1//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLoweringBase class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/BitVector.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/ADT/StringExtras.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/ADT/Triple.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/CodeGen/Analysis.h"
21#include "llvm/CodeGen/ISDOpcodes.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/CodeGen/StackMaps.h"
32#include "llvm/CodeGen/TargetLowering.h"
33#include "llvm/CodeGen/TargetOpcodes.h"
34#include "llvm/CodeGen/TargetRegisterInfo.h"
35#include "llvm/CodeGen/ValueTypes.h"
36#include "llvm/IR/Attributes.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GlobalValue.h"
42#include "llvm/IR/GlobalVariable.h"
43#include "llvm/IR/IRBuilder.h"
44#include "llvm/IR/Module.h"
45#include "llvm/IR/Type.h"
46#include "llvm/Support/BranchProbability.h"
47#include "llvm/Support/Casting.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MachineValueType.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Target/TargetMachine.h"
54#include <algorithm>
55#include <cassert>
56#include <cstddef>
57#include <cstdint>
58#include <cstring>
59#include <iterator>
60#include <string>
61#include <tuple>
62#include <utility>
63
64using namespace llvm;
65
66static cl::opt<bool> JumpIsExpensiveOverride(
67    "jump-is-expensive", cl::init(false),
68    cl::desc("Do not create extra branches to split comparison logic."),
69    cl::Hidden);
70
71static cl::opt<unsigned> MinimumJumpTableEntries
72  ("min-jump-table-entries", cl::init(4), cl::Hidden,
73   cl::desc("Set minimum number of entries to use a jump table."));
74
75static cl::opt<unsigned> MaximumJumpTableSize
76  ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
77   cl::desc("Set maximum size of jump tables."));
78
79/// Minimum jump table density for normal functions.
80static cl::opt<unsigned>
81    JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82                     cl::desc("Minimum density for building a jump table in "
83                              "a normal function"));
84
85/// Minimum jump table density for -Os or -Oz functions.
86static cl::opt<unsigned> OptsizeJumpTableDensity(
87    "optsize-jump-table-density", cl::init(40), cl::Hidden,
88    cl::desc("Minimum density for building a jump table in "
89             "an optsize function"));
90
91// FIXME: This option is only to test if the strict fp operation processed
92// correctly by preventing mutating strict fp operation to normal fp operation
93// during development. When the backend supports strict float operation, this
94// option will be meaningless.
95static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
96       cl::desc("Don't mutate strict-float node to a legalize node"),
97       cl::init(false), cl::Hidden);
98
99static bool darwinHasSinCos(const Triple &TT) {
100  assert(TT.isOSDarwin() && "should be called with darwin triple");
101  // Don't bother with 32 bit x86.
102  if (TT.getArch() == Triple::x86)
103    return false;
104  // Macos < 10.9 has no sincos_stret.
105  if (TT.isMacOSX())
106    return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
107  // iOS < 7.0 has no sincos_stret.
108  if (TT.isiOS())
109    return !TT.isOSVersionLT(7, 0);
110  // Any other darwin such as WatchOS/TvOS is new enough.
111  return true;
112}
113
114// Although this default value is arbitrary, it is not random. It is assumed
115// that a condition that evaluates the same way by a higher percentage than this
116// is best represented as control flow. Therefore, the default value N should be
117// set such that the win from N% correct executions is greater than the loss
118// from (100 - N)% mispredicted executions for the majority of intended targets.
119static cl::opt<int> MinPercentageForPredictableBranch(
120    "min-predictable-branch", cl::init(99),
121    cl::desc("Minimum percentage (0-100) that a condition must be either true "
122             "or false to assume that the condition is predictable"),
123    cl::Hidden);
124
125void TargetLoweringBase::InitLibcalls(const Triple &TT) {
126#define HANDLE_LIBCALL(code, name) \
127  setLibcallName(RTLIB::code, name);
128#include "llvm/IR/RuntimeLibcalls.def"
129#undef HANDLE_LIBCALL
130  // Initialize calling conventions to their default.
131  for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
132    setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
133
134  // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
135  if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
136    setLibcallName(RTLIB::ADD_F128, "__addkf3");
137    setLibcallName(RTLIB::SUB_F128, "__subkf3");
138    setLibcallName(RTLIB::MUL_F128, "__mulkf3");
139    setLibcallName(RTLIB::DIV_F128, "__divkf3");
140    setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
141    setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
142    setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
143    setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
144    setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
145    setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
146    setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
147    setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
148    setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
149    setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
150    setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
151    setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
152    setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
153    setLibcallName(RTLIB::UNE_F128, "__nekf2");
154    setLibcallName(RTLIB::OGE_F128, "__gekf2");
155    setLibcallName(RTLIB::OLT_F128, "__ltkf2");
156    setLibcallName(RTLIB::OLE_F128, "__lekf2");
157    setLibcallName(RTLIB::OGT_F128, "__gtkf2");
158    setLibcallName(RTLIB::UO_F128, "__unordkf2");
159  }
160
161  // A few names are different on particular architectures or environments.
162  if (TT.isOSDarwin()) {
163    // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
164    // of the gnueabi-style __gnu_*_ieee.
165    // FIXME: What about other targets?
166    setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
167    setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
168
169    // Some darwins have an optimized __bzero/bzero function.
170    switch (TT.getArch()) {
171    case Triple::x86:
172    case Triple::x86_64:
173      if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
174        setLibcallName(RTLIB::BZERO, "__bzero");
175      break;
176    case Triple::aarch64:
177    case Triple::aarch64_32:
178      setLibcallName(RTLIB::BZERO, "bzero");
179      break;
180    default:
181      break;
182    }
183
184    if (darwinHasSinCos(TT)) {
185      setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
186      setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
187      if (TT.isWatchABI()) {
188        setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
189                              CallingConv::ARM_AAPCS_VFP);
190        setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
191                              CallingConv::ARM_AAPCS_VFP);
192      }
193    }
194  } else {
195    setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
196    setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
197  }
198
199  if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
200      (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
201    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
202    setLibcallName(RTLIB::SINCOS_F64, "sincos");
203    setLibcallName(RTLIB::SINCOS_F80, "sincosl");
204    setLibcallName(RTLIB::SINCOS_F128, "sincosl");
205    setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
206  }
207
208  if (TT.isPS4CPU()) {
209    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
210    setLibcallName(RTLIB::SINCOS_F64, "sincos");
211  }
212
213  if (TT.isOSOpenBSD()) {
214    setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
215  }
216}
217
218/// getFPEXT - Return the FPEXT_*_* value for the given types, or
219/// UNKNOWN_LIBCALL if there is none.
220RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
221  if (OpVT == MVT::f16) {
222    if (RetVT == MVT::f32)
223      return FPEXT_F16_F32;
224  } else if (OpVT == MVT::f32) {
225    if (RetVT == MVT::f64)
226      return FPEXT_F32_F64;
227    if (RetVT == MVT::f128)
228      return FPEXT_F32_F128;
229    if (RetVT == MVT::ppcf128)
230      return FPEXT_F32_PPCF128;
231  } else if (OpVT == MVT::f64) {
232    if (RetVT == MVT::f128)
233      return FPEXT_F64_F128;
234    else if (RetVT == MVT::ppcf128)
235      return FPEXT_F64_PPCF128;
236  } else if (OpVT == MVT::f80) {
237    if (RetVT == MVT::f128)
238      return FPEXT_F80_F128;
239  }
240
241  return UNKNOWN_LIBCALL;
242}
243
244/// getFPROUND - Return the FPROUND_*_* value for the given types, or
245/// UNKNOWN_LIBCALL if there is none.
246RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
247  if (RetVT == MVT::f16) {
248    if (OpVT == MVT::f32)
249      return FPROUND_F32_F16;
250    if (OpVT == MVT::f64)
251      return FPROUND_F64_F16;
252    if (OpVT == MVT::f80)
253      return FPROUND_F80_F16;
254    if (OpVT == MVT::f128)
255      return FPROUND_F128_F16;
256    if (OpVT == MVT::ppcf128)
257      return FPROUND_PPCF128_F16;
258  } else if (RetVT == MVT::f32) {
259    if (OpVT == MVT::f64)
260      return FPROUND_F64_F32;
261    if (OpVT == MVT::f80)
262      return FPROUND_F80_F32;
263    if (OpVT == MVT::f128)
264      return FPROUND_F128_F32;
265    if (OpVT == MVT::ppcf128)
266      return FPROUND_PPCF128_F32;
267  } else if (RetVT == MVT::f64) {
268    if (OpVT == MVT::f80)
269      return FPROUND_F80_F64;
270    if (OpVT == MVT::f128)
271      return FPROUND_F128_F64;
272    if (OpVT == MVT::ppcf128)
273      return FPROUND_PPCF128_F64;
274  } else if (RetVT == MVT::f80) {
275    if (OpVT == MVT::f128)
276      return FPROUND_F128_F80;
277  }
278
279  return UNKNOWN_LIBCALL;
280}
281
282/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
283/// UNKNOWN_LIBCALL if there is none.
284RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
285  if (OpVT == MVT::f32) {
286    if (RetVT == MVT::i32)
287      return FPTOSINT_F32_I32;
288    if (RetVT == MVT::i64)
289      return FPTOSINT_F32_I64;
290    if (RetVT == MVT::i128)
291      return FPTOSINT_F32_I128;
292  } else if (OpVT == MVT::f64) {
293    if (RetVT == MVT::i32)
294      return FPTOSINT_F64_I32;
295    if (RetVT == MVT::i64)
296      return FPTOSINT_F64_I64;
297    if (RetVT == MVT::i128)
298      return FPTOSINT_F64_I128;
299  } else if (OpVT == MVT::f80) {
300    if (RetVT == MVT::i32)
301      return FPTOSINT_F80_I32;
302    if (RetVT == MVT::i64)
303      return FPTOSINT_F80_I64;
304    if (RetVT == MVT::i128)
305      return FPTOSINT_F80_I128;
306  } else if (OpVT == MVT::f128) {
307    if (RetVT == MVT::i32)
308      return FPTOSINT_F128_I32;
309    if (RetVT == MVT::i64)
310      return FPTOSINT_F128_I64;
311    if (RetVT == MVT::i128)
312      return FPTOSINT_F128_I128;
313  } else if (OpVT == MVT::ppcf128) {
314    if (RetVT == MVT::i32)
315      return FPTOSINT_PPCF128_I32;
316    if (RetVT == MVT::i64)
317      return FPTOSINT_PPCF128_I64;
318    if (RetVT == MVT::i128)
319      return FPTOSINT_PPCF128_I128;
320  }
321  return UNKNOWN_LIBCALL;
322}
323
324/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
325/// UNKNOWN_LIBCALL if there is none.
326RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
327  if (OpVT == MVT::f32) {
328    if (RetVT == MVT::i32)
329      return FPTOUINT_F32_I32;
330    if (RetVT == MVT::i64)
331      return FPTOUINT_F32_I64;
332    if (RetVT == MVT::i128)
333      return FPTOUINT_F32_I128;
334  } else if (OpVT == MVT::f64) {
335    if (RetVT == MVT::i32)
336      return FPTOUINT_F64_I32;
337    if (RetVT == MVT::i64)
338      return FPTOUINT_F64_I64;
339    if (RetVT == MVT::i128)
340      return FPTOUINT_F64_I128;
341  } else if (OpVT == MVT::f80) {
342    if (RetVT == MVT::i32)
343      return FPTOUINT_F80_I32;
344    if (RetVT == MVT::i64)
345      return FPTOUINT_F80_I64;
346    if (RetVT == MVT::i128)
347      return FPTOUINT_F80_I128;
348  } else if (OpVT == MVT::f128) {
349    if (RetVT == MVT::i32)
350      return FPTOUINT_F128_I32;
351    if (RetVT == MVT::i64)
352      return FPTOUINT_F128_I64;
353    if (RetVT == MVT::i128)
354      return FPTOUINT_F128_I128;
355  } else if (OpVT == MVT::ppcf128) {
356    if (RetVT == MVT::i32)
357      return FPTOUINT_PPCF128_I32;
358    if (RetVT == MVT::i64)
359      return FPTOUINT_PPCF128_I64;
360    if (RetVT == MVT::i128)
361      return FPTOUINT_PPCF128_I128;
362  }
363  return UNKNOWN_LIBCALL;
364}
365
366/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
367/// UNKNOWN_LIBCALL if there is none.
368RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
369  if (OpVT == MVT::i32) {
370    if (RetVT == MVT::f32)
371      return SINTTOFP_I32_F32;
372    if (RetVT == MVT::f64)
373      return SINTTOFP_I32_F64;
374    if (RetVT == MVT::f80)
375      return SINTTOFP_I32_F80;
376    if (RetVT == MVT::f128)
377      return SINTTOFP_I32_F128;
378    if (RetVT == MVT::ppcf128)
379      return SINTTOFP_I32_PPCF128;
380  } else if (OpVT == MVT::i64) {
381    if (RetVT == MVT::f32)
382      return SINTTOFP_I64_F32;
383    if (RetVT == MVT::f64)
384      return SINTTOFP_I64_F64;
385    if (RetVT == MVT::f80)
386      return SINTTOFP_I64_F80;
387    if (RetVT == MVT::f128)
388      return SINTTOFP_I64_F128;
389    if (RetVT == MVT::ppcf128)
390      return SINTTOFP_I64_PPCF128;
391  } else if (OpVT == MVT::i128) {
392    if (RetVT == MVT::f32)
393      return SINTTOFP_I128_F32;
394    if (RetVT == MVT::f64)
395      return SINTTOFP_I128_F64;
396    if (RetVT == MVT::f80)
397      return SINTTOFP_I128_F80;
398    if (RetVT == MVT::f128)
399      return SINTTOFP_I128_F128;
400    if (RetVT == MVT::ppcf128)
401      return SINTTOFP_I128_PPCF128;
402  }
403  return UNKNOWN_LIBCALL;
404}
405
406/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
407/// UNKNOWN_LIBCALL if there is none.
408RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
409  if (OpVT == MVT::i32) {
410    if (RetVT == MVT::f32)
411      return UINTTOFP_I32_F32;
412    if (RetVT == MVT::f64)
413      return UINTTOFP_I32_F64;
414    if (RetVT == MVT::f80)
415      return UINTTOFP_I32_F80;
416    if (RetVT == MVT::f128)
417      return UINTTOFP_I32_F128;
418    if (RetVT == MVT::ppcf128)
419      return UINTTOFP_I32_PPCF128;
420  } else if (OpVT == MVT::i64) {
421    if (RetVT == MVT::f32)
422      return UINTTOFP_I64_F32;
423    if (RetVT == MVT::f64)
424      return UINTTOFP_I64_F64;
425    if (RetVT == MVT::f80)
426      return UINTTOFP_I64_F80;
427    if (RetVT == MVT::f128)
428      return UINTTOFP_I64_F128;
429    if (RetVT == MVT::ppcf128)
430      return UINTTOFP_I64_PPCF128;
431  } else if (OpVT == MVT::i128) {
432    if (RetVT == MVT::f32)
433      return UINTTOFP_I128_F32;
434    if (RetVT == MVT::f64)
435      return UINTTOFP_I128_F64;
436    if (RetVT == MVT::f80)
437      return UINTTOFP_I128_F80;
438    if (RetVT == MVT::f128)
439      return UINTTOFP_I128_F128;
440    if (RetVT == MVT::ppcf128)
441      return UINTTOFP_I128_PPCF128;
442  }
443  return UNKNOWN_LIBCALL;
444}
445
446RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
447#define OP_TO_LIBCALL(Name, Enum)                                              \
448  case Name:                                                                   \
449    switch (VT.SimpleTy) {                                                     \
450    default:                                                                   \
451      return UNKNOWN_LIBCALL;                                                  \
452    case MVT::i8:                                                              \
453      return Enum##_1;                                                         \
454    case MVT::i16:                                                             \
455      return Enum##_2;                                                         \
456    case MVT::i32:                                                             \
457      return Enum##_4;                                                         \
458    case MVT::i64:                                                             \
459      return Enum##_8;                                                         \
460    case MVT::i128:                                                            \
461      return Enum##_16;                                                        \
462    }
463
464  switch (Opc) {
465    OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
466    OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
467    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
468    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
469    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
470    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
471    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
472    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
473    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
474    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
475    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
476    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
477  }
478
479#undef OP_TO_LIBCALL
480
481  return UNKNOWN_LIBCALL;
482}
483
484RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
485  switch (ElementSize) {
486  case 1:
487    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
488  case 2:
489    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
490  case 4:
491    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
492  case 8:
493    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
494  case 16:
495    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
496  default:
497    return UNKNOWN_LIBCALL;
498  }
499}
500
501RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
502  switch (ElementSize) {
503  case 1:
504    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
505  case 2:
506    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
507  case 4:
508    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
509  case 8:
510    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
511  case 16:
512    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
513  default:
514    return UNKNOWN_LIBCALL;
515  }
516}
517
518RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
519  switch (ElementSize) {
520  case 1:
521    return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
522  case 2:
523    return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
524  case 4:
525    return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
526  case 8:
527    return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
528  case 16:
529    return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
530  default:
531    return UNKNOWN_LIBCALL;
532  }
533}
534
535/// InitCmpLibcallCCs - Set default comparison libcall CC.
