx.end() ? nullptr : I->second;
312}
313
314static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
315  // FIXME we only support simple cases
316  if (GEP->getNumOperands() != 3)
317    return nullptr;
318
319  ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
320  if (!I0 || !I0->isZero())
321    return nullptr;
322
323  return GEP->getOperand(2);
324}
325
326// Not an instruction handled below to turn into a vector.
327//
328// TODO: Check isTriviallyVectorizable for calls and handle other
329// instructions.
330static bool canVectorizeInst(Instruction *Inst, User *User) {
331  switch (Inst->getOpcode()) {
332  case Instruction::Load: {
333    // Currently only handle the case where the Pointer Operand is a GEP.
334    // Also we could not vectorize volatile or atomic loads.
335    LoadInst *LI = cast<LoadInst>(Inst);
336    if (isa<AllocaInst>(User) &&
337        LI->getPointerOperandType() == User->getType() &&
338        isa<VectorType>(LI->getType()))
339      return true;
340    return isa<GetElementPtrInst>(LI->getPointerOperand()) && LI->isSimple();
341  }
342  case Instruction::BitCast:
343    return true;
344  case Instruction::Store: {
345    // Must be the stored pointer operand, not a stored value, plus
346    // since it should be canonical form, the User should be a GEP.
347    // Also we could not vectorize volatile or atomic stores.
348    StoreInst *SI = cast<StoreInst>(Inst);
349    if (isa<AllocaInst>(User) &&
350        SI->getPointerOperandType() == User->getType() &&
351        isa<VectorType>(SI->getValueOperand()->getType()))
352      return true;
353    return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && SI->isSimple();
354  }
355  default:
356    return false;
357  }
358}
359
360static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
361
362  if (DisablePromoteAllocaToVector) {
363    LLVM_DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
364    return false;
365  }
366
367  Type *AT = Alloca->getAllocatedType();
368  SequentialType *AllocaTy = dyn_cast<SequentialType>(AT);
369
370  LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
371
372  // FIXME: There is no reason why we can't support larger arrays, we
373  // are just being conservative for now.
374  // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
375  // could also be promoted but we don't currently handle this case
376  if (!AllocaTy ||
377      AllocaTy->getNumElements() > 16 ||
378      AllocaTy->getNumElements() < 2 ||
379      !VectorType::isValidElementType(AllocaTy->getElementType())) {
380    LLVM_DEBUG(dbgs() << "  Cannot convert type to vector\n");
381    return false;
382  }
383
384  std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
385  std::vector<Value*> WorkList;
386  for (User *AllocaUser : Alloca->users()) {
387    GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
388    if (!GEP) {
389      if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca))
390        return false;
391
392      WorkList.push_back(AllocaUser);
393      continue;
394    }
395
396    Value *Index = GEPToVectorIndex(GEP);
397
398    // If we can't compute a vector index from this GEP, then we can't
399    // promote this alloca to vector.
400    if (!Index) {
401      LLVM_DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP
402                        << '\n');
403      return false;
404    }
405
406    GEPVectorIdx[GEP] = Index;
407    for (User *GEPUser : AllocaUser->users()) {
408      if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser))
409        return false;
410
411      WorkList.push_back(GEPUser);
412    }
413  }
414
415  VectorType *VectorTy = dyn_cast<VectorType>(AllocaTy);
416  if (!VectorTy)
417    VectorTy = arrayTypeToVecType(cast<ArrayType>(AllocaTy));
418
419  LLVM_DEBUG(dbgs() << "  Converting alloca to vector " << *AllocaTy << " -> "
420                    << *VectorTy << '\n');
421
422  for (Value *V : WorkList) {
423    Instruction *Inst = cast<Instruction>(V);
424    IRBuilder<> Builder(Inst);
425    switch (Inst->getOpcode()) {
426    case Instruction::Load: {
427      if (Inst->getType() == AT)
428        break;
429
430      Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
431      Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
432      Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
433
434      Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
435      Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
436      Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
437      Inst->replaceAllUsesWith(ExtractElement);
438      Inst->eraseFromParent();
439      break;
440    }
441    case Instruction::Store: {
442      StoreInst *SI = cast<StoreInst>(Inst);
443      if (SI->getValueOperand()->getType() == AT)
444        break;
445
446      Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
447      Value *Ptr = SI->getPointerOperand();
448      Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
449      Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
450      Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
451      Value *NewVecValue = Builder.CreateInsertElement(VecValue,
452                                                       SI->getValueOperand(),
453                                                       Index);
454      Builder.CreateStore(NewVecValue, BitCast);
455      Inst->eraseFromParent();
456      break;
457    }
458    case Instruction::BitCast:
459    case Instruction::AddrSpaceCast:
460      break;
461
462    default:
463      llvm_unreachable("Inconsistency in instructions promotable to vector");
464    }
465  }
466  return true;
467}
468
469static bool isCallPromotable(CallInst *CI) {
470  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
471  if (!II)
472    return false;
473
474  switch (II->getIntrinsicID()) {
475  case Intrinsic::memcpy:
476  case Intrinsic::memmove:
477  case Intrinsic::memset:
478  case Intrinsic::lifetime_start:
479  case Intrinsic::lifetime_end:
480  case Intrinsic::invariant_start:
481  case Intrinsic::invariant_end:
482  case Intrinsic::launder_invariant_group:
483  case Intrinsic::strip_invariant_group:
484  case Intrinsic::objectsize:
485    return true;
486  default:
487    return false;
488  }
489}
490
491bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
492                                                          Value *Val,
493                                                          Instruction *Inst,
494                                                          int OpIdx0,
495                                                          int OpIdx1) const {
496  // Figure out which operand is the one we might not be promoting.
