1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass munges the code in the input function to better prepare it for
10// SelectionDAG-based code generation. This works around limitations in it's
11// basic-block-at-a-time approach. It should eventually be removed.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/MapVector.h"
19#include "llvm/ADT/PointerIntPair.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/BlockFrequencyInfo.h"
25#include "llvm/Analysis/BranchProbabilityInfo.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/InstructionSimplify.h"
28#include "llvm/Analysis/LoopInfo.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/ProfileSummaryInfo.h"
31#include "llvm/Analysis/TargetLibraryInfo.h"
32#include "llvm/Analysis/TargetTransformInfo.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/Analysis/VectorUtils.h"
35#include "llvm/CodeGen/Analysis.h"
36#include "llvm/CodeGen/ISDOpcodes.h"
37#include "llvm/CodeGen/SelectionDAGNodes.h"
38#include "llvm/CodeGen/TargetLowering.h"
39#include "llvm/CodeGen/TargetPassConfig.h"
40#include "llvm/CodeGen/TargetSubtargetInfo.h"
41#include "llvm/CodeGen/ValueTypes.h"
42#include "llvm/Config/llvm-config.h"
43#include "llvm/IR/Argument.h"
44#include "llvm/IR/Attributes.h"
45#include "llvm/IR/BasicBlock.h"
46#include "llvm/IR/CallSite.h"
47#include "llvm/IR/Constant.h"
48#include "llvm/IR/Constants.h"
49#include "llvm/IR/DataLayout.h"
50#include "llvm/IR/DerivedTypes.h"
51#include "llvm/IR/Dominators.h"
52#include "llvm/IR/Function.h"
53#include "llvm/IR/GetElementPtrTypeIterator.h"
54#include "llvm/IR/GlobalValue.h"
55#include "llvm/IR/GlobalVariable.h"
56#include "llvm/IR/IRBuilder.h"
57#include "llvm/IR/InlineAsm.h"
58#include "llvm/IR/InstrTypes.h"
59#include "llvm/IR/Instruction.h"
60#include "llvm/IR/Instructions.h"
61#include "llvm/IR/IntrinsicInst.h"
62#include "llvm/IR/Intrinsics.h"
63#include "llvm/IR/IntrinsicsAArch64.h"
64#include "llvm/IR/IntrinsicsX86.h"
65#include "llvm/IR/LLVMContext.h"
66#include "llvm/IR/MDBuilder.h"
67#include "llvm/IR/Module.h"
68#include "llvm/IR/Operator.h"
69#include "llvm/IR/PatternMatch.h"
70#include "llvm/IR/Statepoint.h"
71#include "llvm/IR/Type.h"
72#include "llvm/IR/Use.h"
73#include "llvm/IR/User.h"
74#include "llvm/IR/Value.h"
75#include "llvm/IR/ValueHandle.h"
76#include "llvm/IR/ValueMap.h"
77#include "llvm/InitializePasses.h"
78#include "llvm/Pass.h"
79#include "llvm/Support/BlockFrequency.h"
80#include "llvm/Support/BranchProbability.h"
81#include "llvm/Support/Casting.h"
82#include "llvm/Support/CommandLine.h"
83#include "llvm/Support/Compiler.h"
84#include "llvm/Support/Debug.h"
85#include "llvm/Support/ErrorHandling.h"
86#include "llvm/Support/MachineValueType.h"
87#include "llvm/Support/MathExtras.h"
88#include "llvm/Support/raw_ostream.h"
89#include "llvm/Target/TargetMachine.h"
90#include "llvm/Target/TargetOptions.h"
91#include "llvm/Transforms/Utils/BasicBlockUtils.h"
92#include "llvm/Transforms/Utils/BypassSlowDivision.h"
93#include "llvm/Transforms/Utils/Local.h"
94#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
95#include "llvm/Transforms/Utils/SizeOpts.h"
96#include <algorithm>
97#include <cassert>
98#include <cstdint>
99#include <iterator>
100#include <limits>
101#include <memory>
102#include <utility>
103#include <vector>
104
105using namespace llvm;
106using namespace llvm::PatternMatch;
107
108#define DEBUG_TYPE "codegenprepare"
109
110STATISTIC(NumBlocksElim, "Number of blocks eliminated");
111STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
112STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
113STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
114                      "sunken Cmps");
115STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
116                       "of sunken Casts");
117STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
118                          "computations were sunk");
119STATISTIC(NumMemoryInstsPhiCreated,
120          "Number of phis created when address "
121          "computations were sunk to memory instructions");
122STATISTIC(NumMemoryInstsSelectCreated,
123          "Number of select created when address "
124          "computations were sunk to memory instructions");
125STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
126STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
127STATISTIC(NumAndsAdded,
128          "Number of and mask instructions added to form ext loads");
129STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
130STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
131STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
132STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
133STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
134
135static cl::opt<bool> DisableBranchOpts(
136  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
137  cl::desc("Disable branch optimizations in CodeGenPrepare"));
138
139static cl::opt<bool>
140    DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
141                  cl::desc("Disable GC optimizations in CodeGenPrepare"));
142
143static cl::opt<bool> DisableSelectToBranch(
144  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
145  cl::desc("Disable select to branch conversion."));
146
147static cl::opt<bool> AddrSinkUsingGEPs(
148  "addr-sink-using-gep", cl::Hidden, cl::init(true),
149  cl::desc("Address sinking in CGP using GEPs."));
150
151static cl::opt<bool> EnableAndCmpSinking(
152   "enable-andcmp-sinking", cl::Hidden, cl::init(true),
153   cl::desc("Enable sinkinig and/cmp into branches."));
154
155static cl::opt<bool> DisableStoreExtract(
156    "disable-cgp-store-extract", cl::Hidden, cl::init(false),
157    cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
158
159static cl::opt<bool> StressStoreExtract(
160    "stress-cgp-store-extract", cl::Hidden, cl::init(false),
161    cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
162
163static cl::opt<bool> DisableExtLdPromotion(
164    "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
165    cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
166             "CodeGenPrepare"));
167
168static cl::opt<bool> StressExtLdPromotion(
169    "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
170    cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
171             "optimization in CodeGenPrepare"));
172
173static cl::opt<bool> DisablePreheaderProtect(
174    "disable-preheader-prot", cl::Hidden, cl::init(false),
175    cl::desc("Disable protection against removing loop preheaders"));
176
177static cl::opt<bool> ProfileGuidedSectionPrefix(
178    "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
179    cl::desc("Use profile info to add section prefix for hot/cold functions"));
180
181static cl::opt<unsigned> FreqRatioToSkipMerge(
182    "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
183    cl::desc("Skip merging empty blocks if (frequency of empty block) / "
184             "(frequency of destination block) is greater than this ratio"));
185
186static cl::opt<bool> ForceSplitStore(
187    "force-split-store", cl::Hidden, cl::init(false),
188    cl::desc("Force store splitting no matter what the target query says."));
189
190static cl::opt<bool>
191EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
192    cl::desc("Enable merging of redundant sexts when one is dominating"
193    " the other."), cl::init(true));
194
195static cl::opt<bool> DisableComplexAddrModes(
196    "disable-complex-addr-modes", cl::Hidden, cl::init(false),
197    cl::desc("Disables combining addressing modes with different parts "
198             "in optimizeMemoryInst."));
199
200static cl::opt<bool>
201AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
202                cl::desc("Allow creation of Phis in Address sinking."));
203
204static cl::opt<bool>
205AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
206                   cl::desc("Allow creation of selects in Address sinking."));
207
208static cl::opt<bool> AddrSinkCombineBaseReg(
209    "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
210    cl::desc("Allow combining of BaseReg field in Address sinking."));
211
212static cl::opt<bool> AddrSinkCombineBaseGV(
213    "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
214    cl::desc("Allow combining of BaseGV field in Address sinking."));
215
216static cl::opt<bool> AddrSinkCombineBaseOffs(
217    "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
218    cl::desc("Allow combining of BaseOffs field in Address sinking."));
219
220static cl::opt<bool> AddrSinkCombineScaledReg(
221    "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
222    cl::desc("Allow combining of ScaledReg field in Address sinking."));
223
224static cl::opt<bool>
225    EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
226                         cl::init(true),
227                         cl::desc("Enable splitting large offset of GEP."));
228
229static cl::opt<bool> EnableICMP_EQToICMP_ST(
230    "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
231    cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
232
233namespace {
234
235enum ExtType {
236  ZeroExtension,   // Zero extension has been seen.
237  SignExtension,   // Sign extension has been seen.
238  BothExtension    // This extension type is used if we saw sext after
239                   // ZeroExtension had been set, or if we saw zext after
240                   // SignExtension had been set. It makes the type
241                   // information of a promoted instruction invalid.
242};
243
244using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
245using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
246using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
247using SExts = SmallVector<Instruction *, 16>;
248using ValueToSExts = DenseMap<Value *, SExts>;
249
250class TypePromotionTransaction;
251
252  class CodeGenPrepare : public FunctionPass {
253    const TargetMachine *TM = nullptr;
254    const TargetSubtargetInfo *SubtargetInfo;
255    const TargetLowering *TLI = nullptr;
256    const TargetRegisterInfo *TRI;
257    const TargetTransformInfo *TTI = nullptr;
258    const TargetLibraryInfo *TLInfo;
259    const LoopInfo *LI;
260    std::unique_ptr<BlockFrequencyInfo> BFI;
261    std::unique_ptr<BranchProbabilityInfo> BPI;
262    ProfileSummaryInfo *PSI;
263
264    /// As we scan instructions optimizing them, this is the next instruction
265    /// to optimize. Transforms that can invalidate this should update it.
266    BasicBlock::iterator CurInstIterator;
267
268    /// Keeps track of non-local addresses that have been sunk into a block.
269    /// This allows us to avoid inserting duplicate code for blocks with
270    /// multiple load/stores of the same address. The usage of WeakTrackingVH
271    /// enables SunkAddrs to be treated as a cache whose entries can be
272    /// invalidated if a sunken address computation has been erased.
273    ValueMap<Value*, WeakTrackingVH> SunkAddrs;
274
275    /// Keeps track of all instructions inserted for the current function.
276    SetOfInstrs InsertedInsts;
277
278    /// Keeps track of the type of the related instruction before their
279    /// promotion for the current function.
280    InstrToOrigTy PromotedInsts;
281
282    /// Keep track of instructions removed during promotion.
283    SetOfInstrs RemovedInsts;
284
285    /// Keep track of sext chains based on their initial value.
286    DenseMap<Value *, Instruction *> SeenChainsForSExt;
287
288    /// Keep track of GEPs accessing the same data structures such as structs or
289    /// arrays that are candidates to be split later because of their large
290    /// size.
291    MapVector<
292        AssertingVH<Value>,
293        SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
294        LargeOffsetGEPMap;
295
296    /// Keep track of new GEP base after splitting the GEPs having large offset.
297    SmallSet<AssertingVH<Value>, 2> NewGEPBases;
298
299    /// Map serial numbers to Large offset GEPs.
300    DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
301
302    /// Keep track of SExt promoted.
303    ValueToSExts ValToSExtendedUses;
304
305    /// True if the function has the OptSize attribute.
306    bool OptSize;
307
308    /// DataLayout for the Function being processed.
309    const DataLayout *DL = nullptr;
310
311    /// Building the dominator tree can be expensive, so we only build it
312    /// lazily and update it when required.
313    std::unique_ptr<DominatorTree> DT;
314
315  public:
316    static char ID; // Pass identification, replacement for typeid
317
318    CodeGenPrepare() : FunctionPass(ID) {
319      initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
320    }
321
322    bool runOnFunction(Function &F) override;
323
324    StringRef getPassName() const override { return "CodeGen Prepare"; }
325
326    void getAnalysisUsage(AnalysisUsage &AU) const override {
327      // FIXME: When we can selectively preserve passes, preserve the domtree.
328      AU.addRequired<ProfileSummaryInfoWrapperPass>();
329      AU.addRequired<TargetLibraryInfoWrapperPass>();
330      AU.addRequired<TargetTransformInfoWrapperPass>();
331      AU.addRequired<LoopInfoWrapperPass>();
332    }
333
334  private:
335    template <typename F>
336    void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
337      // Substituting can cause recursive simplifications, which can invalidate
338      // our iterator.  Use a WeakTrackingVH to hold onto it in case this
339      // happens.
340      Value *CurValue = &*CurInstIterator;
341      WeakTrackingVH IterHandle(CurValue);
342
343      f();
344
345      // If the iterator instruction was recursively deleted, start over at the
346      // start of the block.
347      if (IterHandle != CurValue) {
348        CurInstIterator = BB->begin();
349        SunkAddrs.clear();
350      }
351    }
352
353    // Get the DominatorTree, building if necessary.
354    DominatorTree &getDT(Function &F) {
355      if (!DT)
356        DT = std::make_unique<DominatorTree>(F);
357      return *DT;
358    }
359
360    bool eliminateFallThrough(Function &F);
361    bool eliminateMostlyEmptyBlocks(Function &F);
362    BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
363    bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
364    void eliminateMostlyEmptyBlock(BasicBlock *BB);
365    bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
366                                       bool isPreheader);
367    bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
368    bool optimizeInst(Instruction *I, bool &ModifiedDT);
369    bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
370                            Type *AccessTy, unsigned AddrSpace);
371    bool optimizeInlineAsmInst(CallInst *CS);
372    bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
373    bool optimizeExt(Instruction *&I);
374    bool optimizeExtUses(Instruction *I);
375    bool optimizeLoadExt(LoadInst *Load);
376    bool optimizeShiftInst(BinaryOperator *BO);
377    bool optimizeSelectInst(SelectInst *SI);
378    bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
379    bool optimizeSwitchInst(SwitchInst *SI);
380    bool optimizeExtractElementInst(Instruction *Inst);
381    bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
382    bool fixupDbgValue(Instruction *I);
383    bool placeDbgValues(Function &F);
384    bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
385                      LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
386    bool tryToPromoteExts(TypePromotionTransaction &TPT,
387                          const SmallVectorImpl<Instruction *> &Exts,
388                          SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
389                          unsigned CreatedInstsCost = 0);
390    bool mergeSExts(Function &F);
391    bool splitLargeGEPOffsets();
392    bool performAddressTypePromotion(
393        Instruction *&Inst,
394        bool AllowPromotionWithoutCommonHeader,
395        bool HasPromoted, TypePromotionTransaction &TPT,
396        SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
397    bool splitBranchCondition(Function &F, bool &ModifiedDT);
398    bool simplifyOffsetableRelocate(Instruction &I);
399
400    bool tryToSinkFreeOperands(Instruction *I);
401    bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
402                                     Intrinsic::ID IID);
403    bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
404    bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
405    bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
406  };
407
408} // end anonymous namespace
409
410char CodeGenPrepare::ID = 0;
411
412INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
413                      "Optimize for code generation", false, false)
414INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
415INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
416                    "Optimize for code generation", false, false)
417
418FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
419
420bool CodeGenPrepare::runOnFunction(Function &F) {
421  if (skipFunction(F))
422    return false;
423
424  DL = &F.getParent()->getDataLayout();
425
426  bool EverMadeChange = false;
427  // Clear per function information.
428  InsertedInsts.clear();
429  PromotedInsts.clear();
430
431  if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
432    TM = &TPC->getTM<TargetMachine>();
433    SubtargetInfo = TM->getSubtargetImpl(F);
434    TLI = SubtargetInfo->getTargetLowering();
435    TRI = SubtargetInfo->getRegisterInfo();
436  }
437  TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
438  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
439  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
440  BPI.reset(new BranchProbabilityInfo(F, *LI));
441  BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
442  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
443  OptSize = F.hasOptSize();
444  if (ProfileGuidedSectionPrefix) {
445    if (PSI->isFunctionHotInCallGraph(&F, *BFI))
446      F.setSectionPrefix(".hot");
447    else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
448      F.setSectionPrefix(".unlikely");
449  }
450
451  /// This optimization identifies DIV instructions that can be
452  /// profitably bypassed and carried out with a shorter, faster divide.
453  if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
454      TLI->isSlowDivBypassed()) {
455    const DenseMap<unsigned int, unsigned int> &BypassWidths =
456       TLI->getBypassSlowDivWidths();
457    BasicBlock* BB = &*F.begin();
458    while (BB != nullptr) {
459      // bypassSlowDivision may create new BBs, but we don't want to reapply the
460      // optimization to those blocks.
461      BasicBlock* Next = BB->getNextNode();
462      // F.hasOptSize is already checked in the outer if statement.
463      if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
464        EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
465      BB = Next;
466    }
467  }
468
469  // Eliminate blocks that contain only PHI nodes and an
470  // unconditional branch.
471  EverMadeChange |= eliminateMostlyEmptyBlocks(F);
472
473  bool ModifiedDT = false;
474  if (!DisableBranchOpts)
475    EverMadeChange |= splitBranchCondition(F, ModifiedDT);
476
477  // Split some critical edges where one of the sources is an indirect branch,
478  // to help generate sane code for PHIs involving such edges.
479  EverMadeChange |= SplitIndirectBrCriticalEdges(F);
480
481  bool MadeChange = true;
482  while (MadeChange) {
483    MadeChange = false;
484    DT.reset();
485    for (Function::iterator I = F.begin(); I != F.end(); ) {
486      BasicBlock *BB = &*I++;
487      bool ModifiedDTOnIteration = false;
488      MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
489
490      // Restart BB iteration if the dominator tree of the Function was changed
491      if (ModifiedDTOnIteration)
492        break;
493    }
494    if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
495      MadeChange |= mergeSExts(F);
496    if (!LargeOffsetGEPMap.empty())
497      MadeChange |= splitLargeGEPOffsets();
498
499    // Really free removed instructions during promotion.
500    for (Instruction *I : RemovedInsts)
501      I->deleteValue();
502
503    EverMadeChange |= MadeChange;
504    SeenChainsForSExt.clear();
505    ValToSExtendedUses.clear();
506    RemovedInsts.clear();
507    LargeOffsetGEPMap.clear();
508    LargeOffsetGEPID.clear();
509  }
510
511  SunkAddrs.clear();
512
513  if (!DisableBranchOpts) {
514    MadeChange = false;
515    // Use a set vector to get deterministic iteration order. The order the
516    // blocks are removed may affect whether or not PHI nodes in successors
517    // are removed.
518    SmallSetVector<BasicBlock*, 8> WorkList;
519    for (BasicBlock &BB : F) {
520      SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
521      MadeChange |= ConstantFoldTerminator(&BB, true);
522      if (!MadeChange) continue;
523
524      for (SmallVectorImpl<BasicBlock*>::iterator
525             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
526        if (pred_begin(*II) == pred_end(*II))
527          WorkList.insert(*II);
528    }
529
530    // Delete the dead blocks and any of their dead successors.
531    MadeChange |= !WorkList.empty();
532    while (!WorkList.empty()) {
533      BasicBlock *BB = WorkList.pop_back_val();
534      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
535
536      DeleteDeadBlock(BB);
537
538      for (SmallVectorImpl<BasicBlock*>::iterator
539             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
540        if (pred_begin(*II) == pred_end(*II))
541          WorkList.insert(*II);
542    }
543
544    // Merge pairs of basic blocks with unconditional branches, connected by
545    // a single edge.
546    if (EverMadeChange || MadeChange)
547      MadeChange |= eliminateFallThrough(F);
548
549    EverMadeChange |= MadeChange;
550  }
551
552  if (!DisableGCOpts) {
553    SmallVector<Instruction *, 2> Statepoints;
554    for (BasicBlock &BB : F)
555      for (Instruction &I : BB)
556        if (isStatepoint(I))
557          Statepoints.push_back(&I);
558    for (auto &I : Statepoints)
559      EverMadeChange |= simplifyOffsetableRelocate(*I);
560  }
561
562  // Do this last to clean up use-before-def scenarios introduced by other
563  // preparatory transforms.
564  EverMadeChange |= placeDbgValues(F);
565
566  return EverMadeChange;
567}
568
569/// Merge basic blocks which are connected by a single edge, where one of the
570/// basic blocks has a single successor pointing to the other basic block,
571/// which has a single predecessor.
572bool CodeGenPrepare::eliminateFallThrough(Function &F) {
573  bool Changed = false;
574  // Scan all of the blocks in the function, except for the entry block.
575  // Use a temporary array to avoid iterator being invalidated when
576  // deleting blocks.
577  SmallVector<WeakTrackingVH, 16> Blocks;
578  for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
579    Blocks.push_back(&Block);
580
581  for (auto &Block : Blocks) {
582    auto *BB = cast_or_null<BasicBlock>(Block);
583    if (!BB)
584      continue;
585    // If the destination block has a single pred, then this is a trivial
586    // edge, just collapse it.
587    BasicBlock *SinglePred = BB->getSinglePredecessor();
588
589    // Don't merge if BB's address is taken.
590    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
591
592    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
593    if (Term && !Term->isConditional()) {
594      Changed = true;
595      LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
596
597      // Merge BB into SinglePred and delete it.
598      MergeBlockIntoPredecessor(BB);
599    }
600  }
601  return Changed;
602}
603
604/// Find a destination block from BB if BB is mergeable empty block.
605BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
606  // If this block doesn't end with an uncond branch, ignore it.
607  BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
608  if (!BI || !BI->isUnconditional())
609    return nullptr;
610
611  // If the instruction before the branch (skipping debug info) isn't a phi
612  // node, then other stuff is happening here.
613  BasicBlock::iterator BBI = BI->getIterator();
614  if (BBI != BB->begin()) {
615    --BBI;
616    while (isa<DbgInfoIntrinsic>(BBI)) {
617      if (BBI == BB->begin())
618        break;
619      --BBI;
620    }
621    if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
622      return nullptr;
623  }
624
625  // Do not break infinite loops.
626  BasicBlock *DestBB = BI->getSuccessor(0);
627  if (DestBB == BB)
628    return nullptr;
629
630  if (!canMergeBlocks(BB, DestBB))
631    DestBB = nullptr;
632
633  return DestBB;
634}
635
636/// Eliminate blocks that contain only PHI nodes, debug info directives, and an
637/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
638/// edges in ways that are non-optimal for isel. Start by eliminating these
639/// blocks so we can split them the way we want them.
640bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
641  SmallPtrSet<BasicBlock *, 16> Preheaders;
642  SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
643  while (!LoopList.empty()) {
644    Loop *L = LoopList.pop_back_val();
645    LoopList.insert(LoopList.end(), L->begin(), L->end());
646    if (BasicBlock *Preheader = L->getLoopPreheader())
647      Preheaders.insert(Preheader);
648  }
649
650  bool MadeChange = false;
651  // Copy blocks into a temporary array to avoid iterator invalidation issues
652  // as we remove them.
653  // Note that this intentionally skips the entry block.
654  SmallVector<WeakTrackingVH, 16> Blocks;
655  for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
656    Blocks.push_back(&Block);
657
658  for (auto &Block : Blocks) {
659    BasicBlock *BB = cast_or_null<BasicBlock>(Block);
660    if (!BB)
661      continue;
662    BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
663    if (!DestBB ||
664        !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
665      continue;
666
667    eliminateMostlyEmptyBlock(BB);
668    MadeChange = true;
669  }
670  return MadeChange;
671}
672
673bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
674                                                   BasicBlock *DestBB,
675                                                   bool isPreheader) {
676  // Do not delete loop preheaders if doing so would create a critical edge.
677  // Loop preheaders can be good locations to spill registers. If the
678  // preheader is deleted and we create a critical edge, registers may be
679  // spilled in the loop body instead.
680  if (!DisablePreheaderProtect && isPreheader &&
681      !(BB->getSinglePredecessor() &&
682        BB->getSinglePredecessor()->getSingleSuccessor()))
683    return false;
684
685  // Skip merging if the block's successor is also a successor to any callbr
686  // that leads to this block.
687  // FIXME: Is this really needed? Is this a correctness issue?
688  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
689    if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
690      for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
691        if (DestBB == CBI->getSuccessor(i))
692          return false;
693  }
694
695  // Try to skip merging if the unique predecessor of BB is terminated by a
696  // switch or indirect branch instruction, and BB is used as an incoming block
697  // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
698  // add COPY instructions in the predecessor of BB instead of BB (if it is not
699  // merged). Note that the critical edge created by merging such blocks wont be
700  // split in MachineSink because the jump table is not analyzable. By keeping
701  // such empty block (BB), ISel will place COPY instructions in BB, not in the
702  // predecessor of BB.
703  BasicBlock *Pred = BB->getUniquePredecessor();
704  if (!Pred ||
705      !(isa<SwitchInst>(Pred->getTerminator()) ||
706        isa<IndirectBrInst>(Pred->getTerminator())))
707    return true;
708
709  if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
710    return true;
711
712  // We use a simple cost heuristic which determine skipping merging is
713  // profitable if the cost of skipping merging is less than the cost of
714  // merging : Cost(skipping merging) < Cost(merging BB), where the
715  // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
716  // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
717  // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
718  //   Freq(Pred) / Freq(BB) > 2.
719  // Note that if there are multiple empty blocks sharing the same incoming
720  // value for the PHIs in the DestBB, we consider them together. In such
721  // case, Cost(merging BB) will be the sum of their frequencies.
722
723  if (!isa<PHINode>(DestBB->begin()))
724    return true;
725
726  SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
727
728  // Find all other incoming blocks from which incoming values of all PHIs in
729  // DestBB are the same as the ones from BB.
730  for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
731       ++PI) {
732    BasicBlock *DestBBPred = *PI;
733    if (DestBBPred == BB)
734      continue;
735
736    if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
737          return DestPN.getIncomingValueForBlock(BB) ==
738                 DestPN.getIncomingValueForBlock(DestBBPred);
739        }))
740      SameIncomingValueBBs.insert(DestBBPred);
741  }
742
743  // See if all BB's incoming values are same as the value from Pred. In this
744  // case, no reason to skip merging because COPYs are expected to be place in
745  // Pred already.
746  if (SameIncomingValueBBs.count(Pred))
747    return true;
748
749  BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
750  BlockFrequency BBFreq = BFI->getBlockFreq(BB);
751
752  for (auto SameValueBB : SameIncomingValueBBs)
753    if (SameValueBB->getUniquePredecessor() == Pred &&
754        DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
755      BBFreq += BFI->getBlockFreq(SameValueBB);
756
757  return PredFreq.getFrequency() <=
758         BBFreq.getFrequency() * FreqRatioToSkipMerge;
759}
760
761/// Return true if we can merge BB into DestBB if there is a single
762/// unconditional branch between them, and BB contains no other non-phi
763/// instructions.
764bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
765                                    const BasicBlock *DestBB) const {
766  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
767  // the successor.  If there are more complex condition (e.g. preheaders),
768  // don't mess around with them.
769  for (const PHINode &PN : BB->phis()) {
770    for (const User *U : PN.users()) {
771      const Instruction *UI = cast<Instruction>(U);
772      if (UI->getParent() != DestBB || !isa<PHINode>(UI))
773        return false;
774      // If User is inside DestBB block and it is a PHINode then check
775      // incoming value. If incoming value is not from BB then this is
776      // a complex condition (e.g. preheaders) we want to avoid here.
777      if (UI->getParent() == DestBB) {
778        if (const PHINode *UPN = dyn_cast<PHINode>(UI))
779          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
780            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
781            if (Insn && Insn->getParent() == BB &&
782                Insn->getParent() != UPN->getIncomingBlock(I))
783              return false;
784          }
785      }
786    }
787  }
788
789  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
790  // and DestBB may have conflicting incoming values for the block.  If so, we
791  // can't merge the block.
792  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
793  if (!DestBBPN) return true;  // no conflict.
794
795  // Collect the preds of BB.
796  SmallPtrSet<const BasicBlock*, 16> BBPreds;
797  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
798    // It is faster to get preds from a PHI than with pred_iterator.
799    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
800      BBPreds.insert(BBPN->getIncomingBlock(i));
801  } else {
802    BBPreds.insert(pred_begin(BB), pred_end(BB));
803  }
804
805  // Walk the preds of DestBB.
806  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
807    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
808    if (BBPreds.count(Pred)) {   // Common predecessor?
809      for (const PHINode &PN : DestBB->phis()) {
810        const Value *V1 = PN.getIncomingValueForBlock(Pred);
811        const Value *V2 = PN.getIncomingValueForBlock(BB);
812
813        // If V2 is a phi node in BB, look up what the mapped value will be.
814        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
815          if (V2PN->getParent() == BB)
816            V2 = V2PN->getIncomingValueForBlock(Pred);
817
818        // If there is a conflict, bail out.
819        if (V1 != V2) return false;
820      }
821    }
822  }
823
824  return true;
825}
826
827/// Eliminate a basic block that has only phi's and an unconditional branch in
828/// it.