536static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
537  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
538  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
539  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
540  CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
541  CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
542  CCs[RTLIB::UNE_F32] = ISD::SETNE;
543  CCs[RTLIB::UNE_F64] = ISD::SETNE;
544  CCs[RTLIB::UNE_F128] = ISD::SETNE;
545  CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
546  CCs[RTLIB::OGE_F32] = ISD::SETGE;
547  CCs[RTLIB::OGE_F64] = ISD::SETGE;
548  CCs[RTLIB::OGE_F128] = ISD::SETGE;
549  CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
550  CCs[RTLIB::OLT_F32] = ISD::SETLT;
551  CCs[RTLIB::OLT_F64] = ISD::SETLT;
552  CCs[RTLIB::OLT_F128] = ISD::SETLT;
553  CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
554  CCs[RTLIB::OLE_F32] = ISD::SETLE;
555  CCs[RTLIB::OLE_F64] = ISD::SETLE;
556  CCs[RTLIB::OLE_F128] = ISD::SETLE;
557  CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
558  CCs[RTLIB::OGT_F32] = ISD::SETGT;
559  CCs[RTLIB::OGT_F64] = ISD::SETGT;
560  CCs[RTLIB::OGT_F128] = ISD::SETGT;
561  CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
562  CCs[RTLIB::UO_F32] = ISD::SETNE;
563  CCs[RTLIB::UO_F64] = ISD::SETNE;
564  CCs[RTLIB::UO_F128] = ISD::SETNE;
565  CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
566}
567
568/// NOTE: The TargetMachine owns TLOF.
569TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
570  initActions();
571
572  // Perform these initializations only once.
573  MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
574      MaxLoadsPerMemcmp = 8;
575  MaxGluedStoresPerMemcpy = 0;
576  MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
577      MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
578  HasMultipleConditionRegisters = false;
579  HasExtractBitsInsn = false;
580  JumpIsExpensive = JumpIsExpensiveOverride;
581  PredictableSelectIsExpensive = false;
582  EnableExtLdPromotion = false;
583  StackPointerRegisterToSaveRestore = 0;
584  BooleanContents = UndefinedBooleanContent;
585  BooleanFloatContents = UndefinedBooleanContent;
586  BooleanVectorContents = UndefinedBooleanContent;
587  SchedPreferenceInfo = Sched::ILP;
588  GatherAllAliasesMaxDepth = 18;
589  IsStrictFPEnabled = DisableStrictNodeMutation;
590  // TODO: the default will be switched to 0 in the next commit, along
591  // with the Target-specific changes necessary.
592  MaxAtomicSizeInBitsSupported = 1024;
593
594  MinCmpXchgSizeInBits = 0;
595  SupportsUnalignedAtomics = false;
596
597  std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
598
599  InitLibcalls(TM.getTargetTriple());
600  InitCmpLibcallCCs(CmpLibcallCCs);
601}
602
603void TargetLoweringBase::initActions() {
604  // All operations default to being supported.
605  memset(OpActions, 0, sizeof(OpActions));
606  memset(LoadExtActions, 0, sizeof(LoadExtActions));
607  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
608  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
609  memset(CondCodeActions, 0, sizeof(CondCodeActions));
610  std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
611  std::fill(std::begin(TargetDAGCombineArray),
612            std::end(TargetDAGCombineArray), 0);
613
614  for (MVT VT : MVT::fp_valuetypes()) {
615    MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
616    if (IntVT.isValid()) {
617      setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
618      AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
619    }
620  }
621
622  // Set default actions for various operations.
623  for (MVT VT : MVT::all_valuetypes()) {
624    // Default all indexed load / store to expand.
625    for (unsigned IM = (unsigned)ISD::PRE_INC;
626         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
627      setIndexedLoadAction(IM, VT, Expand);
628      setIndexedStoreAction(IM, VT, Expand);
629      setIndexedMaskedLoadAction(IM, VT, Expand);
630      setIndexedMaskedStoreAction(IM, VT, Expand);
631    }
632
633    // Most backends expect to see the node which just returns the value loaded.
634    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
635
636    // These operations default to expand.
637    setOperationAction(ISD::FGETSIGN, VT, Expand);
638    setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
639    setOperationAction(ISD::FMINNUM, VT, Expand);
640    setOperationAction(ISD::FMAXNUM, VT, Expand);
641    setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
642    setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
643    setOperationAction(ISD::FMINIMUM, VT, Expand);
644    setOperationAction(ISD::FMAXIMUM, VT, Expand);
645    setOperationAction(ISD::FMAD, VT, Expand);
646    setOperationAction(ISD::SMIN, VT, Expand);
647    setOperationAction(ISD::SMAX, VT, Expand);
648    setOperationAction(ISD::UMIN, VT, Expand);
649    setOperationAction(ISD::UMAX, VT, Expand);
650    setOperationAction(ISD::ABS, VT, Expand);
651    setOperationAction(ISD::FSHL, VT, Expand);
652    setOperationAction(ISD::FSHR, VT, Expand);
653    setOperationAction(ISD::SADDSAT, VT, Expand);
654    setOperationAction(ISD::UADDSAT, VT, Expand);
655    setOperationAction(ISD::SSUBSAT, VT, Expand);
656    setOperationAction(ISD::USUBSAT, VT, Expand);
657    setOperationAction(ISD::SMULFIX, VT, Expand);
658    setOperationAction(ISD::SMULFIXSAT, VT, Expand);
659    setOperationAction(ISD::UMULFIX, VT, Expand);
660    setOperationAction(ISD::UMULFIXSAT, VT, Expand);
661    setOperationAction(ISD::SDIVFIX, VT, Expand);
662    setOperationAction(ISD::UDIVFIX, VT, Expand);
663
664    // Overflow operations default to expand
665    setOperationAction(ISD::SADDO, VT, Expand);
666    setOperationAction(ISD::SSUBO, VT, Expand);
667    setOperationAction(ISD::UADDO, VT, Expand);
668    setOperationAction(ISD::USUBO, VT, Expand);
669    setOperationAction(ISD::SMULO, VT, Expand);
670    setOperationAction(ISD::UMULO, VT, Expand);
671
672    // ADDCARRY operations default to expand
673    setOperationAction(ISD::ADDCARRY, VT, Expand);
674    setOperationAction(ISD::SUBCARRY, VT, Expand);
675    setOperationAction(ISD::SETCCCARRY, VT, Expand);
676
677    // ADDC/ADDE/SUBC/SUBE default to expand.
678    setOperationAction(ISD::ADDC, VT, Expand);
679    setOperationAction(ISD::ADDE, VT, Expand);
680    setOperationAction(ISD::SUBC, VT, Expand);
681    setOperationAction(ISD::SUBE, VT, Expand);
682
683    // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
684    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
685    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
686
687    setOperationAction(ISD::BITREVERSE, VT, Expand);
688
689    // These library functions default to expand.
690    setOperationAction(ISD::FROUND, VT, Expand);
691    setOperationAction(ISD::FPOWI, VT, Expand);
692
693    // These operations default to expand for vector types.
694    if (VT.isVector()) {
695      setOperationAction(ISD::FCOPYSIGN, VT, Expand);
696      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
697      setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
698      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
699      setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
700      setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
701    }
702
703    // Constrained floating-point operations default to expand.
704#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
705    setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
706#include "llvm/IR/ConstrainedOps.def"
707
708    // For most targets @llvm.get.dynamic.area.offset just returns 0.
709    setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
710
711    // Vector reduction default to expand.
712    setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
713    setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
714    setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
715    setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
716    setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
717    setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
718    setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
719    setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
720    setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
721    setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
722    setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
723    setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
724    setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
725  }
726
727  // Most targets ignore the @llvm.prefetch intrinsic.
728  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
729
730  // Most targets also ignore the @llvm.readcyclecounter intrinsic.
731  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
732
733  // ConstantFP nodes default to expand.  Targets can either change this to
734  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
735  // to optimize expansions for certain constants.
736  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
737  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
738  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
739  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
740  setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
741
742  // These library functions default to expand.