497  Value *OtherOp = Inst->getOperand(OpIdx0);
498  if (Val == OtherOp)
499    OtherOp = Inst->getOperand(OpIdx1);
500
501  if (isa<ConstantPointerNull>(OtherOp))
502    return true;
503
504  Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
505  if (!isa<AllocaInst>(OtherObj))
506    return false;
507
508  // TODO: We should be able to replace undefs with the right pointer type.
509
510  // TODO: If we know the other base object is another promotable
511  // alloca, not necessarily this alloca, we can do this. The
512  // important part is both must have the same address space at
513  // the end.
514  if (OtherObj != BaseAlloca) {
515    LLVM_DEBUG(
516        dbgs() << "Found a binary instruction with another alloca object\n");
517    return false;
518  }
519
520  return true;
521}
522
523bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
524  Value *BaseAlloca,
525  Value *Val,
526  std::vector<Value*> &WorkList) const {
527
528  for (User *User : Val->users()) {
529    if (is_contained(WorkList, User))
530      continue;
531
532    if (CallInst *CI = dyn_cast<CallInst>(User)) {
533      if (!isCallPromotable(CI))
534        return false;
535
536      WorkList.push_back(User);
537      continue;
538    }
539
540    Instruction *UseInst = cast<Instruction>(User);
541    if (UseInst->getOpcode() == Instruction::PtrToInt)
542      return false;
543
544    if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
545      if (LI->isVolatile())
546        return false;
547
548      continue;
549    }
550
551    if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
552      if (SI->isVolatile())
553        return false;
554
555      // Reject if the stored value is not the pointer operand.
556      if (SI->getPointerOperand() != Val)
557        return false;
558    } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
559      if (RMW->isVolatile())
560        return false;
561    } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
562      if (CAS->isVolatile())
563        return false;
564    }
565
566    // Only promote a select if we know that the other select operand
567    // is from another pointer that will also be promoted.
568    if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
569      if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
570        return false;
571
572      // May need to rewrite constant operands.
573      WorkList.push_back(ICmp);
574    }
575
576    if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
577      // Give up if the pointer may be captured.
578      if (PointerMayBeCaptured(UseInst, true, true))
579        return false;
580      // Don't collect the users of this.
581      WorkList.push_back(User);
582      continue;
583    }
584
585    if (!User->getType()->isPointerTy())
586      continue;
587
588    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
589      // Be conservative if an address could be computed outside the bounds of
590      // the alloca.
591      if (!GEP->isInBounds())
592        return false;
593    }
594
595    // Only promote a select if we know that the other select operand is from
596    // another pointer that will also be promoted.
597    if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
598      if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
599        return false;
600    }
601
602    // Repeat for phis.
603    if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
604      // TODO: Handle more complex cases. We should be able to replace loops
605      // over arrays.
606      switch (Phi->getNumIncomingValues()) {
607      case 1:
608        break;
609      case 2:
610        if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
611          return false;
612        break;
613      default:
614        return false;
615      }
616    }
617
618    WorkList.push_back(User);
619    if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
620      return false;
621  }
622
623  return true;
624}
625
626bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) {
627
628  FunctionType *FTy = F.getFunctionType();
629  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
630
631  // If the function has any arguments in the local address space, then it's
632  // possible these arguments require the entire local memory space, so
633  // we cannot use local memory in the pass.