829void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
830  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
831  BasicBlock *DestBB = BI->getSuccessor(0);
832
833  LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
834                    << *BB << *DestBB);
835
836  // If the destination block has a single pred, then this is a trivial edge,
837  // just collapse it.
838  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
839    if (SinglePred != DestBB) {
840      assert(SinglePred == BB &&
841             "Single predecessor not the same as predecessor");
842      // Merge DestBB into SinglePred/BB and delete it.
843      MergeBlockIntoPredecessor(DestBB);
844      // Note: BB(=SinglePred) will not be deleted on this path.
845      // DestBB(=its single successor) is the one that was deleted.
846      LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
847      return;
848    }
849  }
850
851  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
852  // to handle the new incoming edges it is about to have.
853  for (PHINode &PN : DestBB->phis()) {
854    // Remove the incoming value for BB, and remember it.
855    Value *InVal = PN.removeIncomingValue(BB, false);
856
857    // Two options: either the InVal is a phi node defined in BB or it is some
858    // value that dominates BB.
859    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
860    if (InValPhi && InValPhi->getParent() == BB) {
861      // Add all of the input values of the input PHI as inputs of this phi.
862      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
863        PN.addIncoming(InValPhi->getIncomingValue(i),
864                       InValPhi->getIncomingBlock(i));
865    } else {
866      // Otherwise, add one instance of the dominating value for each edge that
867      // we will be adding.
868      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
869        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
870          PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
871      } else {
872        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
873          PN.addIncoming(InVal, *PI);
874      }
875    }
876  }
877
878  // The PHIs are now updated, change everything that refers to BB to use
879  // DestBB and remove BB.
880  BB->replaceAllUsesWith(DestBB);
881  BB->eraseFromParent();
882  ++NumBlocksElim;
883
884  LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
885}
886
887// Computes a map of base pointer relocation instructions to corresponding
888// derived pointer relocation instructions given a vector of all relocate calls
889static void computeBaseDerivedRelocateMap(
890    const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
891    DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
892        &RelocateInstMap) {
893  // Collect information in two maps: one primarily for locating the base object
894  // while filling the second map; the second map is the final structure holding
895  // a mapping between Base and corresponding Derived relocate calls
896  DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
897  for (auto *ThisRelocate : AllRelocateCalls) {
898    auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
899                            ThisRelocate->getDerivedPtrIndex());
900    RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
901  }
902  for (auto &Item : RelocateIdxMap) {
903    std::pair<unsigned, unsigned> Key = Item.first;
904    if (Key.first == Key.second)
905      // Base relocation: nothing to insert
906      continue;
907
908    GCRelocateInst *I = Item.second;
909    auto BaseKey = std::make_pair(Key.first, Key.first);
910
911    // We're iterating over RelocateIdxMap so we cannot modify it.
912    auto MaybeBase = RelocateIdxMap.find(BaseKey);
913    if (MaybeBase == RelocateIdxMap.end())
914      // TODO: We might want to insert a new base object relocate and gep off
915      // that, if there are enough derived object relocates.
916      continue;
917
918    RelocateInstMap[MaybeBase->second].push_back(I);
919  }
920}
921
922// Accepts a GEP and extracts the operands into a vector provided they're all
923// small integer constants
924static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
925                                          SmallVectorImpl<Value *> &OffsetV) {
926  for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
927    // Only accept small constant integer operands
928    auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
929    if (!Op || Op->getZExtValue() > 20)
930      return false;
931  }
932
933  for (unsigned i = 1; i < GEP->getNumOperands(); i++)
934    OffsetV.push_back(GEP->getOperand(i));
935  return true;
936}
937
938// Takes a RelocatedBase (base pointer relocation instruction) and Targets to
939// replace, computes a replacement, and affects it.
940static bool
941simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
942                          const SmallVectorImpl<GCRelocateInst *> &Targets) {
943  bool MadeChange = false;
944  // We must ensure the relocation of derived pointer is defined after
945  // relocation of base pointer. If we find a relocation corresponding to base
946  // defined earlier than relocation of base then we move relocation of base
947  // right before found relocation. We consider only relocation in the same
948  // basic block as relocation of base. Relocations from other basic block will
949  // be skipped by optimization and we do not care about them.
950  for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
951       &*R != RelocatedBase; ++R)
952    if (auto RI = dyn_cast<GCRelocateInst>(R))
953      if (RI->getStatepoint() == RelocatedBase->getStatepoint())
954        if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
955          RelocatedBase->moveBefore(RI);
956          break;
957        }
958
959  for (GCRelocateInst *ToReplace : Targets) {
960    assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
961           "Not relocating a derived object of the original base object");
962    if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
963      // A duplicate relocate call. TODO: coalesce duplicates.
964      continue;
965    }
966
967    if (RelocatedBase->getParent() != ToReplace->getParent()) {
968      // Base and derived relocates are in different basic blocks.
969      // In this case transform is only valid when base dominates derived
970      // relocate. However it would be too expensive to check dominance
971      // for each such relocate, so we skip the whole transformation.
972      continue;
973    }
974
975    Value *Base = ToReplace->getBasePtr();
976    auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
977    if (!Derived || Derived->getPointerOperand() != Base)
978      continue;
979
980    SmallVector<Value *, 2> OffsetV;
981    if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
982      continue;
983
984    // Create a Builder and replace the target callsite with a gep
985    assert(RelocatedBase->getNextNode() &&
986           "Should always have one since it's not a terminator");
987
988    // Insert after RelocatedBase
989    IRBuilder<> Builder(RelocatedBase->getNextNode());
990    Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
991
992    // If gc_relocate does not match the actual type, cast it to the right type.
993    // In theory, there must be a bitcast after gc_relocate if the type does not
994    // match, and we should reuse it to get the derived pointer. But it could be
995    // cases like this:
996    // bb1:
997    //  ...
998    //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
999    //  br label %merge
1000    //
1001    // bb2:
1002    //  ...
1003    //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1004    //  br label %merge
1005    //
1006    // merge:
1007    //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1008    //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1009    //
1010    // In this case, we can not find the bitcast any more. So we insert a new bitcast
1011    // no matter there is already one or not. In this way, we can handle all cases, and
1012    // the extra bitcast should be optimized away in later passes.
1013    Value *ActualRelocatedBase = RelocatedBase;
1014    if (RelocatedBase->getType() != Base->getType()) {
1015      ActualRelocatedBase =
1016          Builder.CreateBitCast(RelocatedBase, Base->getType());
1017    }
1018    Value *Replacement = Builder.CreateGEP(
1019        Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1020    Replacement->takeName(ToReplace);
1021    // If the newly generated derived pointer's type does not match the original derived
1022    // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1023    Value *ActualReplacement = Replacement;
1024    if (Replacement->getType() != ToReplace->getType()) {
1025      ActualReplacement =
1026          Builder.CreateBitCast(Replacement, ToReplace->getType());
1027    }
1028    ToReplace->replaceAllUsesWith(ActualReplacement);
1029    ToReplace->eraseFromParent();
1030
1031    MadeChange = true;
1032  }
1033  return MadeChange;
1034}
1035
1036// Turns this:
1037//
1038// %base = ...
1039// %ptr = gep %base + 15
1040// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1041// %base' = relocate(%tok, i32 4, i32 4)
1042// %ptr' = relocate(%tok, i32 4, i32 5)
1043// %val = load %ptr'
1044//
1045// into this:
1046//
1047// %base = ...
1048// %ptr = gep %base + 15
1049// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1050// %base' = gc.relocate(%tok, i32 4, i32 4)
1051// %ptr' = gep %base' + 15
1052// %val = load %ptr'
1053bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1054  bool MadeChange = false;
1055  SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1056
1057  for (auto *U : I.users())
1058    if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1059      // Collect all the relocate calls associated with a statepoint
1060      AllRelocateCalls.push_back(Relocate);
1061
1062  // We need at least one base pointer relocation + one derived pointer
1063  // relocation to mangle
1064  if (AllRelocateCalls.size() < 2)
1065    return false;
1066
1067  // RelocateInstMap is a mapping from the base relocate instruction to the
1068  // corresponding derived relocate instructions
1069  DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1070  computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1071  if (RelocateInstMap.empty())
1072    return false;
1073
1074  for (auto &Item : RelocateInstMap)
1075    // Item.first is the RelocatedBase to offset against
1076    // Item.second is the vector of Targets to replace
1077    MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1078  return MadeChange;
1079}
1080
1081/// Sink the specified cast instruction into its user blocks.
1082static bool SinkCast(CastInst *CI) {
1083  BasicBlock *DefBB = CI->getParent();
1084
1085  /// InsertedCasts - Only insert a cast in each block once.
1086  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1087
1088  bool MadeChange = false;
1089  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1090       UI != E; ) {
1091    Use &TheUse = UI.getUse();
1092    Instruction *User = cast<Instruction>(*UI);
1093
1094    // Figure out which BB this cast is used in.  For PHI's this is the
1095    // appropriate predecessor block.
1096    BasicBlock *UserBB = User->getParent();
1097    if (PHINode *PN = dyn_cast<PHINode>(User)) {
1098      UserBB = PN->getIncomingBlock(TheUse);
1099    }
1100
1101    // Preincrement use iterator so we don't invalidate it.
1102    ++UI;
1103
1104    // The first insertion point of a block containing an EH pad is after the
1105    // pad.  If the pad is the user, we cannot sink the cast past the pad.
1106    if (User->isEHPad())
1107      continue;
1108
1109    // If the block selected to receive the cast is an EH pad that does not
1110    // allow non-PHI instructions before the terminator, we can't sink the
1111    // cast.
1112    if (UserBB->getTerminator()->isEHPad())
1113      continue;
1114
1115    // If this user is in the same block as the cast, don't change the cast.
1116    if (UserBB == DefBB) continue;
1117
1118    // If we have already inserted a cast into this block, use it.
1119    CastInst *&InsertedCast = InsertedCasts[UserBB];
1120
1121    if (!InsertedCast) {
1122      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1123      assert(InsertPt != UserBB->end());
1124      InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1125                                      CI->getType(), "", &*InsertPt);
1126      InsertedCast->setDebugLoc(CI->getDebugLoc());
1127    }
1128
1129    // Replace a use of the cast with a use of the new cast.
1130    TheUse = InsertedCast;
1131    MadeChange = true;
1132    ++NumCastUses;
1133  }
1134
1135  // If we removed all uses, nuke the cast.
1136  if (CI->use_empty()) {
1137    salvageDebugInfo(*CI);
1138    CI->eraseFromParent();
1139    MadeChange = true;
1140  }
1141
1142  return MadeChange;
1143}
1144
1145/// If the specified cast instruction is a noop copy (e.g. it's casting from
1146/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1147/// reduce the number of virtual registers that must be created and coalesced.
1148///
1149/// Return true if any changes are made.
1150static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1151                                       const DataLayout &DL) {
1152  // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1153  // than sinking only nop casts, but is helpful on some platforms.
1154  if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1155    if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1156                                 ASC->getDestAddressSpace()))
1157      return false;
1158  }
1159
1160  // If this is a noop copy,
1161  EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1162  EVT DstVT = TLI.getValueType(DL, CI->getType());
1163
1164  // This is an fp<->int conversion?
1165  if (SrcVT.isInteger() != DstVT.isInteger())
1166    return false;
1167
1168  // If this is an extension, it will be a zero or sign extension, which
1169  // isn't a noop.
1170  if (SrcVT.bitsLT(DstVT)) return false;
1171
1172  // If these values will be promoted, find out what they will be promoted
1173  // to.  This helps us consider truncates on PPC as noop copies when they
1174  // are.
1175  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1176      TargetLowering::TypePromoteInteger)
1177    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1178  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1179      TargetLowering::TypePromoteInteger)
1180    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1181
1182  // If, after promotion, these are the same types, this is a noop copy.
1183  if (SrcVT != DstVT)
1184    return false;
1185
1186  return SinkCast(CI);
1187}
1188
1189bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1190                                                 CmpInst *Cmp,
1191                                                 Intrinsic::ID IID) {
1192  if (BO->getParent() != Cmp->getParent()) {
1193    // We used to use a dominator tree here to allow multi-block optimization.
1194    // But that was problematic because:
1195    // 1. It could cause a perf regression by hoisting the math op into the
1196    //    critical path.
1197    // 2. It could cause a perf regression by creating a value that was live
1198    //    across multiple blocks and increasing register pressure.
1199    // 3. Use of a dominator tree could cause large compile-time regression.
1200    //    This is because we recompute the DT on every change in the main CGP
1201    //    run-loop. The recomputing is probably unnecessary in many cases, so if
1202    //    that was fixed, using a DT here would be ok.
1203    return false;
1204  }
1205
1206  // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1207  Value *Arg0 = BO->getOperand(0);
1208  Value *Arg1 = BO->getOperand(1);
1209  if (BO->getOpcode() == Instruction::Add &&
1210      IID == Intrinsic::usub_with_overflow) {
1211    assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1212    Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1213  }
1214
1215  // Insert at the first instruction of the pair.
1216  Instruction *InsertPt = nullptr;
1217  for (Instruction &Iter : *Cmp->getParent()) {
1218    if (&Iter == BO || &Iter == Cmp) {
1219      InsertPt = &Iter;
1220      break;
1221    }
1222  }
1223  assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1224
1225  IRBuilder<> Builder(InsertPt);
1226  Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1227  Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1228  Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1229  BO->replaceAllUsesWith(Math);
1230  Cmp->replaceAllUsesWith(OV);
1231  BO->eraseFromParent();
1232  Cmp->eraseFromParent();
1233  return true;
1234}
1235
1236/// Match special-case patterns that check for unsigned add overflow.
1237static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1238                                                   BinaryOperator *&Add) {
1239  // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1240  // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1241  Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1242
1243  // We are not expecting non-canonical/degenerate code. Just bail out.
1244  if (isa<Constant>(A))
1245    return false;
1246
1247  ICmpInst::Predicate Pred = Cmp->getPredicate();
1248  if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1249    B = ConstantInt::get(B->getType(), 1);
1250  else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1251    B = ConstantInt::get(B->getType(), -1);
1252  else
1253    return false;
1254
1255  // Check the users of the variable operand of the compare looking for an add
1256  // with the adjusted constant.
1257  for (User *U : A->users()) {
1258    if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1259      Add = cast<BinaryOperator>(U);
1260      return true;
1261    }
1262  }
1263  return false;
1264}
1265
1266/// Try to combine the compare into a call to the llvm.uadd.with.overflow
1267/// intrinsic. Return true if any changes were made.
1268bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1269                                               bool &ModifiedDT) {
1270  Value *A, *B;
1271  BinaryOperator *Add;
1272  if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
1273    if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1274      return false;
1275
1276  if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1277                                 TLI->getValueType(*DL, Add->getType())))
1278    return false;
1279
1280  // We don't want to move around uses of condition values this late, so we
1281  // check if it is legal to create the call to the intrinsic in the basic
1282  // block containing the icmp.
1283  if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1284    return false;
1285
1286  if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow))
1287    return false;
1288
1289  // Reset callers - do not crash by iterating over a dead instruction.
1290  ModifiedDT = true;
1291  return true;
1292}
1293
1294bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1295                                               bool &ModifiedDT) {
1296  // We are not expecting non-canonical/degenerate code. Just bail out.
1297  Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1298  if (isa<Constant>(A) && isa<Constant>(B))
1299    return false;
1300
1301  // Convert (A u> B) to (A u< B) to simplify pattern matching.
1302  ICmpInst::Predicate Pred = Cmp->getPredicate();
1303  if (Pred == ICmpInst::ICMP_UGT) {
1304    std::swap(A, B);
1305    Pred = ICmpInst::ICMP_ULT;
1306  }
1307  // Convert special-case: (A == 0) is the same as (A u< 1).
1308  if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1309    B = ConstantInt::get(B->getType(), 1);
1310    Pred = ICmpInst::ICMP_ULT;
1311  }
1312  // Convert special-case: (A != 0) is the same as (0 u< A).
1313  if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1314    std::swap(A, B);
1315    Pred = ICmpInst::ICMP_ULT;
1316  }
1317  if (Pred != ICmpInst::ICMP_ULT)
1318    return false;
1319
1320  // Walk the users of a variable operand of a compare looking for a subtract or
1321  // add with that same operand. Also match the 2nd operand of the compare to
1322  // the add/sub, but that may be a negated constant operand of an add.
1323  Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1324  BinaryOperator *Sub = nullptr;
1325  for (User *U : CmpVariableOperand->users()) {
1326    // A - B, A u< B --> usubo(A, B)
1327    if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1328      Sub = cast<BinaryOperator>(U);
1329      break;
1330    }
1331
1332    // A + (-C), A u< C (canonicalized form of (sub A, C))
1333    const APInt *CmpC, *AddC;
1334    if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1335        match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1336      Sub = cast<BinaryOperator>(U);
1337      break;
1338    }
1339  }
1340  if (!Sub)
1341    return false;
1342
1343  if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1344                                 TLI->getValueType(*DL, Sub->getType())))
1345    return false;
1346
1347  if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow))
1348    return false;
1349
1350  // Reset callers - do not crash by iterating over a dead instruction.
1351  ModifiedDT = true;
1352  return true;
1353}
1354
1355/// Sink the given CmpInst into user blocks to reduce the number of virtual
1356/// registers that must be created and coalesced. This is a clear win except on
1357/// targets with multiple condition code registers (PowerPC), where it might
1358/// lose; some adjustment may be wanted there.
1359///
1360/// Return true if any changes are made.
1361static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1362  if (TLI.hasMultipleConditionRegisters())
1363    return false;
1364
1365  // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1366  if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1367    return false;
1368
1369  // Only insert a cmp in each block once.
1370  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1371
1372  bool MadeChange = false;
1373  for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1374       UI != E; ) {
1375    Use &TheUse = UI.getUse();
1376    Instruction *User = cast<Instruction>(*UI);
1377
1378    // Preincrement use iterator so we don't invalidate it.
1379    ++UI;
1380
1381    // Don't bother for PHI nodes.
1382    if (isa<PHINode>(User))
1383      continue;
1384
1385    // Figure out which BB this cmp is used in.
1386    BasicBlock *UserBB = User->getParent();
1387    BasicBlock *DefBB = Cmp->getParent();
1388
1389    // If this user is in the same block as the cmp, don't change the cmp.
1390    if (UserBB == DefBB) continue;
1391
1392    // If we have already inserted a cmp into this block, use it.
1393    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1394
1395    if (!InsertedCmp) {
1396      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1397      assert(InsertPt != UserBB->end());
1398      InsertedCmp =
1399          CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1400                          Cmp->getOperand(0), Cmp->getOperand(1), "",
1401                          &*InsertPt);
1402      // Propagate the debug info.
1403      InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1404    }
1405
1406    // Replace a use of the cmp with a use of the new cmp.
1407    TheUse = InsertedCmp;
1408    MadeChange = true;
1409    ++NumCmpUses;
1410  }
1411
1412  // If we removed all uses, nuke the cmp.
1413  if (Cmp->use_empty()) {
1414    Cmp->eraseFromParent();
1415    MadeChange = true;
1416  }
1417
1418  return MadeChange;
1419}
1420
1421/// For pattern like:
1422///
1423///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1424///   ...
1425/// DomBB:
1426///   ...
1427///   br DomCond, TrueBB, CmpBB
1428/// CmpBB: (with DomBB being the single predecessor)
1429///   ...
1430///   Cmp = icmp eq CmpOp0, CmpOp1
1431///   ...
1432///
1433/// It would use two comparison on targets that lowering of icmp sgt/slt is
1434/// different from lowering of icmp eq (PowerPC). This function try to convert
1435/// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1436/// After that, DomCond and Cmp can use the same comparison so reduce one
1437/// comparison.
1438///
1439/// Return true if any changes are made.
1440static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1441                                       const TargetLowering &TLI) {
1442  if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1443    return false;
1444
1445  ICmpInst::Predicate Pred = Cmp->getPredicate();
1446  if (Pred != ICmpInst::ICMP_EQ)
1447    return false;
1448
1449  // If icmp eq has users other than BranchInst and SelectInst, converting it to
1450  // icmp slt/sgt would introduce more redundant LLVM IR.
1451  for (User *U : Cmp->users()) {
1452    if (isa<BranchInst>(U))
1453      continue;
1454    if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1455      continue;
1456    return false;
1457  }
1458
1459  // This is a cheap/incomplete check for dominance - just match a single
1460  // predecessor with a conditional branch.
1461  BasicBlock *CmpBB = Cmp->getParent();
1462  BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1463  if (!DomBB)
1464    return false;
1465
1466  // We want to ensure that the only way control gets to the comparison of
1467  // interest is that a less/greater than comparison on the same operands is
1468  // false.
1469  Value *DomCond;
1470  BasicBlock *TrueBB, *FalseBB;
1471  if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1472    return false;
1473  if (CmpBB != FalseBB)
1474    return false;
1475
1476  Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1477  ICmpInst::Predicate DomPred;
1478  if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1479    return false;
1480  if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1481    return false;
1482
1483  // Convert the equality comparison to the opposite of the dominating
1484  // comparison and swap the direction for all branch/select users.
1485  // We have conceptually converted:
1486  // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1487  // to
1488  // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1489  // And similarly for branches.
1490  for (User *U : Cmp->users()) {
1491    if (auto *BI = dyn_cast<BranchInst>(U)) {
1492      assert(BI->isConditional() && "Must be conditional");
1493      BI->swapSuccessors();
1494      continue;
1495    }
1496    if (auto *SI = dyn_cast<SelectInst>(U)) {
1497      // Swap operands
1498      SI->swapValues();
1499      SI->swapProfMetadata();
1500      continue;
1501    }
1502    llvm_unreachable("Must be a branch or a select");
1503  }
1504  Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1505  return true;
1506}
1507
1508bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1509  if (sinkCmpExpression(Cmp, *TLI))
1510    return true;
1511
1512  if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1513    return true;
1514
1515  if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1516    return true;
1517
1518  if (foldICmpWithDominatingICmp(Cmp, *TLI))
1519    return true;
1520
1521  return false;
1522}
1523
1524/// Duplicate and sink the given 'and' instruction into user blocks where it is
1525/// used in a compare to allow isel to generate better code for targets where
1526/// this operation can be combined.
1527///
1528/// Return true if any changes are made.
1529static bool sinkAndCmp0Expression(Instruction *AndI,
1530                                  const TargetLowering &TLI,
1531                                  SetOfInstrs &InsertedInsts) {
1532  // Double-check that we're not trying to optimize an instruction that was
1533  // already optimized by some other part of this pass.
1534  assert(!InsertedInsts.count(AndI) &&
1535         "Attempting to optimize already optimized and instruction");
1536  (void) InsertedInsts;
1537
1538  // Nothing to do for single use in same basic block.
1539  if (AndI->hasOneUse() &&
1540      AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1541    return false;
1542
1543  // Try to avoid cases where sinking/duplicating is likely to increase register
1544  // pressure.
1545  if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1546      !isa<ConstantInt>(AndI->getOperand(1)) &&
1547      AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1548    return false;
1549
1550  for (auto *U : AndI->users()) {
1551    Instruction *User = cast<Instruction>(U);
1552
1553    // Only sink 'and' feeding icmp with 0.
1554    if (!isa<ICmpInst>(User))
1555      return false;
1556
1557    auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1558    if (!CmpC || !CmpC->isZero())
1559      return false;
1560  }
1561
1562  if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1563    return false;
1564
1565  LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1566  LLVM_DEBUG(AndI->getParent()->dump());
1567
1568  // Push the 'and' into the same block as the icmp 0.  There should only be
1569  // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1570  // others, so we don't need to keep track of which BBs we insert into.
1571  for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1572       UI != E; ) {
1573    Use &TheUse = UI.getUse();
1574    Instruction *User = cast<Instruction>(*UI);
1575
1576    // Preincrement use iterator so we don't invalidate it.
1577    ++UI;
1578
1579    LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1580
1581    // Keep the 'and' in the same place if the use is already in the same block.
1582    Instruction *InsertPt =
1583        User->getParent() == AndI->getParent() ? AndI : User;
1584    Instruction *InsertedAnd =
1585        BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1586                               AndI->getOperand(1), "", InsertPt);
1587    // Propagate the debug info.
1588    InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1589
1590    // Replace a use of the 'and' with a use of the new 'and'.
1591    TheUse = InsertedAnd;
1592    ++NumAndUses;
1593    LLVM_DEBUG(User->getParent()->dump());
1594  }
1595
1596  // We removed all uses, nuke the and.
1597  AndI->eraseFromParent();
1598  return true;
1599}
1600
1601/// Check if the candidates could be combined with a shift instruction, which
1602/// includes:
1603/// 1. Truncate instruction
1604/// 2. And instruction and the imm is a mask of the low bits:
1605/// imm & (imm+1) == 0
1606static bool isExtractBitsCandidateUse(Instruction *User) {
1607  if (!isa<TruncInst>(User)) {
1608    if (User->getOpcode() != Instruction::And ||
1609        !isa<ConstantInt>(User->getOperand(1)))
1610      return false;
1611
1612    const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1613
1614    if ((Cimm & (Cimm + 1)).getBoolValue())
1615      return false;
1616  }
1617  return true;
1618}
1619
1620/// Sink both shift and truncate instruction to the use of truncate's BB.
1621static bool
1622SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1623                     DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1624                     const TargetLowering &TLI, const DataLayout &DL) {
1625  BasicBlock *UserBB = User->getParent();
1626  DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1627  auto *TruncI = cast<TruncInst>(User);
1628  bool MadeChange = false;
1629
1630  for (Value::user_iterator TruncUI = TruncI->user_begin(),
1631                            TruncE = TruncI->user_end();
1632       TruncUI != TruncE;) {
1633
1634    Use &TruncTheUse = TruncUI.getUse();
1635    Instruction *TruncUser = cast<Instruction>(*TruncUI);
1636    // Preincrement use iterator so we don't invalidate it.
1637
1638    ++TruncUI;
1639
1640    int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1641    if (!ISDOpcode)
1642      continue;
1643
1644    // If the use is actually a legal node, there will not be an
1645    // implicit truncate.
1646    // FIXME: always querying the result type is just an
1647    // approximation; some nodes' legality is determined by the
1648    // operand or other means. There's no good way to find out though.
1649    if (TLI.isOperationLegalOrCustom(
1650            ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1651      continue;
1652
1653    // Don't bother for PHI nodes.
1654    if (isa<PHINode>(TruncUser))
1655      continue;
1656
1657    BasicBlock *TruncUserBB = TruncUser->getParent();
1658
1659    if (UserBB == TruncUserBB)
1660      continue;
1661
1662    BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1663    CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1664
1665    if (!InsertedShift && !InsertedTrunc) {
1666      BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1667      assert(InsertPt != TruncUserBB->end());
1668      // Sink the shift
1669      if (ShiftI->getOpcode() == Instruction::AShr)
1670        InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1671                                                   "", &*InsertPt);
1672      else
1673        InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1674                                                   "", &*InsertPt);
1675      InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1676
1677      // Sink the trunc
1678      BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1679      TruncInsertPt++;
1680      assert(TruncInsertPt != TruncUserBB->end());
1681
1682      InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1683                                       TruncI->getType(), "", &*TruncInsertPt);
1684      InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1685
1686      MadeChange = true;
1687
1688      TruncTheUse = InsertedTrunc;
1689    }
1690  }
1691  return MadeChange;
1692}
1693
1694/// Sink the shift *right* instruction into user blocks if the uses could
1695/// potentially be combined with this shift instruction and generate BitExtract
1696/// instruction. It will only be applied if the architecture supports BitExtract
1697/// instruction. Here is an example:
1698/// BB1:
1699///   %x.extract.shift = lshr i64 %arg1, 32
1700/// BB2:
1701///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1702/// ==>
1703///
1704/// BB2:
1705///   %x.extract.shift.1 = lshr i64 %arg1, 32
1706///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1707///
1708/// CodeGen will recognize the pattern in BB2 and generate BitExtract
1709/// instruction.
1710/// Return true if any changes are made.
1711static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1712                                const TargetLowering &TLI,
1713                                const DataLayout &DL) {
1714  BasicBlock *DefBB = ShiftI->getParent();
1715
1716  /// Only insert instructions in each block once.
1717  DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1718
1719  bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1720
1721  bool MadeChange = false;
1722  for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1723       UI != E;) {
1724    Use &TheUse = UI.getUse();
1725    Instruction *User = cast<Instruction>(*UI);
1726    // Preincrement use iterator so we don't invalidate it.
1727    ++UI;
1728
1729    // Don't bother for PHI nodes.
