1//===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file includes support code use by SelectionDAGBuilder when lowering a
10// statepoint sequence in SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#include "StatepointLowering.h"
15#include "SelectionDAGBuilder.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/None.h"
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/FunctionLoweringInfo.h"
24#include "llvm/CodeGen/GCMetadata.h"
25#include "llvm/CodeGen/GCStrategy.h"
26#include "llvm/CodeGen/ISDOpcodes.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/CodeGen/SelectionDAG.h"
32#include "llvm/CodeGen/SelectionDAGNodes.h"
33#include "llvm/CodeGen/StackMaps.h"
34#include "llvm/CodeGen/TargetLowering.h"
35#include "llvm/CodeGen/TargetOpcodes.h"
36#include "llvm/IR/CallingConv.h"
37#include "llvm/IR/DerivedTypes.h"
38#include "llvm/IR/Instruction.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/LLVMContext.h"
41#include "llvm/IR/Statepoint.h"
42#include "llvm/IR/Type.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/MachineValueType.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include <cassert>
48#include <cstddef>
49#include <cstdint>
50#include <iterator>
51#include <tuple>
52#include <utility>
53
54using namespace llvm;
55
56#define DEBUG_TYPE "statepoint-lowering"
57
58STATISTIC(NumSlotsAllocatedForStatepoints,
59          "Number of stack slots allocated for statepoints");
60STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
61STATISTIC(StatepointMaxSlotsRequired,
62          "Maximum number of stack slots required for a singe statepoint");
63
64static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
65                                 SelectionDAGBuilder &Builder, uint64_t Value) {
66  SDLoc L = Builder.getCurSDLoc();
67  Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
68                                              MVT::i64));
69  Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
70}
71
72void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
73  // Consistency check
74  assert(PendingGCRelocateCalls.empty() &&
75         "Trying to visit statepoint before finished processing previous one");
76  Locations.clear();
77  NextSlotToAllocate = 0;
78  // Need to resize this on each safepoint - we need the two to stay in sync and
79  // the clear patterns of a SelectionDAGBuilder have no relation to
80  // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
81  AllocatedStackSlots.clear();
82  AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
83}
84
85void StatepointLoweringState::clear() {
86  Locations.clear();
87  AllocatedStackSlots.clear();
88  assert(PendingGCRelocateCalls.empty() &&
89         "cleared before statepoint sequence completed");
90}
91
92SDValue
93StatepointLoweringState::allocateStackSlot(EVT ValueType,
94                                           SelectionDAGBuilder &Builder) {
95  NumSlotsAllocatedForStatepoints++;
96  MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
97
98  unsigned SpillSize = ValueType.getStoreSize();
99  assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
100
101  // First look for a previously created stack slot which is not in
102  // use (accounting for the fact arbitrary slots may already be
103  // reserved), or to create a new stack slot and use it.
104
105  const size_t NumSlots = AllocatedStackSlots.size();
106  assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
107
108  assert(AllocatedStackSlots.size() ==
109         Builder.FuncInfo.StatepointStackSlots.size() &&
110         "Broken invariant");
111
112  for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
113    if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
114      const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
115      if (MFI.getObjectSize(FI) == SpillSize) {
116        AllocatedStackSlots.set(NextSlotToAllocate);
117        // TODO: Is ValueType the right thing to use here?
118        return Builder.DAG.getFrameIndex(FI, ValueType);
119      }
120    }
121  }
122
123  // Couldn't find a free slot, so create a new one:
124
125  SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
126  const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
127  MFI.markAsStatepointSpillSlotObjectIndex(FI);
128
129  Builder.FuncInfo.StatepointStackSlots.push_back(FI);
130  AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
131  assert(AllocatedStackSlots.size() ==
132         Builder.FuncInfo.StatepointStackSlots.size() &&
133         "Broken invariant");
134
135  StatepointMaxSlotsRequired.updateMax(
136      Builder.FuncInfo.StatepointStackSlots.size());
137
138  return SpillSlot;
139}
140
141/// Utility function for reservePreviousStackSlotForValue. Tries to find
142/// stack slot index to which we have spilled value for previous statepoints.
143/// LookUpDepth specifies maximum DFS depth this function is allowed to look.
144static Optional<int> findPreviousSpillSlot(const Value *Val,
145                                           SelectionDAGBuilder &Builder,
146                                           int LookUpDepth) {
147  // Can not look any further - give up now
148  if (LookUpDepth <= 0)
149    return None;
150
151  // Spill location is known for gc relocates
152  if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
153    const auto &SpillMap =
154        Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
155
156    auto It = SpillMap.find(Relocate->getDerivedPtr());
157    if (It == SpillMap.end())
158      return None;
159
160    return It->second;
161  }
162
163  // Look through bitcast instructions.