743  for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
744    setOperationAction(ISD::FCBRT,      VT, Expand);
745    setOperationAction(ISD::FLOG ,      VT, Expand);
746    setOperationAction(ISD::FLOG2,      VT, Expand);
747    setOperationAction(ISD::FLOG10,     VT, Expand);
748    setOperationAction(ISD::FEXP ,      VT, Expand);
749    setOperationAction(ISD::FEXP2,      VT, Expand);
750    setOperationAction(ISD::FFLOOR,     VT, Expand);
751    setOperationAction(ISD::FNEARBYINT, VT, Expand);
752    setOperationAction(ISD::FCEIL,      VT, Expand);
753    setOperationAction(ISD::FRINT,      VT, Expand);
754    setOperationAction(ISD::FTRUNC,     VT, Expand);
755    setOperationAction(ISD::FROUND,     VT, Expand);
756    setOperationAction(ISD::LROUND,     VT, Expand);
757    setOperationAction(ISD::LLROUND,    VT, Expand);
758    setOperationAction(ISD::LRINT,      VT, Expand);
759    setOperationAction(ISD::LLRINT,     VT, Expand);
760  }
761
762  // Default ISD::TRAP to expand (which turns it into abort).
763  setOperationAction(ISD::TRAP, MVT::Other, Expand);
764
765  // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
766  // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
767  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
768}
769
770MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
771                                               EVT) const {
772  return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
773}
774
775EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
776                                         bool LegalTypes) const {
777  assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
778  if (LHSTy.isVector())
779    return LHSTy;
780  return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
781                    : getPointerTy(DL);
782}
783
784bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
785  assert(isTypeLegal(VT));
786  switch (Op) {
787  default:
788    return false;
789  case ISD::SDIV:
790  case ISD::UDIV:
791  case ISD::SREM:
792  case ISD::UREM:
793    return true;
794  }
795}
796
797void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
798  // If the command-line option was specified, ignore this request.
799  if (!JumpIsExpensiveOverride.getNumOccurrences())
800    JumpIsExpensive = isExpensive;
801}
802
803TargetLoweringBase::LegalizeKind
804TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
805  // If this is a simple type, use the ComputeRegisterProp mechanism.
806  if (VT.isSimple()) {
807    MVT SVT = VT.getSimpleVT();
808    assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
809    MVT NVT = TransformToType[SVT.SimpleTy];
810    LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
811
812    assert((LA == TypeLegal || LA == TypeSoftenFloat ||
813            (NVT.isVector() ||
814             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
815           "Promote may not follow Expand or Promote");
816
817    if (LA == TypeSplitVector)
818      return LegalizeKind(LA,
819                          EVT::getVectorVT(Context, SVT.getVectorElementType(),
820                                           SVT.getVectorNumElements() / 2));
821    if (LA == TypeScalarizeVector)
822      return LegalizeKind(LA, SVT.getVectorElementType());
823    return LegalizeKind(LA, NVT);
824  }
825
826  // Handle Extended Scalar Types.
827  if (!VT.isVector()) {
828    assert(VT.isInteger() && "Float types must be simple");
829    unsigned BitSize = VT.getSizeInBits();
830    // First promote to a power-of-two size, then expand if necessary.
831    if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
832      EVT NVT = VT.getRoundIntegerType(Context);
833      assert(NVT != VT && "Unable to round integer VT");
834      LegalizeKind NextStep = getTypeConversion(Context, NVT);
835      // Avoid multi-step promotion.
836      if (NextStep.first == TypePromoteInteger)
837        return NextStep;
838      // Return rounded integer type.
839      return LegalizeKind(TypePromoteInteger, NVT);
840    }
841
842    return LegalizeKind(TypeExpandInteger,
843                        EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
844  }
845
846  // Handle vector types.
847  unsigned NumElts = VT.getVectorNumElements();
848  EVT EltVT = VT.getVectorElementType();
849
850  // Vectors with only one element are always scalarized.
851  if (NumElts == 1)
852    return LegalizeKind(TypeScalarizeVector, EltVT);
853
854  // Try to widen vector elements until the element type is a power of two and
855  // promote it to a legal type later on, for example:
856  // <3 x i8> -> <4 x i8> -> <4 x i32>
857  if (EltVT.isInteger()) {
858    // Vectors with a number of elements that is not a power of two are always
859    // widened, for example <3 x i8> -> <4 x i8>.
860    if (!VT.isPow2VectorType()) {
861      NumElts = (unsigned)NextPowerOf2(NumElts);
862      EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
863      return LegalizeKind(TypeWidenVector, NVT);
864    }
865
866    // Examine the element type.
867    LegalizeKind LK = getTypeConversion(Context, EltVT);
868
869    // If type is to be expanded, split the vector.
870    //  <4 x i140> -> <2 x i140>
871    if (LK.first == TypeExpandInteger)
872      return LegalizeKind(TypeSplitVector,
873                          EVT::getVectorVT(Context, EltVT, NumElts / 2));
874
875    // Promote the integer element types until a legal vector type is found
876    // or until the element integer type is too big. If a legal type was not
877    // found, fallback to the usual mechanism of widening/splitting the
878    // vector.
879    EVT OldEltVT = EltVT;
880    while (true) {
881      // Increase the bitwidth of the element to the next pow-of-two
882      // (which is greater than 8 bits).
883      EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
884                  .getRoundIntegerType(Context);
885
886      // Stop trying when getting a non-simple element type.
887      // Note that vector elements may be greater than legal vector element
888      // types. Example: X86 XMM registers hold 64bit element on 32bit
889      // systems.
890      if (!EltVT.isSimple())
891        break;
892
893      // Build a new vector type and check if it is legal.
894      MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
895      // Found a legal promoted vector type.
896      if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
897        return LegalizeKind(TypePromoteInteger,
898                            EVT::getVectorVT(Context, EltVT, NumElts));
899    }
900
901    // Reset the type to the unexpanded type if we did not find a legal vector
902    // type with a promoted vector element type.
903    EltVT = OldEltVT;
904  }
905
906  // Try to widen the vector until a legal type is found.
907  // If there is no wider legal type, split the vector.
908  while (true) {
909    // Round up to the next power of 2.
910    NumElts = (unsigned)NextPowerOf2(NumElts);
911
912    // If there is no simple vector type with this many elements then there
913    // cannot be a larger legal vector type.  Note that this assumes that
914    // there are no skipped intermediate vector types in the simple types.
915    if (!EltVT.isSimple())
916      break;
917    MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
918    if (LargerVector == MVT())
919      break;
920
921    // If this type is legal then widen the vector.
922    if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
923      return LegalizeKind(TypeWidenVector, LargerVector);
924  }
925
926  // Widen odd vectors to next power of two.
927  if (!VT.isPow2VectorType()) {
928    EVT NVT = VT.getPow2VectorType(Context);
929    return LegalizeKind(TypeWidenVector, NVT);
930  }
931
932  // Vectors with illegal element types are expanded.
933  EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
934  return LegalizeKind(TypeSplitVector, NVT);
935}
936
937static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
938                                          unsigned &NumIntermediates,
939                                          MVT &RegisterVT,
940                                          TargetLoweringBase *TLI) {
941  // Figure out the right, legal destination reg to copy into.
942  unsigned NumElts = VT.getVectorNumElements();
943  MVT EltTy = VT.getVectorElementType();
944
945  unsigned NumVectorRegs = 1;
946
947  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
948  // could break down into LHS/RHS like LegalizeDAG does.
949  if (!isPowerOf2_32(NumElts)) {
950    NumVectorRegs = NumElts;
951    NumElts = 1;
952  }
953
954  // Divide the input until we get to a supported size.  This will always
955  // end with a scalar if the target doesn't support vectors.
956  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
957    NumElts >>= 1;
958    NumVectorRegs <<= 1;
959  }
960
961  NumIntermediates = NumVectorRegs;
962
963  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
964  if (!TLI->isTypeLegal(NewVT))
965    NewVT = EltTy;
966  IntermediateVT = NewVT;
967
968  unsigned NewVTSize = NewVT.getSizeInBits();
969
970  // Convert sizes such as i33 to i64.
971  if (!isPowerOf2_32(NewVTSize))
972    NewVTSize = NextPowerOf2(NewVTSize);
973
974  MVT DestVT = TLI->getRegisterType(NewVT);
975  RegisterVT = DestVT;
976  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
977    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
978
979  // Otherwise, promotion or legal types use the same number of registers as
980  // the vector decimated to the appropriate level.
981  return NumVectorRegs;
982}
983
984/// isLegalRC - Return true if the value types that can be represented by the
985/// specified register class are all legal.
986bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
987                                   const TargetRegisterClass &RC) const {
988  for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
989    if (isTypeLegal(*I))
990      return true;
991  return false;
992}
993
994/// Replace/modify any TargetFrameIndex operands with a targte-dependent
995/// sequence of memory operands that is recognized by PrologEpilogInserter.