634  for (Type *ParamTy : FTy->params()) {
635    PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
636    if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
637      LocalMemLimit = 0;
638      LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
639                           "local memory disabled.\n");
640      return false;
641    }
642  }
643
644  LocalMemLimit = ST.getLocalMemorySize();
645  if (LocalMemLimit == 0)
646    return false;
647
648  const DataLayout &DL = Mod->getDataLayout();
649
650  // Check how much local memory is being used by global objects
651  CurrentLocalMemUsage = 0;
652  for (GlobalVariable &GV : Mod->globals()) {
653    if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
654      continue;
655
656    for (const User *U : GV.users()) {
657      const Instruction *Use = dyn_cast<Instruction>(U);
658      if (!Use)
659        continue;
660
661      if (Use->getParent()->getParent() == &F) {
662        unsigned Align = GV.getAlignment();
663        if (Align == 0)
664          Align = DL.getABITypeAlignment(GV.getValueType());
665
666        // FIXME: Try to account for padding here. The padding is currently
667        // determined from the inverse order of uses in the function. I'm not
668        // sure if the use list order is in any way connected to this, so the
669        // total reported size is likely incorrect.
670        uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
671        CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align);
672        CurrentLocalMemUsage += AllocSize;
673        break;
674      }
675    }
676  }
677
678  unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
679                                                          F);
680
681  // Restrict local memory usage so that we don't drastically reduce occupancy,
682  // unless it is already significantly reduced.
683
684  // TODO: Have some sort of hint or other heuristics to guess occupancy based
685  // on other factors..
686  unsigned OccupancyHint = ST.getWavesPerEU(F).second;
687  if (OccupancyHint == 0)
688    OccupancyHint = 7;
689
690  // Clamp to max value.
691  OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
692
693  // Check the hint but ignore it if it's obviously wrong from the existing LDS
694  // usage.
695  MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
696
697
698  // Round up to the next tier of usage.
699  unsigned MaxSizeWithWaveCount
700    = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
701
702  // Program is possibly broken by using more local mem than available.
703  if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
704    return false;
705
706  LocalMemLimit = MaxSizeWithWaveCount;
707
708  LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
709                    << " bytes of LDS\n"
710                    << "  Rounding size to " << MaxSizeWithWaveCount
711                    << " with a maximum occupancy of " << MaxOccupancy << '\n'
712                    << " and " << (LocalMemLimit - CurrentLocalMemUsage)
713                    << " available for promotion\n");
714
715  return true;
716}
717
718// FIXME: Should try to pick the most likely to be profitable allocas first.
719bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) {
720  // Array allocations are probably not worth handling, since an allocation of
721  // the array type is the canonical form.
722  if (!I.isStaticAlloca() || I.isArrayAllocation())
723    return false;
724
725  IRBuilder<> Builder(&I);
726
727  // First try to replace the alloca with a vector
728  Type *AllocaTy = I.getAllocatedType();
729
730  LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
731
732  if (tryPromoteAllocaToVector(&I))
733    return true; // Promoted to vector.
734
735  if (DisablePromoteAllocaToLDS)
736    return false;
737
738  const Function &ContainingFunction = *I.getParent()->getParent();
739  CallingConv::ID CC = ContainingFunction.getCallingConv();
740
741  // Don't promote the alloca to LDS for shader calling conventions as the work
742  // item ID intrinsics are not supported for these calling conventions.
743  // Furthermore not all LDS is available for some of the stages.
744  switch (CC) {
745  case CallingConv::AMDGPU_KERNEL:
746  case CallingConv::SPIR_KERNEL:
747    break;
748  default:
749    LLVM_DEBUG(
750        dbgs()
751        << " promote alloca to LDS not supported with calling convention.\n");
752    return false;
753  }
754
755  // Not likely to have sufficient local memory for promotion.
756  if (!SufficientLDS)
757    return false;
758
759  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction);
760  unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
761
762  const DataLayout &DL = Mod->getDataLayout();
763
764  unsigned Align = I.getAlignment();
765  if (Align == 0)
766    Align = DL.getABITypeAlignment(I.getAllocatedType());
767
768  // FIXME: This computed padding is likely wrong since it depends on inverse
769  // usage order.
770  //
771  // FIXME: It is also possible that if we're allowed to use all of the memory
772  // could could end up using more than the maximum due to alignment padding.