164  if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
165    return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
166
167  // Look through phi nodes
168  // All incoming values should have same known stack slot, otherwise result
169  // is unknown.
170  if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
171    Optional<int> MergedResult = None;
172
173    for (auto &IncomingValue : Phi->incoming_values()) {
174      Optional<int> SpillSlot =
175          findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
176      if (!SpillSlot.hasValue())
177        return None;
178
179      if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
180        return None;
181
182      MergedResult = SpillSlot;
183    }
184    return MergedResult;
185  }
186
187  // TODO: We can do better for PHI nodes. In cases like this:
188  //   ptr = phi(relocated_pointer, not_relocated_pointer)
189  //   statepoint(ptr)
190  // We will return that stack slot for ptr is unknown. And later we might
191  // assign different stack slots for ptr and relocated_pointer. This limits
192  // llvm's ability to remove redundant stores.
193  // Unfortunately it's hard to accomplish in current infrastructure.
194  // We use this function to eliminate spill store completely, while
195  // in example we still need to emit store, but instead of any location
196  // we need to use special "preferred" location.
197
198  // TODO: handle simple updates.  If a value is modified and the original
199  // value is no longer live, it would be nice to put the modified value in the
200  // same slot.  This allows folding of the memory accesses for some
201  // instructions types (like an increment).
202  //   statepoint (i)
203  //   i1 = i+1
204  //   statepoint (i1)
205  // However we need to be careful for cases like this:
206  //   statepoint(i)
207  //   i1 = i+1
208  //   statepoint(i, i1)
209  // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
210  // put handling of simple modifications in this function like it's done
211  // for bitcasts we might end up reserving i's slot for 'i+1' because order in
212  // which we visit values is unspecified.
213
214  // Don't know any information about this instruction
215  return None;
216}
217
218/// Try to find existing copies of the incoming values in stack slots used for
219/// statepoint spilling.  If we can find a spill slot for the incoming value,
220/// mark that slot as allocated, and reuse the same slot for this safepoint.
221/// This helps to avoid series of loads and stores that only serve to reshuffle
222/// values on the stack between calls.
223static void reservePreviousStackSlotForValue(const Value *IncomingValue,
224                                             SelectionDAGBuilder &Builder) {
225  SDValue Incoming = Builder.getValue(IncomingValue);
226
227  if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
228    // We won't need to spill this, so no need to check for previously
229    // allocated stack slots
230    return;
231  }
232
233  SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
234  if (OldLocation.getNode())
235    // Duplicates in input
236    return;
237
238  const int LookUpDepth = 6;
239  Optional<int> Index =
240      findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
241  if (!Index.hasValue())
242    return;
243
244  const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
245
246  auto SlotIt = find(StatepointSlots, *Index);
247  assert(SlotIt != StatepointSlots.end() &&
248         "Value spilled to the unknown stack slot");
249
250  // This is one of our dedicated lowering slots
251  const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
252  if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
253    // stack slot already assigned to someone else, can't use it!
254    // TODO: currently we reserve space for gc arguments after doing
255    // normal allocation for deopt arguments.  We should reserve for
256    // _all_ deopt and gc arguments, then start allocating.  This
257    // will prevent some moves being inserted when vm state changes,
258    // but gc state doesn't between two calls.
259    return;
260  }
261  // Reserve this stack slot
262  Builder.StatepointLowering.reserveStackSlot(Offset);
263
264  // Cache this slot so we find it when going through the normal
265  // assignment loop.
266  SDValue Loc =
267      Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
268  Builder.StatepointLowering.setLocation(Incoming, Loc);
269}
270
271/// Remove any duplicate (as SDValues) from the derived pointer pairs.  This
272/// is not required for correctness.  It's purpose is to reduce the size of
273/// StackMap section.  It has no effect on the number of spill slots required
274/// or the actual lowering.