996MachineBasicBlock *
997TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
998                                   MachineBasicBlock *MBB) const {
999  MachineInstr *MI = &InitialMI;
1000  MachineFunction &MF = *MI->getMF();
1001  MachineFrameInfo &MFI = MF.getFrameInfo();
1002
1003  // We're handling multiple types of operands here:
1004  // PATCHPOINT MetaArgs - live-in, read only, direct
1005  // STATEPOINT Deopt Spill - live-through, read only, indirect
1006  // STATEPOINT Deopt Alloca - live-through, read only, direct
1007  // (We're currently conservative and mark the deopt slots read/write in
1008  // practice.)
1009  // STATEPOINT GC Spill - live-through, read/write, indirect
1010  // STATEPOINT GC Alloca - live-through, read/write, direct
1011  // The live-in vs live-through is handled already (the live through ones are
1012  // all stack slots), but we need to handle the different type of stackmap
1013  // operands and memory effects here.
1014
1015  // MI changes inside this loop as we grow operands.
1016  for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1017    MachineOperand &MO = MI->getOperand(OperIdx);
1018    if (!MO.isFI())
1019      continue;
1020
1021    // foldMemoryOperand builds a new MI after replacing a single FI operand
1022    // with the canonical set of five x86 addressing-mode operands.
1023    int FI = MO.getIndex();
1024    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1025
1026    // Copy operands before the frame-index.
1027    for (unsigned i = 0; i < OperIdx; ++i)
1028      MIB.add(MI->getOperand(i));
1029    // Add frame index operands recognized by stackmaps.cpp
1030    if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1031      // indirect-mem-ref tag, size, #FI, offset.
1032      // Used for spills inserted by StatepointLowering.  This codepath is not
1033      // used for patchpoints/stackmaps at all, for these spilling is done via
1034      // foldMemoryOperand callback only.
1035      assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1036      MIB.addImm(StackMaps::IndirectMemRefOp);
1037      MIB.addImm(MFI.getObjectSize(FI));
1038      MIB.add(MI->getOperand(OperIdx));
1039      MIB.addImm(0);
1040    } else {
1041      // direct-mem-ref tag, #FI, offset.
1042      // Used by patchpoint, and direct alloca arguments to statepoints
1043      MIB.addImm(StackMaps::DirectMemRefOp);
1044      MIB.add(MI->getOperand(OperIdx));
1045      MIB.addImm(0);
1046    }
1047    // Copy the operands after the frame index.
1048    for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1049      MIB.add(MI->getOperand(i));
1050
1051    // Inherit previous memory operands.
1052    MIB.cloneMemRefs(*MI);
1053    assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1054
1055    // Add a new memory operand for this FI.
1056    assert(MFI.getObjectOffset(FI) != -1);
1057
1058    // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1059    // PATCHPOINT should be updated to do the same. (TODO)
1060    if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1061      auto Flags = MachineMemOperand::MOLoad;
1062      MachineMemOperand *MMO = MF.getMachineMemOperand(
1063          MachinePointerInfo::getFixedStack(MF, FI), Flags,
1064          MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1065      MIB->addMemOperand(MF, MMO);
1066    }
1067
1068    // Replace the instruction and update the operand index.
1069    MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1070    OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1071    MI->eraseFromParent();
1072    MI = MIB;
1073  }
1074  return MBB;
1075}
1076
1077MachineBasicBlock *
1078TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1079                                        MachineBasicBlock *MBB) const {
1080  assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1081         "Called emitXRayCustomEvent on the wrong MI!");
1082  auto &MF = *MI.getMF();
1083  auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1084  for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1085    MIB.add(MI.getOperand(OpIdx));
1086
1087  MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1088  MI.eraseFromParent();
1089  return MBB;
1090}
1091
1092MachineBasicBlock *
1093TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1094                                       MachineBasicBlock *MBB) const {
1095  assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1096         "Called emitXRayTypedEvent on the wrong MI!");
1097  auto &MF = *MI.getMF();
1098  auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1099  for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1100    MIB.add(MI.getOperand(OpIdx));
1101
1102  MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1103  MI.eraseFromParent();
1104  return MBB;
1105}
1106
1107/// findRepresentativeClass - Return the largest legal super-reg register class
1108/// of the register class for the specified type and its associated "cost".
1109// This function is in TargetLowering because it uses RegClassForVT which would
1110// need to be moved to TargetRegisterInfo and would necessitate moving
1111// isTypeLegal over as well - a massive change that would just require
1112// TargetLowering having a TargetRegisterInfo class member that it would use.
1113std::pair<const TargetRegisterClass *, uint8_t>
1114TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1115                                            MVT VT) const {
1116  const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1117  if (!RC)
1118    return std::make_pair(RC, 0);
1119
1120  // Compute the set of all super-register classes.
1121  BitVector SuperRegRC(TRI->getNumRegClasses());
1122  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1123    SuperRegRC.setBitsInMask(RCI.getMask());
1124
1125  // Find the first legal register class with the largest spill size.
1126  const TargetRegisterClass *BestRC = RC;
1127  for (unsigned i : SuperRegRC.set_bits()) {
1128    const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1129    // We want the largest possible spill size.
1130    if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1131      continue;
1132    if (!isLegalRC(*TRI, *SuperRC))
1133      continue;
1134    BestRC = SuperRC;
1135  }
1136  return std::make_pair(BestRC, 1);
1137}
1138
1139/// computeRegisterProperties - Once all of the register classes are added,
1140/// this allows us to compute derived properties we expose.
1141void TargetLoweringBase::computeRegisterProperties(
1142    const TargetRegisterInfo *TRI) {
1143  static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1144                "Too many value types for ValueTypeActions to hold!");
1145
1146  // Everything defaults to needing one register.
1147  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1148    NumRegistersForVT[i] = 1;
1149    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1150  }
1151  // ...except isVoid, which doesn't need any registers.
1152  NumRegistersForVT[MVT::isVoid] = 0;
1153
1154  // Find the largest integer register class.
1155  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1156  for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1157    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1158
1159  // Every integer value type larger than this largest register takes twice as
1160  // many registers to represent as the previous ValueType.
1161  for (unsigned ExpandedReg = LargestIntReg + 1;
1162       ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1163    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1164    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1165    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1166    ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1167                                   TypeExpandInteger);
1168  }
1169
1170  // Inspect all of the ValueType's smaller than the largest integer
1171  // register to see which ones need promotion.
1172  unsigned LegalIntReg = LargestIntReg;
1173  for (unsigned IntReg = LargestIntReg - 1;
1174       IntReg >= (unsigned)MVT::i1; --IntReg) {
1175    MVT IVT = (MVT::SimpleValueType)IntReg;
1176    if (isTypeLegal(IVT)) {
1177      LegalIntReg = IntReg;
1178    } else {
1179      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1180        (MVT::SimpleValueType)LegalIntReg;
1181      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1182    }
1183  }
1184
1185  // ppcf128 type is really two f64's.
1186  if (!isTypeLegal(MVT::ppcf128)) {
1187    if (isTypeLegal(MVT::f64)) {
1188      NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1189      RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1190      TransformToType[MVT::ppcf128] = MVT::f64;
1191      ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1192    } else {
1193      NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1194      RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1195      TransformToType[MVT::ppcf128] = MVT::i128;
1196      ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1197    }
1198  }
1199
1200  // Decide how to handle f128. If the target does not have native f128 support,
1201  // expand it to i128 and we will be generating soft float library calls.
1202  if (!isTypeLegal(MVT::f128)) {
1203    NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1204    RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1205    TransformToType[MVT::f128] = MVT::i128;
1206    ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1207  }
1208
1209  // Decide how to handle f64. If the target does not have native f64 support,
1210  // expand it to i64 and we will be generating soft float library calls.
1211  if (!isTypeLegal(MVT::f64)) {
1212    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1213    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1214    TransformToType[MVT::f64] = MVT::i64;
1215    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1216  }
1217
1218  // Decide how to handle f32. If the target does not have native f32 support,
1219  // expand it to i32 and we will be generating soft float library calls.
1220  if (!isTypeLegal(MVT::f32)) {
1221    NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1222    RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1223    TransformToType[MVT::f32] = MVT::i32;
1224    ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1225  }
1226
1227  // Decide how to handle f16. If the target does not have native f16 support,
1228  // promote it to f32, because there are no f16 library calls (except for
1229  // conversions).
1230  if (!isTypeLegal(MVT::f16)) {
1231    NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1232    RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1233    TransformToType[MVT::f16] = MVT::f32;
1234    ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1235  }
1236
1237  // Loop over all of the vector value types to see which need transformations.