1730    if (isa<PHINode>(User))
1731      continue;
1732
1733    if (!isExtractBitsCandidateUse(User))
1734      continue;
1735
1736    BasicBlock *UserBB = User->getParent();
1737
1738    if (UserBB == DefBB) {
1739      // If the shift and truncate instruction are in the same BB. The use of
1740      // the truncate(TruncUse) may still introduce another truncate if not
1741      // legal. In this case, we would like to sink both shift and truncate
1742      // instruction to the BB of TruncUse.
1743      // for example:
1744      // BB1:
1745      // i64 shift.result = lshr i64 opnd, imm
1746      // trunc.result = trunc shift.result to i16
1747      //
1748      // BB2:
1749      //   ----> We will have an implicit truncate here if the architecture does
1750      //   not have i16 compare.
1751      // cmp i16 trunc.result, opnd2
1752      //
1753      if (isa<TruncInst>(User) && shiftIsLegal
1754          // If the type of the truncate is legal, no truncate will be
1755          // introduced in other basic blocks.
1756          &&
1757          (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1758        MadeChange =
1759            SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1760
1761      continue;
1762    }
1763    // If we have already inserted a shift into this block, use it.
1764    BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1765
1766    if (!InsertedShift) {
1767      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1768      assert(InsertPt != UserBB->end());
1769
1770      if (ShiftI->getOpcode() == Instruction::AShr)
1771        InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1772                                                   "", &*InsertPt);
1773      else
1774        InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1775                                                   "", &*InsertPt);
1776      InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1777
1778      MadeChange = true;
1779    }
1780
1781    // Replace a use of the shift with a use of the new shift.
1782    TheUse = InsertedShift;
1783  }
1784
1785  // If we removed all uses, or there are none, nuke the shift.
1786  if (ShiftI->use_empty()) {
1787    salvageDebugInfo(*ShiftI);
1788    ShiftI->eraseFromParent();
1789    MadeChange = true;
1790  }
1791
1792  return MadeChange;
1793}
1794
1795/// If counting leading or trailing zeros is an expensive operation and a zero
1796/// input is defined, add a check for zero to avoid calling the intrinsic.
1797///
1798/// We want to transform:
1799///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1800///
1801/// into:
1802///   entry:
1803///     %cmpz = icmp eq i64 %A, 0
1804///     br i1 %cmpz, label %cond.end, label %cond.false
1805///   cond.false:
1806///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1807///     br label %cond.end
1808///   cond.end:
1809///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1810///
1811/// If the transform is performed, return true and set ModifiedDT to true.
1812static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1813                                  const TargetLowering *TLI,
1814                                  const DataLayout *DL,
1815                                  bool &ModifiedDT) {
1816  if (!TLI || !DL)
1817    return false;
1818
1819  // If a zero input is undefined, it doesn't make sense to despeculate that.
1820  if (match(CountZeros->getOperand(1), m_One()))
1821    return false;
1822
1823  // If it's cheap to speculate, there's nothing to do.
1824  auto IntrinsicID = CountZeros->getIntrinsicID();
1825  if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1826      (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1827    return false;
1828
1829  // Only handle legal scalar cases. Anything else requires too much work.
1830  Type *Ty = CountZeros->getType();
1831  unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1832  if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1833    return false;
1834
1835  // The intrinsic will be sunk behind a compare against zero and branch.
1836  BasicBlock *StartBlock = CountZeros->getParent();
1837  BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1838
1839  // Create another block after the count zero intrinsic. A PHI will be added
1840  // in this block to select the result of the intrinsic or the bit-width
1841  // constant if the input to the intrinsic is zero.
1842  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1843  BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1844
1845  // Set up a builder to create a compare, conditional branch, and PHI.
1846  IRBuilder<> Builder(CountZeros->getContext());
1847  Builder.SetInsertPoint(StartBlock->getTerminator());
1848  Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1849
1850  // Replace the unconditional branch that was created by the first split with
1851  // a compare against zero and a conditional branch.
1852  Value *Zero = Constant::getNullValue(Ty);
1853  Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1854  Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1855  StartBlock->getTerminator()->eraseFromParent();
1856
1857  // Create a PHI in the end block to select either the output of the intrinsic
1858  // or the bit width of the operand.
1859  Builder.SetInsertPoint(&EndBlock->front());
1860  PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1861  CountZeros->replaceAllUsesWith(PN);
1862  Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1863  PN->addIncoming(BitWidth, StartBlock);
1864  PN->addIncoming(CountZeros, CallBlock);
1865
1866  // We are explicitly handling the zero case, so we can set the intrinsic's
1867  // undefined zero argument to 'true'. This will also prevent reprocessing the
1868  // intrinsic; we only despeculate when a zero input is defined.
1869  CountZeros->setArgOperand(1, Builder.getTrue());
1870  ModifiedDT = true;
1871  return true;
1872}
1873
1874bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1875  BasicBlock *BB = CI->getParent();
1876
1877  // Lower inline assembly if we can.
1878  // If we found an inline asm expession, and if the target knows how to
1879  // lower it to normal LLVM code, do so now.
1880  if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1881    if (TLI->ExpandInlineAsm(CI)) {
1882      // Avoid invalidating the iterator.
1883      CurInstIterator = BB->begin();
1884      // Avoid processing instructions out of order, which could cause
1885      // reuse before a value is defined.
1886      SunkAddrs.clear();
1887      return true;
1888    }
1889    // Sink address computing for memory operands into the block.
1890    if (optimizeInlineAsmInst(CI))
1891      return true;
1892  }
1893
1894  // Align the pointer arguments to this call if the target thinks it's a good
1895  // idea
1896  unsigned MinSize, PrefAlign;
1897  if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1898    for (auto &Arg : CI->arg_operands()) {
1899      // We want to align both objects whose address is used directly and
1900      // objects whose address is used in casts and GEPs, though it only makes
1901      // sense for GEPs if the offset is a multiple of the desired alignment and
1902      // if size - offset meets the size threshold.
1903      if (!Arg->getType()->isPointerTy())
1904        continue;
1905      APInt Offset(DL->getIndexSizeInBits(
1906                       cast<PointerType>(Arg->getType())->getAddressSpace()),
1907                   0);
1908      Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1909      uint64_t Offset2 = Offset.getLimitedValue();
1910      if ((Offset2 & (PrefAlign-1)) != 0)
1911        continue;
1912      AllocaInst *AI;
1913      if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1914          DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1915        AI->setAlignment(MaybeAlign(PrefAlign));
1916      // Global variables can only be aligned if they are defined in this
1917      // object (i.e. they are uniquely initialized in this object), and
1918      // over-aligning global variables that have an explicit section is
1919      // forbidden.
1920      GlobalVariable *GV;
1921      if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1922          GV->getPointerAlignment(*DL) < PrefAlign &&
1923          DL->getTypeAllocSize(GV->getValueType()) >=
1924              MinSize + Offset2)
1925        GV->setAlignment(MaybeAlign(PrefAlign));
1926    }
1927    // If this is a memcpy (or similar) then we may be able to improve the
1928    // alignment
1929    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1930      unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1931      if (DestAlign > MI->getDestAlignment())
1932        MI->setDestAlignment(DestAlign);
1933      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1934        unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1935        if (SrcAlign > MTI->getSourceAlignment())
1936          MTI->setSourceAlignment(SrcAlign);
1937      }
1938    }
1939  }
1940
1941  // If we have a cold call site, try to sink addressing computation into the
1942  // cold block.  This interacts with our handling for loads and stores to
1943  // ensure that we can fold all uses of a potential addressing computation
1944  // into their uses.  TODO: generalize this to work over profiling data
1945  bool OptForSize = OptSize || llvm::shouldOptimizeForSize(BB, PSI, BFI.get());
1946  if (!OptForSize && CI->hasFnAttr(Attribute::Cold))
1947    for (auto &Arg : CI->arg_operands()) {
1948      if (!Arg->getType()->isPointerTy())
1949        continue;
1950      unsigned AS = Arg->getType()->getPointerAddressSpace();
1951      return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1952    }
1953
1954  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1955  if (II) {
1956    switch (II->getIntrinsicID()) {
1957    default: break;
1958    case Intrinsic::experimental_widenable_condition: {
1959      // Give up on future widening oppurtunties so that we can fold away dead
1960      // paths and merge blocks before going into block-local instruction
1961      // selection.
1962      if (II->use_empty()) {
1963        II->eraseFromParent();
1964        return true;
1965      }
1966      Constant *RetVal = ConstantInt::getTrue(II->getContext());
1967      resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1968        replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1969      });
1970      return true;
1971    }
1972    case Intrinsic::objectsize:
1973      llvm_unreachable("llvm.objectsize.* should have been lowered already");
1974    case Intrinsic::is_constant:
1975      llvm_unreachable("llvm.is.constant.* should have been lowered already");
1976    case Intrinsic::aarch64_stlxr:
1977    case Intrinsic::aarch64_stxr: {
1978      ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1979      if (!ExtVal || !ExtVal->hasOneUse() ||
1980          ExtVal->getParent() == CI->getParent())
1981        return false;
1982      // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1983      ExtVal->moveBefore(CI);
1984      // Mark this instruction as "inserted by CGP", so that other
1985      // optimizations don't touch it.
1986      InsertedInsts.insert(ExtVal);
1987      return true;
1988    }
1989
1990    case Intrinsic::launder_invariant_group:
1991    case Intrinsic::strip_invariant_group: {
1992      Value *ArgVal = II->getArgOperand(0);
1993      auto it = LargeOffsetGEPMap.find(II);
1994      if (it != LargeOffsetGEPMap.end()) {
1995          // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1996          // Make sure not to have to deal with iterator invalidation
1997          // after possibly adding ArgVal to LargeOffsetGEPMap.
1998          auto GEPs = std::move(it->second);
1999          LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2000          LargeOffsetGEPMap.erase(II);
2001      }
2002
2003      II->replaceAllUsesWith(ArgVal);
2004      II->eraseFromParent();
2005      return true;
2006    }
2007    case Intrinsic::cttz:
2008    case Intrinsic::ctlz:
2009      // If counting zeros is expensive, try to avoid it.
2010      return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2011    case Intrinsic::dbg_value:
2012      return fixupDbgValue(II);
2013    }
2014
2015    if (TLI) {
2016      SmallVector<Value*, 2> PtrOps;
2017      Type *AccessTy;
2018      if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2019        while (!PtrOps.empty()) {
2020          Value *PtrVal = PtrOps.pop_back_val();
2021          unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2022          if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2023            return true;
2024        }
2025    }
2026  }
2027
2028  // From here on out we're working with named functions.
2029  if (!CI->getCalledFunction()) return false;
2030
2031  // Lower all default uses of _chk calls.  This is very similar
2032  // to what InstCombineCalls does, but here we are only lowering calls
2033  // to fortified library functions (e.g. __memcpy_chk) that have the default
2034  // "don't know" as the objectsize.  Anything else should be left alone.
2035  FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2036  if (Value *V = Simplifier.optimizeCall(CI)) {
2037    CI->replaceAllUsesWith(V);
2038    CI->eraseFromParent();
2039    return true;
2040  }
2041
2042  return false;
2043}
2044
2045/// Look for opportunities to duplicate return instructions to the predecessor
2046/// to enable tail call optimizations. The case it is currently looking for is:
2047/// @code
2048/// bb0:
2049///   %tmp0 = tail call i32 @f0()
2050///   br label %return
2051/// bb1:
2052///   %tmp1 = tail call i32 @f1()
2053///   br label %return
2054/// bb2:
2055///   %tmp2 = tail call i32 @f2()
2056///   br label %return
2057/// return:
2058///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2059///   ret i32 %retval
2060/// @endcode
2061///
2062/// =>
2063///
2064/// @code
2065/// bb0:
2066///   %tmp0 = tail call i32 @f0()
2067///   ret i32 %tmp0
2068/// bb1:
2069///   %tmp1 = tail call i32 @f1()
2070///   ret i32 %tmp1
2071/// bb2:
2072///   %tmp2 = tail call i32 @f2()
2073///   ret i32 %tmp2
2074/// @endcode
2075bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2076  if (!TLI)
2077    return false;
2078
2079  ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2080  if (!RetI)
2081    return false;
2082
2083  PHINode *PN = nullptr;
2084  BitCastInst *BCI = nullptr;
2085  Value *V = RetI->getReturnValue();
2086  if (V) {
2087    BCI = dyn_cast<BitCastInst>(V);
2088    if (BCI)
2089      V = BCI->getOperand(0);
2090
2091    PN = dyn_cast<PHINode>(V);
2092    if (!PN)
2093      return false;
2094  }
2095
2096  if (PN && PN->getParent() != BB)
2097    return false;
2098
2099  // Make sure there are no instructions between the PHI and return, or that the
2100  // return is the first instruction in the block.
2101  if (PN) {
2102    BasicBlock::iterator BI = BB->begin();
2103    // Skip over debug and the bitcast.
2104    do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
2105    if (&*BI != RetI)
2106      return false;
2107  } else {
2108    BasicBlock::iterator BI = BB->begin();
2109    while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2110    if (&*BI != RetI)
2111      return false;
2112  }
2113
2114  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2115  /// call.
2116  const Function *F = BB->getParent();
2117  SmallVector<BasicBlock*, 4> TailCallBBs;
2118  if (PN) {
2119    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2120      // Look through bitcasts.
2121      Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2122      CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2123      BasicBlock *PredBB = PN->getIncomingBlock(I);
2124      // Make sure the phi value is indeed produced by the tail call.
2125      if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2126          TLI->mayBeEmittedAsTailCall(CI) &&
2127          attributesPermitTailCall(F, CI, RetI, *TLI))
2128        TailCallBBs.push_back(PredBB);
2129    }
2130  } else {
2131    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2132    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2133      if (!VisitedBBs.insert(*PI).second)
2134        continue;
2135
2136      BasicBlock::InstListType &InstList = (*PI)->getInstList();
2137      BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2138      BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2139      do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2140      if (RI == RE)
2141        continue;
2142
2143      CallInst *CI = dyn_cast<CallInst>(&*RI);
2144      if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2145          attributesPermitTailCall(F, CI, RetI, *TLI))
2146        TailCallBBs.push_back(*PI);
2147    }
2148  }
2149
2150  bool Changed = false;
2151  for (auto const &TailCallBB : TailCallBBs) {
2152    // Make sure the call instruction is followed by an unconditional branch to
2153    // the return block.
2154    BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2155    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2156      continue;
2157
2158    // Duplicate the return into TailCallBB.
2159    (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2160    ModifiedDT = Changed = true;
2161    ++NumRetsDup;
2162  }
2163
2164  // If we eliminated all predecessors of the block, delete the block now.
2165  if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2166    BB->eraseFromParent();
2167
2168  return Changed;
2169}
2170
2171//===----------------------------------------------------------------------===//
2172// Memory Optimization
2173//===----------------------------------------------------------------------===//
2174
2175namespace {
2176
2177/// This is an extended version of TargetLowering::AddrMode
2178/// which holds actual Value*'s for register values.
2179struct ExtAddrMode : public TargetLowering::AddrMode {
2180  Value *BaseReg = nullptr;
2181  Value *ScaledReg = nullptr;
2182  Value *OriginalValue = nullptr;
2183  bool InBounds = true;
2184
2185  enum FieldName {
2186    NoField        = 0x00,
2187    BaseRegField   = 0x01,
2188    BaseGVField    = 0x02,
2189    BaseOffsField  = 0x04,
2190    ScaledRegField = 0x08,
2191    ScaleField     = 0x10,
2192    MultipleFields = 0xff
2193  };
2194
2195
2196  ExtAddrMode() = default;
2197
2198  void print(raw_ostream &OS) const;
2199  void dump() const;
2200
2201  FieldName compare(const ExtAddrMode &other) {
2202    // First check that the types are the same on each field, as differing types
2203    // is something we can't cope with later on.
2204    if (BaseReg && other.BaseReg &&
2205        BaseReg->getType() != other.BaseReg->getType())
2206      return MultipleFields;
2207    if (BaseGV && other.BaseGV &&
2208        BaseGV->getType() != other.BaseGV->getType())
2209      return MultipleFields;
2210    if (ScaledReg && other.ScaledReg &&
2211        ScaledReg->getType() != other.ScaledReg->getType())
2212      return MultipleFields;
2213
2214    // Conservatively reject 'inbounds' mismatches.
2215    if (InBounds != other.InBounds)
2216      return MultipleFields;
2217
2218    // Check each field to see if it differs.
2219    unsigned Result = NoField;
2220    if (BaseReg != other.BaseReg)
2221      Result |= BaseRegField;
2222    if (BaseGV != other.BaseGV)
2223      Result |= BaseGVField;
2224    if (BaseOffs != other.BaseOffs)
2225      Result |= BaseOffsField;
2226    if (ScaledReg != other.ScaledReg)
2227      Result |= ScaledRegField;
2228    // Don't count 0 as being a different scale, because that actually means
2229    // unscaled (which will already be counted by having no ScaledReg).
2230    if (Scale && other.Scale && Scale != other.Scale)
2231      Result |= ScaleField;
2232
2233    if (countPopulation(Result) > 1)
2234      return MultipleFields;
2235    else
2236      return static_cast<FieldName>(Result);
2237  }
2238
2239  // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2240  // with no offset.
2241  bool isTrivial() {
2242    // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2243    // trivial if at most one of these terms is nonzero, except that BaseGV and
2244    // BaseReg both being zero actually means a null pointer value, which we
2245    // consider to be 'non-zero' here.
2246    return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2247  }
2248
2249  Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2250    switch (Field) {
2251    default:
2252      return nullptr;
2253    case BaseRegField:
2254      return BaseReg;
2255    case BaseGVField:
2256      return BaseGV;
2257    case ScaledRegField:
2258      return ScaledReg;
2259    case BaseOffsField:
2260      return ConstantInt::get(IntPtrTy, BaseOffs);
2261    }
2262  }
2263
2264  void SetCombinedField(FieldName Field, Value *V,
2265                        const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2266    switch (Field) {
2267    default:
2268      llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2269      break;
2270    case ExtAddrMode::BaseRegField:
2271      BaseReg = V;
2272      break;
2273    case ExtAddrMode::BaseGVField:
2274      // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2275      // in the BaseReg field.
2276      assert(BaseReg == nullptr);
2277      BaseReg = V;
2278      BaseGV = nullptr;
2279      break;
2280    case ExtAddrMode::ScaledRegField:
2281      ScaledReg = V;
2282      // If we have a mix of scaled and unscaled addrmodes then we want scale
2283      // to be the scale and not zero.
2284      if (!Scale)
2285        for (const ExtAddrMode &AM : AddrModes)
2286          if (AM.Scale) {
2287            Scale = AM.Scale;
2288            break;
2289          }
2290      break;
2291    case ExtAddrMode::BaseOffsField:
2292      // The offset is no longer a constant, so it goes in ScaledReg with a
2293      // scale of 1.
2294      assert(ScaledReg == nullptr);
2295      ScaledReg = V;
2296      Scale = 1;
2297      BaseOffs = 0;
2298      break;
2299    }
2300  }
2301};
2302
2303} // end anonymous namespace
2304
2305#ifndef NDEBUG
2306static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2307  AM.print(OS);
2308  return OS;
2309}
2310#endif
2311
2312#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2313void ExtAddrMode::print(raw_ostream &OS) const {
2314  bool NeedPlus = false;
2315  OS << "[";
2316  if (InBounds)
2317    OS << "inbounds ";
2318  if (BaseGV) {
2319    OS << (NeedPlus ? " + " : "")
2320       << "GV:";
2321    BaseGV->printAsOperand(OS, /*PrintType=*/false);
2322    NeedPlus = true;
2323  }
2324
2325  if (BaseOffs) {
2326    OS << (NeedPlus ? " + " : "")
2327       << BaseOffs;
2328    NeedPlus = true;
2329  }
2330
2331  if (BaseReg) {
2332    OS << (NeedPlus ? " + " : "")
2333       << "Base:";
2334    BaseReg->printAsOperand(OS, /*PrintType=*/false);
2335    NeedPlus = true;
2336  }
2337  if (Scale) {
2338    OS << (NeedPlus ? " + " : "")
2339       << Scale << "*";
2340    ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2341  }
2342
2343  OS << ']';
2344}
2345
2346LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2347  print(dbgs());
2348  dbgs() << '\n';
2349}
2350#endif
2351
2352namespace {
2353
2354/// This class provides transaction based operation on the IR.
2355/// Every change made through this class is recorded in the internal state and
2356/// can be undone (rollback) until commit is called.
2357class TypePromotionTransaction {
2358  /// This represents the common interface of the individual transaction.
2359  /// Each class implements the logic for doing one specific modification on
2360  /// the IR via the TypePromotionTransaction.
2361  class TypePromotionAction {
2362  protected:
2363    /// The Instruction modified.
2364    Instruction *Inst;
2365
2366  public:
2367    /// Constructor of the action.
2368    /// The constructor performs the related action on the IR.
2369    TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2370
2371    virtual ~TypePromotionAction() = default;
2372
2373    /// Undo the modification done by this action.
2374    /// When this method is called, the IR must be in the same state as it was
2375    /// before this action was applied.
2376    /// \pre Undoing the action works if and only if the IR is in the exact same
2377    /// state as it was directly after this action was applied.
2378    virtual void undo() = 0;
2379
2380    /// Advocate every change made by this action.
2381    /// When the results on the IR of the action are to be kept, it is important
2382    /// to call this function, otherwise hidden information may be kept forever.
2383    virtual void commit() {
2384      // Nothing to be done, this action is not doing anything.
2385    }
2386  };
2387
2388  /// Utility to remember the position of an instruction.
2389  class InsertionHandler {
2390    /// Position of an instruction.
2391    /// Either an instruction:
2392    /// - Is the first in a basic block: BB is used.
2393    /// - Has a previous instruction: PrevInst is used.
2394    union {
2395      Instruction *PrevInst;
2396      BasicBlock *BB;
2397    } Point;
2398
2399    /// Remember whether or not the instruction had a previous instruction.
2400    bool HasPrevInstruction;
2401
2402  public:
2403    /// Record the position of \p Inst.
2404    InsertionHandler(Instruction *Inst) {
2405      BasicBlock::iterator It = Inst->getIterator();
2406      HasPrevInstruction = (It != (Inst->getParent()->begin()));
2407      if (HasPrevInstruction)
2408        Point.PrevInst = &*--It;
2409      else
2410        Point.BB = Inst->getParent();
2411    }
2412
2413    /// Insert \p Inst at the recorded position.
2414    void insert(Instruction *Inst) {
2415      if (HasPrevInstruction) {
2416        if (Inst->getParent())
2417          Inst->removeFromParent();
2418        Inst->insertAfter(Point.PrevInst);
2419      } else {
2420        Instruction *Position = &*Point.BB->getFirstInsertionPt();
2421        if (Inst->getParent())
2422          Inst->moveBefore(Position);
2423        else
2424          Inst->insertBefore(Position);
2425      }
2426    }
2427  };
2428
2429  /// Move an instruction before another.
2430  class InstructionMoveBefore : public TypePromotionAction {
2431    /// Original position of the instruction.
2432    InsertionHandler Position;
2433
2434  public:
2435    /// Move \p Inst before \p Before.
2436    InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2437        : TypePromotionAction(Inst), Position(Inst) {
2438      LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2439                        << "\n");
2440      Inst->moveBefore(Before);
2441    }
2442
2443    /// Move the instruction back to its original position.
2444    void undo() override {
2445      LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2446      Position.insert(Inst);
2447    }
2448  };
2449
2450  /// Set the operand of an instruction with a new value.
2451  class OperandSetter : public TypePromotionAction {
2452    /// Original operand of the instruction.
2453    Value *Origin;
2454
2455    /// Index of the modified instruction.
2456    unsigned Idx;
2457
2458  public:
2459    /// Set \p Idx operand of \p Inst with \p NewVal.
2460    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2461        : TypePromotionAction(Inst), Idx(Idx) {
2462      LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2463                        << "for:" << *Inst << "\n"
2464                        << "with:" << *NewVal << "\n");
2465      Origin = Inst->getOperand(Idx);
2466      Inst->setOperand(Idx, NewVal);
2467    }
2468
2469    /// Restore the original value of the instruction.
2470    void undo() override {
2471      LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2472                        << "for: " << *Inst << "\n"
2473                        << "with: " << *Origin << "\n");
2474      Inst->setOperand(Idx, Origin);
2475    }
2476  };
2477
2478  /// Hide the operands of an instruction.
2479  /// Do as if this instruction was not using any of its operands.
2480  class OperandsHider : public TypePromotionAction {
2481    /// The list of original operands.
2482    SmallVector<Value *, 4> OriginalValues;
2483
2484  public:
2485    /// Remove \p Inst from the uses of the operands of \p Inst.
2486    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2487      LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2488      unsigned NumOpnds = Inst->getNumOperands();
2489      OriginalValues.reserve(NumOpnds);
2490      for (unsigned It = 0; It < NumOpnds; ++It) {
2491        // Save the current operand.
2492        Value *Val = Inst->getOperand(It);
2493        OriginalValues.push_back(Val);
2494        // Set a dummy one.
2495        // We could use OperandSetter here, but that would imply an overhead
2496        // that we are not willing to pay.
2497        Inst->setOperand(It, UndefValue::get(Val->getType()));
2498      }
2499    }
2500
2501    /// Restore the original list of uses.
2502    void undo() override {
2503      LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2504      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2505        Inst->setOperand(It, OriginalValues[It]);
2506    }
2507  };
2508
2509  /// Build a truncate instruction.
2510  class TruncBuilder : public TypePromotionAction {
2511    Value *Val;
2512
2513  public:
2514    /// Build a truncate instruction of \p Opnd producing a \p Ty
2515    /// result.
2516    /// trunc Opnd to Ty.
2517    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2518      IRBuilder<> Builder(Opnd);
2519      Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2520      LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2521    }
2522
2523    /// Get the built value.
2524    Value *getBuiltValue() { return Val; }
2525
2526    /// Remove the built instruction.
2527    void undo() override {
2528      LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2529      if (Instruction *IVal = dyn_cast<Instruction>(Val))
2530        IVal->eraseFromParent();
2531    }
2532  };
2533
2534  /// Build a sign extension instruction.
2535  class SExtBuilder : public TypePromotionAction {
2536    Value *Val;
2537
2538  public:
2539    /// Build a sign extension instruction of \p Opnd producing a \p Ty
2540    /// result.
2541    /// sext Opnd to Ty.
2542    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2543        : TypePromotionAction(InsertPt) {
2544      IRBuilder<> Builder(InsertPt);
2545      Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2546      LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2547    }
2548
2549    /// Get the built value.
2550    Value *getBuiltValue() { return Val; }
2551
2552    /// Remove the built instruction.
2553    void undo() override {
2554      LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2555      if (Instruction *IVal = dyn_cast<Instruction>(Val))
2556        IVal->eraseFromParent();
2557    }
2558  };
2559
2560  /// Build a zero extension instruction.
2561  class ZExtBuilder : public TypePromotionAction {
2562    Value *Val;
2563
2564  public:
2565    /// Build a zero extension instruction of \p Opnd producing a \p Ty
2566    /// result.
2567    /// zext Opnd to Ty.
2568    ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2569        : TypePromotionAction(InsertPt) {
2570      IRBuilder<> Builder(InsertPt);
2571      Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2572      LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2573    }
2574
2575    /// Get the built value.
2576    Value *getBuiltValue() { return Val; }
2577
2578    /// Remove the built instruction.
2579    void undo() override {
2580      LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2581      if (Instruction *IVal = dyn_cast<Instruction>(Val))
2582        IVal->eraseFromParent();
2583    }
2584  };
2585
2586  /// Mutate an instruction to another type.
2587  class TypeMutator : public TypePromotionAction {
2588    /// Record the original type.
2589    Type *OrigTy;
2590
2591  public:
2592    /// Mutate the type of \p Inst into \p NewTy.
2593    TypeMutator(Instruction *Inst, Type *NewTy)
2594        : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2595      LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2596                        << "\n");
2597      Inst->mutateType(NewTy);
2598    }
2599
2600    /// Mutate the instruction back to its original type.
2601    void undo() override {
2602      LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2603                        << "\n");
2604      Inst->mutateType(OrigTy);
2605    }
2606  };
2607
2608  /// Replace the uses of an instruction by another instruction.
2609  class UsesReplacer : public TypePromotionAction {
2610    /// Helper structure to keep track of the replaced uses.
2611    struct InstructionAndIdx {
2612      /// The instruction using the instruction.
2613      Instruction *Inst;
2614
2615      /// The index where this instruction is used for Inst.
2616      unsigned Idx;
2617
2618      InstructionAndIdx(Instruction *Inst, unsigned Idx)
2619          : Inst(Inst), Idx(Idx) {}
2620    };
2621
2622    /// Keep track of the original uses (pair Instruction, Index).