275static void
276removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases,
277                      SmallVectorImpl<const Value *> &Ptrs,
278                      SmallVectorImpl<const GCRelocateInst *> &Relocs,
279                      SelectionDAGBuilder &Builder,
280                      FunctionLoweringInfo::StatepointSpillMap &SSM) {
281  DenseMap<SDValue, const Value *> Seen;
282
283  SmallVector<const Value *, 64> NewBases, NewPtrs;
284  SmallVector<const GCRelocateInst *, 64> NewRelocs;
285  for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
286    SDValue SD = Builder.getValue(Ptrs[i]);
287    auto SeenIt = Seen.find(SD);
288
289    if (SeenIt == Seen.end()) {
290      // Only add non-duplicates
291      NewBases.push_back(Bases[i]);
292      NewPtrs.push_back(Ptrs[i]);
293      NewRelocs.push_back(Relocs[i]);
294      Seen[SD] = Ptrs[i];
295    } else {
296      // Duplicate pointer found, note in SSM and move on:
297      SSM.DuplicateMap[Ptrs[i]] = SeenIt->second;
298    }
299  }
300  assert(Bases.size() >= NewBases.size());
301  assert(Ptrs.size() >= NewPtrs.size());
302  assert(Relocs.size() >= NewRelocs.size());
303  Bases = NewBases;
304  Ptrs = NewPtrs;
305  Relocs = NewRelocs;
306  assert(Ptrs.size() == Bases.size());
307  assert(Ptrs.size() == Relocs.size());
308}
309
310/// Extract call from statepoint, lower it and return pointer to the
311/// call node. Also update NodeMap so that getValue(statepoint) will
312/// reference lowered call result
313static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
314    SelectionDAGBuilder::StatepointLoweringInfo &SI,
315    SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
316  SDValue ReturnValue, CallEndVal;
317  std::tie(ReturnValue, CallEndVal) =
318      Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
319  SDNode *CallEnd = CallEndVal.getNode();
320
321  // Get a call instruction from the call sequence chain.  Tail calls are not
322  // allowed.  The following code is essentially reverse engineering X86's
323  // LowerCallTo.
324  //
325  // We are expecting DAG to have the following form:
326  //
327  // ch = eh_label (only in case of invoke statepoint)
328  //   ch, glue = callseq_start ch
329  //   ch, glue = X86::Call ch, glue
330  //   ch, glue = callseq_end ch, glue
331  //   get_return_value ch, glue
332  //
333  // get_return_value can either be a sequence of CopyFromReg instructions
334  // to grab the return value from the return register(s), or it can be a LOAD
335  // to load a value returned by reference via a stack slot.
336
337  bool HasDef = !SI.CLI.RetTy->isVoidTy();
338  if (HasDef) {
339    if (CallEnd->getOpcode() == ISD::LOAD)
340      CallEnd = CallEnd->getOperand(0).getNode();
341    else
342      while (CallEnd->getOpcode() == ISD::CopyFromReg)
343        CallEnd = CallEnd->getOperand(0).getNode();
344  }
345
346  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
347  return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
348}
349
350static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
351                                               FrameIndexSDNode &FI) {
352  auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
353  auto MMOFlags = MachineMemOperand::MOStore |
354    MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
355  auto &MFI = MF.getFrameInfo();
356  return MF.getMachineMemOperand(PtrInfo, MMOFlags,
357                                 MFI.getObjectSize(FI.getIndex()),
358                                 MFI.getObjectAlignment(FI.getIndex()));
359}
360
361/// Spill a value incoming to the statepoint. It might be either part of
362/// vmstate
363/// or gcstate. In both cases unconditionally spill it on the stack unless it
364/// is a null constant. Return pair with first element being frame index
365/// containing saved value and second element with outgoing chain from the
366/// emitted store
367static std::tuple<SDValue, SDValue, MachineMemOperand*>
368spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
369                             SelectionDAGBuilder &Builder) {
370  SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
371  MachineMemOperand* MMO = nullptr;
372
373  // Emit new store if we didn't do it for this ptr before
374  if (!Loc.getNode()) {
375    Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
376                                                       Builder);
377    int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
378    // We use TargetFrameIndex so that isel will not select it into LEA
379    Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
380
381    // Right now we always allocate spill slots that are of the same
382    // size as the value we're about to spill (the size of spillee can
383    // vary since we spill vectors of pointers too).  At some point we
384    // can consider allowing spills of smaller values to larger slots
385    // (i.e. change the '==' in the assert below to a '>=').
386    MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
387    assert((MFI.getObjectSize(Index) * 8) ==
388           (int64_t)Incoming.getValueSizeInBits() &&
389           "Bad spill:  stack slot does not match!");
390
391    // Note: Using the alignment of the spill slot (rather than the abi or
392    // preferred alignment) is required for correctness when dealing with spill
393    // slots with preferred alignments larger than frame alignment..
394    auto &MF = Builder.DAG.getMachineFunction();
395    auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
396    auto *StoreMMO =
397      MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
398                              MFI.getObjectSize(Index),
399                              MFI.getObjectAlignment(Index));
400    Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
401                                 StoreMMO);
402
403    MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
404
405    Builder.StatepointLowering.setLocation(Incoming, Loc);
406  }
407
408  assert(Loc.getNode());
409  return std::make_tuple(Loc, Chain, MMO);
410}
411
412/// Lower a single value incoming to a statepoint node.  This value can be
413/// either a deopt value or a gc value, the handling is the same.  We special
414/// case constants and allocas, then fall back to spilling if required.