1238  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1239       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1240    MVT VT = (MVT::SimpleValueType) i;
1241    if (isTypeLegal(VT))
1242      continue;
1243
1244    MVT EltVT = VT.getVectorElementType();
1245    unsigned NElts = VT.getVectorNumElements();
1246    bool IsLegalWiderType = false;
1247    bool IsScalable = VT.isScalableVector();
1248    LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1249    switch (PreferredAction) {
1250    case TypePromoteInteger: {
1251      MVT::SimpleValueType EndVT = IsScalable ?
1252                                   MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1253                                   MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1254      // Try to promote the elements of integer vectors. If no legal
1255      // promotion was found, fall through to the widen-vector method.
1256      for (unsigned nVT = i + 1;
1257           (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1258        MVT SVT = (MVT::SimpleValueType) nVT;
1259        // Promote vectors of integers to vectors with the same number
1260        // of elements, with a wider element type.
1261        if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1262            SVT.getVectorNumElements() == NElts &&
1263            SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1264          TransformToType[i] = SVT;
1265          RegisterTypeForVT[i] = SVT;
1266          NumRegistersForVT[i] = 1;
1267          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1268          IsLegalWiderType = true;
1269          break;
1270        }
1271      }
1272      if (IsLegalWiderType)
1273        break;
1274      LLVM_FALLTHROUGH;
1275    }
1276
1277    case TypeWidenVector:
1278      if (isPowerOf2_32(NElts)) {
1279        // Try to widen the vector.
1280        for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1281          MVT SVT = (MVT::SimpleValueType) nVT;
1282          if (SVT.getVectorElementType() == EltVT
1283              && SVT.getVectorNumElements() > NElts
1284              && SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) {
1285            TransformToType[i] = SVT;
1286            RegisterTypeForVT[i] = SVT;
1287            NumRegistersForVT[i] = 1;
1288            ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1289            IsLegalWiderType = true;
1290            break;
1291          }
1292        }
1293        if (IsLegalWiderType)
1294          break;
1295      } else {
1296        // Only widen to the next power of 2 to keep consistency with EVT.
1297        MVT NVT = VT.getPow2VectorType();
1298        if (isTypeLegal(NVT)) {
1299          TransformToType[i] = NVT;
1300          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1301          RegisterTypeForVT[i] = NVT;
1302          NumRegistersForVT[i] = 1;
1303          break;
1304        }
1305      }
1306      LLVM_FALLTHROUGH;
1307
1308    case TypeSplitVector:
1309    case TypeScalarizeVector: {
1310      MVT IntermediateVT;
1311      MVT RegisterVT;
1312      unsigned NumIntermediates;
1313      unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1314          NumIntermediates, RegisterVT, this);
1315      NumRegistersForVT[i] = NumRegisters;
1316      assert(NumRegistersForVT[i] == NumRegisters &&
1317             "NumRegistersForVT size cannot represent NumRegisters!");
1318      RegisterTypeForVT[i] = RegisterVT;
1319
1320      MVT NVT = VT.getPow2VectorType();
1321      if (NVT == VT) {
1322        // Type is already a power of 2.  The default action is to split.
1323        TransformToType[i] = MVT::Other;
1324        if (PreferredAction == TypeScalarizeVector)
1325          ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1326        else if (PreferredAction == TypeSplitVector)
1327          ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1328        else
1329          // Set type action according to the number of elements.
1330          ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1331                                                        : TypeSplitVector);
1332      } else {
1333        TransformToType[i] = NVT;
1334        ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1335      }
1336      break;
1337    }
1338    default:
1339      llvm_unreachable("Unknown vector legalization action!");
1340    }
1341  }
1342
1343  // Determine the 'representative' register class for each value type.
1344  // An representative register class is the largest (meaning one which is
1345  // not a sub-register class / subreg register class) legal register class for
1346  // a group of value types. For example, on i386, i8, i16, and i32
1347  // representative would be GR32; while on x86_64 it's GR64.
1348  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1349    const TargetRegisterClass* RRC;
1350    uint8_t Cost;
1351    std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1352    RepRegClassForVT[i] = RRC;
1353    RepRegClassCostForVT[i] = Cost;
1354  }
1355}
1356
1357EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1358                                           EVT VT) const {
1359  assert(!VT.isVector() && "No default SetCC type for vectors!");
1360  return getPointerTy(DL).SimpleTy;
1361}
1362
1363MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1364  return MVT::i32; // return the default value
1365}
1366
1367/// getVectorTypeBreakdown - Vector types are broken down into some number of
1368/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1369/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1370/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1371///
1372/// This method returns the number of registers needed, and the VT for each
1373/// register.  It also returns the VT and quantity of the intermediate values
1374/// before they are promoted/expanded.
1375unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1376                                                EVT &IntermediateVT,
1377                                                unsigned &NumIntermediates,
1378                                                MVT &RegisterVT) const {
1379  unsigned NumElts = VT.getVectorNumElements();
1380
1381  // If there is a wider vector type with the same element type as this one,
1382  // or a promoted vector type that has the same number of elements which
1383  // are wider, then we should convert to that legal vector type.
1384  // This handles things like <2 x float> -> <4 x float> and
1385  // <4 x i1> -> <4 x i32>.
1386  LegalizeTypeAction TA = getTypeAction(Context, VT);
1387  if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1388    EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1389    if (isTypeLegal(RegisterEVT)) {
1390      IntermediateVT = RegisterEVT;
1391      RegisterVT = RegisterEVT.getSimpleVT();
1392      NumIntermediates = 1;
1393      return 1;
1394    }
1395  }
1396
1397  // Figure out the right, legal destination reg to copy into.
1398  EVT EltTy = VT.getVectorElementType();
1399
1400  unsigned NumVectorRegs = 1;
1401
1402  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1403  // could break down into LHS/RHS like LegalizeDAG does.
1404  if (!isPowerOf2_32(NumElts)) {
1405    NumVectorRegs = NumElts;
1406    NumElts = 1;
1407  }
1408
1409  // Divide the input until we get to a supported size.  This will always
1410  // end with a scalar if the target doesn't support vectors.
1411  while (NumElts > 1 && !isTypeLegal(
1412                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
1413    NumElts >>= 1;
1414    NumVectorRegs <<= 1;
1415  }
1416
1417  NumIntermediates = NumVectorRegs;
1418
1419  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1420  if (!isTypeLegal(NewVT))
1421    NewVT = EltTy;
1422  IntermediateVT = NewVT;
1423
1424  MVT DestVT = getRegisterType(Context, NewVT);
1425  RegisterVT = DestVT;
1426  unsigned NewVTSize = NewVT.getSizeInBits();
1427
1428  // Convert sizes such as i33 to i64.
1429  if (!isPowerOf2_32(NewVTSize))
1430    NewVTSize = NextPowerOf2(NewVTSize);
1431
1432  if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1433    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1434
1435  // Otherwise, promotion or legal types use the same number of registers as
1436  // the vector decimated to the appropriate level.
1437  return NumVectorRegs;
1438}
1439
1440bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1441                                                uint64_t NumCases,
1442                                                uint64_t Range,
1443                                                ProfileSummaryInfo *PSI,
1444                                                BlockFrequencyInfo *BFI) const {
1445  // FIXME: This function check the maximum table size and density, but the
1446  // minimum size is not checked. It would be nice if the minimum size is
1447  // also combined within this function. Currently, the minimum size check is
1448  // performed in findJumpTable() in SelectionDAGBuiler and
1449  // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1450  const bool OptForSize =
1451      SI->getParent()->getParent()->hasOptSize() ||
1452      llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1453  const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1454  const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1455
1456  // Check whether the number of cases is small enough and
1457  // the range is dense enough for a jump table.
1458  return (OptForSize || Range <= MaxJumpTableSize) &&
1459         (NumCases * 100 >= Range * MinDensity);
1460}
1461
1462/// Get the EVTs and ArgFlags collections that represent the legalized return
1463/// type of the given function.  This does not require a DAG or a return value,
1464/// and is suitable for use before any DAGs for the function are constructed.
1465/// TODO: Move this out of TargetLowering.cpp.
1466void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1467                         AttributeList attr,
1468                         SmallVectorImpl<ISD::OutputArg> &Outs,
1469                         const TargetLowering &TLI, const DataLayout &DL) {
1470  SmallVector<EVT, 4> ValueVTs;
1471  ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1472  unsigned NumValues = ValueVTs.size();
1473  if (NumValues == 0) return;
1474
1475  for (unsigned j = 0, f = NumValues; j != f; ++j) {
1476    EVT VT = ValueVTs[j];
1477    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1478
1479    if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1480      ExtendKind = ISD::SIGN_EXTEND;
1481    else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1482      ExtendKind = ISD::ZERO_EXTEND;
1483
1484    // FIXME: C calling convention requires the return type to be promoted to
1485    // at least 32-bit. But this is not necessary for non-C calling
1486    // conventions. The frontend should mark functions whose return values
1487    // require promoting with signext or zeroext attributes.