2623    SmallVector<InstructionAndIdx, 4> OriginalUses;
2624    /// Keep track of the debug users.
2625    SmallVector<DbgValueInst *, 1> DbgValues;
2626
2627    using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2628
2629  public:
2630    /// Replace all the use of \p Inst by \p New.
2631    UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2632      LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2633                        << "\n");
2634      // Record the original uses.
2635      for (Use &U : Inst->uses()) {
2636        Instruction *UserI = cast<Instruction>(U.getUser());
2637        OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2638      }
2639      // Record the debug uses separately. They are not in the instruction's
2640      // use list, but they are replaced by RAUW.
2641      findDbgValues(DbgValues, Inst);
2642
2643      // Now, we can replace the uses.
2644      Inst->replaceAllUsesWith(New);
2645    }
2646
2647    /// Reassign the original uses of Inst to Inst.
2648    void undo() override {
2649      LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2650      for (use_iterator UseIt = OriginalUses.begin(),
2651                        EndIt = OriginalUses.end();
2652           UseIt != EndIt; ++UseIt) {
2653        UseIt->Inst->setOperand(UseIt->Idx, Inst);
2654      }
2655      // RAUW has replaced all original uses with references to the new value,
2656      // including the debug uses. Since we are undoing the replacements,
2657      // the original debug uses must also be reinstated to maintain the
2658      // correctness and utility of debug value instructions.
2659      for (auto *DVI: DbgValues) {
2660        LLVMContext &Ctx = Inst->getType()->getContext();
2661        auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2662        DVI->setOperand(0, MV);
2663      }
2664    }
2665  };
2666
2667  /// Remove an instruction from the IR.
2668  class InstructionRemover : public TypePromotionAction {
2669    /// Original position of the instruction.
2670    InsertionHandler Inserter;
2671
2672    /// Helper structure to hide all the link to the instruction. In other
2673    /// words, this helps to do as if the instruction was removed.
2674    OperandsHider Hider;
2675
2676    /// Keep track of the uses replaced, if any.
2677    UsesReplacer *Replacer = nullptr;
2678
2679    /// Keep track of instructions removed.
2680    SetOfInstrs &RemovedInsts;
2681
2682  public:
2683    /// Remove all reference of \p Inst and optionally replace all its
2684    /// uses with New.
2685    /// \p RemovedInsts Keep track of the instructions removed by this Action.
2686    /// \pre If !Inst->use_empty(), then New != nullptr
2687    InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2688                       Value *New = nullptr)
2689        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2690          RemovedInsts(RemovedInsts) {
2691      if (New)
2692        Replacer = new UsesReplacer(Inst, New);
2693      LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2694      RemovedInsts.insert(Inst);
2695      /// The instructions removed here will be freed after completing
2696      /// optimizeBlock() for all blocks as we need to keep track of the
2697      /// removed instructions during promotion.
2698      Inst->removeFromParent();
2699    }
2700
2701    ~InstructionRemover() override { delete Replacer; }
2702
2703    /// Resurrect the instruction and reassign it to the proper uses if
2704    /// new value was provided when build this action.
2705    void undo() override {
2706      LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2707      Inserter.insert(Inst);
2708      if (Replacer)
2709        Replacer->undo();
2710      Hider.undo();
2711      RemovedInsts.erase(Inst);
2712    }
2713  };
2714
2715public:
2716  /// Restoration point.
2717  /// The restoration point is a pointer to an action instead of an iterator
2718  /// because the iterator may be invalidated but not the pointer.
2719  using ConstRestorationPt = const TypePromotionAction *;
2720
2721  TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2722      : RemovedInsts(RemovedInsts) {}
2723
2724  /// Advocate every changes made in that transaction.
2725  void commit();
2726
2727  /// Undo all the changes made after the given point.
2728  void rollback(ConstRestorationPt Point);
2729
2730  /// Get the current restoration point.
2731  ConstRestorationPt getRestorationPoint() const;
2732
2733  /// \name API for IR modification with state keeping to support rollback.
2734  /// @{
2735  /// Same as Instruction::setOperand.
2736  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2737
2738  /// Same as Instruction::eraseFromParent.
2739  void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2740
2741  /// Same as Value::replaceAllUsesWith.
2742  void replaceAllUsesWith(Instruction *Inst, Value *New);
2743
2744  /// Same as Value::mutateType.
2745  void mutateType(Instruction *Inst, Type *NewTy);
2746
2747  /// Same as IRBuilder::createTrunc.
2748  Value *createTrunc(Instruction *Opnd, Type *Ty);
2749
2750  /// Same as IRBuilder::createSExt.
2751  Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2752
2753  /// Same as IRBuilder::createZExt.
2754  Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2755
2756  /// Same as Instruction::moveBefore.
2757  void moveBefore(Instruction *Inst, Instruction *Before);
2758  /// @}
2759
2760private:
2761  /// The ordered list of actions made so far.
2762  SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2763
2764  using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2765
2766  SetOfInstrs &RemovedInsts;
2767};
2768
2769} // end anonymous namespace
2770
2771void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2772                                          Value *NewVal) {
2773  Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
2774      Inst, Idx, NewVal));
2775}
2776
2777void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2778                                                Value *NewVal) {
2779  Actions.push_back(
2780      std::make_unique<TypePromotionTransaction::InstructionRemover>(
2781          Inst, RemovedInsts, NewVal));
2782}
2783
2784void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2785                                                  Value *New) {
2786  Actions.push_back(
2787      std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2788}
2789
2790void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2791  Actions.push_back(
2792      std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2793}
2794
2795Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2796                                             Type *Ty) {
2797  std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2798  Value *Val = Ptr->getBuiltValue();
2799  Actions.push_back(std::move(Ptr));
2800  return Val;
2801}
2802
2803Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2804                                            Value *Opnd, Type *Ty) {
2805  std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2806  Value *Val = Ptr->getBuiltValue();
2807  Actions.push_back(std::move(Ptr));
2808  return Val;
2809}
2810
2811Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2812                                            Value *Opnd, Type *Ty) {
2813  std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2814  Value *Val = Ptr->getBuiltValue();
2815  Actions.push_back(std::move(Ptr));
2816  return Val;
2817}
2818
2819void TypePromotionTransaction::moveBefore(Instruction *Inst,
2820                                          Instruction *Before) {
2821  Actions.push_back(
2822      std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2823          Inst, Before));
2824}
2825
2826TypePromotionTransaction::ConstRestorationPt
2827TypePromotionTransaction::getRestorationPoint() const {
2828  return !Actions.empty() ? Actions.back().get() : nullptr;
2829}
2830
2831void TypePromotionTransaction::commit() {
2832  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2833       ++It)
2834    (*It)->commit();
2835  Actions.clear();
2836}
2837
2838void TypePromotionTransaction::rollback(
2839    TypePromotionTransaction::ConstRestorationPt Point) {
2840  while (!Actions.empty() && Point != Actions.back().get()) {
2841    std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2842    Curr->undo();
2843  }
2844}
2845
2846namespace {
2847
2848/// A helper class for matching addressing modes.
2849///
2850/// This encapsulates the logic for matching the target-legal addressing modes.
2851class AddressingModeMatcher {
2852  SmallVectorImpl<Instruction*> &AddrModeInsts;
2853  const TargetLowering &TLI;
2854  const TargetRegisterInfo &TRI;
2855  const DataLayout &DL;
2856
2857  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2858  /// the memory instruction that we're computing this address for.
2859  Type *AccessTy;
2860  unsigned AddrSpace;
2861  Instruction *MemoryInst;
2862
2863  /// This is the addressing mode that we're building up. This is
2864  /// part of the return value of this addressing mode matching stuff.
2865  ExtAddrMode &AddrMode;
2866
2867  /// The instructions inserted by other CodeGenPrepare optimizations.
2868  const SetOfInstrs &InsertedInsts;
2869
2870  /// A map from the instructions to their type before promotion.
2871  InstrToOrigTy &PromotedInsts;
2872
2873  /// The ongoing transaction where every action should be registered.
2874  TypePromotionTransaction &TPT;
2875
2876  // A GEP which has too large offset to be folded into the addressing mode.
2877  std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2878
2879  /// This is set to true when we should not do profitability checks.
2880  /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2881  bool IgnoreProfitability;
2882
2883  /// True if we are optimizing for size.
2884  bool OptSize;
2885
2886  ProfileSummaryInfo *PSI;
2887  BlockFrequencyInfo *BFI;
2888
2889  AddressingModeMatcher(
2890      SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2891      const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2892      ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2893      InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2894      std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
2895      bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
2896      : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2897        DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2898        MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2899        PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP),
2900        OptSize(OptSize), PSI(PSI), BFI(BFI) {
2901    IgnoreProfitability = false;
2902  }
2903
2904public:
2905  /// Find the maximal addressing mode that a load/store of V can fold,
2906  /// give an access type of AccessTy.  This returns a list of involved
2907  /// instructions in AddrModeInsts.
2908  /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2909  /// optimizations.
2910  /// \p PromotedInsts maps the instructions to their type before promotion.
2911  /// \p The ongoing transaction where every action should be registered.
2912  static ExtAddrMode
2913  Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2914        SmallVectorImpl<Instruction *> &AddrModeInsts,
2915        const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2916        const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2917        TypePromotionTransaction &TPT,
2918        std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
2919        bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
2920    ExtAddrMode Result;
2921
2922    bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2923                                         MemoryInst, Result, InsertedInsts,
2924                                         PromotedInsts, TPT, LargeOffsetGEP,
2925                                         OptSize, PSI, BFI)
2926                       .matchAddr(V, 0);
2927    (void)Success; assert(Success && "Couldn't select *anything*?");
2928    return Result;
2929  }
2930
2931private:
2932  bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2933  bool matchAddr(Value *Addr, unsigned Depth);
2934  bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2935                          bool *MovedAway = nullptr);
2936  bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2937                                            ExtAddrMode &AMBefore,
2938                                            ExtAddrMode &AMAfter);
2939  bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2940  bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2941                             Value *PromotedOperand) const;
2942};
2943
2944class PhiNodeSet;
2945
2946/// An iterator for PhiNodeSet.
2947class PhiNodeSetIterator {
2948  PhiNodeSet * const Set;
2949  size_t CurrentIndex = 0;
2950
2951public:
2952  /// The constructor. Start should point to either a valid element, or be equal
2953  /// to the size of the underlying SmallVector of the PhiNodeSet.
2954  PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2955  PHINode * operator*() const;
2956  PhiNodeSetIterator& operator++();
2957  bool operator==(const PhiNodeSetIterator &RHS) const;
2958  bool operator!=(const PhiNodeSetIterator &RHS) const;
2959};
2960
2961/// Keeps a set of PHINodes.
2962///
2963/// This is a minimal set implementation for a specific use case:
2964/// It is very fast when there are very few elements, but also provides good
2965/// performance when there are many. It is similar to SmallPtrSet, but also
2966/// provides iteration by insertion order, which is deterministic and stable
2967/// across runs. It is also similar to SmallSetVector, but provides removing
2968/// elements in O(1) time. This is achieved by not actually removing the element
2969/// from the underlying vector, so comes at the cost of using more memory, but
2970/// that is fine, since PhiNodeSets are used as short lived objects.
2971class PhiNodeSet {
2972  friend class PhiNodeSetIterator;
2973
2974  using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2975  using iterator =  PhiNodeSetIterator;
2976
2977  /// Keeps the elements in the order of their insertion in the underlying
2978  /// vector. To achieve constant time removal, it never deletes any element.
2979  SmallVector<PHINode *, 32> NodeList;
2980
2981  /// Keeps the elements in the underlying set implementation. This (and not the
2982  /// NodeList defined above) is the source of truth on whether an element
2983  /// is actually in the collection.
2984  MapType NodeMap;
2985
2986  /// Points to the first valid (not deleted) element when the set is not empty
2987  /// and the value is not zero. Equals to the size of the underlying vector
2988  /// when the set is empty. When the value is 0, as in the beginning, the
2989  /// first element may or may not be valid.
2990  size_t FirstValidElement = 0;
2991
2992public:
2993  /// Inserts a new element to the collection.
2994  /// \returns true if the element is actually added, i.e. was not in the
2995  /// collection before the operation.
2996  bool insert(PHINode *Ptr) {
2997    if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2998      NodeList.push_back(Ptr);
2999      return true;
3000    }
3001    return false;
3002  }
3003
3004  /// Removes the element from the collection.
3005  /// \returns whether the element is actually removed, i.e. was in the
3006  /// collection before the operation.
3007  bool erase(PHINode *Ptr) {
3008    auto it = NodeMap.find(Ptr);
3009    if (it != NodeMap.end()) {
3010      NodeMap.erase(Ptr);
3011      SkipRemovedElements(FirstValidElement);
3012      return true;
3013    }
3014    return false;
3015  }
3016
3017  /// Removes all elements and clears the collection.
3018  void clear() {
3019    NodeMap.clear();
3020    NodeList.clear();
3021    FirstValidElement = 0;
3022  }
3023
3024  /// \returns an iterator that will iterate the elements in the order of
3025  /// insertion.
3026  iterator begin() {
3027    if (FirstValidElement == 0)
3028      SkipRemovedElements(FirstValidElement);
3029    return PhiNodeSetIterator(this, FirstValidElement);
3030  }
3031
3032  /// \returns an iterator that points to the end of the collection.
3033  iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3034
3035  /// Returns the number of elements in the collection.
3036  size_t size() const {
3037    return NodeMap.size();
3038  }
3039
3040  /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3041  size_t count(PHINode *Ptr) const {
3042    return NodeMap.count(Ptr);
3043  }
3044
3045private:
3046  /// Updates the CurrentIndex so that it will point to a valid element.
3047  ///
3048  /// If the element of NodeList at CurrentIndex is valid, it does not
3049  /// change it. If there are no more valid elements, it updates CurrentIndex
3050  /// to point to the end of the NodeList.
3051  void SkipRemovedElements(size_t &CurrentIndex) {
3052    while (CurrentIndex < NodeList.size()) {
3053      auto it = NodeMap.find(NodeList[CurrentIndex]);
3054      // If the element has been deleted and added again later, NodeMap will
3055      // point to a different index, so CurrentIndex will still be invalid.
3056      if (it != NodeMap.end() && it->second == CurrentIndex)
3057        break;
3058      ++CurrentIndex;
3059    }
3060  }
3061};
3062
3063PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3064    : Set(Set), CurrentIndex(Start) {}
3065
3066PHINode * PhiNodeSetIterator::operator*() const {
3067  assert(CurrentIndex < Set->NodeList.size() &&
3068         "PhiNodeSet access out of range");
3069  return Set->NodeList[CurrentIndex];
3070}
3071
3072PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3073  assert(CurrentIndex < Set->NodeList.size() &&
3074         "PhiNodeSet access out of range");
3075  ++CurrentIndex;
3076  Set->SkipRemovedElements(CurrentIndex);
3077  return *this;
3078}
3079
3080bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3081  return CurrentIndex == RHS.CurrentIndex;
3082}
3083
3084bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3085  return !((*this) == RHS);
3086}
3087
3088/// Keep track of simplification of Phi nodes.
3089/// Accept the set of all phi nodes and erase phi node from this set
3090/// if it is simplified.
3091class SimplificationTracker {
3092  DenseMap<Value *, Value *> Storage;
3093  const SimplifyQuery &SQ;
3094  // Tracks newly created Phi nodes. The elements are iterated by insertion
3095  // order.
3096  PhiNodeSet AllPhiNodes;
3097  // Tracks newly created Select nodes.
3098  SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3099
3100public:
3101  SimplificationTracker(const SimplifyQuery &sq)
3102      : SQ(sq) {}
3103
3104  Value *Get(Value *V) {
3105    do {
3106      auto SV = Storage.find(V);
3107      if (SV == Storage.end())
3108        return V;
3109      V = SV->second;
3110    } while (true);
3111  }
3112
3113  Value *Simplify(Value *Val) {
3114    SmallVector<Value *, 32> WorkList;
3115    SmallPtrSet<Value *, 32> Visited;
3116    WorkList.push_back(Val);
3117    while (!WorkList.empty()) {
3118      auto P = WorkList.pop_back_val();
3119      if (!Visited.insert(P).second)
3120        continue;
3121      if (auto *PI = dyn_cast<Instruction>(P))
3122        if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3123          for (auto *U : PI->users())
3124            WorkList.push_back(cast<Value>(U));
3125          Put(PI, V);
3126          PI->replaceAllUsesWith(V);
3127          if (auto *PHI = dyn_cast<PHINode>(PI))
3128            AllPhiNodes.erase(PHI);
3129          if (auto *Select = dyn_cast<SelectInst>(PI))
3130            AllSelectNodes.erase(Select);
3131          PI->eraseFromParent();
3132        }
3133    }
3134    return Get(Val);
3135  }
3136
3137  void Put(Value *From, Value *To) {
3138    Storage.insert({ From, To });
3139  }
3140
3141  void ReplacePhi(PHINode *From, PHINode *To) {
3142    Value* OldReplacement = Get(From);
3143    while (OldReplacement != From) {
3144      From = To;
3145      To = dyn_cast<PHINode>(OldReplacement);
3146      OldReplacement = Get(From);
3147    }
3148    assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3149    Put(From, To);
3150    From->replaceAllUsesWith(To);
3151    AllPhiNodes.erase(From);
3152    From->eraseFromParent();
3153  }
3154
3155  PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3156
3157  void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3158
3159  void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3160
3161  unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3162
3163  unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3164
3165  void destroyNewNodes(Type *CommonType) {
3166    // For safe erasing, replace the uses with dummy value first.
3167    auto Dummy = UndefValue::get(CommonType);
3168    for (auto I : AllPhiNodes) {
3169      I->replaceAllUsesWith(Dummy);
3170      I->eraseFromParent();
3171    }
3172    AllPhiNodes.clear();
3173    for (auto I : AllSelectNodes) {
3174      I->replaceAllUsesWith(Dummy);
3175      I->eraseFromParent();
3176    }
3177    AllSelectNodes.clear();
3178  }
3179};
3180
3181/// A helper class for combining addressing modes.
3182class AddressingModeCombiner {
3183  typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3184  typedef std::pair<PHINode *, PHINode *> PHIPair;
3185
3186private:
3187  /// The addressing modes we've collected.
3188  SmallVector<ExtAddrMode, 16> AddrModes;
3189
3190  /// The field in which the AddrModes differ, when we have more than one.
3191  ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3192
3193  /// Are the AddrModes that we have all just equal to their original values?
3194  bool AllAddrModesTrivial = true;
3195
3196  /// Common Type for all different fields in addressing modes.
3197  Type *CommonType;
3198
3199  /// SimplifyQuery for simplifyInstruction utility.
3200  const SimplifyQuery &SQ;
3201
3202  /// Original Address.
3203  Value *Original;
3204
3205public:
3206  AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3207      : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3208
3209  /// Get the combined AddrMode
3210  const ExtAddrMode &getAddrMode() const {
3211    return AddrModes[0];
3212  }
3213
3214  /// Add a new AddrMode if it's compatible with the AddrModes we already
3215  /// have.
3216  /// \return True iff we succeeded in doing so.
3217  bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3218    // Take note of if we have any non-trivial AddrModes, as we need to detect
3219    // when all AddrModes are trivial as then we would introduce a phi or select
3220    // which just duplicates what's already there.
3221    AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3222
3223    // If this is the first addrmode then everything is fine.
3224    if (AddrModes.empty()) {
3225      AddrModes.emplace_back(NewAddrMode);
3226      return true;
3227    }
3228
3229    // Figure out how different this is from the other address modes, which we
3230    // can do just by comparing against the first one given that we only care
3231    // about the cumulative difference.
3232    ExtAddrMode::FieldName ThisDifferentField =
3233      AddrModes[0].compare(NewAddrMode);
3234    if (DifferentField == ExtAddrMode::NoField)
3235      DifferentField = ThisDifferentField;
3236    else if (DifferentField != ThisDifferentField)
3237      DifferentField = ExtAddrMode::MultipleFields;
3238
3239    // If NewAddrMode differs in more than one dimension we cannot handle it.
3240    bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3241
3242    // If Scale Field is different then we reject.
3243    CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3244
3245    // We also must reject the case when base offset is different and
3246    // scale reg is not null, we cannot handle this case due to merge of
3247    // different offsets will be used as ScaleReg.
3248    CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3249                              !NewAddrMode.ScaledReg);
3250
3251    // We also must reject the case when GV is different and BaseReg installed
3252    // due to we want to use base reg as a merge of GV values.
3253    CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3254                              !NewAddrMode.HasBaseReg);
3255
3256    // Even if NewAddMode is the same we still need to collect it due to
3257    // original value is different. And later we will need all original values
3258    // as anchors during finding the common Phi node.
3259    if (CanHandle)
3260      AddrModes.emplace_back(NewAddrMode);
3261    else
3262      AddrModes.clear();
3263
3264    return CanHandle;
3265  }
3266
3267  /// Combine the addressing modes we've collected into a single
3268  /// addressing mode.
3269  /// \return True iff we successfully combined them or we only had one so
3270  /// didn't need to combine them anyway.
3271  bool combineAddrModes() {
3272    // If we have no AddrModes then they can't be combined.
3273    if (AddrModes.size() == 0)
3274      return false;
3275
3276    // A single AddrMode can trivially be combined.
3277    if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3278      return true;
3279
3280    // If the AddrModes we collected are all just equal to the value they are
3281    // derived from then combining them wouldn't do anything useful.
3282    if (AllAddrModesTrivial)
3283      return false;
3284
3285    if (!addrModeCombiningAllowed())
3286      return false;
3287
3288    // Build a map between <original value, basic block where we saw it> to
3289    // value of base register.
3290    // Bail out if there is no common type.
3291    FoldAddrToValueMapping Map;
3292    if (!initializeMap(Map))
3293      return false;
3294
3295    Value *CommonValue = findCommon(Map);
3296    if (CommonValue)
3297      AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3298    return CommonValue != nullptr;
3299  }
3300
3301private:
3302  /// Initialize Map with anchor values. For address seen
3303  /// we set the value of different field saw in this address.
3304  /// At the same time we find a common type for different field we will
3305  /// use to create new Phi/Select nodes. Keep it in CommonType field.
3306  /// Return false if there is no common type found.
3307  bool initializeMap(FoldAddrToValueMapping &Map) {
3308    // Keep track of keys where the value is null. We will need to replace it
3309    // with constant null when we know the common type.
3310    SmallVector<Value *, 2> NullValue;
3311    Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3312    for (auto &AM : AddrModes) {
3313      Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3314      if (DV) {
3315        auto *Type = DV->getType();
3316        if (CommonType && CommonType != Type)
3317          return false;
3318        CommonType = Type;
3319        Map[AM.OriginalValue] = DV;
3320      } else {
3321        NullValue.push_back(AM.OriginalValue);
3322      }
3323    }
3324    assert(CommonType && "At least one non-null value must be!");
3325    for (auto *V : NullValue)
3326      Map[V] = Constant::getNullValue(CommonType);
3327    return true;
3328  }
3329
3330  /// We have mapping between value A and other value B where B was a field in
3331  /// addressing mode represented by A. Also we have an original value C
3332  /// representing an address we start with. Traversing from C through phi and
3333  /// selects we ended up with A's in a map. This utility function tries to find
3334  /// a value V which is a field in addressing mode C and traversing through phi
3335  /// nodes and selects we will end up in corresponded values B in a map.
3336  /// The utility will create a new Phi/Selects if needed.
3337  // The simple example looks as follows:
3338  // BB1:
3339  //   p1 = b1 + 40
3340  //   br cond BB2, BB3
3341  // BB2:
3342  //   p2 = b2 + 40
3343  //   br BB3
3344  // BB3:
3345  //   p = phi [p1, BB1], [p2, BB2]
3346  //   v = load p
3347  // Map is
3348  //   p1 -> b1
3349  //   p2 -> b2
3350  // Request is
3351  //   p -> ?
3352  // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3353  Value *findCommon(FoldAddrToValueMapping &Map) {
3354    // Tracks the simplification of newly created phi nodes. The reason we use
3355    // this mapping is because we will add new created Phi nodes in AddrToBase.
3356    // Simplification of Phi nodes is recursive, so some Phi node may
3357    // be simplified after we added it to AddrToBase. In reality this
3358    // simplification is possible only if original phi/selects were not
3359    // simplified yet.
3360    // Using this mapping we can find the current value in AddrToBase.
3361    SimplificationTracker ST(SQ);
3362
3363    // First step, DFS to create PHI nodes for all intermediate blocks.
3364    // Also fill traverse order for the second step.
3365    SmallVector<Value *, 32> TraverseOrder;
3366    InsertPlaceholders(Map, TraverseOrder, ST);
3367
3368    // Second Step, fill new nodes by merged values and simplify if possible.
3369    FillPlaceholders(Map, TraverseOrder, ST);
3370
3371    if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3372      ST.destroyNewNodes(CommonType);
3373      return nullptr;
3374    }
3375
3376    // Now we'd like to match New Phi nodes to existed ones.
3377    unsigned PhiNotMatchedCount = 0;
3378    if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3379      ST.destroyNewNodes(CommonType);
3380      return nullptr;
3381    }
3382
3383    auto *Result = ST.Get(Map.find(Original)->second);
3384    if (Result) {
3385      NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3386      NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3387    }
3388    return Result;
3389  }
3390
3391  /// Try to match PHI node to Candidate.
3392  /// Matcher tracks the matched Phi nodes.
3393  bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3394                    SmallSetVector<PHIPair, 8> &Matcher,
3395                    PhiNodeSet &PhiNodesToMatch) {
3396    SmallVector<PHIPair, 8> WorkList;
3397    Matcher.insert({ PHI, Candidate });
3398    SmallSet<PHINode *, 8> MatchedPHIs;
3399    MatchedPHIs.insert(PHI);
3400    WorkList.push_back({ PHI, Candidate });
3401    SmallSet<PHIPair, 8> Visited;
3402    while (!WorkList.empty()) {
3403      auto Item = WorkList.pop_back_val();
3404      if (!Visited.insert(Item).second)
3405        continue;
3406      // We iterate over all incoming values to Phi to compare them.
3407      // If values are different and both of them Phi and the first one is a
3408      // Phi we added (subject to match) and both of them is in the same basic
3409      // block then we can match our pair if values match. So we state that
3410      // these values match and add it to work list to verify that.
3411      for (auto B : Item.first->blocks()) {
3412        Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3413        Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3414        if (FirstValue == SecondValue)
3415          continue;
3416
3417        PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3418        PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3419
3420        // One of them is not Phi or
3421        // The first one is not Phi node from the set we'd like to match or
3422        // Phi nodes from different basic blocks then
3423        // we will not be able to match.
3424        if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3425            FirstPhi->getParent() != SecondPhi->getParent())
3426          return false;
3427
3428        // If we already matched them then continue.
3429        if (Matcher.count({ FirstPhi, SecondPhi }))
3430          continue;
3431        // So the values are different and does not match. So we need them to
3432        // match. (But we register no more than one match per PHI node, so that
3433        // we won't later try to replace them twice.)
3434        if (MatchedPHIs.insert(FirstPhi).second)
3435          Matcher.insert({ FirstPhi, SecondPhi });
3436        // But me must check it.
3437        WorkList.push_back({ FirstPhi, SecondPhi });
3438      }
3439    }
3440    return true;
3441  }
3442
3443  /// For the given set of PHI nodes (in the SimplificationTracker) try
3444  /// to find their equivalents.
3445  /// Returns false if this matching fails and creation of new Phi is disabled.
3446  bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3447                   unsigned &PhiNotMatchedCount) {
3448    // Matched and PhiNodesToMatch iterate their elements in a deterministic
3449    // order, so the replacements (ReplacePhi) are also done in a deterministic
3450    // order.
3451    SmallSetVector<PHIPair, 8> Matched;
3452    SmallPtrSet<PHINode *, 8> WillNotMatch;
3453    PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3454    while (PhiNodesToMatch.size()) {
3455      PHINode *PHI = *PhiNodesToMatch.begin();
3456
3457      // Add us, if no Phi nodes in the basic block we do not match.
3458      WillNotMatch.clear();
3459      WillNotMatch.insert(PHI);
3460
3461      // Traverse all Phis until we found equivalent or fail to do that.
3462      bool IsMatched = false;
3463      for (auto &P : PHI->getParent()->phis()) {
3464        if (&P == PHI)
3465          continue;
3466        if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3467          break;
3468        // If it does not match, collect all Phi nodes from matcher.
3469        // if we end up with no match, them all these Phi nodes will not match
3470        // later.
3471        for (auto M : Matched)
3472          WillNotMatch.insert(M.first);
3473        Matched.clear();
3474      }
3475      if (IsMatched) {
3476        // Replace all matched values and erase them.