415static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly,
416                                         SmallVectorImpl<SDValue> &Ops,
417                                         SmallVectorImpl<MachineMemOperand*> &MemRefs,
418                                         SelectionDAGBuilder &Builder) {
419  // Note: We know all of these spills are independent, but don't bother to
420  // exploit that chain wise.  DAGCombine will happily do so as needed, so
421  // doing it here would be a small compile time win at most.
422  SDValue Chain = Builder.getRoot();
423
424  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
425    // If the original value was a constant, make sure it gets recorded as
426    // such in the stackmap.  This is required so that the consumer can
427    // parse any internal format to the deopt state.  It also handles null
428    // pointers and other constant pointers in GC states.  Note the constant
429    // vectors do not appear to actually hit this path and that anything larger
430    // than an i64 value (not type!) will fail asserts here.
431    pushStackMapConstant(Ops, Builder, C->getSExtValue());
432  } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
433    // This handles allocas as arguments to the statepoint (this is only
434    // really meaningful for a deopt value.  For GC, we'd be trying to
435    // relocate the address of the alloca itself?)
436    assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
437           "Incoming value is a frame index!");
438    Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
439                                                  Builder.getFrameIndexTy()));
440
441    auto &MF = Builder.DAG.getMachineFunction();
442    auto *MMO = getMachineMemOperand(MF, *FI);
443    MemRefs.push_back(MMO);
444
445  } else if (LiveInOnly) {
446    // If this value is live in (not live-on-return, or live-through), we can
447    // treat it the same way patchpoint treats it's "live in" values.  We'll
448    // end up folding some of these into stack references, but they'll be
449    // handled by the register allocator.  Note that we do not have the notion
450    // of a late use so these values might be placed in registers which are
451    // clobbered by the call.  This is fine for live-in.
452    Ops.push_back(Incoming);
453  } else {
454    // Otherwise, locate a spill slot and explicitly spill it so it
455    // can be found by the runtime later.  We currently do not support
456    // tracking values through callee saved registers to their eventual
457    // spill location.  This would be a useful optimization, but would
458    // need to be optional since it requires a lot of complexity on the
459    // runtime side which not all would support.
460    auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
461    Ops.push_back(std::get<0>(Res));
462    if (auto *MMO = std::get<2>(Res))
463      MemRefs.push_back(MMO);
464    Chain = std::get<1>(Res);;
465  }
466
467  Builder.DAG.setRoot(Chain);
468}
469
470/// Lower deopt state and gc pointer arguments of the statepoint.  The actual
471/// lowering is described in lowerIncomingStatepointValue.  This function is
472/// responsible for lowering everything in the right position and playing some
473/// tricks to avoid redundant stack manipulation where possible.  On
474/// completion, 'Ops' will contain ready to use operands for machine code
475/// statepoint. The chain nodes will have already been created and the DAG root
476/// will be set to the last value spilled (if any were).
477static void
478lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
479                        SmallVectorImpl<MachineMemOperand*> &MemRefs,                                    SelectionDAGBuilder::StatepointLoweringInfo &SI,
480                        SelectionDAGBuilder &Builder) {
481  // Lower the deopt and gc arguments for this statepoint.  Layout will be:
482  // deopt argument length, deopt arguments.., gc arguments...
483#ifndef NDEBUG
484  if (auto *GFI = Builder.GFI) {
485    // Check that each of the gc pointer and bases we've gotten out of the
486    // safepoint is something the strategy thinks might be a pointer (or vector
487    // of pointers) into the GC heap.  This is basically just here to help catch
488    // errors during statepoint insertion. TODO: This should actually be in the
489    // Verifier, but we can't get to the GCStrategy from there (yet).
490    GCStrategy &S = GFI->getStrategy();
491    for (const Value *V : SI.Bases) {
492      auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
493      if (Opt.hasValue()) {
494        assert(Opt.getValue() &&
495               "non gc managed base pointer found in statepoint");
496      }
497    }
498    for (const Value *V : SI.Ptrs) {
499      auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
500      if (Opt.hasValue()) {
501        assert(Opt.getValue() &&
502               "non gc managed derived pointer found in statepoint");
503      }
504    }
505    assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
506  } else {
507    assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
508    assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
509  }
510#endif
511
512  // Figure out what lowering strategy we're going to use for each part
513  // Note: Is is conservatively correct to lower both "live-in" and "live-out"
514  // as "live-through". A "live-through" variable is one which is "live-in",
515  // "live-out", and live throughout the lifetime of the call (i.e. we can find
516  // it from any PC within the transitive callee of the statepoint).  In
517  // particular, if the callee spills callee preserved registers we may not
518  // be able to find a value placed in that register during the call.  This is
519  // fine for live-out, but not for live-through.  If we were willing to make
520  // assumptions about the code generator producing the callee, we could
521  // potentially allow live-through values in callee saved registers.