1488    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1489      MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1490      if (VT.bitsLT(MinVT))
1491        VT = MinVT;
1492    }
1493
1494    unsigned NumParts =
1495        TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1496    MVT PartVT =
1497        TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1498
1499    // 'inreg' on function refers to return value
1500    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1501    if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1502      Flags.setInReg();
1503
1504    // Propagate extension type if any
1505    if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1506      Flags.setSExt();
1507    else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1508      Flags.setZExt();
1509
1510    for (unsigned i = 0; i < NumParts; ++i)
1511      Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1512  }
1513}
1514
1515/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1516/// function arguments in the caller parameter area.  This is the actual
1517/// alignment, not its logarithm.
1518unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1519                                                   const DataLayout &DL) const {
1520  return DL.getABITypeAlignment(Ty);
1521}
1522
1523bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1524    LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1525    unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1526  // Check if the specified alignment is sufficient based on the data layout.
1527  // TODO: While using the data layout works in practice, a better solution
1528  // would be to implement this check directly (make this a virtual function).
1529  // For example, the ABI alignment may change based on software platform while
1530  // this function should only be affected by hardware implementation.
1531  Type *Ty = VT.getTypeForEVT(Context);
1532  if (Alignment >= DL.getABITypeAlignment(Ty)) {
1533    // Assume that an access that meets the ABI-specified alignment is fast.
1534    if (Fast != nullptr)
1535      *Fast = true;
1536    return true;
1537  }
1538
1539  // This is a misaligned access.
1540  return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1541}
1542
1543bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1544    LLVMContext &Context, const DataLayout &DL, EVT VT,
1545    const MachineMemOperand &MMO, bool *Fast) const {
1546  return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1547                                        MMO.getAlignment(), MMO.getFlags(),
1548                                        Fast);
1549}
1550
1551bool TargetLoweringBase::allowsMemoryAccess(
1552    LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1553    unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1554  return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1555                                        Flags, Fast);
1556}
1557
1558bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1559                                            const DataLayout &DL, EVT VT,
1560                                            const MachineMemOperand &MMO,
1561                                            bool *Fast) const {
1562  return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1563                            MMO.getAlignment(), MMO.getFlags(), Fast);
1564}
1565
1566BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1567  return BranchProbability(MinPercentageForPredictableBranch, 100);
1568}
1569
1570//===----------------------------------------------------------------------===//
1571//  TargetTransformInfo Helpers
1572//===----------------------------------------------------------------------===//
1573
1574int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1575  enum InstructionOpcodes {
1576#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1577#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1578#include "llvm/IR/Instruction.def"
1579  };
1580  switch (static_cast<InstructionOpcodes>(Opcode)) {
1581  case Ret:            return 0;
1582  case Br:             return 0;
1583  case Switch:         return 0;
1584  case IndirectBr:     return 0;
1585  case Invoke:         return 0;
1586  case CallBr:         return 0;
1587  case Resume:         return 0;
1588  case Unreachable:    return 0;
1589  case CleanupRet:     return 0;
1590  case CatchRet:       return 0;
1591  case CatchPad:       return 0;
1592  case CatchSwitch:    return 0;
1593  case CleanupPad:     return 0;
1594  case FNeg:           return ISD::FNEG;
1595  case Add:            return ISD::ADD;
1596  case FAdd:           return ISD::FADD;
1597  case Sub:            return ISD::SUB;
1598  case FSub:           return ISD::FSUB;
1599  case Mul:            return ISD::MUL;
1600  case FMul:           return ISD::FMUL;
1601  case UDiv:           return ISD::UDIV;
1602  case SDiv:           return ISD::SDIV;
1603  case FDiv:           return ISD::FDIV;
1604  case URem:           return ISD::UREM;
1605  case SRem:           return ISD::SREM;
1606  case FRem:           return ISD::FREM;
1607  case Shl:            return ISD::SHL;
1608  case LShr:           return ISD::SRL;
1609  case AShr:           return ISD::SRA;
1610  case And:            return ISD::AND;
1611  case Or:             return ISD::OR;
1612  case Xor:            return ISD::XOR;
1613  case Alloca:         return 0;
1614  case Load:           return ISD::LOAD;
1615  case Store:          return ISD::STORE;
1616  case GetElementPtr:  return 0;
1617  case Fence:          return 0;
1618  case AtomicCmpXchg:  return 0;
1619  case AtomicRMW:      return 0;
1620  case Trunc:          return ISD::TRUNCATE;
1621  case ZExt:           return ISD::ZERO_EXTEND;
1622  case SExt:           return ISD::SIGN_EXTEND;
1623  case FPToUI:         return ISD::FP_TO_UINT;
1624  case FPToSI:         return ISD::FP_TO_SINT;
1625  case UIToFP:         return ISD::UINT_TO_FP;
1626  case SIToFP:         return ISD::SINT_TO_FP;
1627  case FPTrunc:        return ISD::FP_ROUND;
1628  case FPExt:          return ISD::FP_EXTEND;
1629  case PtrToInt:       return ISD::BITCAST;
1630  case IntToPtr:       return ISD::BITCAST;
1631  case BitCast:        return ISD::BITCAST;
1632  case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1633  case ICmp:           return ISD::SETCC;
1634  case FCmp:           return ISD::SETCC;
1635  case PHI:            return 0;
1636  case Call:           return 0;
1637  case Select:         return ISD::SELECT;
1638  case UserOp1:        return 0;
1639  case UserOp2:        return 0;
1640  case VAArg:          return 0;
1641  case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1642  case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1643  case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1644  case ExtractValue:   return ISD::MERGE_VALUES;
1645  case InsertValue:    return ISD::MERGE_VALUES;
1646  case LandingPad:     return 0;
1647  case Freeze:         return 0;
1648  }
1649
1650  llvm_unreachable("Unknown instruction type encountered!");
1651}
1652
1653std::pair<int, MVT>
1654TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1655                                            Type *Ty) const {
1656  LLVMContext &C = Ty->getContext();
1657  EVT MTy = getValueType(DL, Ty);
1658
1659  int Cost = 1;
1660  // We keep legalizing the type until we find a legal kind. We assume that
1661  // the only operation that costs anything is the split. After splitting
1662  // we need to handle two types.
1663  while (true) {
1664    LegalizeKind LK = getTypeConversion(C, MTy);
1665
1666    if (LK.first == TypeLegal)
1667      return std::make_pair(Cost, MTy.getSimpleVT());
1668
1669    if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1670      Cost *= 2;
1671
1672    // Do not loop with f128 type.
1673    if (MTy == LK.second)
1674      return std::make_pair(Cost, MTy.getSimpleVT());
1675
1676    // Keep legalizing the type.
1677    MTy = LK.second;
1678  }
1679}
1680
1681Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1682                                                              bool UseTLS) const {
1683  // compiler-rt provides a variable with a magic name.  Targets that do not
1684  // link with compiler-rt may also provide such a variable.
1685  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1686  const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1687  auto UnsafeStackPtr =
1688      dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1689
1690  Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1691
1692  if (!UnsafeStackPtr) {
1693    auto TLSModel = UseTLS ?
1694        GlobalValue::InitialExecTLSModel :
1695        GlobalValue::NotThreadLocal;
1696    // The global variable is not defined yet, define it ourselves.
1697    // We use the initial-exec TLS model because we do not support the
1698    // variable living anywhere other than in the main executable.
1699    UnsafeStackPtr = new GlobalVariable(
1700        *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1701        UnsafeStackPtrVar, nullptr, TLSModel);
1702  } else {
1703    // The variable exists, check its type and attributes.
1704    if (UnsafeStackPtr->getValueType() != StackPtrTy)
1705      report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1706    if (UseTLS != UnsafeStackPtr->isThreadLocal())
1707      report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1708                         (UseTLS ? "" : "not ") + "be thread-local");
1709  }
1710  return UnsafeStackPtr;
1711}
1712
1713Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1714  if (!TM.getTargetTriple().isAndroid())
1715    return getDefaultSafeStackPointerLocation(IRB, true);
1716
1717  // Android provides a libc function to retrieve the address of the current
1718  // thread's unsafe stack pointer.
1719  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1720  Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1721  FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1722                                             StackPtrTy->getPointerTo(0));
1723  return IRB.CreateCall(Fn);
1724}
1725
1726//===----------------------------------------------------------------------===//
1727//  Loop Strength Reduction hooks
1728//===----------------------------------------------------------------------===//
1729
1730/// isLegalAddressingMode - Return true if the addressing mode represented
1731/// by AM is legal for this target, for a load/store of the specified type.