3477        for (auto MV : Matched)
3478          ST.ReplacePhi(MV.first, MV.second);
3479        Matched.clear();
3480        continue;
3481      }
3482      // If we are not allowed to create new nodes then bail out.
3483      if (!AllowNewPhiNodes)
3484        return false;
3485      // Just remove all seen values in matcher. They will not match anything.
3486      PhiNotMatchedCount += WillNotMatch.size();
3487      for (auto *P : WillNotMatch)
3488        PhiNodesToMatch.erase(P);
3489    }
3490    return true;
3491  }
3492  /// Fill the placeholders with values from predecessors and simplify them.
3493  void FillPlaceholders(FoldAddrToValueMapping &Map,
3494                        SmallVectorImpl<Value *> &TraverseOrder,
3495                        SimplificationTracker &ST) {
3496    while (!TraverseOrder.empty()) {
3497      Value *Current = TraverseOrder.pop_back_val();
3498      assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3499      Value *V = Map[Current];
3500
3501      if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3502        // CurrentValue also must be Select.
3503        auto *CurrentSelect = cast<SelectInst>(Current);
3504        auto *TrueValue = CurrentSelect->getTrueValue();
3505        assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3506        Select->setTrueValue(ST.Get(Map[TrueValue]));
3507        auto *FalseValue = CurrentSelect->getFalseValue();
3508        assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3509        Select->setFalseValue(ST.Get(Map[FalseValue]));
3510      } else {
3511        // Must be a Phi node then.
3512        auto *PHI = cast<PHINode>(V);
3513        // Fill the Phi node with values from predecessors.
3514        for (auto B : predecessors(PHI->getParent())) {
3515          Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3516          assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3517          PHI->addIncoming(ST.Get(Map[PV]), B);
3518        }
3519      }
3520      Map[Current] = ST.Simplify(V);
3521    }
3522  }
3523
3524  /// Starting from original value recursively iterates over def-use chain up to
3525  /// known ending values represented in a map. For each traversed phi/select
3526  /// inserts a placeholder Phi or Select.
3527  /// Reports all new created Phi/Select nodes by adding them to set.
3528  /// Also reports and order in what values have been traversed.
3529  void InsertPlaceholders(FoldAddrToValueMapping &Map,
3530                          SmallVectorImpl<Value *> &TraverseOrder,
3531                          SimplificationTracker &ST) {
3532    SmallVector<Value *, 32> Worklist;
3533    assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3534           "Address must be a Phi or Select node");
3535    auto *Dummy = UndefValue::get(CommonType);
3536    Worklist.push_back(Original);
3537    while (!Worklist.empty()) {
3538      Value *Current = Worklist.pop_back_val();
3539      // if it is already visited or it is an ending value then skip it.
3540      if (Map.find(Current) != Map.end())
3541        continue;
3542      TraverseOrder.push_back(Current);
3543
3544      // CurrentValue must be a Phi node or select. All others must be covered
3545      // by anchors.
3546      if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3547        // Is it OK to get metadata from OrigSelect?!
3548        // Create a Select placeholder with dummy value.
3549        SelectInst *Select = SelectInst::Create(
3550            CurrentSelect->getCondition(), Dummy, Dummy,
3551            CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3552        Map[Current] = Select;
3553        ST.insertNewSelect(Select);
3554        // We are interested in True and False values.
3555        Worklist.push_back(CurrentSelect->getTrueValue());
3556        Worklist.push_back(CurrentSelect->getFalseValue());
3557      } else {
3558        // It must be a Phi node then.
3559        PHINode *CurrentPhi = cast<PHINode>(Current);
3560        unsigned PredCount = CurrentPhi->getNumIncomingValues();
3561        PHINode *PHI =
3562            PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3563        Map[Current] = PHI;
3564        ST.insertNewPhi(PHI);
3565        for (Value *P : CurrentPhi->incoming_values())
3566          Worklist.push_back(P);
3567      }
3568    }
3569  }
3570
3571  bool addrModeCombiningAllowed() {
3572    if (DisableComplexAddrModes)
3573      return false;
3574    switch (DifferentField) {
3575    default:
3576      return false;
3577    case ExtAddrMode::BaseRegField:
3578      return AddrSinkCombineBaseReg;
3579    case ExtAddrMode::BaseGVField:
3580      return AddrSinkCombineBaseGV;
3581    case ExtAddrMode::BaseOffsField:
3582      return AddrSinkCombineBaseOffs;
3583    case ExtAddrMode::ScaledRegField:
3584      return AddrSinkCombineScaledReg;
3585    }
3586  }
3587};
3588} // end anonymous namespace
3589
3590/// Try adding ScaleReg*Scale to the current addressing mode.
3591/// Return true and update AddrMode if this addr mode is legal for the target,
3592/// false if not.
3593bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3594                                             unsigned Depth) {
3595  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3596  // mode.  Just process that directly.
3597  if (Scale == 1)
3598    return matchAddr(ScaleReg, Depth);
3599
3600  // If the scale is 0, it takes nothing to add this.
3601  if (Scale == 0)
3602    return true;
3603
3604  // If we already have a scale of this value, we can add to it, otherwise, we
3605  // need an available scale field.
3606  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3607    return false;
3608
3609  ExtAddrMode TestAddrMode = AddrMode;
3610
3611  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3612  // [A+B + A*7] -> [B+A*8].
3613  TestAddrMode.Scale += Scale;
3614  TestAddrMode.ScaledReg = ScaleReg;
3615
3616  // If the new address isn't legal, bail out.
3617  if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3618    return false;
3619
3620  // It was legal, so commit it.
3621  AddrMode = TestAddrMode;
3622
3623  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3624  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3625  // X*Scale + C*Scale to addr mode.
3626  ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3627  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3628      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3629    TestAddrMode.InBounds = false;
3630    TestAddrMode.ScaledReg = AddLHS;
3631    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3632
3633    // If this addressing mode is legal, commit it and remember that we folded
3634    // this instruction.
3635    if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3636      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3637      AddrMode = TestAddrMode;
3638      return true;
3639    }
3640  }
3641
3642  // Otherwise, not (x+c)*scale, just return what we have.
3643  return true;
3644}
3645
3646/// This is a little filter, which returns true if an addressing computation
3647/// involving I might be folded into a load/store accessing it.
3648/// This doesn't need to be perfect, but needs to accept at least
3649/// the set of instructions that MatchOperationAddr can.
3650static bool MightBeFoldableInst(Instruction *I) {
3651  switch (I->getOpcode()) {
3652  case Instruction::BitCast:
3653  case Instruction::AddrSpaceCast:
3654    // Don't touch identity bitcasts.
3655    if (I->getType() == I->getOperand(0)->getType())
3656      return false;
3657    return I->getType()->isIntOrPtrTy();
3658  case Instruction::PtrToInt:
3659    // PtrToInt is always a noop, as we know that the int type is pointer sized.
3660    return true;
3661  case Instruction::IntToPtr:
3662    // We know the input is intptr_t, so this is foldable.
3663    return true;
3664  case Instruction::Add:
3665    return true;
3666  case Instruction::Mul:
3667  case Instruction::Shl:
3668    // Can only handle X*C and X << C.
3669    return isa<ConstantInt>(I->getOperand(1));
3670  case Instruction::GetElementPtr:
3671    return true;
3672  default:
3673    return false;
3674  }
3675}
3676
3677/// Check whether or not \p Val is a legal instruction for \p TLI.
3678/// \note \p Val is assumed to be the product of some type promotion.
3679/// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3680/// to be legal, as the non-promoted value would have had the same state.
3681static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3682                                       const DataLayout &DL, Value *Val) {
3683  Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3684  if (!PromotedInst)
3685    return false;
3686  int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3687  // If the ISDOpcode is undefined, it was undefined before the promotion.
3688  if (!ISDOpcode)
3689    return true;
3690  // Otherwise, check if the promoted instruction is legal or not.
3691  return TLI.isOperationLegalOrCustom(
3692      ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3693}
3694
3695namespace {
3696
3697/// Hepler class to perform type promotion.
3698class TypePromotionHelper {
3699  /// Utility function to add a promoted instruction \p ExtOpnd to
3700  /// \p PromotedInsts and record the type of extension we have seen.
3701  static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3702                              Instruction *ExtOpnd,
3703                              bool IsSExt) {
3704    ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3705    InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3706    if (It != PromotedInsts.end()) {
3707      // If the new extension is same as original, the information in
3708      // PromotedInsts[ExtOpnd] is still correct.
3709      if (It->second.getInt() == ExtTy)
3710        return;
3711
3712      // Now the new extension is different from old extension, we make
3713      // the type information invalid by setting extension type to
3714      // BothExtension.
3715      ExtTy = BothExtension;
3716    }
3717    PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3718  }
3719
3720  /// Utility function to query the original type of instruction \p Opnd
3721  /// with a matched extension type. If the extension doesn't match, we
3722  /// cannot use the information we had on the original type.
3723  /// BothExtension doesn't match any extension type.
3724  static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3725                                 Instruction *Opnd,
3726                                 bool IsSExt) {
3727    ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3728    InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3729    if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3730      return It->second.getPointer();
3731    return nullptr;
3732  }
3733
3734  /// Utility function to check whether or not a sign or zero extension
3735  /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3736  /// either using the operands of \p Inst or promoting \p Inst.
3737  /// The type of the extension is defined by \p IsSExt.
3738  /// In other words, check if:
3739  /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3740  /// #1 Promotion applies:
3741  /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3742  /// #2 Operand reuses:
3743  /// ext opnd1 to ConsideredExtType.
3744  /// \p PromotedInsts maps the instructions to their type before promotion.
3745  static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3746                            const InstrToOrigTy &PromotedInsts, bool IsSExt);
3747
3748  /// Utility function to determine if \p OpIdx should be promoted when
3749  /// promoting \p Inst.
3750  static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3751    return !(isa<SelectInst>(Inst) && OpIdx == 0);
3752  }
3753
3754  /// Utility function to promote the operand of \p Ext when this
3755  /// operand is a promotable trunc or sext or zext.
3756  /// \p PromotedInsts maps the instructions to their type before promotion.
3757  /// \p CreatedInstsCost[out] contains the cost of all instructions
3758  /// created to promote the operand of Ext.
3759  /// Newly added extensions are inserted in \p Exts.
3760  /// Newly added truncates are inserted in \p Truncs.
3761  /// Should never be called directly.
3762  /// \return The promoted value which is used instead of Ext.
3763  static Value *promoteOperandForTruncAndAnyExt(
3764      Instruction *Ext, TypePromotionTransaction &TPT,
3765      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3766      SmallVectorImpl<Instruction *> *Exts,
3767      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3768
3769  /// Utility function to promote the operand of \p Ext when this
3770  /// operand is promotable and is not a supported trunc or sext.
3771  /// \p PromotedInsts maps the instructions to their type before promotion.
3772  /// \p CreatedInstsCost[out] contains the cost of all the instructions
3773  /// created to promote the operand of Ext.
3774  /// Newly added extensions are inserted in \p Exts.
3775  /// Newly added truncates are inserted in \p Truncs.
3776  /// Should never be called directly.
3777  /// \return The promoted value which is used instead of Ext.
3778  static Value *promoteOperandForOther(Instruction *Ext,
3779                                       TypePromotionTransaction &TPT,
3780                                       InstrToOrigTy &PromotedInsts,
3781                                       unsigned &CreatedInstsCost,
3782                                       SmallVectorImpl<Instruction *> *Exts,
3783                                       SmallVectorImpl<Instruction *> *Truncs,
3784                                       const TargetLowering &TLI, bool IsSExt);
3785
3786  /// \see promoteOperandForOther.
3787  static Value *signExtendOperandForOther(
3788      Instruction *Ext, TypePromotionTransaction &TPT,
3789      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3790      SmallVectorImpl<Instruction *> *Exts,
3791      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3792    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3793                                  Exts, Truncs, TLI, true);
3794  }
3795
3796  /// \see promoteOperandForOther.
3797  static Value *zeroExtendOperandForOther(
3798      Instruction *Ext, TypePromotionTransaction &TPT,
3799      InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3800      SmallVectorImpl<Instruction *> *Exts,
3801      SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3802    return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3803                                  Exts, Truncs, TLI, false);
3804  }
3805
3806public:
3807  /// Type for the utility function that promotes the operand of Ext.
3808  using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3809                            InstrToOrigTy &PromotedInsts,
3810                            unsigned &CreatedInstsCost,
3811                            SmallVectorImpl<Instruction *> *Exts,
3812                            SmallVectorImpl<Instruction *> *Truncs,
3813                            const TargetLowering &TLI);
3814
3815  /// Given a sign/zero extend instruction \p Ext, return the appropriate
3816  /// action to promote the operand of \p Ext instead of using Ext.
3817  /// \return NULL if no promotable action is possible with the current
3818  /// sign extension.
3819  /// \p InsertedInsts keeps track of all the instructions inserted by the
3820  /// other CodeGenPrepare optimizations. This information is important
3821  /// because we do not want to promote these instructions as CodeGenPrepare
3822  /// will reinsert them later. Thus creating an infinite loop: create/remove.
3823  /// \p PromotedInsts maps the instructions to their type before promotion.
3824  static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3825                          const TargetLowering &TLI,
3826                          const InstrToOrigTy &PromotedInsts);
3827};
3828
3829} // end anonymous namespace
3830
3831bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3832                                        Type *ConsideredExtType,
3833                                        const InstrToOrigTy &PromotedInsts,
3834                                        bool IsSExt) {
3835  // The promotion helper does not know how to deal with vector types yet.
3836  // To be able to fix that, we would need to fix the places where we
3837  // statically extend, e.g., constants and such.
3838  if (Inst->getType()->isVectorTy())
3839    return false;
3840
3841  // We can always get through zext.
3842  if (isa<ZExtInst>(Inst))
3843    return true;
3844
3845  // sext(sext) is ok too.
3846  if (IsSExt && isa<SExtInst>(Inst))
3847    return true;
3848
3849  // We can get through binary operator, if it is legal. In other words, the
3850  // binary operator must have a nuw or nsw flag.
3851  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3852  if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3853      ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3854       (IsSExt && BinOp->hasNoSignedWrap())))
3855    return true;
3856
3857  // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3858  if ((Inst->getOpcode() == Instruction::And ||
3859       Inst->getOpcode() == Instruction::Or))
3860    return true;
3861
3862  // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3863  if (Inst->getOpcode() == Instruction::Xor) {
3864    const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3865    // Make sure it is not a NOT.
3866    if (Cst && !Cst->getValue().isAllOnesValue())
3867      return true;
3868  }
3869
3870  // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3871  // It may change a poisoned value into a regular value, like
3872  //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3873  //          poisoned value                    regular value
3874  // It should be OK since undef covers valid value.
3875  if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3876    return true;
3877
3878  // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3879  // It may change a poisoned value into a regular value, like
3880  //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3881  //          poisoned value                    regular value
3882  // It should be OK since undef covers valid value.
3883  if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3884    const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
3885    if (ExtInst->hasOneUse()) {
3886      const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
3887      if (AndInst && AndInst->getOpcode() == Instruction::And) {
3888        const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3889        if (Cst &&
3890            Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3891          return true;
3892      }
3893    }
3894  }
3895
3896  // Check if we can do the following simplification.
3897  // ext(trunc(opnd)) --> ext(opnd)
3898  if (!isa<TruncInst>(Inst))
3899    return false;
3900
3901  Value *OpndVal = Inst->getOperand(0);
3902  // Check if we can use this operand in the extension.
3903  // If the type is larger than the result type of the extension, we cannot.
3904  if (!OpndVal->getType()->isIntegerTy() ||
3905      OpndVal->getType()->getIntegerBitWidth() >
3906          ConsideredExtType->getIntegerBitWidth())
3907    return false;
3908
3909  // If the operand of the truncate is not an instruction, we will not have
3910  // any information on the dropped bits.
3911  // (Actually we could for constant but it is not worth the extra logic).
3912  Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3913  if (!Opnd)
3914    return false;
3915
3916  // Check if the source of the type is narrow enough.
3917  // I.e., check that trunc just drops extended bits of the same kind of
3918  // the extension.
3919  // #1 get the type of the operand and check the kind of the extended bits.
3920  const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3921  if (OpndType)
3922    ;
3923  else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3924    OpndType = Opnd->getOperand(0)->getType();
3925  else
3926    return false;
3927
3928  // #2 check that the truncate just drops extended bits.
3929  return Inst->getType()->getIntegerBitWidth() >=
3930         OpndType->getIntegerBitWidth();
3931}
3932
3933TypePromotionHelper::Action TypePromotionHelper::getAction(
3934    Instruction *Ext, const SetOfInstrs &InsertedInsts,
3935    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3936  assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3937         "Unexpected instruction type");
3938  Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3939  Type *ExtTy = Ext->getType();
3940  bool IsSExt = isa<SExtInst>(Ext);
3941  // If the operand of the extension is not an instruction, we cannot
3942  // get through.
3943  // If it, check we can get through.
3944  if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3945    return nullptr;
3946
3947  // Do not promote if the operand has been added by codegenprepare.
3948  // Otherwise, it means we are undoing an optimization that is likely to be
3949  // redone, thus causing potential infinite loop.
3950  if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3951    return nullptr;
3952
3953  // SExt or Trunc instructions.
3954  // Return the related handler.
3955  if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3956      isa<ZExtInst>(ExtOpnd))
3957    return promoteOperandForTruncAndAnyExt;
3958
3959  // Regular instruction.
3960  // Abort early if we will have to insert non-free instructions.
3961  if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3962    return nullptr;
3963  return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3964}
3965
3966Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3967    Instruction *SExt, TypePromotionTransaction &TPT,
3968    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3969    SmallVectorImpl<Instruction *> *Exts,
3970    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3971  // By construction, the operand of SExt is an instruction. Otherwise we cannot
3972  // get through it and this method should not be called.
3973  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3974  Value *ExtVal = SExt;
3975  bool HasMergedNonFreeExt = false;
3976  if (isa<ZExtInst>(SExtOpnd)) {
3977    // Replace s|zext(zext(opnd))
3978    // => zext(opnd).
3979    HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3980    Value *ZExt =
3981        TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3982    TPT.replaceAllUsesWith(SExt, ZExt);
3983    TPT.eraseInstruction(SExt);
3984    ExtVal = ZExt;
3985  } else {
3986    // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3987    // => z|sext(opnd).
3988    TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3989  }
3990  CreatedInstsCost = 0;
3991
3992  // Remove dead code.
3993  if (SExtOpnd->use_empty())
3994    TPT.eraseInstruction(SExtOpnd);
3995
3996  // Check if the extension is still needed.
3997  Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3998  if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3999    if (ExtInst) {
4000      if (Exts)
4001        Exts->push_back(ExtInst);
4002      CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4003    }
4004    return ExtVal;
4005  }
4006
4007  // At this point we have: ext ty opnd to ty.
4008  // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4009  Value *NextVal = ExtInst->getOperand(0);
4010  TPT.eraseInstruction(ExtInst, NextVal);
4011  return NextVal;
4012}
4013
4014Value *TypePromotionHelper::promoteOperandForOther(
4015    Instruction *Ext, TypePromotionTransaction &TPT,
4016    InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4017    SmallVectorImpl<Instruction *> *Exts,
4018    SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4019    bool IsSExt) {
4020  // By construction, the operand of Ext is an instruction. Otherwise we cannot
4021  // get through it and this method should not be called.
4022  Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4023  CreatedInstsCost = 0;
4024  if (!ExtOpnd->hasOneUse()) {
4025    // ExtOpnd will be promoted.
4026    // All its uses, but Ext, will need to use a truncated value of the
4027    // promoted version.
4028    // Create the truncate now.
4029    Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4030    if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4031      // Insert it just after the definition.
4032      ITrunc->moveAfter(ExtOpnd);
4033      if (Truncs)
4034        Truncs->push_back(ITrunc);
4035    }
4036
4037    TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4038    // Restore the operand of Ext (which has been replaced by the previous call
4039    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4040    TPT.setOperand(Ext, 0, ExtOpnd);
4041  }
4042
4043  // Get through the Instruction:
4044  // 1. Update its type.
4045  // 2. Replace the uses of Ext by Inst.
4046  // 3. Extend each operand that needs to be extended.
4047
4048  // Remember the original type of the instruction before promotion.
4049  // This is useful to know that the high bits are sign extended bits.
4050  addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4051  // Step #1.
4052  TPT.mutateType(ExtOpnd, Ext->getType());
4053  // Step #2.
4054  TPT.replaceAllUsesWith(Ext, ExtOpnd);
4055  // Step #3.
4056  Instruction *ExtForOpnd = Ext;
4057
4058  LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4059  for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4060       ++OpIdx) {
4061    LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4062    if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4063        !shouldExtOperand(ExtOpnd, OpIdx)) {
4064      LLVM_DEBUG(dbgs() << "No need to propagate\n");
4065      continue;
4066    }
4067    // Check if we can statically extend the operand.
4068    Value *Opnd = ExtOpnd->getOperand(OpIdx);
4069    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4070      LLVM_DEBUG(dbgs() << "Statically extend\n");
4071      unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4072      APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4073                            : Cst->getValue().zext(BitWidth);
4074      TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4075      continue;
4076    }
4077    // UndefValue are typed, so we have to statically sign extend them.
4078    if (isa<UndefValue>(Opnd)) {
4079      LLVM_DEBUG(dbgs() << "Statically extend\n");
4080      TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4081      continue;
4082    }
4083
4084    // Otherwise we have to explicitly sign extend the operand.
4085    // Check if Ext was reused to extend an operand.
4086    if (!ExtForOpnd) {
4087      // If yes, create a new one.
4088      LLVM_DEBUG(dbgs() << "More operands to ext\n");
4089      Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4090        : TPT.createZExt(Ext, Opnd, Ext->getType());
4091      if (!isa<Instruction>(ValForExtOpnd)) {
4092        TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4093        continue;
4094      }
4095      ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4096    }
4097    if (Exts)
4098      Exts->push_back(ExtForOpnd);
4099    TPT.setOperand(ExtForOpnd, 0, Opnd);
4100
4101    // Move the sign extension before the insertion point.
4102    TPT.moveBefore(ExtForOpnd, ExtOpnd);
4103    TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4104    CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4105    // If more sext are required, new instructions will have to be created.
4106    ExtForOpnd = nullptr;
4107  }
4108  if (ExtForOpnd == Ext) {
4109    LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4110    TPT.eraseInstruction(Ext);
4111  }
4112  return ExtOpnd;
4113}
4114
4115/// Check whether or not promoting an instruction to a wider type is profitable.
4116/// \p NewCost gives the cost of extension instructions created by the
4117/// promotion.
4118/// \p OldCost gives the cost of extension instructions before the promotion
4119/// plus the number of instructions that have been
4120/// matched in the addressing mode the promotion.
4121/// \p PromotedOperand is the value that has been promoted.
4122/// \return True if the promotion is profitable, false otherwise.
4123bool AddressingModeMatcher::isPromotionProfitable(
4124    unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4125  LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4126                    << '\n');
4127  // The cost of the new extensions is greater than the cost of the
4128  // old extension plus what we folded.
4129  // This is not profitable.
4130  if (NewCost > OldCost)
4131    return false;
4132  if (NewCost < OldCost)
4133    return true;
4134  // The promotion is neutral but it may help folding the sign extension in
4135  // loads for instance.
4136  // Check that we did not create an illegal instruction.
4137  return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4138}
4139
4140/// Given an instruction or constant expr, see if we can fold the operation
4141/// into the addressing mode. If so, update the addressing mode and return
4142/// true, otherwise return false without modifying AddrMode.
4143/// If \p MovedAway is not NULL, it contains the information of whether or
4144/// not AddrInst has to be folded into the addressing mode on success.
4145/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4146/// because it has been moved away.
4147/// Thus AddrInst must not be added in the matched instructions.
4148/// This state can happen when AddrInst is a sext, since it may be moved away.
4149/// Therefore, AddrInst may not be valid when MovedAway is true and it must
4150/// not be referenced anymore.
4151bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4152                                               unsigned Depth,
4153                                               bool *MovedAway) {
4154  // Avoid exponential behavior on extremely deep expression trees.
4155  if (Depth >= 5) return false;
4156
4157  // By default, all matched instructions stay in place.
4158  if (MovedAway)
4159    *MovedAway = false;
4160
4161  switch (Opcode) {
4162  case Instruction::PtrToInt:
4163    // PtrToInt is always a noop, as we know that the int type is pointer sized.
4164    return matchAddr(AddrInst->getOperand(0), Depth);
4165  case Instruction::IntToPtr: {
4166    auto AS = AddrInst->getType()->getPointerAddressSpace();
4167    auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4168    // This inttoptr is a no-op if the integer type is pointer sized.
4169    if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4170      return matchAddr(AddrInst->getOperand(0), Depth);
4171    return false;
4172  }
4173  case Instruction::BitCast:
4174    // BitCast is always a noop, and we can handle it as long as it is
4175    // int->int or pointer->pointer (we don't want int<->fp or something).
4176    if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4177        // Don't touch identity bitcasts.  These were probably put here by LSR,
4178        // and we don't want to mess around with them.  Assume it knows what it
4179        // is doing.
4180        AddrInst->getOperand(0)->getType() != AddrInst->getType())
4181      return matchAddr(AddrInst->getOperand(0), Depth);
4182    return false;
4183  case Instruction::AddrSpaceCast: {
4184    unsigned SrcAS
4185      = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4186    unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4187    if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4188      return matchAddr(AddrInst->getOperand(0), Depth);
4189    return false;
4190  }
4191  case Instruction::Add: {
4192    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4193    ExtAddrMode BackupAddrMode = AddrMode;
4194    unsigned OldSize = AddrModeInsts.size();
4195    // Start a transaction at this point.
4196    // The LHS may match but not the RHS.
4197    // Therefore, we need a higher level restoration point to undo partially
4198    // matched operation.
4199    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4200        TPT.getRestorationPoint();
4201
4202    AddrMode.InBounds = false;
4203    if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4204        matchAddr(AddrInst->getOperand(0), Depth+1))
4205      return true;
4206
4207    // Restore the old addr mode info.
4208    AddrMode = BackupAddrMode;
4209    AddrModeInsts.resize(OldSize);
4210    TPT.rollback(LastKnownGood);
4211
4212    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4213    if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4214        matchAddr(AddrInst->getOperand(1), Depth+1))
4215      return true;
4216
4217    // Otherwise we definitely can't merge the ADD in.
4218    AddrMode = BackupAddrMode;
4219    AddrModeInsts.resize(OldSize);
4220    TPT.rollback(LastKnownGood);
4221    break;
4222  }
4223  //case Instruction::Or:
4224  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4225  //break;
4226  case Instruction::Mul:
4227  case Instruction::Shl: {
4228    // Can only handle X*C and X << C.
4229    AddrMode.InBounds = false;
4230    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4231    if (!RHS || RHS->getBitWidth() > 64)
4232      return false;
4233    int64_t Scale = RHS->getSExtValue();
4234    if (Opcode == Instruction::Shl)
4235      Scale = 1LL << Scale;
4236
4237    return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4238  }
4239  case Instruction::GetElementPtr: {
4240    // Scan the GEP.  We check it if it contains constant offsets and at most
4241    // one variable offset.
4242    int VariableOperand = -1;
4243    unsigned VariableScale = 0;
4244
4245    int64_t ConstantOffset = 0;
4246    gep_type_iterator GTI = gep_type_begin(AddrInst);
4247    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4248      if (StructType *STy = GTI.getStructTypeOrNull()) {
4249        const StructLayout *SL = DL.getStructLayout(STy);
4250        unsigned Idx =
4251          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4252        ConstantOffset += SL->getElementOffset(Idx);
4253      } else {
4254        uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4255        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4256          const APInt &CVal = CI->getValue();
4257          if (CVal.getMinSignedBits() <= 64) {
4258            ConstantOffset += CVal.getSExtValue() * TypeSize;
4259            continue;
4260          }
4261        }
4262        if (TypeSize) {  // Scales of zero don't do anything.
4263          // We only allow one variable index at the moment.
4264          if (VariableOperand != -1)
4265            return false;
4266
4267          // Remember the variable index.
4268          VariableOperand = i;
4269          VariableScale = TypeSize;
4270        }
4271      }
4272    }
4273
4274    // A common case is for the GEP to only do a constant offset.  In this case,
4275    // just add it to the disp field and check validity.
4276    if (VariableOperand == -1) {
4277      AddrMode.BaseOffs += ConstantOffset;
4278      if (ConstantOffset == 0 ||
4279          TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4280        // Check to see if we can fold the base pointer in too.