522  const bool LiveInDeopt =
523    SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
524
525  auto isGCValue =[&](const Value *V) {
526    return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V);
527  };
528
529  // Before we actually start lowering (and allocating spill slots for values),
530  // reserve any stack slots which we judge to be profitable to reuse for a
531  // particular value.  This is purely an optimization over the code below and
532  // doesn't change semantics at all.  It is important for performance that we
533  // reserve slots for both deopt and gc values before lowering either.
534  for (const Value *V : SI.DeoptState) {
535    if (!LiveInDeopt || isGCValue(V))
536      reservePreviousStackSlotForValue(V, Builder);
537  }
538  for (unsigned i = 0; i < SI.Bases.size(); ++i) {
539    reservePreviousStackSlotForValue(SI.Bases[i], Builder);
540    reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
541  }
542
543  // First, prefix the list with the number of unique values to be
544  // lowered.  Note that this is the number of *Values* not the
545  // number of SDValues required to lower them.
546  const int NumVMSArgs = SI.DeoptState.size();
547  pushStackMapConstant(Ops, Builder, NumVMSArgs);
548
549  // The vm state arguments are lowered in an opaque manner.  We do not know
550  // what type of values are contained within.
551  for (const Value *V : SI.DeoptState) {
552    SDValue Incoming;
553    // If this is a function argument at a static frame index, generate it as
554    // the frame index.
555    if (const Argument *Arg = dyn_cast<Argument>(V)) {
556      int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
557      if (FI != INT_MAX)
558        Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
559    }
560    if (!Incoming.getNode())
561      Incoming = Builder.getValue(V);
562    const bool LiveInValue = LiveInDeopt && !isGCValue(V);
563    lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, MemRefs, Builder);
564  }
565
566  // Finally, go ahead and lower all the gc arguments.  There's no prefixed
567  // length for this one.  After lowering, we'll have the base and pointer
568  // arrays interwoven with each (lowered) base pointer immediately followed by
569  // it's (lowered) derived pointer.  i.e
570  // (base[0], ptr[0], base[1], ptr[1], ...)
571  for (unsigned i = 0; i < SI.Bases.size(); ++i) {
572    const Value *Base = SI.Bases[i];
573    lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false,
574                                 Ops, MemRefs, Builder);
575
576    const Value *Ptr = SI.Ptrs[i];
577    lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false,
578                                 Ops, MemRefs, Builder);
579  }
580
581  // If there are any explicit spill slots passed to the statepoint, record
582  // them, but otherwise do not do anything special.  These are user provided
583  // allocas and give control over placement to the consumer.  In this case,
584  // it is the contents of the slot which may get updated, not the pointer to
585  // the alloca
586  for (Value *V : SI.GCArgs) {
587    SDValue Incoming = Builder.getValue(V);
588    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
589      // This handles allocas as arguments to the statepoint
590      assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
591             "Incoming value is a frame index!");
592      Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
593                                                    Builder.getFrameIndexTy()));
594
595      auto &MF = Builder.DAG.getMachineFunction();
596      auto *MMO = getMachineMemOperand(MF, *FI);
597      MemRefs.push_back(MMO);
598    }
599  }
600
601  // Record computed locations for all lowered values.
602  // This can not be embedded in lowering loops as we need to record *all*
603  // values, while previous loops account only values with unique SDValues.
604  const Instruction *StatepointInstr = SI.StatepointInstr;
605  auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
606
607  for (const GCRelocateInst *Relocate : SI.GCRelocates) {
608    const Value *V = Relocate->getDerivedPtr();
609    SDValue SDV = Builder.getValue(V);
610    SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
611
612    if (Loc.getNode()) {
613      SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
614    } else {
615      // Record value as visited, but not spilled. This is case for allocas
616      // and constants. For this values we can avoid emitting spill load while
617      // visiting corresponding gc_relocate.
618      // Actually we do not need to record them in this map at all.
619      // We do this only to check that we are not relocating any unvisited
620      // value.
621      SpillMap.SlotMap[V] = None;
622
623      // Default llvm mechanisms for exporting values which are used in
624      // different basic blocks does not work for gc relocates.
625      // Note that it would be incorrect to teach llvm that all relocates are
626      // uses of the corresponding values so that it would automatically
627      // export them. Relocates of the spilled values does not use original
628      // value.
629      if (Relocate->getParent() != StatepointInstr->getParent())
630        Builder.ExportFromCurrentBlock(V);
631    }
632  }
633}
634
635SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
636    SelectionDAGBuilder::StatepointLoweringInfo &SI) {
637  // The basic scheme here is that information about both the original call and
638  // the safepoint is encoded in the CallInst.  We create a temporary call and
639  // lower it, then reverse engineer the calling sequence.