1732bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1733                                               const AddrMode &AM, Type *Ty,
1734                                               unsigned AS, Instruction *I) const {
1735  // The default implementation of this implements a conservative RISCy, r+r and
1736  // r+i addr mode.
1737
1738  // Allows a sign-extended 16-bit immediate field.
1739  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1740    return false;
1741
1742  // No global is ever allowed as a base.
1743  if (AM.BaseGV)
1744    return false;
1745
1746  // Only support r+r,
1747  switch (AM.Scale) {
1748  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1749    break;
1750  case 1:
1751    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1752      return false;
1753    // Otherwise we have r+r or r+i.
1754    break;
1755  case 2:
1756    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1757      return false;
1758    // Allow 2*r as r+r.
1759    break;
1760  default: // Don't allow n * r
1761    return false;
1762  }
1763
1764  return true;
1765}
1766
1767//===----------------------------------------------------------------------===//
1768//  Stack Protector
1769//===----------------------------------------------------------------------===//
1770
1771// For OpenBSD return its special guard variable. Otherwise return nullptr,
1772// so that SelectionDAG handle SSP.
1773Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1774  if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1775    Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1776    PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1777    return M.getOrInsertGlobal("__guard_local", PtrTy);
1778  }
1779  return nullptr;
1780}
1781
1782// Currently only support "standard" __stack_chk_guard.
1783// TODO: add LOAD_STACK_GUARD support.
1784void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1785  if (!M.getNamedValue("__stack_chk_guard"))
1786    new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1787                       GlobalVariable::ExternalLinkage,
1788                       nullptr, "__stack_chk_guard");
1789}
1790
1791// Currently only support "standard" __stack_chk_guard.
1792// TODO: add LOAD_STACK_GUARD support.
1793Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1794  return M.getNamedValue("__stack_chk_guard");
1795}
1796
1797Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1798  return nullptr;
1799}
1800
1801unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1802  return MinimumJumpTableEntries;
1803}
1804
1805void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1806  MinimumJumpTableEntries = Val;
1807}
1808
1809unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1810  return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1811}
1812
1813unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1814  return MaximumJumpTableSize;
1815}
1816
1817void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1818  MaximumJumpTableSize = Val;
1819}
1820
1821//===----------------------------------------------------------------------===//
1822//  Reciprocal Estimates
1823//===----------------------------------------------------------------------===//
1824
1825/// Get the reciprocal estimate attribute string for a function that will
1826/// override the target defaults.
1827static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1828  const Function &F = MF.getFunction();
1829  return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1830}
1831
1832/// Construct a string for the given reciprocal operation of the given type.
1833/// This string should match the corresponding option to the front-end's
1834/// "-mrecip" flag assuming those strings have been passed through in an
1835/// attribute string. For example, "vec-divf" for a division of a vXf32.
1836static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1837  std::string Name = VT.isVector() ? "vec-" : "";
1838
1839  Name += IsSqrt ? "sqrt" : "div";
1840
1841  // TODO: Handle "half" or other float types?
1842  if (VT.getScalarType() == MVT::f64) {
1843    Name += "d";
1844  } else {
1845    assert(VT.getScalarType() == MVT::f32 &&
1846           "Unexpected FP type for reciprocal estimate");
1847    Name += "f";
1848  }
1849
1850  return Name;
1851}
1852
1853/// Return the character position and value (a single numeric character) of a
1854/// customized refinement operation in the input string if it exists. Return
1855/// false if there is no customized refinement step count.
1856static bool parseRefinementStep(StringRef In, size_t &Position,
1857                                uint8_t &Value) {
1858  const char RefStepToken = ':';
1859  Position = In.find(RefStepToken);
1860  if (Position == StringRef::npos)
1861    return false;
1862
1863  StringRef RefStepString = In.substr(Position + 1);
1864  // Allow exactly one numeric character for the additional refinement
1865  // step parameter.
1866  if (RefStepString.size() == 1) {
1867    char RefStepChar = RefStepString[0];
1868    if (RefStepChar >= '0' && RefStepChar <= '9') {
1869      Value = RefStepChar - '0';
1870      return true;
1871    }
1872  }
1873  report_fatal_error("Invalid refinement step for -recip.");
1874}
1875
1876/// For the input attribute string, return one of the ReciprocalEstimate enum
1877/// status values (enabled, disabled, or not specified) for this operation on
1878/// the specified data type.
1879static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1880  if (Override.empty())
1881    return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1882
1883  SmallVector<StringRef, 4> OverrideVector;
1884  Override.split(OverrideVector, ',');
1885  unsigned NumArgs = OverrideVector.size();
1886
1887  // Check if "all", "none", or "default" was specified.
1888  if (NumArgs == 1) {
1889    // Look for an optional setting of the number of refinement steps needed
1890    // for this type of reciprocal operation.
1891    size_t RefPos;
1892    uint8_t RefSteps;
1893    if (parseRefinementStep(Override, RefPos, RefSteps)) {
1894      // Split the string for further processing.
1895      Override = Override.substr(0, RefPos);
1896    }
1897
1898    // All reciprocal types are enabled.
1899    if (Override == "all")
1900      return TargetLoweringBase::ReciprocalEstimate::Enabled;
1901
1902    // All reciprocal types are disabled.
1903    if (Override == "none")
1904      return TargetLoweringBase::ReciprocalEstimate::Disabled;
1905
1906    // Target defaults for enablement are used.
1907    if (Override == "default")
1908      return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1909  }
1910
1911  // The attribute string may omit the size suffix ('f'/'d').
1912  std::string VTName = getReciprocalOpName(IsSqrt, VT);
1913  std::string VTNameNoSize = VTName;
1914  VTNameNoSize.pop_back();
1915  static const char DisabledPrefix = '!';
1916
1917  for (StringRef RecipType : OverrideVector) {
1918    size_t RefPos;
1919    uint8_t RefSteps;
1920    if (parseRefinementStep(RecipType, RefPos, RefSteps))
1921      RecipType = RecipType.substr(0, RefPos);
1922
1923    // Ignore the disablement token for string matching.
1924    bool IsDisabled = RecipType[0] == DisabledPrefix;
1925    if (IsDisabled)
1926      RecipType = RecipType.substr(1);
1927
1928    if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1929      return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1930                        : TargetLoweringBase::ReciprocalEstimate::Enabled;
1931  }
1932
1933  return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1934}
1935
1936/// For the input attribute string, return the customized refinement step count
1937/// for this operation on the specified data type. If the step count does not
1938/// exist, return the ReciprocalEstimate enum value for unspecified.
1939static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1940  if (Override.empty())
1941    return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1942
1943  SmallVector<StringRef, 4> OverrideVector;
1944  Override.split(OverrideVector, ',');
1945  unsigned NumArgs = OverrideVector.size();
1946
1947  // Check if "all", "default", or "none" was specified.
1948  if (NumArgs == 1) {
1949    // Look for an optional setting of the number of refinement steps needed
1950    // for this type of reciprocal operation.
1951    size_t RefPos;
1952    uint8_t RefSteps;
1953    if (!parseRefinementStep(Override, RefPos, RefSteps))
1954      return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1955
1956    // Split the string for further processing.
1957    Override = Override.substr(0, RefPos);
1958    assert(Override != "none" &&
1959           "Disabled reciprocals, but specifed refinement steps?");
1960
1961    // If this is a general override, return the specified number of steps.
1962    if (Override == "all" || Override == "default")
1963      return RefSteps;
1964  }
1965
1966  // The attribute string may omit the size suffix ('f'/'d').
1967  std::string VTName = getReciprocalOpName(IsSqrt, VT);
1968  std::string VTNameNoSize = VTName;
1969  VTNameNoSize.pop_back();
1970
1971  for (StringRef RecipType : OverrideVector) {
1972    size_t RefPos;
1973    uint8_t RefSteps;
1974    if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1975      continue;
1976
1977    RecipType = RecipType.substr(0, RefPos);
1978    if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1979      return RefSteps;
1980  }
1981
1982  return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1983}
1984
1985int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1986                                                    MachineFunction &MF) const {
1987  return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1988}
1989
1990int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1991                                                   MachineFunction &MF) const {
1992  return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1993}
1994
1995int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1996                                               MachineFunction &MF) const {
1997  return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1998}
1999
2000int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2001                                              MachineFunction &MF) const {
2002  return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2003}
2004
2005void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2006  MF.getRegInfo().freezeReservedRegs(MF);
2007}
2008