4281        if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4282          if (!cast<GEPOperator>(AddrInst)->isInBounds())
4283            AddrMode.InBounds = false;
4284          return true;
4285        }
4286      } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4287                 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4288                 ConstantOffset > 0) {
4289        // Record GEPs with non-zero offsets as candidates for splitting in the
4290        // event that the offset cannot fit into the r+i addressing mode.
4291        // Simple and common case that only one GEP is used in calculating the
4292        // address for the memory access.
4293        Value *Base = AddrInst->getOperand(0);
4294        auto *BaseI = dyn_cast<Instruction>(Base);
4295        auto *GEP = cast<GetElementPtrInst>(AddrInst);
4296        if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4297            (BaseI && !isa<CastInst>(BaseI) &&
4298             !isa<GetElementPtrInst>(BaseI))) {
4299          // Make sure the parent block allows inserting non-PHI instructions
4300          // before the terminator.
4301          BasicBlock *Parent =
4302              BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4303          if (!Parent->getTerminator()->isEHPad())
4304            LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4305        }
4306      }
4307      AddrMode.BaseOffs -= ConstantOffset;
4308      return false;
4309    }
4310
4311    // Save the valid addressing mode in case we can't match.
4312    ExtAddrMode BackupAddrMode = AddrMode;
4313    unsigned OldSize = AddrModeInsts.size();
4314
4315    // See if the scale and offset amount is valid for this target.
4316    AddrMode.BaseOffs += ConstantOffset;
4317    if (!cast<GEPOperator>(AddrInst)->isInBounds())
4318      AddrMode.InBounds = false;
4319
4320    // Match the base operand of the GEP.
4321    if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4322      // If it couldn't be matched, just stuff the value in a register.
4323      if (AddrMode.HasBaseReg) {
4324        AddrMode = BackupAddrMode;
4325        AddrModeInsts.resize(OldSize);
4326        return false;
4327      }
4328      AddrMode.HasBaseReg = true;
4329      AddrMode.BaseReg = AddrInst->getOperand(0);
4330    }
4331
4332    // Match the remaining variable portion of the GEP.
4333    if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4334                          Depth)) {
4335      // If it couldn't be matched, try stuffing the base into a register
4336      // instead of matching it, and retrying the match of the scale.
4337      AddrMode = BackupAddrMode;
4338      AddrModeInsts.resize(OldSize);
4339      if (AddrMode.HasBaseReg)
4340        return false;
4341      AddrMode.HasBaseReg = true;
4342      AddrMode.BaseReg = AddrInst->getOperand(0);
4343      AddrMode.BaseOffs += ConstantOffset;
4344      if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4345                            VariableScale, Depth)) {
4346        // If even that didn't work, bail.
4347        AddrMode = BackupAddrMode;
4348        AddrModeInsts.resize(OldSize);
4349        return false;
4350      }
4351    }
4352
4353    return true;
4354  }
4355  case Instruction::SExt:
4356  case Instruction::ZExt: {
4357    Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4358    if (!Ext)
4359      return false;
4360
4361    // Try to move this ext out of the way of the addressing mode.
4362    // Ask for a method for doing so.
4363    TypePromotionHelper::Action TPH =
4364        TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4365    if (!TPH)
4366      return false;
4367
4368    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4369        TPT.getRestorationPoint();
4370    unsigned CreatedInstsCost = 0;
4371    unsigned ExtCost = !TLI.isExtFree(Ext);
4372    Value *PromotedOperand =
4373        TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4374    // SExt has been moved away.
4375    // Thus either it will be rematched later in the recursive calls or it is
4376    // gone. Anyway, we must not fold it into the addressing mode at this point.
4377    // E.g.,
4378    // op = add opnd, 1
4379    // idx = ext op
4380    // addr = gep base, idx
4381    // is now:
4382    // promotedOpnd = ext opnd            <- no match here
4383    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4384    // addr = gep base, op                <- match
4385    if (MovedAway)
4386      *MovedAway = true;
4387
4388    assert(PromotedOperand &&
4389           "TypePromotionHelper should have filtered out those cases");
4390
4391    ExtAddrMode BackupAddrMode = AddrMode;
4392    unsigned OldSize = AddrModeInsts.size();
4393
4394    if (!matchAddr(PromotedOperand, Depth) ||
4395        // The total of the new cost is equal to the cost of the created
4396        // instructions.
4397        // The total of the old cost is equal to the cost of the extension plus
4398        // what we have saved in the addressing mode.
4399        !isPromotionProfitable(CreatedInstsCost,
4400                               ExtCost + (AddrModeInsts.size() - OldSize),
4401                               PromotedOperand)) {
4402      AddrMode = BackupAddrMode;
4403      AddrModeInsts.resize(OldSize);
4404      LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4405      TPT.rollback(LastKnownGood);
4406      return false;
4407    }
4408    return true;
4409  }
4410  }
4411  return false;
4412}
4413
4414/// If we can, try to add the value of 'Addr' into the current addressing mode.
4415/// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4416/// unmodified. This assumes that Addr is either a pointer type or intptr_t
4417/// for the target.
4418///
4419bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4420  // Start a transaction at this point that we will rollback if the matching
4421  // fails.
4422  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4423      TPT.getRestorationPoint();
4424  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4425    // Fold in immediates if legal for the target.
4426    AddrMode.BaseOffs += CI->getSExtValue();
4427    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4428      return true;
4429    AddrMode.BaseOffs -= CI->getSExtValue();
4430  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4431    // If this is a global variable, try to fold it into the addressing mode.
4432    if (!AddrMode.BaseGV) {
4433      AddrMode.BaseGV = GV;
4434      if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4435        return true;
4436      AddrMode.BaseGV = nullptr;
4437    }
4438  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4439    ExtAddrMode BackupAddrMode = AddrMode;
4440    unsigned OldSize = AddrModeInsts.size();
4441
4442    // Check to see if it is possible to fold this operation.
4443    bool MovedAway = false;
4444    if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4445      // This instruction may have been moved away. If so, there is nothing
4446      // to check here.
4447      if (MovedAway)
4448        return true;
4449      // Okay, it's possible to fold this.  Check to see if it is actually
4450      // *profitable* to do so.  We use a simple cost model to avoid increasing
4451      // register pressure too much.
4452      if (I->hasOneUse() ||
4453          isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4454        AddrModeInsts.push_back(I);
4455        return true;
4456      }
4457
4458      // It isn't profitable to do this, roll back.
4459      //cerr << "NOT FOLDING: " << *I;
4460      AddrMode = BackupAddrMode;
4461      AddrModeInsts.resize(OldSize);
4462      TPT.rollback(LastKnownGood);
4463    }
4464  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4465    if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4466      return true;
4467    TPT.rollback(LastKnownGood);
4468  } else if (isa<ConstantPointerNull>(Addr)) {
4469    // Null pointer gets folded without affecting the addressing mode.
4470    return true;
4471  }
4472
4473  // Worse case, the target should support [reg] addressing modes. :)
4474  if (!AddrMode.HasBaseReg) {
4475    AddrMode.HasBaseReg = true;
4476    AddrMode.BaseReg = Addr;
4477    // Still check for legality in case the target supports [imm] but not [i+r].
4478    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4479      return true;
4480    AddrMode.HasBaseReg = false;
4481    AddrMode.BaseReg = nullptr;
4482  }
4483
4484  // If the base register is already taken, see if we can do [r+r].
4485  if (AddrMode.Scale == 0) {
4486    AddrMode.Scale = 1;
4487    AddrMode.ScaledReg = Addr;
4488    if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4489      return true;
4490    AddrMode.Scale = 0;
4491    AddrMode.ScaledReg = nullptr;
4492  }
4493  // Couldn't match.
4494  TPT.rollback(LastKnownGood);
4495  return false;
4496}
4497
4498/// Check to see if all uses of OpVal by the specified inline asm call are due
4499/// to memory operands. If so, return true, otherwise return false.
4500static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4501                                    const TargetLowering &TLI,
4502                                    const TargetRegisterInfo &TRI) {
4503  const Function *F = CI->getFunction();
4504  TargetLowering::AsmOperandInfoVector TargetConstraints =
4505      TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4506                            ImmutableCallSite(CI));
4507
4508  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4509    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4510
4511    // Compute the constraint code and ConstraintType to use.
4512    TLI.ComputeConstraintToUse(OpInfo, SDValue());
4513
4514    // If this asm operand is our Value*, and if it isn't an indirect memory
4515    // operand, we can't fold it!
4516    if (OpInfo.CallOperandVal == OpVal &&
4517        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4518         !OpInfo.isIndirect))
4519      return false;
4520  }
4521
4522  return true;
4523}
4524
4525// Max number of memory uses to look at before aborting the search to conserve
4526// compile time.
4527static constexpr int MaxMemoryUsesToScan = 20;
4528
4529/// Recursively walk all the uses of I until we find a memory use.
4530/// If we find an obviously non-foldable instruction, return true.
4531/// Add the ultimately found memory instructions to MemoryUses.
4532static bool FindAllMemoryUses(
4533    Instruction *I,
4534    SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4535    SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4536    const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4537    BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4538  // If we already considered this instruction, we're done.
4539  if (!ConsideredInsts.insert(I).second)
4540    return false;
4541
4542  // If this is an obviously unfoldable instruction, bail out.
4543  if (!MightBeFoldableInst(I))
4544    return true;
4545
4546  // Loop over all the uses, recursively processing them.
4547  for (Use &U : I->uses()) {
4548    // Conservatively return true if we're seeing a large number or a deep chain
4549    // of users. This avoids excessive compilation times in pathological cases.
4550    if (SeenInsts++ >= MaxMemoryUsesToScan)
4551      return true;
4552
4553    Instruction *UserI = cast<Instruction>(U.getUser());
4554    if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4555      MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4556      continue;
4557    }
4558
4559    if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4560      unsigned opNo = U.getOperandNo();
4561      if (opNo != StoreInst::getPointerOperandIndex())
4562        return true; // Storing addr, not into addr.
4563      MemoryUses.push_back(std::make_pair(SI, opNo));
4564      continue;
4565    }
4566
4567    if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4568      unsigned opNo = U.getOperandNo();
4569      if (opNo != AtomicRMWInst::getPointerOperandIndex())
4570        return true; // Storing addr, not into addr.
4571      MemoryUses.push_back(std::make_pair(RMW, opNo));
4572      continue;
4573    }
4574
4575    if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4576      unsigned opNo = U.getOperandNo();
4577      if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4578        return true; // Storing addr, not into addr.
4579      MemoryUses.push_back(std::make_pair(CmpX, opNo));
4580      continue;
4581    }
4582
4583    if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4584      // If this is a cold call, we can sink the addressing calculation into
4585      // the cold path.  See optimizeCallInst
4586      bool OptForSize = OptSize ||
4587          llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4588      if (!OptForSize && CI->hasFnAttr(Attribute::Cold))
4589        continue;
4590
4591      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4592      if (!IA) return true;
4593
4594      // If this is a memory operand, we're cool, otherwise bail out.
4595      if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4596        return true;
4597      continue;
4598    }
4599
4600    if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4601                          PSI, BFI, SeenInsts))
4602      return true;
4603  }
4604
4605  return false;
4606}
4607
4608/// Return true if Val is already known to be live at the use site that we're
4609/// folding it into. If so, there is no cost to include it in the addressing
4610/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4611/// instruction already.
4612bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4613                                                   Value *KnownLive2) {
4614  // If Val is either of the known-live values, we know it is live!
4615  if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4616    return true;
4617
4618  // All values other than instructions and arguments (e.g. constants) are live.
4619  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4620
4621  // If Val is a constant sized alloca in the entry block, it is live, this is
4622  // true because it is just a reference to the stack/frame pointer, which is
4623  // live for the whole function.
4624  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4625    if (AI->isStaticAlloca())
4626      return true;
4627
4628  // Check to see if this value is already used in the memory instruction's
4629  // block.  If so, it's already live into the block at the very least, so we
4630  // can reasonably fold it.
4631  return Val->isUsedInBasicBlock(MemoryInst->getParent());
4632}
4633
4634/// It is possible for the addressing mode of the machine to fold the specified
4635/// instruction into a load or store that ultimately uses it.
4636/// However, the specified instruction has multiple uses.
4637/// Given this, it may actually increase register pressure to fold it
4638/// into the load. For example, consider this code:
4639///
4640///     X = ...
4641///     Y = X+1
4642///     use(Y)   -> nonload/store
4643///     Z = Y+1
4644///     load Z
4645///
4646/// In this case, Y has multiple uses, and can be folded into the load of Z
4647/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4648/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4649/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4650/// number of computations either.
4651///
4652/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4653/// X was live across 'load Z' for other reasons, we actually *would* want to
4654/// fold the addressing mode in the Z case.  This would make Y die earlier.
4655bool AddressingModeMatcher::
4656isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4657                                     ExtAddrMode &AMAfter) {
4658  if (IgnoreProfitability) return true;
4659
4660  // AMBefore is the addressing mode before this instruction was folded into it,
4661  // and AMAfter is the addressing mode after the instruction was folded.  Get
4662  // the set of registers referenced by AMAfter and subtract out those
4663  // referenced by AMBefore: this is the set of values which folding in this
4664  // address extends the lifetime of.
4665  //
4666  // Note that there are only two potential values being referenced here,
4667  // BaseReg and ScaleReg (global addresses are always available, as are any
4668  // folded immediates).
4669  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4670
4671  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4672  // lifetime wasn't extended by adding this instruction.
4673  if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4674    BaseReg = nullptr;
4675  if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4676    ScaledReg = nullptr;
4677
4678  // If folding this instruction (and it's subexprs) didn't extend any live
4679  // ranges, we're ok with it.
4680  if (!BaseReg && !ScaledReg)
4681    return true;
4682
4683  // If all uses of this instruction can have the address mode sunk into them,
4684  // we can remove the addressing mode and effectively trade one live register
4685  // for another (at worst.)  In this context, folding an addressing mode into
4686  // the use is just a particularly nice way of sinking it.
4687  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4688  SmallPtrSet<Instruction*, 16> ConsideredInsts;
4689  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4690                        PSI, BFI))
4691    return false;  // Has a non-memory, non-foldable use!
4692
4693  // Now that we know that all uses of this instruction are part of a chain of
4694  // computation involving only operations that could theoretically be folded
4695  // into a memory use, loop over each of these memory operation uses and see
4696  // if they could  *actually* fold the instruction.  The assumption is that
4697  // addressing modes are cheap and that duplicating the computation involved
4698  // many times is worthwhile, even on a fastpath. For sinking candidates
4699  // (i.e. cold call sites), this serves as a way to prevent excessive code
4700  // growth since most architectures have some reasonable small and fast way to
4701  // compute an effective address.  (i.e LEA on x86)
4702  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4703  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4704    Instruction *User = MemoryUses[i].first;
4705    unsigned OpNo = MemoryUses[i].second;
4706
4707    // Get the access type of this use.  If the use isn't a pointer, we don't
4708    // know what it accesses.
4709    Value *Address = User->getOperand(OpNo);
4710    PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4711    if (!AddrTy)
4712      return false;
4713    Type *AddressAccessTy = AddrTy->getElementType();
4714    unsigned AS = AddrTy->getAddressSpace();
4715
4716    // Do a match against the root of this address, ignoring profitability. This
4717    // will tell us if the addressing mode for the memory operation will
4718    // *actually* cover the shared instruction.
4719    ExtAddrMode Result;
4720    std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4721                                                                      0);
4722    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4723        TPT.getRestorationPoint();
4724    AddressingModeMatcher Matcher(
4725        MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4726        InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI);
4727    Matcher.IgnoreProfitability = true;
4728    bool Success = Matcher.matchAddr(Address, 0);
4729    (void)Success; assert(Success && "Couldn't select *anything*?");
4730
4731    // The match was to check the profitability, the changes made are not
4732    // part of the original matcher. Therefore, they should be dropped
4733    // otherwise the original matcher will not present the right state.
4734    TPT.rollback(LastKnownGood);
4735
4736    // If the match didn't cover I, then it won't be shared by it.
4737    if (!is_contained(MatchedAddrModeInsts, I))
4738      return false;
4739
4740    MatchedAddrModeInsts.clear();
4741  }
4742
4743  return true;
4744}
4745
4746/// Return true if the specified values are defined in a
4747/// different basic block than BB.
4748static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4749  if (Instruction *I = dyn_cast<Instruction>(V))
4750    return I->getParent() != BB;
4751  return false;
4752}
4753
4754/// Sink addressing mode computation immediate before MemoryInst if doing so
4755/// can be done without increasing register pressure.  The need for the
4756/// register pressure constraint means this can end up being an all or nothing
4757/// decision for all uses of the same addressing computation.
4758///
4759/// Load and Store Instructions often have addressing modes that can do
4760/// significant amounts of computation. As such, instruction selection will try
4761/// to get the load or store to do as much computation as possible for the
4762/// program. The problem is that isel can only see within a single block. As
4763/// such, we sink as much legal addressing mode work into the block as possible.
4764///
4765/// This method is used to optimize both load/store and inline asms with memory
4766/// operands.  It's also used to sink addressing computations feeding into cold
4767/// call sites into their (cold) basic block.
4768///
4769/// The motivation for handling sinking into cold blocks is that doing so can
4770/// both enable other address mode sinking (by satisfying the register pressure
4771/// constraint above), and reduce register pressure globally (by removing the
4772/// addressing mode computation from the fast path entirely.).
4773bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4774                                        Type *AccessTy, unsigned AddrSpace) {
4775  Value *Repl = Addr;
4776
4777  // Try to collapse single-value PHI nodes.  This is necessary to undo
4778  // unprofitable PRE transformations.
4779  SmallVector<Value*, 8> worklist;
4780  SmallPtrSet<Value*, 16> Visited;
4781  worklist.push_back(Addr);
4782
4783  // Use a worklist to iteratively look through PHI and select nodes, and
4784  // ensure that the addressing mode obtained from the non-PHI/select roots of
4785  // the graph are compatible.
4786  bool PhiOrSelectSeen = false;
4787  SmallVector<Instruction*, 16> AddrModeInsts;
4788  const SimplifyQuery SQ(*DL, TLInfo);
4789  AddressingModeCombiner AddrModes(SQ, Addr);
4790  TypePromotionTransaction TPT(RemovedInsts);
4791  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4792      TPT.getRestorationPoint();
4793  while (!worklist.empty()) {
4794    Value *V = worklist.back();
4795    worklist.pop_back();
4796
4797    // We allow traversing cyclic Phi nodes.
4798    // In case of success after this loop we ensure that traversing through
4799    // Phi nodes ends up with all cases to compute address of the form
4800    //    BaseGV + Base + Scale * Index + Offset
4801    // where Scale and Offset are constans and BaseGV, Base and Index
4802    // are exactly the same Values in all cases.
4803    // It means that BaseGV, Scale and Offset dominate our memory instruction
4804    // and have the same value as they had in address computation represented
4805    // as Phi. So we can safely sink address computation to memory instruction.
4806    if (!Visited.insert(V).second)
4807      continue;
4808
4809    // For a PHI node, push all of its incoming values.
4810    if (PHINode *P = dyn_cast<PHINode>(V)) {
4811      for (Value *IncValue : P->incoming_values())
4812        worklist.push_back(IncValue);
4813      PhiOrSelectSeen = true;
4814      continue;
4815    }
4816    // Similar for select.
4817    if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4818      worklist.push_back(SI->getFalseValue());
4819      worklist.push_back(SI->getTrueValue());
4820      PhiOrSelectSeen = true;
4821      continue;
4822    }
4823
4824    // For non-PHIs, determine the addressing mode being computed.  Note that
4825    // the result may differ depending on what other uses our candidate
4826    // addressing instructions might have.
4827    AddrModeInsts.clear();
4828    std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4829                                                                      0);
4830    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4831        V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4832        InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
4833        BFI.get());
4834
4835    GetElementPtrInst *GEP = LargeOffsetGEP.first;
4836    if (GEP && !NewGEPBases.count(GEP)) {
4837      // If splitting the underlying data structure can reduce the offset of a
4838      // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4839      // previously split data structures.
4840      LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4841      if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4842        LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4843    }
4844
4845    NewAddrMode.OriginalValue = V;
4846    if (!AddrModes.addNewAddrMode(NewAddrMode))
4847      break;
4848  }
4849
4850  // Try to combine the AddrModes we've collected. If we couldn't collect any,
4851  // or we have multiple but either couldn't combine them or combining them
4852  // wouldn't do anything useful, bail out now.
4853  if (!AddrModes.combineAddrModes()) {
4854    TPT.rollback(LastKnownGood);
4855    return false;
4856  }
4857  TPT.commit();
4858
4859  // Get the combined AddrMode (or the only AddrMode, if we only had one).
4860  ExtAddrMode AddrMode = AddrModes.getAddrMode();
4861
4862  // If all the instructions matched are already in this BB, don't do anything.
4863  // If we saw a Phi node then it is not local definitely, and if we saw a select
4864  // then we want to push the address calculation past it even if it's already
4865  // in this BB.
4866  if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4867        return IsNonLocalValue(V, MemoryInst->getParent());
4868                  })) {
4869    LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4870                      << "\n");
4871    return false;
4872  }
4873
4874  // Insert this computation right after this user.  Since our caller is
4875  // scanning from the top of the BB to the bottom, reuse of the expr are
4876  // guaranteed to happen later.
4877  IRBuilder<> Builder(MemoryInst);
4878
4879  // Now that we determined the addressing expression we want to use and know
4880  // that we have to sink it into this block.  Check to see if we have already
4881  // done this for some other load/store instr in this block.  If so, reuse
4882  // the computation.  Before attempting reuse, check if the address is valid
4883  // as it may have been erased.
4884
4885  WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4886
4887  Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4888  if (SunkAddr) {
4889    LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4890                      << " for " << *MemoryInst << "\n");
4891    if (SunkAddr->getType() != Addr->getType())
4892      SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4893  } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
4894                                   TM && SubtargetInfo->addrSinkUsingGEPs())) {
4895    // By default, we use the GEP-based method when AA is used later. This
4896    // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4897    LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4898                      << " for " << *MemoryInst << "\n");
4899    Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4900    Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4901
4902    // First, find the pointer.
4903    if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4904      ResultPtr = AddrMode.BaseReg;
4905      AddrMode.BaseReg = nullptr;
4906    }
4907
4908    if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4909      // We can't add more than one pointer together, nor can we scale a
4910      // pointer (both of which seem meaningless).
4911      if (ResultPtr || AddrMode.Scale != 1)
4912        return false;
4913
4914      ResultPtr = AddrMode.ScaledReg;
4915      AddrMode.Scale = 0;
4916    }
4917
4918    // It is only safe to sign extend the BaseReg if we know that the math
4919    // required to create it did not overflow before we extend it. Since
4920    // the original IR value was tossed in favor of a constant back when
4921    // the AddrMode was created we need to bail out gracefully if widths
4922    // do not match instead of extending it.
4923    //
4924    // (See below for code to add the scale.)
4925    if (AddrMode.Scale) {
4926      Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4927      if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4928          cast<IntegerType>(ScaledRegTy)->getBitWidth())
4929        return false;
4930    }
4931
4932    if (AddrMode.BaseGV) {
4933      if (ResultPtr)
4934        return false;
4935
4936      ResultPtr = AddrMode.BaseGV;
4937    }
4938
4939    // If the real base value actually came from an inttoptr, then the matcher
4940    // will look through it and provide only the integer value. In that case,
4941    // use it here.
4942    if (!DL->isNonIntegralPointerType(Addr->getType())) {
4943      if (!ResultPtr && AddrMode.BaseReg) {
4944        ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4945                                           "sunkaddr");
4946        AddrMode.BaseReg = nullptr;
4947      } else if (!ResultPtr && AddrMode.Scale == 1) {
4948        ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4949                                           "sunkaddr");
4950        AddrMode.Scale = 0;
4951      }
4952    }
4953
4954    if (!ResultPtr &&
4955        !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4956      SunkAddr = Constant::getNullValue(Addr->getType());
4957    } else if (!ResultPtr) {
4958      return false;
4959    } else {
4960      Type *I8PtrTy =
4961          Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4962      Type *I8Ty = Builder.getInt8Ty();
4963
4964      // Start with the base register. Do this first so that subsequent address
4965      // matching finds it last, which will prevent it from trying to match it
4966      // as the scaled value in case it happens to be a mul. That would be
4967      // problematic if we've sunk a different mul for the scale, because then
4968      // we'd end up sinking both muls.
4969      if (AddrMode.BaseReg) {
4970        Value *V = AddrMode.BaseReg;
4971        if (V->getType() != IntPtrTy)
4972          V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4973
4974        ResultIndex = V;
4975      }
4976
4977      // Add the scale value.
4978      if (AddrMode.Scale) {
4979        Value *V = AddrMode.ScaledReg;
4980        if (V->getType() == IntPtrTy) {
4981          // done.
4982        } else {
4983          assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4984                 cast<IntegerType>(V->getType())->getBitWidth() &&
4985                 "We can't transform if ScaledReg is too narrow");
4986          V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4987        }
4988
4989        if (AddrMode.Scale != 1)
4990          V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4991                                "sunkaddr");
4992        if (ResultIndex)
4993          ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4994        else
4995          ResultIndex = V;
4996      }
4997
4998      // Add in the Base Offset if present.
4999      if (AddrMode.BaseOffs) {
5000        Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5001        if (ResultIndex) {
5002          // We need to add this separately from the scale above to help with
5003          // SDAG consecutive load/store merging.
5004          if (ResultPtr->getType() != I8PtrTy)
5005            ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5006          ResultPtr =
5007              AddrMode.InBounds
5008                  ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5009                                              "sunkaddr")
5010                  : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5011        }
5012
5013        ResultIndex = V;
5014      }
5015
5016      if (!ResultIndex) {
5017        SunkAddr = ResultPtr;
5018      } else {
5019        if (ResultPtr->getType() != I8PtrTy)
5020          ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5021        SunkAddr =
5022            AddrMode.InBounds
5023                ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5024                                            "sunkaddr")
5025                : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5026      }
5027
5028      if (SunkAddr->getType() != Addr->getType())
5029        SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5030    }
5031  } else {
5032    // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5033    // non-integral pointers, so in that case bail out now.
5034    Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5035    Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5036    PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5037    PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5038    if (DL->isNonIntegralPointerType(Addr->getType()) ||
5039        (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5040        (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5041        (AddrMode.BaseGV &&
5042         DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5043      return false;
5044
5045    LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5046                      << " for " << *MemoryInst << "\n");
5047    Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5048    Value *Result = nullptr;
5049
5050    // Start with the base register. Do this first so that subsequent address
5051    // matching finds it last, which will prevent it from trying to match it
5052    // as the scaled value in case it happens to be a mul. That would be
5053    // problematic if we've sunk a different mul for the scale, because then
5054    // we'd end up sinking both muls.
5055    if (AddrMode.BaseReg) {
5056      Value *V = AddrMode.BaseReg;
5057      if (V->getType()->isPointerTy())
5058        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5059      if (V->getType() != IntPtrTy)
5060        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5061      Result = V;
5062    }
5063
5064    // Add the scale value.
5065    if (AddrMode.Scale) {
5066      Value *V = AddrMode.ScaledReg;
5067      if (V->getType() == IntPtrTy) {
5068        // done.
5069      } else if (V->getType()->isPointerTy()) {
5070        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5071      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5072                 cast<IntegerType>(V->getType())->getBitWidth()) {
5073        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5074      } else {
5075        // It is only safe to sign extend the BaseReg if we know that the math
5076        // required to create it did not overflow before we extend it. Since
5077        // the original IR value was tossed in favor of a constant back when
5078        // the AddrMode was created we need to bail out gracefully if widths
5079        // do not match instead of extending it.
5080        Instruction *I = dyn_cast_or_null<Instruction>(Result);
5081        if (I && (Result != AddrMode.BaseReg))
5082          I->eraseFromParent();
5083        return false;
5084      }
5085      if (AddrMode.Scale != 1)
5086        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5087                              "sunkaddr");
5088      if (Result)
5089        Result = Builder.CreateAdd(Result, V, "sunkaddr");
5090      else
5091        Result = V;
5092    }
5093
5094    // Add in the BaseGV if present.
5095    if (AddrMode.BaseGV) {
5096      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5097      if (Result)
5098        Result = Builder.CreateAdd(Result, V, "sunkaddr");
5099      else
5100        Result = V;
5101    }
5102
5103    // Add in the Base Offset if present.
5104    if (AddrMode.BaseOffs) {
5105      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5106      if (Result)
5107        Result = Builder.CreateAdd(Result, V, "sunkaddr");
5108      else
5109        Result = V;
5110    }
5111
5112    if (!Result)
5113      SunkAddr = Constant::getNullValue(Addr->getType());
5114    else
5115      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5116  }
5117
5118  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5119  // Store the newly computed address into the cache. In the case we reused a
5120  // value, this should be idempotent.