640
641  NumOfStatepoints++;
642  // Clear state
643  StatepointLowering.startNewStatepoint(*this);
644
645#ifndef NDEBUG
646  // We schedule gc relocates before removeDuplicateGCPtrs since we _will_
647  // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
648  for (auto *Reloc : SI.GCRelocates)
649    if (Reloc->getParent() == SI.StatepointInstr->getParent())
650      StatepointLowering.scheduleRelocCall(*Reloc);
651#endif
652
653  // Remove any redundant llvm::Values which map to the same SDValue as another
654  // input.  Also has the effect of removing duplicates in the original
655  // llvm::Value input list as well.  This is a useful optimization for
656  // reducing the size of the StackMap section.  It has no other impact.
657  removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this,
658                        FuncInfo.StatepointSpillMaps[SI.StatepointInstr]);
659  assert(SI.Bases.size() == SI.Ptrs.size() &&
660         SI.Ptrs.size() == SI.GCRelocates.size());
661
662  // Lower statepoint vmstate and gcstate arguments
663  SmallVector<SDValue, 10> LoweredMetaArgs;
664  SmallVector<MachineMemOperand*, 16> MemRefs;
665  lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this);
666
667  // Now that we've emitted the spills, we need to update the root so that the
668  // call sequence is ordered correctly.
669  SI.CLI.setChain(getRoot());
670
671  // Get call node, we will replace it later with statepoint
672  SDValue ReturnVal;
673  SDNode *CallNode;
674  std::tie(ReturnVal, CallNode) =
675      lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
676
677  // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
678  // nodes with all the appropriate arguments and return values.
679
680  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
681  SDValue Chain = CallNode->getOperand(0);
682
683  SDValue Glue;
684  bool CallHasIncomingGlue = CallNode->getGluedNode();
685  if (CallHasIncomingGlue) {
686    // Glue is always last operand
687    Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
688  }
689
690  // Build the GC_TRANSITION_START node if necessary.
691  //
692  // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
693  // order in which they appear in the call to the statepoint intrinsic. If
694  // any of the operands is a pointer-typed, that operand is immediately
695  // followed by a SRCVALUE for the pointer that may be used during lowering
696  // (e.g. to form MachinePointerInfo values for loads/stores).
697  const bool IsGCTransition =
698      (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
699      (uint64_t)StatepointFlags::GCTransition;
700  if (IsGCTransition) {
701    SmallVector<SDValue, 8> TSOps;
702
703    // Add chain
704    TSOps.push_back(Chain);
705
706    // Add GC transition arguments
707    for (const Value *V : SI.GCTransitionArgs) {
708      TSOps.push_back(getValue(V));
709      if (V->getType()->isPointerTy())
710        TSOps.push_back(DAG.getSrcValue(V));
711    }
712
713    // Add glue if necessary
714    if (CallHasIncomingGlue)
715      TSOps.push_back(Glue);
716
717    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
718
719    SDValue GCTransitionStart =
720        DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
721
722    Chain = GCTransitionStart.getValue(0);
723    Glue = GCTransitionStart.getValue(1);
724  }
725
726  // TODO: Currently, all of these operands are being marked as read/write in
727  // PrologEpilougeInserter.cpp, we should special case the VMState arguments
728  // and flags to be read-only.
729  SmallVector<SDValue, 40> Ops;
730
731  // Add the <id> and <numBytes> constants.
732  Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
733  Ops.push_back(
734      DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
735
736  // Calculate and push starting position of vmstate arguments
737  // Get number of arguments incoming directly into call node
738  unsigned NumCallRegArgs =
739      CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
740  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
741
742  // Add call target
743  SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
744  Ops.push_back(CallTarget);
745
746  // Add call arguments
747  // Get position of register mask in the call
748  SDNode::op_iterator RegMaskIt;
749  if (CallHasIncomingGlue)
750    RegMaskIt = CallNode->op_end() - 2;
751  else
752    RegMaskIt = CallNode->op_end() - 1;
753  Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
754
755  // Add a constant argument for the calling convention
756  pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
757
758  // Add a constant argument for the flags
759  uint64_t Flags = SI.StatepointFlags;
760  assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
761         "Unknown flag used");
762  pushStackMapConstant(Ops, *this, Flags);
763
764  // Insert all vmstate and gcstate arguments
765  Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
766
767  // Add register mask from call node
768  Ops.push_back(*RegMaskIt);
769
770  // Add chain
771  Ops.push_back(Chain);
772
773  // Same for the glue, but we add it only if original call had it
774  if (Glue.getNode())
775    Ops.push_back(Glue);
776
777  // Compute return values.  Provide a glue output since we consume one as
778  // input.  This allows someone else to chain off us as needed.
779  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
780
781  MachineSDNode *StatepointMCNode =
782    DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
783  DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
784
785  SDNode *SinkNode = StatepointMCNode;
786
787  // Build the GC_TRANSITION_END node if necessary.