773
774  uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align);
775  uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
776  NewSize += AllocSize;
777
778  if (NewSize > LocalMemLimit) {
779    LLVM_DEBUG(dbgs() << "  " << AllocSize
780                      << " bytes of local memory not available to promote\n");
781    return false;
782  }
783
784  CurrentLocalMemUsage = NewSize;
785
786  std::vector<Value*> WorkList;
787
788  if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
789    LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
790    return false;
791  }
792
793  LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
794
795  Function *F = I.getParent()->getParent();
796
797  Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
798  GlobalVariable *GV = new GlobalVariable(
799      *Mod, GVTy, false, GlobalValue::InternalLinkage,
800      UndefValue::get(GVTy),
801      Twine(F->getName()) + Twine('.') + I.getName(),
802      nullptr,
803      GlobalVariable::NotThreadLocal,
804      AMDGPUAS::LOCAL_ADDRESS);
805  GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
806  GV->setAlignment(MaybeAlign(I.getAlignment()));
807
808  Value *TCntY, *TCntZ;
809
810  std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
811  Value *TIdX = getWorkitemID(Builder, 0);
812  Value *TIdY = getWorkitemID(Builder, 1);
813  Value *TIdZ = getWorkitemID(Builder, 2);
814
815  Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
816  Tmp0 = Builder.CreateMul(Tmp0, TIdX);
817  Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
818  Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
819  TID = Builder.CreateAdd(TID, TIdZ);
820
821  Value *Indices[] = {
822    Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
823    TID
824  };
825
826  Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
827  I.mutateType(Offset->getType());
828  I.replaceAllUsesWith(Offset);
829  I.eraseFromParent();
830
831  for (Value *V : WorkList) {
832    CallInst *Call = dyn_cast<CallInst>(V);
833    if (!Call) {
834      if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
835        Value *Src0 = CI->getOperand(0);
836        Type *EltTy = Src0->getType()->getPointerElementType();
837        PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
838
839        if (isa<ConstantPointerNull>(CI->getOperand(0)))
840          CI->setOperand(0, ConstantPointerNull::get(NewTy));
841
842        if (isa<ConstantPointerNull>(CI->getOperand(1)))
843          CI->setOperand(1, ConstantPointerNull::get(NewTy));
844
845        continue;
846      }
847
848      // The operand's value should be corrected on its own and we don't want to
849      // touch the users.
850      if (isa<AddrSpaceCastInst>(V))
851        continue;
852
853      Type *EltTy = V->getType()->getPointerElementType();
854      PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
855
856      // FIXME: It doesn't really make sense to try to do this for all
857      // instructions.
858      V->mutateType(NewTy);
859
860      // Adjust the types of any constant operands.
861      if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
862        if (isa<ConstantPointerNull>(SI->getOperand(1)))
863          SI->setOperand(1, ConstantPointerNull::get(NewTy));
864
865        if (isa<ConstantPointerNull>(SI->getOperand(2)))
866          SI->setOperand(2, ConstantPointerNull::get(NewTy));
867      } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
868        for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
869          if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
870            Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
871        }
872      }
873
874      continue;
875    }
876
877    IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
878    Builder.SetInsertPoint(Intr);
879    switch (Intr->getIntrinsicID()) {
880    case Intrinsic::lifetime_start:
881    case Intrinsic::lifetime_end:
882      // These intrinsics are for address space 0 only
883      Intr->eraseFromParent();
884      continue;
885    case Intrinsic::memcpy: {
886      MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
887      Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlign(),
888                           MemCpy->getRawSource(), MemCpy->getSourceAlign(),
889                           MemCpy->getLength(), MemCpy->isVolatile());
890      Intr->eraseFromParent();
891      continue;
892    }
893    case Intrinsic::memmove: {
894      MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
895      Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlign(),
896                            MemMove->getRawSource(), MemMove->getSourceAlign(),
897                            MemMove->getLength(), MemMove->isVolatile());
898      Intr->eraseFromParent();
899      continue;
900    }
901    case Intrinsic::memset: {
902      MemSetInst *MemSet = cast<MemSetInst>(Intr);
903      Builder.CreateMemSet(
904          MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(),
905          MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile());
906      Intr->eraseFromParent();
907      continue;
908    }
909    case Intrinsic::invariant_start:
910    case Intrinsic::invariant_end:
911    case Intrinsic::launder_invariant_group:
912    case Intrinsic::strip_invariant_group:
913      Intr->eraseFromParent();
914      // FIXME: I think the invariant marker should still theoretically apply,
915      // but the intrinsics need to be changed to accept pointers with any
916      // address space.
917      continue;
918    case Intrinsic::objectsize: {
919      Value *Src = Intr->getOperand(0);
920      Type *SrcTy = Src->getType()->getPointerElementType();
921      Function *ObjectSize = Intrinsic::getDeclaration(Mod,
922        Intrinsic::objectsize,
923        { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
924      );
925
926      CallInst *NewCall = Builder.CreateCall(
927          ObjectSize,
928          {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
929      Intr->replaceAllUsesWith(NewCall);
930      Intr->eraseFromParent();
931      continue;
932    }
933    default:
934      Intr->print(errs());
935      llvm_unreachable("Don't know how to promote alloca intrinsic use.");
936    }
937  }
938  return true;
939}
940
941FunctionPass *llvm::createAMDGPUPromoteAlloca() {
942  return new AMDGPUPromoteAlloca();
943}
944