5121  SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5122
5123  // If we have no uses, recursively delete the value and all dead instructions
5124  // using it.
5125  if (Repl->use_empty()) {
5126    // This can cause recursive deletion, which can invalidate our iterator.
5127    // Use a WeakTrackingVH to hold onto it in case this happens.
5128    Value *CurValue = &*CurInstIterator;
5129    WeakTrackingVH IterHandle(CurValue);
5130    BasicBlock *BB = CurInstIterator->getParent();
5131
5132    RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
5133
5134    if (IterHandle != CurValue) {
5135      // If the iterator instruction was recursively deleted, start over at the
5136      // start of the block.
5137      CurInstIterator = BB->begin();
5138      SunkAddrs.clear();
5139    }
5140  }
5141  ++NumMemoryInsts;
5142  return true;
5143}
5144
5145/// If there are any memory operands, use OptimizeMemoryInst to sink their
5146/// address computing into the block when possible / profitable.
5147bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5148  bool MadeChange = false;
5149
5150  const TargetRegisterInfo *TRI =
5151      TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5152  TargetLowering::AsmOperandInfoVector TargetConstraints =
5153      TLI->ParseConstraints(*DL, TRI, CS);
5154  unsigned ArgNo = 0;
5155  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5156    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5157
5158    // Compute the constraint code and ConstraintType to use.
5159    TLI->ComputeConstraintToUse(OpInfo, SDValue());
5160
5161    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5162        OpInfo.isIndirect) {
5163      Value *OpVal = CS->getArgOperand(ArgNo++);
5164      MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5165    } else if (OpInfo.Type == InlineAsm::isInput)
5166      ArgNo++;
5167  }
5168
5169  return MadeChange;
5170}
5171
5172/// Check if all the uses of \p Val are equivalent (or free) zero or
5173/// sign extensions.
5174static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5175  assert(!Val->use_empty() && "Input must have at least one use");
5176  const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5177  bool IsSExt = isa<SExtInst>(FirstUser);
5178  Type *ExtTy = FirstUser->getType();
5179  for (const User *U : Val->users()) {
5180    const Instruction *UI = cast<Instruction>(U);
5181    if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5182      return false;
5183    Type *CurTy = UI->getType();
5184    // Same input and output types: Same instruction after CSE.
5185    if (CurTy == ExtTy)
5186      continue;
5187
5188    // If IsSExt is true, we are in this situation:
5189    // a = Val
5190    // b = sext ty1 a to ty2
5191    // c = sext ty1 a to ty3
5192    // Assuming ty2 is shorter than ty3, this could be turned into:
5193    // a = Val
5194    // b = sext ty1 a to ty2
5195    // c = sext ty2 b to ty3
5196    // However, the last sext is not free.
5197    if (IsSExt)
5198      return false;
5199
5200    // This is a ZExt, maybe this is free to extend from one type to another.
5201    // In that case, we would not account for a different use.
5202    Type *NarrowTy;
5203    Type *LargeTy;
5204    if (ExtTy->getScalarType()->getIntegerBitWidth() >
5205        CurTy->getScalarType()->getIntegerBitWidth()) {
5206      NarrowTy = CurTy;
5207      LargeTy = ExtTy;
5208    } else {
5209      NarrowTy = ExtTy;
5210      LargeTy = CurTy;
5211    }
5212
5213    if (!TLI.isZExtFree(NarrowTy, LargeTy))
5214      return false;
5215  }
5216  // All uses are the same or can be derived from one another for free.
5217  return true;
5218}
5219
5220/// Try to speculatively promote extensions in \p Exts and continue
5221/// promoting through newly promoted operands recursively as far as doing so is
5222/// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5223/// When some promotion happened, \p TPT contains the proper state to revert
5224/// them.
5225///
5226/// \return true if some promotion happened, false otherwise.
5227bool CodeGenPrepare::tryToPromoteExts(
5228    TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5229    SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5230    unsigned CreatedInstsCost) {
5231  bool Promoted = false;
5232
5233  // Iterate over all the extensions to try to promote them.
5234  for (auto I : Exts) {
5235    // Early check if we directly have ext(load).
5236    if (isa<LoadInst>(I->getOperand(0))) {
5237      ProfitablyMovedExts.push_back(I);
5238      continue;
5239    }
5240
5241    // Check whether or not we want to do any promotion.  The reason we have
5242    // this check inside the for loop is to catch the case where an extension
5243    // is directly fed by a load because in such case the extension can be moved
5244    // up without any promotion on its operands.
5245    if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5246      return false;
5247
5248    // Get the action to perform the promotion.
5249    TypePromotionHelper::Action TPH =
5250        TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5251    // Check if we can promote.
5252    if (!TPH) {
5253      // Save the current extension as we cannot move up through its operand.
5254      ProfitablyMovedExts.push_back(I);
5255      continue;
5256    }
5257
5258    // Save the current state.
5259    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5260        TPT.getRestorationPoint();
5261    SmallVector<Instruction *, 4> NewExts;
5262    unsigned NewCreatedInstsCost = 0;
5263    unsigned ExtCost = !TLI->isExtFree(I);
5264    // Promote.
5265    Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5266                             &NewExts, nullptr, *TLI);
5267    assert(PromotedVal &&
5268           "TypePromotionHelper should have filtered out those cases");
5269
5270    // We would be able to merge only one extension in a load.
5271    // Therefore, if we have more than 1 new extension we heuristically
5272    // cut this search path, because it means we degrade the code quality.
5273    // With exactly 2, the transformation is neutral, because we will merge
5274    // one extension but leave one. However, we optimistically keep going,
5275    // because the new extension may be removed too.
5276    long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5277    // FIXME: It would be possible to propagate a negative value instead of
5278    // conservatively ceiling it to 0.
5279    TotalCreatedInstsCost =
5280        std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5281    if (!StressExtLdPromotion &&
5282        (TotalCreatedInstsCost > 1 ||
5283         !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5284      // This promotion is not profitable, rollback to the previous state, and
5285      // save the current extension in ProfitablyMovedExts as the latest
5286      // speculative promotion turned out to be unprofitable.
5287      TPT.rollback(LastKnownGood);
5288      ProfitablyMovedExts.push_back(I);
5289      continue;
5290    }
5291    // Continue promoting NewExts as far as doing so is profitable.
5292    SmallVector<Instruction *, 2> NewlyMovedExts;
5293    (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5294    bool NewPromoted = false;
5295    for (auto ExtInst : NewlyMovedExts) {
5296      Instruction *MovedExt = cast<Instruction>(ExtInst);
5297      Value *ExtOperand = MovedExt->getOperand(0);
5298      // If we have reached to a load, we need this extra profitability check
5299      // as it could potentially be merged into an ext(load).
5300      if (isa<LoadInst>(ExtOperand) &&
5301          !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5302            (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5303        continue;
5304
5305      ProfitablyMovedExts.push_back(MovedExt);
5306      NewPromoted = true;
5307    }
5308
5309    // If none of speculative promotions for NewExts is profitable, rollback
5310    // and save the current extension (I) as the last profitable extension.
5311    if (!NewPromoted) {
5312      TPT.rollback(LastKnownGood);
5313      ProfitablyMovedExts.push_back(I);
5314      continue;
5315    }
5316    // The promotion is profitable.
5317    Promoted = true;
5318  }
5319  return Promoted;
5320}
5321
5322/// Merging redundant sexts when one is dominating the other.
5323bool CodeGenPrepare::mergeSExts(Function &F) {
5324  bool Changed = false;
5325  for (auto &Entry : ValToSExtendedUses) {
5326    SExts &Insts = Entry.second;
5327    SExts CurPts;
5328    for (Instruction *Inst : Insts) {
5329      if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5330          Inst->getOperand(0) != Entry.first)
5331        continue;
5332      bool inserted = false;
5333      for (auto &Pt : CurPts) {
5334        if (getDT(F).dominates(Inst, Pt)) {
5335          Pt->replaceAllUsesWith(Inst);
5336          RemovedInsts.insert(Pt);
5337          Pt->removeFromParent();
5338          Pt = Inst;
5339          inserted = true;
5340          Changed = true;
5341          break;
5342        }
5343        if (!getDT(F).dominates(Pt, Inst))
5344          // Give up if we need to merge in a common dominator as the
5345          // experiments show it is not profitable.
5346          continue;
5347        Inst->replaceAllUsesWith(Pt);
5348        RemovedInsts.insert(Inst);
5349        Inst->removeFromParent();
5350        inserted = true;
5351        Changed = true;
5352        break;
5353      }
5354      if (!inserted)
5355        CurPts.push_back(Inst);
5356    }
5357  }
5358  return Changed;
5359}
5360
5361// Spliting large data structures so that the GEPs accessing them can have
5362// smaller offsets so that they can be sunk to the same blocks as their users.
5363// For example, a large struct starting from %base is splitted into two parts
5364// where the second part starts from %new_base.
5365//
5366// Before:
5367// BB0:
5368//   %base     =
5369//
5370// BB1:
5371//   %gep0     = gep %base, off0
5372//   %gep1     = gep %base, off1
5373//   %gep2     = gep %base, off2
5374//
5375// BB2:
5376//   %load1    = load %gep0
5377//   %load2    = load %gep1
5378//   %load3    = load %gep2
5379//
5380// After:
5381// BB0:
5382//   %base     =
5383//   %new_base = gep %base, off0
5384//
5385// BB1:
5386//   %new_gep0 = %new_base
5387//   %new_gep1 = gep %new_base, off1 - off0
5388//   %new_gep2 = gep %new_base, off2 - off0
5389//
5390// BB2:
5391//   %load1    = load i32, i32* %new_gep0
5392//   %load2    = load i32, i32* %new_gep1
5393//   %load3    = load i32, i32* %new_gep2
5394//
5395// %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5396// their offsets are smaller enough to fit into the addressing mode.
5397bool CodeGenPrepare::splitLargeGEPOffsets() {
5398  bool Changed = false;
5399  for (auto &Entry : LargeOffsetGEPMap) {
5400    Value *OldBase = Entry.first;
5401    SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5402        &LargeOffsetGEPs = Entry.second;
5403    auto compareGEPOffset =
5404        [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5405            const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5406          if (LHS.first == RHS.first)
5407            return false;
5408          if (LHS.second != RHS.second)
5409            return LHS.second < RHS.second;
5410          return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5411        };
5412    // Sorting all the GEPs of the same data structures based on the offsets.
5413    llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5414    LargeOffsetGEPs.erase(
5415        std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5416        LargeOffsetGEPs.end());
5417    // Skip if all the GEPs have the same offsets.
5418    if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5419      continue;
5420    GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5421    int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5422    Value *NewBaseGEP = nullptr;
5423
5424    auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5425    while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5426      GetElementPtrInst *GEP = LargeOffsetGEP->first;
5427      int64_t Offset = LargeOffsetGEP->second;
5428      if (Offset != BaseOffset) {
5429        TargetLowering::AddrMode AddrMode;
5430        AddrMode.BaseOffs = Offset - BaseOffset;
5431        // The result type of the GEP might not be the type of the memory
5432        // access.
5433        if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5434                                        GEP->getResultElementType(),
5435                                        GEP->getAddressSpace())) {
5436          // We need to create a new base if the offset to the current base is
5437          // too large to fit into the addressing mode. So, a very large struct
5438          // may be splitted into several parts.
5439          BaseGEP = GEP;
5440          BaseOffset = Offset;
5441          NewBaseGEP = nullptr;
5442        }
5443      }
5444
5445      // Generate a new GEP to replace the current one.
5446      LLVMContext &Ctx = GEP->getContext();
5447      Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5448      Type *I8PtrTy =
5449          Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5450      Type *I8Ty = Type::getInt8Ty(Ctx);
5451
5452      if (!NewBaseGEP) {
5453        // Create a new base if we don't have one yet.  Find the insertion
5454        // pointer for the new base first.
5455        BasicBlock::iterator NewBaseInsertPt;
5456        BasicBlock *NewBaseInsertBB;
5457        if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5458          // If the base of the struct is an instruction, the new base will be
5459          // inserted close to it.
5460          NewBaseInsertBB = BaseI->getParent();
5461          if (isa<PHINode>(BaseI))
5462            NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5463          else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5464            NewBaseInsertBB =
5465                SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5466            NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5467          } else
5468            NewBaseInsertPt = std::next(BaseI->getIterator());
5469        } else {
5470          // If the current base is an argument or global value, the new base
5471          // will be inserted to the entry block.
5472          NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5473          NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5474        }
5475        IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5476        // Create a new base.
5477        Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5478        NewBaseGEP = OldBase;
5479        if (NewBaseGEP->getType() != I8PtrTy)
5480          NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5481        NewBaseGEP =
5482            NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5483        NewGEPBases.insert(NewBaseGEP);
5484      }
5485
5486      IRBuilder<> Builder(GEP);
5487      Value *NewGEP = NewBaseGEP;
5488      if (Offset == BaseOffset) {
5489        if (GEP->getType() != I8PtrTy)
5490          NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5491      } else {
5492        // Calculate the new offset for the new GEP.
5493        Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5494        NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5495
5496        if (GEP->getType() != I8PtrTy)
5497          NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5498      }
5499      GEP->replaceAllUsesWith(NewGEP);
5500      LargeOffsetGEPID.erase(GEP);
5501      LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5502      GEP->eraseFromParent();
5503      Changed = true;
5504    }
5505  }
5506  return Changed;
5507}
5508
5509/// Return true, if an ext(load) can be formed from an extension in
5510/// \p MovedExts.
5511bool CodeGenPrepare::canFormExtLd(
5512    const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5513    Instruction *&Inst, bool HasPromoted) {
5514  for (auto *MovedExtInst : MovedExts) {
5515    if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5516      LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5517      Inst = MovedExtInst;
5518      break;
5519    }
5520  }
5521  if (!LI)
5522    return false;
5523
5524  // If they're already in the same block, there's nothing to do.
5525  // Make the cheap checks first if we did not promote.
5526  // If we promoted, we need to check if it is indeed profitable.
5527  if (!HasPromoted && LI->getParent() == Inst->getParent())
5528    return false;
5529
5530  return TLI->isExtLoad(LI, Inst, *DL);
5531}
5532
5533/// Move a zext or sext fed by a load into the same basic block as the load,
5534/// unless conditions are unfavorable. This allows SelectionDAG to fold the
5535/// extend into the load.
5536///
5537/// E.g.,
5538/// \code
5539/// %ld = load i32* %addr
5540/// %add = add nuw i32 %ld, 4
5541/// %zext = zext i32 %add to i64
5542// \endcode
5543/// =>
5544/// \code
5545/// %ld = load i32* %addr
5546/// %zext = zext i32 %ld to i64
5547/// %add = add nuw i64 %zext, 4
5548/// \encode
5549/// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5550/// allow us to match zext(load i32*) to i64.
5551///
5552/// Also, try to promote the computations used to obtain a sign extended
5553/// value used into memory accesses.
5554/// E.g.,
5555/// \code
5556/// a = add nsw i32 b, 3
5557/// d = sext i32 a to i64
5558/// e = getelementptr ..., i64 d
5559/// \endcode
5560/// =>
5561/// \code
5562/// f = sext i32 b to i64
5563/// a = add nsw i64 f, 3
5564/// e = getelementptr ..., i64 a
5565/// \endcode
5566///
5567/// \p Inst[in/out] the extension may be modified during the process if some
5568/// promotions apply.
5569bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5570  // ExtLoad formation and address type promotion infrastructure requires TLI to
5571  // be effective.
5572  if (!TLI)
5573    return false;
5574
5575  bool AllowPromotionWithoutCommonHeader = false;
5576  /// See if it is an interesting sext operations for the address type
5577  /// promotion before trying to promote it, e.g., the ones with the right
5578  /// type and used in memory accesses.
5579  bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5580      *Inst, AllowPromotionWithoutCommonHeader);
5581  TypePromotionTransaction TPT(RemovedInsts);
5582  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5583      TPT.getRestorationPoint();
5584  SmallVector<Instruction *, 1> Exts;
5585  SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5586  Exts.push_back(Inst);
5587
5588  bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5589
5590  // Look for a load being extended.
5591  LoadInst *LI = nullptr;
5592  Instruction *ExtFedByLoad;
5593
5594  // Try to promote a chain of computation if it allows to form an extended
5595  // load.
5596  if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5597    assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5598    TPT.commit();
5599    // Move the extend into the same block as the load
5600    ExtFedByLoad->moveAfter(LI);
5601    // CGP does not check if the zext would be speculatively executed when moved
5602    // to the same basic block as the load. Preserving its original location
5603    // would pessimize the debugging experience, as well as negatively impact
5604    // the quality of sample pgo. We don't want to use "line 0" as that has a
5605    // size cost in the line-table section and logically the zext can be seen as
5606    // part of the load. Therefore we conservatively reuse the same debug
5607    // location for the load and the zext.
5608    ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5609    ++NumExtsMoved;
5610    Inst = ExtFedByLoad;
5611    return true;
5612  }
5613
5614  // Continue promoting SExts if known as considerable depending on targets.
5615  if (ATPConsiderable &&
5616      performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5617                                  HasPromoted, TPT, SpeculativelyMovedExts))
5618    return true;
5619
5620  TPT.rollback(LastKnownGood);
5621  return false;
5622}
5623
5624// Perform address type promotion if doing so is profitable.
5625// If AllowPromotionWithoutCommonHeader == false, we should find other sext
5626// instructions that sign extended the same initial value. However, if
5627// AllowPromotionWithoutCommonHeader == true, we expect promoting the
5628// extension is just profitable.
5629bool CodeGenPrepare::performAddressTypePromotion(
5630    Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5631    bool HasPromoted, TypePromotionTransaction &TPT,
5632    SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5633  bool Promoted = false;
5634  SmallPtrSet<Instruction *, 1> UnhandledExts;
5635  bool AllSeenFirst = true;
5636  for (auto I : SpeculativelyMovedExts) {
5637    Value *HeadOfChain = I->getOperand(0);
5638    DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5639        SeenChainsForSExt.find(HeadOfChain);
5640    // If there is an unhandled SExt which has the same header, try to promote
5641    // it as well.
5642    if (AlreadySeen != SeenChainsForSExt.end()) {
5643      if (AlreadySeen->second != nullptr)
5644        UnhandledExts.insert(AlreadySeen->second);
5645      AllSeenFirst = false;
5646    }
5647  }
5648
5649  if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5650                        SpeculativelyMovedExts.size() == 1)) {
5651    TPT.commit();
5652    if (HasPromoted)
5653      Promoted = true;
5654    for (auto I : SpeculativelyMovedExts) {
5655      Value *HeadOfChain = I->getOperand(0);
5656      SeenChainsForSExt[HeadOfChain] = nullptr;
5657      ValToSExtendedUses[HeadOfChain].push_back(I);
5658    }
5659    // Update Inst as promotion happen.
5660    Inst = SpeculativelyMovedExts.pop_back_val();
5661  } else {
5662    // This is the first chain visited from the header, keep the current chain
5663    // as unhandled. Defer to promote this until we encounter another SExt
5664    // chain derived from the same header.
5665    for (auto I : SpeculativelyMovedExts) {
5666      Value *HeadOfChain = I->getOperand(0);
5667      SeenChainsForSExt[HeadOfChain] = Inst;
5668    }
5669    return false;
5670  }
5671
5672  if (!AllSeenFirst && !UnhandledExts.empty())
5673    for (auto VisitedSExt : UnhandledExts) {
5674      if (RemovedInsts.count(VisitedSExt))
5675        continue;
5676      TypePromotionTransaction TPT(RemovedInsts);
5677      SmallVector<Instruction *, 1> Exts;
5678      SmallVector<Instruction *, 2> Chains;
5679      Exts.push_back(VisitedSExt);
5680      bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5681      TPT.commit();
5682      if (HasPromoted)
5683        Promoted = true;
5684      for (auto I : Chains) {
5685        Value *HeadOfChain = I->getOperand(0);
5686        // Mark this as handled.
5687        SeenChainsForSExt[HeadOfChain] = nullptr;
5688        ValToSExtendedUses[HeadOfChain].push_back(I);
5689      }
5690    }
5691  return Promoted;
5692}
5693
5694bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5695  BasicBlock *DefBB = I->getParent();
5696
5697  // If the result of a {s|z}ext and its source are both live out, rewrite all
5698  // other uses of the source with result of extension.
5699  Value *Src = I->getOperand(0);
5700  if (Src->hasOneUse())
5701    return false;
5702
5703  // Only do this xform if truncating is free.
5704  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5705    return false;
5706
5707  // Only safe to perform the optimization if the source is also defined in
5708  // this block.
5709  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5710    return false;
5711
5712  bool DefIsLiveOut = false;
5713  for (User *U : I->users()) {
5714    Instruction *UI = cast<Instruction>(U);
5715
5716    // Figure out which BB this ext is used in.
5717    BasicBlock *UserBB = UI->getParent();
5718    if (UserBB == DefBB) continue;
5719    DefIsLiveOut = true;
5720    break;
5721  }
5722  if (!DefIsLiveOut)
5723    return false;
5724
5725  // Make sure none of the uses are PHI nodes.
5726  for (User *U : Src->users()) {
5727    Instruction *UI = cast<Instruction>(U);
5728    BasicBlock *UserBB = UI->getParent();
5729    if (UserBB == DefBB) continue;
5730    // Be conservative. We don't want this xform to end up introducing
5731    // reloads just before load / store instructions.
5732    if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5733      return false;
5734  }
5735
5736  // InsertedTruncs - Only insert one trunc in each block once.
5737  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5738
5739  bool MadeChange = false;
5740  for (Use &U : Src->uses()) {
5741    Instruction *User = cast<Instruction>(U.getUser());
5742
5743    // Figure out which BB this ext is used in.
5744    BasicBlock *UserBB = User->getParent();
5745    if (UserBB == DefBB) continue;
5746
5747    // Both src and def are live in this block. Rewrite the use.
5748    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5749
5750    if (!InsertedTrunc) {
5751      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5752      assert(InsertPt != UserBB->end());
5753      InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5754      InsertedInsts.insert(InsertedTrunc);
5755    }
5756
5757    // Replace a use of the {s|z}ext source with a use of the result.
5758    U = InsertedTrunc;
5759    ++NumExtUses;
5760    MadeChange = true;
5761  }
5762
5763  return MadeChange;
5764}
5765
5766// Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5767// just after the load if the target can fold this into one extload instruction,
5768// with the hope of eliminating some of the other later "and" instructions using
5769// the loaded value.  "and"s that are made trivially redundant by the insertion
5770// of the new "and" are removed by this function, while others (e.g. those whose
5771// path from the load goes through a phi) are left for isel to potentially
5772// remove.
5773//
5774// For example:
5775//
5776// b0:
5777//   x = load i32
5778//   ...
5779// b1:
5780//   y = and x, 0xff
5781//   z = use y
5782//
5783// becomes:
5784//
5785// b0:
5786//   x = load i32
5787//   x' = and x, 0xff
5788//   ...
5789// b1:
5790//   z = use x'
5791//
5792// whereas:
5793//
5794// b0:
5795//   x1 = load i32
5796//   ...
5797// b1:
5798//   x2 = load i32
5799//   ...
5800// b2:
5801//   x = phi x1, x2
5802//   y = and x, 0xff
5803//
5804// becomes (after a call to optimizeLoadExt for each load):
5805//
5806// b0:
5807//   x1 = load i32
5808//   x1' = and x1, 0xff
5809//   ...
5810// b1:
5811//   x2 = load i32
5812//   x2' = and x2, 0xff
5813//   ...
5814// b2:
5815//   x = phi x1', x2'
5816//   y = and x, 0xff
5817bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5818  if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5819    return false;
5820
5821  // Skip loads we've already transformed.
5822  if (Load->hasOneUse() &&
5823      InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5824    return false;
5825
5826  // Look at all uses of Load, looking through phis, to determine how many bits
5827  // of the loaded value are needed.
5828  SmallVector<Instruction *, 8> WorkList;
5829  SmallPtrSet<Instruction *, 16> Visited;
5830  SmallVector<Instruction *, 8> AndsToMaybeRemove;
5831  for (auto *U : Load->users())
5832    WorkList.push_back(cast<Instruction>(U));
5833
5834  EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5835  unsigned BitWidth = LoadResultVT.getSizeInBits();
5836  APInt DemandBits(BitWidth, 0);
5837  APInt WidestAndBits(BitWidth, 0);
5838
5839  while (!WorkList.empty()) {
5840    Instruction *I = WorkList.back();
5841    WorkList.pop_back();
5842
5843    // Break use-def graph loops.
5844    if (!Visited.insert(I).second)
5845      continue;
5846
5847    // For a PHI node, push all of its users.
5848    if (auto *Phi = dyn_cast<PHINode>(I)) {
5849      for (auto *U : Phi->users())
5850        WorkList.push_back(cast<Instruction>(U));
5851      continue;
5852    }
5853
5854    switch (I->getOpcode()) {
5855    case Instruction::And: {
5856      auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5857      if (!AndC)
5858        return false;
5859      APInt AndBits = AndC->getValue();
5860      DemandBits |= AndBits;
5861      // Keep track of the widest and mask we see.
5862      if (AndBits.ugt(WidestAndBits))
5863        WidestAndBits = AndBits;
5864      if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5865        AndsToMaybeRemove.push_back(I);
5866      break;
5867    }
5868
5869    case Instruction::Shl: {
5870      auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5871      if (!ShlC)
5872        return false;
5873      uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5874      DemandBits.setLowBits(BitWidth - ShiftAmt);
5875      break;
5876    }
5877
5878    case Instruction::Trunc: {
5879      EVT TruncVT = TLI->getValueType(*DL, I->getType());
5880      unsigned TruncBitWidth = TruncVT.getSizeInBits();
5881      DemandBits.setLowBits(TruncBitWidth);
5882      break;
5883    }
5884
5885    default:
5886      return false;
5887    }
5888  }
5889
5890  uint32_t ActiveBits = DemandBits.getActiveBits();
5891  // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5892  // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5893  // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5894  // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5895  // followed by an AND.
5896  // TODO: Look into removing this restriction by fixing backends to either
5897  // return false for isLoadExtLegal for i1 or have them select this pattern to
5898  // a single instruction.
5899  //
5900  // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5901  // mask, since these are the only ands that will be removed by isel.
5902  if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5903      WidestAndBits != DemandBits)
5904    return false;
5905
5906  LLVMContext &Ctx = Load->getType()->getContext();
5907  Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5908  EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5909
5910  // Reject cases that won't be matched as extloads.
5911  if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5912      !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5913    return false;
5914
5915  IRBuilder<> Builder(Load->getNextNode());
5916  auto *NewAnd = cast<Instruction>(
5917      Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5918  // Mark this instruction as "inserted by CGP", so that other
5919  // optimizations don't touch it.
5920  InsertedInsts.insert(NewAnd);
5921
5922  // Replace all uses of load with new and (except for the use of load in the
5923  // new and itself).
5924  Load->replaceAllUsesWith(NewAnd);
5925  NewAnd->setOperand(0, Load);
5926
5927  // Remove any and instructions that are now redundant.
5928  for (auto *And : AndsToMaybeRemove)
5929    // Check that the and mask is the same as the one we decided to put on the
5930    // new and.
5931    if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5932      And->replaceAllUsesWith(NewAnd);
5933      if (&*CurInstIterator == And)
5934        CurInstIterator = std::next(And->getIterator());
5935      And->eraseFromParent();
5936      ++NumAndUses;
5937    }
5938
5939  ++NumAndsAdded;
5940  return true;
5941}
5942
5943/// Check if V (an operand of a select instruction) is an expensive instruction
5944/// that is only used once.
5945static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5946  auto *I = dyn_cast<Instruction>(V);
5947  // If it's safe to speculatively execute, then it should not have side
5948  // effects; therefore, it's safe to sink and possibly *not* execute.
5949  return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5950         TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5951}
5952
5953/// Returns true if a SelectInst should be turned into an explicit branch.
5954static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5955                                                const TargetLowering *TLI,
5956                                                SelectInst *SI) {
5957  // If even a predictable select is cheap, then a branch can't be cheaper.
5958  if (!TLI->isPredictableSelectExpensive())
5959    return false;
5960
5961  // FIXME: This should use the same heuristics as IfConversion to determine
5962  // whether a select is better represented as a branch.
5963
5964  // If metadata tells us that the select condition is obviously predictable,
5965  // then we want to replace the select with a branch.