788  //
789  // See the comment above regarding GC_TRANSITION_START for the layout of
790  // the operands to the GC_TRANSITION_END node.
791  if (IsGCTransition) {
792    SmallVector<SDValue, 8> TEOps;
793
794    // Add chain
795    TEOps.push_back(SDValue(StatepointMCNode, 0));
796
797    // Add GC transition arguments
798    for (const Value *V : SI.GCTransitionArgs) {
799      TEOps.push_back(getValue(V));
800      if (V->getType()->isPointerTy())
801        TEOps.push_back(DAG.getSrcValue(V));
802    }
803
804    // Add glue
805    TEOps.push_back(SDValue(StatepointMCNode, 1));
806
807    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
808
809    SDValue GCTransitionStart =
810        DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
811
812    SinkNode = GCTransitionStart.getNode();
813  }
814
815  // Replace original call
816  DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
817  // Remove original call node
818  DAG.DeleteNode(CallNode);
819
820  // DON'T set the root - under the assumption that it's already set past the
821  // inserted node we created.
822
823  // TODO: A better future implementation would be to emit a single variable
824  // argument, variable return value STATEPOINT node here and then hookup the
825  // return value of each gc.relocate to the respective output of the
826  // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
827  // to actually be possible today.
828
829  return ReturnVal;
830}
831
832void
833SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
834                                     const BasicBlock *EHPadBB /*= nullptr*/) {
835  assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg &&
836         "anyregcc is not supported on statepoints!");
837
838#ifndef NDEBUG
839  // If this is a malformed statepoint, report it early to simplify debugging.
840  // This should catch any IR level mistake that's made when constructing or
841  // transforming statepoints.
842  ISP.verify();
843
844  // Check that the associated GCStrategy expects to encounter statepoints.
845  assert(GFI->getStrategy().useStatepoints() &&
846         "GCStrategy does not expect to encounter statepoints");
847#endif
848
849  SDValue ActualCallee;
850
851  if (ISP.getNumPatchBytes() > 0) {
852    // If we've been asked to emit a nop sequence instead of a call instruction
853    // for this statepoint then don't lower the call target, but use a constant
854    // `null` instead.  Not lowering the call target lets statepoint clients get
855    // away without providing a physical address for the symbolic call target at
856    // link time.
857
858    const auto &TLI = DAG.getTargetLoweringInfo();
859    const auto &DL = DAG.getDataLayout();
860
861    unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
862    ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS));
863  } else {
864    ActualCallee = getValue(ISP.getCalledValue());
865  }
866
867  StatepointLoweringInfo SI(DAG);
868  populateCallLoweringInfo(SI.CLI, ISP.getCall(),
869                           ImmutableStatepoint::CallArgsBeginPos,
870                           ISP.getNumCallArgs(), ActualCallee,
871                           ISP.getActualReturnType(), false /* IsPatchPoint */);
872
873  for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
874    SI.GCRelocates.push_back(Relocate);
875    SI.Bases.push_back(Relocate->getBasePtr());
876    SI.Ptrs.push_back(Relocate->getDerivedPtr());
877  }
878
879  SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
880  SI.StatepointInstr = ISP.getInstruction();
881  SI.GCTransitionArgs =
882      ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
883  SI.ID = ISP.getID();
884  SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end());
885  SI.StatepointFlags = ISP.getFlags();
886  SI.NumPatchBytes = ISP.getNumPatchBytes();
887  SI.EHPadBB = EHPadBB;
888
889  SDValue ReturnValue = LowerAsSTATEPOINT(SI);
890
891  // Export the result value if needed
892  const GCResultInst *GCResult = ISP.getGCResult();
893  Type *RetTy = ISP.getActualReturnType();
894  if (!RetTy->isVoidTy() && GCResult) {
895    if (GCResult->getParent() != ISP.getCall()->getParent()) {
896      // Result value will be used in a different basic block so we need to
897      // export it now.  Default exporting mechanism will not work here because
898      // statepoint call has a different type than the actual call. It means
899      // that by default llvm will create export register of the wrong type
900      // (always i32 in our case). So instead we need to create export register
901      // with correct type manually.
902      // TODO: To eliminate this problem we can remove gc.result intrinsics
903      //       completely and make statepoint call to return a tuple.
904      unsigned Reg = FuncInfo.CreateRegs(RetTy);
905      RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
906                       DAG.getDataLayout(), Reg, RetTy,
907                       ISP.getCall()->getCallingConv());
908      SDValue Chain = DAG.getEntryNode();
909
910      RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
911      PendingExports.push_back(Chain);
912      FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
913    } else {
914      // Result value will be used in a same basic block. Don't export it or
915      // perform any explicit register copies.
916      // We'll replace the actuall call node shortly. gc_result will grab
917      // this value.
918      setValue(ISP.getInstruction(), ReturnValue);
919    }
920  } else {
921    // The token value is never used from here on, just generate a poison value
922    setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
923  }
924}
925
926void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
927    const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
928    bool VarArgDisallowed, bool ForceVoidReturnTy) {
929  StatepointLoweringInfo SI(DAG);
930  unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
931  populateCallLoweringInfo(
932      SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
933      ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
934      false);
935  if (!VarArgDisallowed)
936    SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
937
938  auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
939
940  unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
941
942  auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
943  SI.ID = SD.StatepointID.getValueOr(DefaultID);
944  SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
945
946  SI.DeoptState =
947      ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
948  SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
949  SI.EHPadBB = EHPadBB;
950
951  // NB! The GC arguments are deliberately left empty.
952
953  if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
954    ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
955    setValue(Call, ReturnVal);
956  }
957}
958
959void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
960    const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
961  LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
962                                   /* VarArgDisallowed = */ false,
963                                   /* ForceVoidReturnTy  = */ false);
964}
965
966void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
967  // The result value of the gc_result is simply the result of the actual
968  // call.  We've already emitted this, so just grab the value.
969  const Instruction *I = CI.getStatepoint();
970
971  if (I->getParent() != CI.getParent()) {
972    // Statepoint is in different basic block so we should have stored call
973    // result in a virtual register.
974    // We can not use default getValue() functionality to copy value from this
975    // register because statepoint and actual call return types can be
976    // different, and getValue() will use CopyFromReg of the wrong type,
977    // which is always i32 in our case.
978    PointerType *CalleeType = cast<PointerType>(
979        ImmutableStatepoint(I).getCalledValue()->getType());
980    Type *RetTy =
981        cast<FunctionType>(CalleeType->getElementType())->getReturnType();
982    SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
983
984    assert(CopyFromReg.getNode());
985    setValue(&CI, CopyFromReg);
986  } else {
987    setValue(&CI, getValue(I));
988  }
989}
990
991void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
992#ifndef NDEBUG
993  // Consistency check
994  // We skip this check for relocates not in the same basic block as their
995  // statepoint. It would be too expensive to preserve validation info through
996  // different basic blocks.
997  if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
998    StatepointLowering.relocCallVisited(Relocate);
999
1000  auto *Ty = Relocate.getType()->getScalarType();
1001  if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
1002    assert(*IsManaged && "Non gc managed pointer relocated!");
1003#endif
1004
1005  const Value *DerivedPtr = Relocate.getDerivedPtr();
1006  SDValue SD = getValue(DerivedPtr);
1007
1008  auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
1009  auto SlotIt = SpillMap.find(DerivedPtr);
1010  assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
1011  Optional<int> DerivedPtrLocation = SlotIt->second;
1012
1013  // We didn't need to spill these special cases (constants and allocas).
1014  // See the handling in spillIncomingValueForStatepoint for detail.
1015  if (!DerivedPtrLocation) {
1016    setValue(&Relocate, SD);
1017    return;
1018  }
1019
1020  unsigned Index = *DerivedPtrLocation;
1021  SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1022
1023  // Note: We know all of these reloads are independent, but don't bother to
1024  // exploit that chain wise.  DAGCombine will happily do so as needed, so
1025  // doing it here would be a small compile time win at most.
1026  SDValue Chain = getRoot();
1027
1028  auto &MF = DAG.getMachineFunction();
1029  auto &MFI = MF.getFrameInfo();
1030  auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1031  auto *LoadMMO =
1032    MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1033                            MFI.getObjectSize(Index),
1034                            MFI.getObjectAlignment(Index));
1035
1036  auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1037                                                         Relocate.getType());
1038
1039  SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain,
1040                                  SpillSlot, LoadMMO);
1041
1042  DAG.setRoot(SpillLoad.getValue(1));
1043
1044  assert(SpillLoad.getNode());
1045  setValue(&Relocate, SpillLoad);
1046}
1047
1048void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1049  const auto &TLI = DAG.getTargetLoweringInfo();
1050  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1051                                         TLI.getPointerTy(DAG.getDataLayout()));
1052
1053  // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1054  // call.  We also do not lower the return value to any virtual register, and
1055  // change the immediately following return to a trap instruction.
1056  LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1057                                   /* VarArgDisallowed = */ true,
1058                                   /* ForceVoidReturnTy = */ true);
1059}
1060
1061void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1062  // We do not lower the return value from llvm.deoptimize to any virtual
1063  // register, and change the immediately following return to a trap
1064  // instruction.
1065  if (DAG.getTarget().Options.TrapUnreachable)
1066    DAG.setRoot(
1067        DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1068}
1069