5966  uint64_t TrueWeight, FalseWeight;
5967  if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5968    uint64_t Max = std::max(TrueWeight, FalseWeight);
5969    uint64_t Sum = TrueWeight + FalseWeight;
5970    if (Sum != 0) {
5971      auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5972      if (Probability > TLI->getPredictableBranchThreshold())
5973        return true;
5974    }
5975  }
5976
5977  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5978
5979  // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5980  // comparison condition. If the compare has more than one use, there's
5981  // probably another cmov or setcc around, so it's not worth emitting a branch.
5982  if (!Cmp || !Cmp->hasOneUse())
5983    return false;
5984
5985  // If either operand of the select is expensive and only needed on one side
5986  // of the select, we should form a branch.
5987  if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5988      sinkSelectOperand(TTI, SI->getFalseValue()))
5989    return true;
5990
5991  return false;
5992}
5993
5994/// If \p isTrue is true, return the true value of \p SI, otherwise return
5995/// false value of \p SI. If the true/false value of \p SI is defined by any
5996/// select instructions in \p Selects, look through the defining select
5997/// instruction until the true/false value is not defined in \p Selects.
5998static Value *getTrueOrFalseValue(
5999    SelectInst *SI, bool isTrue,
6000    const SmallPtrSet<const Instruction *, 2> &Selects) {
6001  Value *V = nullptr;
6002
6003  for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6004       DefSI = dyn_cast<SelectInst>(V)) {
6005    assert(DefSI->getCondition() == SI->getCondition() &&
6006           "The condition of DefSI does not match with SI");
6007    V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6008  }
6009
6010  assert(V && "Failed to get select true/false value");
6011  return V;
6012}
6013
6014bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6015  assert(Shift->isShift() && "Expected a shift");
6016
6017  // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6018  // general vector shifts, and (3) the shift amount is a select-of-splatted
6019  // values, hoist the shifts before the select:
6020  //   shift Op0, (select Cond, TVal, FVal) -->
6021  //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6022  //
6023  // This is inverting a generic IR transform when we know that the cost of a
6024  // general vector shift is more than the cost of 2 shift-by-scalars.
6025  // We can't do this effectively in SDAG because we may not be able to
6026  // determine if the select operands are splats from within a basic block.
6027  Type *Ty = Shift->getType();
6028  if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6029    return false;
6030  Value *Cond, *TVal, *FVal;
6031  if (!match(Shift->getOperand(1),
6032             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6033    return false;
6034  if (!isSplatValue(TVal) || !isSplatValue(FVal))
6035    return false;
6036
6037  IRBuilder<> Builder(Shift);
6038  BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6039  Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6040  Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6041  Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6042  Shift->replaceAllUsesWith(NewSel);
6043  Shift->eraseFromParent();
6044  return true;
6045}
6046
6047/// If we have a SelectInst that will likely profit from branch prediction,
6048/// turn it into a branch.
6049bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6050  // If branch conversion isn't desirable, exit early.
6051  if (DisableSelectToBranch ||
6052      OptSize || llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()) ||
6053      !TLI)
6054    return false;
6055
6056  // Find all consecutive select instructions that share the same condition.
6057  SmallVector<SelectInst *, 2> ASI;
6058  ASI.push_back(SI);
6059  for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6060       It != SI->getParent()->end(); ++It) {
6061    SelectInst *I = dyn_cast<SelectInst>(&*It);
6062    if (I && SI->getCondition() == I->getCondition()) {
6063      ASI.push_back(I);
6064    } else {
6065      break;
6066    }
6067  }
6068
6069  SelectInst *LastSI = ASI.back();
6070  // Increment the current iterator to skip all the rest of select instructions
6071  // because they will be either "not lowered" or "all lowered" to branch.
6072  CurInstIterator = std::next(LastSI->getIterator());
6073
6074  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6075
6076  // Can we convert the 'select' to CF ?
6077  if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6078    return false;
6079
6080  TargetLowering::SelectSupportKind SelectKind;
6081  if (VectorCond)
6082    SelectKind = TargetLowering::VectorMaskSelect;
6083  else if (SI->getType()->isVectorTy())
6084    SelectKind = TargetLowering::ScalarCondVectorVal;
6085  else
6086    SelectKind = TargetLowering::ScalarValSelect;
6087
6088  if (TLI->isSelectSupported(SelectKind) &&
6089      !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
6090    return false;
6091
6092  // The DominatorTree needs to be rebuilt by any consumers after this
6093  // transformation. We simply reset here rather than setting the ModifiedDT
6094  // flag to avoid restarting the function walk in runOnFunction for each
6095  // select optimized.
6096  DT.reset();
6097
6098  // Transform a sequence like this:
6099  //    start:
6100  //       %cmp = cmp uge i32 %a, %b
6101  //       %sel = select i1 %cmp, i32 %c, i32 %d
6102  //
6103  // Into:
6104  //    start:
6105  //       %cmp = cmp uge i32 %a, %b
6106  //       br i1 %cmp, label %select.true, label %select.false
6107  //    select.true:
6108  //       br label %select.end
6109  //    select.false:
6110  //       br label %select.end
6111  //    select.end:
6112  //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6113  //
6114  // In addition, we may sink instructions that produce %c or %d from
6115  // the entry block into the destination(s) of the new branch.
6116  // If the true or false blocks do not contain a sunken instruction, that
6117  // block and its branch may be optimized away. In that case, one side of the
6118  // first branch will point directly to select.end, and the corresponding PHI
6119  // predecessor block will be the start block.
6120
6121  // First, we split the block containing the select into 2 blocks.
6122  BasicBlock *StartBlock = SI->getParent();
6123  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6124  BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6125  BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6126
6127  // Delete the unconditional branch that was just created by the split.
6128  StartBlock->getTerminator()->eraseFromParent();
6129
6130  // These are the new basic blocks for the conditional branch.
6131  // At least one will become an actual new basic block.
6132  BasicBlock *TrueBlock = nullptr;
6133  BasicBlock *FalseBlock = nullptr;
6134  BranchInst *TrueBranch = nullptr;
6135  BranchInst *FalseBranch = nullptr;
6136
6137  // Sink expensive instructions into the conditional blocks to avoid executing
6138  // them speculatively.
6139  for (SelectInst *SI : ASI) {
6140    if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6141      if (TrueBlock == nullptr) {
6142        TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6143                                       EndBlock->getParent(), EndBlock);
6144        TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6145        TrueBranch->setDebugLoc(SI->getDebugLoc());
6146      }
6147      auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6148      TrueInst->moveBefore(TrueBranch);
6149    }
6150    if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6151      if (FalseBlock == nullptr) {
6152        FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6153                                        EndBlock->getParent(), EndBlock);
6154        FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6155        FalseBranch->setDebugLoc(SI->getDebugLoc());
6156      }
6157      auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6158      FalseInst->moveBefore(FalseBranch);
6159    }
6160  }
6161
6162  // If there was nothing to sink, then arbitrarily choose the 'false' side
6163  // for a new input value to the PHI.
6164  if (TrueBlock == FalseBlock) {
6165    assert(TrueBlock == nullptr &&
6166           "Unexpected basic block transform while optimizing select");
6167
6168    FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6169                                    EndBlock->getParent(), EndBlock);
6170    auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6171    FalseBranch->setDebugLoc(SI->getDebugLoc());
6172  }
6173
6174  // Insert the real conditional branch based on the original condition.
6175  // If we did not create a new block for one of the 'true' or 'false' paths
6176  // of the condition, it means that side of the branch goes to the end block
6177  // directly and the path originates from the start block from the point of
6178  // view of the new PHI.
6179  BasicBlock *TT, *FT;
6180  if (TrueBlock == nullptr) {
6181    TT = EndBlock;
6182    FT = FalseBlock;
6183    TrueBlock = StartBlock;
6184  } else if (FalseBlock == nullptr) {
6185    TT = TrueBlock;
6186    FT = EndBlock;
6187    FalseBlock = StartBlock;
6188  } else {
6189    TT = TrueBlock;
6190    FT = FalseBlock;
6191  }
6192  IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
6193
6194  SmallPtrSet<const Instruction *, 2> INS;
6195  INS.insert(ASI.begin(), ASI.end());
6196  // Use reverse iterator because later select may use the value of the
6197  // earlier select, and we need to propagate value through earlier select
6198  // to get the PHI operand.
6199  for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6200    SelectInst *SI = *It;
6201    // The select itself is replaced with a PHI Node.
6202    PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6203    PN->takeName(SI);
6204    PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6205    PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6206    PN->setDebugLoc(SI->getDebugLoc());
6207
6208    SI->replaceAllUsesWith(PN);
6209    SI->eraseFromParent();
6210    INS.erase(SI);
6211    ++NumSelectsExpanded;
6212  }
6213
6214  // Instruct OptimizeBlock to skip to the next block.
6215  CurInstIterator = StartBlock->end();
6216  return true;
6217}
6218
6219static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6220  SmallVector<int, 16> Mask(SVI->getShuffleMask());
6221  int SplatElem = -1;
6222  for (unsigned i = 0; i < Mask.size(); ++i) {
6223    if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6224      return false;
6225    SplatElem = Mask[i];
6226  }
6227
6228  return true;
6229}
6230
6231/// Some targets have expensive vector shifts if the lanes aren't all the same
6232/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6233/// it's often worth sinking a shufflevector splat down to its use so that
6234/// codegen can spot all lanes are identical.
6235bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6236  BasicBlock *DefBB = SVI->getParent();
6237
6238  // Only do this xform if variable vector shifts are particularly expensive.
6239  if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
6240    return false;
6241
6242  // We only expect better codegen by sinking a shuffle if we can recognise a
6243  // constant splat.
6244  if (!isBroadcastShuffle(SVI))
6245    return false;
6246
6247  // InsertedShuffles - Only insert a shuffle in each block once.
6248  DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6249
6250  bool MadeChange = false;
6251  for (User *U : SVI->users()) {
6252    Instruction *UI = cast<Instruction>(U);
6253
6254    // Figure out which BB this ext is used in.
6255    BasicBlock *UserBB = UI->getParent();
6256    if (UserBB == DefBB) continue;
6257
6258    // For now only apply this when the splat is used by a shift instruction.
6259    if (!UI->isShift()) continue;
6260
6261    // Everything checks out, sink the shuffle if the user's block doesn't
6262    // already have a copy.
6263    Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6264
6265    if (!InsertedShuffle) {
6266      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6267      assert(InsertPt != UserBB->end());
6268      InsertedShuffle =
6269          new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6270                                SVI->getOperand(2), "", &*InsertPt);
6271      InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
6272    }
6273
6274    UI->replaceUsesOfWith(SVI, InsertedShuffle);
6275    MadeChange = true;
6276  }
6277
6278  // If we removed all uses, nuke the shuffle.
6279  if (SVI->use_empty()) {
6280    SVI->eraseFromParent();
6281    MadeChange = true;
6282  }
6283
6284  return MadeChange;
6285}
6286
6287bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6288  // If the operands of I can be folded into a target instruction together with
6289  // I, duplicate and sink them.
6290  SmallVector<Use *, 4> OpsToSink;
6291  if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
6292    return false;
6293
6294  // OpsToSink can contain multiple uses in a use chain (e.g.
6295  // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6296  // uses must come first, so we process the ops in reverse order so as to not
6297  // create invalid IR.
6298  BasicBlock *TargetBB = I->getParent();
6299  bool Changed = false;
6300  SmallVector<Use *, 4> ToReplace;
6301  for (Use *U : reverse(OpsToSink)) {
6302    auto *UI = cast<Instruction>(U->get());
6303    if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6304      continue;
6305    ToReplace.push_back(U);
6306  }
6307
6308  SetVector<Instruction *> MaybeDead;
6309  DenseMap<Instruction *, Instruction *> NewInstructions;
6310  Instruction *InsertPoint = I;
6311  for (Use *U : ToReplace) {
6312    auto *UI = cast<Instruction>(U->get());
6313    Instruction *NI = UI->clone();
6314    NewInstructions[UI] = NI;
6315    MaybeDead.insert(UI);
6316    LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6317    NI->insertBefore(InsertPoint);
6318    InsertPoint = NI;
6319    InsertedInsts.insert(NI);
6320
6321    // Update the use for the new instruction, making sure that we update the
6322    // sunk instruction uses, if it is part of a chain that has already been
6323    // sunk.
6324    Instruction *OldI = cast<Instruction>(U->getUser());
6325    if (NewInstructions.count(OldI))
6326      NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6327    else
6328      U->set(NI);
6329    Changed = true;
6330  }
6331
6332  // Remove instructions that are dead after sinking.
6333  for (auto *I : MaybeDead) {
6334    if (!I->hasNUsesOrMore(1)) {
6335      LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6336      I->eraseFromParent();
6337    }
6338  }
6339
6340  return Changed;
6341}
6342
6343bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6344  if (!TLI || !DL)
6345    return false;
6346
6347  Value *Cond = SI->getCondition();
6348  Type *OldType = Cond->getType();
6349  LLVMContext &Context = Cond->getContext();
6350  MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6351  unsigned RegWidth = RegType.getSizeInBits();
6352
6353  if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6354    return false;
6355
6356  // If the register width is greater than the type width, expand the condition
6357  // of the switch instruction and each case constant to the width of the
6358  // register. By widening the type of the switch condition, subsequent
6359  // comparisons (for case comparisons) will not need to be extended to the
6360  // preferred register width, so we will potentially eliminate N-1 extends,
6361  // where N is the number of cases in the switch.
6362  auto *NewType = Type::getIntNTy(Context, RegWidth);
6363
6364  // Zero-extend the switch condition and case constants unless the switch
6365  // condition is a function argument that is already being sign-extended.
6366  // In that case, we can avoid an unnecessary mask/extension by sign-extending
6367  // everything instead.
6368  Instruction::CastOps ExtType = Instruction::ZExt;
6369  if (auto *Arg = dyn_cast<Argument>(Cond))
6370    if (Arg->hasSExtAttr())
6371      ExtType = Instruction::SExt;
6372
6373  auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6374  ExtInst->insertBefore(SI);
6375  ExtInst->setDebugLoc(SI->getDebugLoc());
6376  SI->setCondition(ExtInst);
6377  for (auto Case : SI->cases()) {
6378    APInt NarrowConst = Case.getCaseValue()->getValue();
6379    APInt WideConst = (ExtType == Instruction::ZExt) ?
6380                      NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6381    Case.setValue(ConstantInt::get(Context, WideConst));
6382  }
6383
6384  return true;
6385}
6386
6387
6388namespace {
6389
6390/// Helper class to promote a scalar operation to a vector one.
6391/// This class is used to move downward extractelement transition.
6392/// E.g.,
6393/// a = vector_op <2 x i32>
6394/// b = extractelement <2 x i32> a, i32 0
6395/// c = scalar_op b
6396/// store c
6397///
6398/// =>
6399/// a = vector_op <2 x i32>
6400/// c = vector_op a (equivalent to scalar_op on the related lane)
6401/// * d = extractelement <2 x i32> c, i32 0
6402/// * store d
6403/// Assuming both extractelement and store can be combine, we get rid of the
6404/// transition.
6405class VectorPromoteHelper {
6406  /// DataLayout associated with the current module.
6407  const DataLayout &DL;
6408
6409  /// Used to perform some checks on the legality of vector operations.
6410  const TargetLowering &TLI;
6411
6412  /// Used to estimated the cost of the promoted chain.
6413  const TargetTransformInfo &TTI;
6414
6415  /// The transition being moved downwards.
6416  Instruction *Transition;
6417
6418  /// The sequence of instructions to be promoted.
6419  SmallVector<Instruction *, 4> InstsToBePromoted;
6420
6421  /// Cost of combining a store and an extract.
6422  unsigned StoreExtractCombineCost;
6423
6424  /// Instruction that will be combined with the transition.
6425  Instruction *CombineInst = nullptr;
6426
6427  /// The instruction that represents the current end of the transition.
6428  /// Since we are faking the promotion until we reach the end of the chain
6429  /// of computation, we need a way to get the current end of the transition.
6430  Instruction *getEndOfTransition() const {
6431    if (InstsToBePromoted.empty())
6432      return Transition;
6433    return InstsToBePromoted.back();
6434  }
6435
6436  /// Return the index of the original value in the transition.
6437  /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6438  /// c, is at index 0.
6439  unsigned getTransitionOriginalValueIdx() const {
6440    assert(isa<ExtractElementInst>(Transition) &&
6441           "Other kind of transitions are not supported yet");
6442    return 0;
6443  }
6444
6445  /// Return the index of the index in the transition.
6446  /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6447  /// is at index 1.
6448  unsigned getTransitionIdx() const {
6449    assert(isa<ExtractElementInst>(Transition) &&
6450           "Other kind of transitions are not supported yet");
6451    return 1;
6452  }
6453
6454  /// Get the type of the transition.
6455  /// This is the type of the original value.
6456  /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6457  /// transition is <2 x i32>.
6458  Type *getTransitionType() const {
6459    return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6460  }
6461
6462  /// Promote \p ToBePromoted by moving \p Def downward through.
6463  /// I.e., we have the following sequence:
6464  /// Def = Transition <ty1> a to <ty2>
6465  /// b = ToBePromoted <ty2> Def, ...
6466  /// =>
6467  /// b = ToBePromoted <ty1> a, ...
6468  /// Def = Transition <ty1> ToBePromoted to <ty2>
6469  void promoteImpl(Instruction *ToBePromoted);
6470
6471  /// Check whether or not it is profitable to promote all the
6472  /// instructions enqueued to be promoted.
6473  bool isProfitableToPromote() {
6474    Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6475    unsigned Index = isa<ConstantInt>(ValIdx)
6476                         ? cast<ConstantInt>(ValIdx)->getZExtValue()
6477                         : -1;
6478    Type *PromotedType = getTransitionType();
6479
6480    StoreInst *ST = cast<StoreInst>(CombineInst);
6481    unsigned AS = ST->getPointerAddressSpace();
6482    unsigned Align = ST->getAlignment();
6483    // Check if this store is supported.
6484    if (!TLI.allowsMisalignedMemoryAccesses(
6485            TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6486            Align)) {
6487      // If this is not supported, there is no way we can combine
6488      // the extract with the store.
6489      return false;
6490    }
6491
6492    // The scalar chain of computation has to pay for the transition
6493    // scalar to vector.
6494    // The vector chain has to account for the combining cost.
6495    uint64_t ScalarCost =
6496        TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6497    uint64_t VectorCost = StoreExtractCombineCost;
6498    for (const auto &Inst : InstsToBePromoted) {
6499      // Compute the cost.
6500      // By construction, all instructions being promoted are arithmetic ones.
6501      // Moreover, one argument is a constant that can be viewed as a splat
6502      // constant.
6503      Value *Arg0 = Inst->getOperand(0);
6504      bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6505                            isa<ConstantFP>(Arg0);
6506      TargetTransformInfo::OperandValueKind Arg0OVK =
6507          IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6508                         : TargetTransformInfo::OK_AnyValue;
6509      TargetTransformInfo::OperandValueKind Arg1OVK =
6510          !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6511                          : TargetTransformInfo::OK_AnyValue;
6512      ScalarCost += TTI.getArithmeticInstrCost(
6513          Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6514      VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6515                                               Arg0OVK, Arg1OVK);
6516    }
6517    LLVM_DEBUG(
6518        dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6519               << ScalarCost << "\nVector: " << VectorCost << '\n');
6520    return ScalarCost > VectorCost;
6521  }
6522
6523  /// Generate a constant vector with \p Val with the same
6524  /// number of elements as the transition.
6525  /// \p UseSplat defines whether or not \p Val should be replicated
6526  /// across the whole vector.
6527  /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6528  /// otherwise we generate a vector with as many undef as possible:
6529  /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6530  /// used at the index of the extract.
6531  Value *getConstantVector(Constant *Val, bool UseSplat) const {
6532    unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6533    if (!UseSplat) {
6534      // If we cannot determine where the constant must be, we have to
6535      // use a splat constant.
6536      Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6537      if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6538        ExtractIdx = CstVal->getSExtValue();
6539      else
6540        UseSplat = true;
6541    }
6542
6543    unsigned End = getTransitionType()->getVectorNumElements();
6544    if (UseSplat)
6545      return ConstantVector::getSplat(End, Val);
6546
6547    SmallVector<Constant *, 4> ConstVec;
6548    UndefValue *UndefVal = UndefValue::get(Val->getType());
6549    for (unsigned Idx = 0; Idx != End; ++Idx) {
6550      if (Idx == ExtractIdx)
6551        ConstVec.push_back(Val);
6552      else
6553        ConstVec.push_back(UndefVal);
6554    }
6555    return ConstantVector::get(ConstVec);
6556  }
6557
6558  /// Check if promoting to a vector type an operand at \p OperandIdx
6559  /// in \p Use can trigger undefined behavior.
6560  static bool canCauseUndefinedBehavior(const Instruction *Use,
6561                                        unsigned OperandIdx) {
6562    // This is not safe to introduce undef when the operand is on
6563    // the right hand side of a division-like instruction.
6564    if (OperandIdx != 1)
6565      return false;
6566    switch (Use->getOpcode()) {
6567    default:
6568      return false;
6569    case Instruction::SDiv:
6570    case Instruction::UDiv:
6571    case Instruction::SRem:
6572    case Instruction::URem:
6573      return true;
6574    case Instruction::FDiv:
6575    case Instruction::FRem:
6576      return !Use->hasNoNaNs();
6577    }
6578    llvm_unreachable(nullptr);
6579  }
6580
6581public:
6582  VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6583                      const TargetTransformInfo &TTI, Instruction *Transition,
6584                      unsigned CombineCost)
6585      : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6586        StoreExtractCombineCost(CombineCost) {
6587    assert(Transition && "Do not know how to promote null");
6588  }
6589
6590  /// Check if we can promote \p ToBePromoted to \p Type.
6591  bool canPromote(const Instruction *ToBePromoted) const {
6592    // We could support CastInst too.
6593    return isa<BinaryOperator>(ToBePromoted);
6594  }
6595
6596  /// Check if it is profitable to promote \p ToBePromoted
6597  /// by moving downward the transition through.
6598  bool shouldPromote(const Instruction *ToBePromoted) const {
6599    // Promote only if all the operands can be statically expanded.
6600    // Indeed, we do not want to introduce any new kind of transitions.
6601    for (const Use &U : ToBePromoted->operands()) {
6602      const Value *Val = U.get();
6603      if (Val == getEndOfTransition()) {
6604        // If the use is a division and the transition is on the rhs,
6605        // we cannot promote the operation, otherwise we may create a
6606        // division by zero.
6607        if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6608          return false;
6609        continue;
6610      }
6611      if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6612          !isa<ConstantFP>(Val))
6613        return false;
6614    }
6615    // Check that the resulting operation is legal.
6616    int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6617    if (!ISDOpcode)
6618      return false;
6619    return StressStoreExtract ||
6620           TLI.isOperationLegalOrCustom(
6621               ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6622  }
6623
6624  /// Check whether or not \p Use can be combined
6625  /// with the transition.
6626  /// I.e., is it possible to do Use(Transition) => AnotherUse?
6627  bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6628
6629  /// Record \p ToBePromoted as part of the chain to be promoted.
6630  void enqueueForPromotion(Instruction *ToBePromoted) {
6631    InstsToBePromoted.push_back(ToBePromoted);
6632  }
6633
6634  /// Set the instruction that will be combined with the transition.
6635  void recordCombineInstruction(Instruction *ToBeCombined) {
6636    assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6637    CombineInst = ToBeCombined;
6638  }
6639
6640  /// Promote all the instructions enqueued for promotion if it is
6641  /// is profitable.
6642  /// \return True if the promotion happened, false otherwise.
6643  bool promote() {
6644    // Check if there is something to promote.
6645    // Right now, if we do not have anything to combine with,
6646    // we assume the promotion is not profitable.
6647    if (InstsToBePromoted.empty() || !CombineInst)
6648      return false;
6649
6650    // Check cost.
6651    if (!StressStoreExtract && !isProfitableToPromote())
6652      return false;
6653
6654    // Promote.
6655    for (auto &ToBePromoted : InstsToBePromoted)
6656      promoteImpl(ToBePromoted);
6657    InstsToBePromoted.clear();
6658    return true;
6659  }
6660};
6661
6662} // end anonymous namespace
6663
6664void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6665  // At this point, we know that all the operands of ToBePromoted but Def
6666  // can be statically promoted.
6667  // For Def, we need to use its parameter in ToBePromoted:
6668  // b = ToBePromoted ty1 a
6669  // Def = Transition ty1 b to ty2
6670  // Move the transition down.
6671  // 1. Replace all uses of the promoted operation by the transition.
6672  // = ... b => = ... Def.
6673  assert(ToBePromoted->getType() == Transition->getType() &&
6674         "The type of the result of the transition does not match "
6675         "the final type");
6676  ToBePromoted->replaceAllUsesWith(Transition);
6677  // 2. Update the type of the uses.
6678  // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6679  Type *TransitionTy = getTransitionType();
6680  ToBePromoted->mutateType(TransitionTy);
6681  // 3. Update all the operands of the promoted operation with promoted
6682  // operands.
6683  // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6684  for (Use &U : ToBePromoted->operands()) {
6685    Value *Val = U.get();
6686    Value *NewVal = nullptr;
6687    if (Val == Transition)
6688      NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6689    else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6690             isa<ConstantFP>(Val)) {
6691      // Use a splat constant if it is not safe to use undef.
6692      NewVal = getConstantVector(
6693          cast<Constant>(Val),
6694          isa<UndefValue>(Val) ||
6695              canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6696    } else
6697      llvm_unreachable("Did you modified shouldPromote and forgot to update "
6698                       "this?");
6699    ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6700  }
6701  Transition->moveAfter(ToBePromoted);
6702  Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6703}
6704
6705/// Some targets can do store(extractelement) with one instruction.
6706/// Try to push the extractelement towards the stores when the target
6707/// has this feature and this is profitable.
6708bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6709  unsigned CombineCost = std::numeric_limits<unsigned>::max();
6710  if (DisableStoreExtract || !TLI ||
6711      (!StressStoreExtract &&
6712       !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6713                                       Inst->getOperand(1), CombineCost)))
6714    return false;
6715
6716  // At this point we know that Inst is a vector to scalar transition.
6717  // Try to move it down the def-use chain, until:
6718  // - We can combine the transition with its single use
6719  //   => we got rid of the transition.
6720  // - We escape the current basic block
6721  //   => we would need to check that we are moving it at a cheaper place and
6722  //      we do not do that for now.
6723  BasicBlock *Parent = Inst->getParent();
6724  LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6725  VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6726  // If the transition has more than one use, assume this is not going to be
6727  // beneficial.
6728  while (Inst->hasOneUse()) {
6729    Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6730    LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6731
6732    if (ToBePromoted->getParent() != Parent) {
6733      LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6734                        << ToBePromoted->getParent()->getName()
6735                        << ") than the transition (" << Parent->getName()
6736                        << ").\n");
6737      return false;
6738    }
6739
6740    if (VPH.canCombine(ToBePromoted)) {
6741      LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6742                        << "will be combined with: " << *ToBePromoted << '\n');
6743      VPH.recordCombineInstruction(ToBePromoted);
6744      bool Changed = VPH.promote();
6745      NumStoreExtractExposed += Changed;
6746      return Changed;
6747    }
6748
6749    LLVM_DEBUG(dbgs() << "Try promoting.\n");
6750    if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6751      return false;
6752
6753    LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6754
6755    VPH.enqueueForPromotion(ToBePromoted);
6756    Inst = ToBePromoted;
6757  }
6758  return false;
6759}
6760
6761/// For the instruction sequence of store below, F and I values
6762/// are bundled together as an i64 value before being stored into memory.
6763/// Sometimes it is more efficient to generate separate stores for F and I,
6764/// which can remove the bitwise instructions or sink them to colder places.
6765///
6766///   (store (or (zext (bitcast F to i32) to i64),
6767///              (shl (zext I to i64), 32)), addr)  -->
6768///   (store F, addr) and (store I, addr+4)
6769///
6770/// Similarly, splitting for other merged store can also be beneficial, like:
6771/// For pair of {i32, i32}, i64 store --> two i32 stores.
6772/// For pair of {i32, i16}, i64 store --> two i32 stores.
6773/// For pair of {i16, i16}, i32 store --> two i16 stores.
6774/// For pair of {i16, i8},  i32 store --> two i16 stores.
6775/// For pair of {i8, i8},   i16 store --> two i8 stores.
6776///
6777/// We allow each target to determine specifically which kind of splitting is
6778/// supported.
6779///
6780/// The store patterns are commonly seen from the simple code snippet below
6781/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6782///   void goo(const std::pair<int, float> &);
6783///   hoo() {
6784///     ...
6785///     goo(std::make_pair(tmp, ftmp));
6786///     ...
6787///   }
6788///
6789/// Although we already have similar splitting in DAG Combine, we duplicate
6790/// it in CodeGenPrepare to catch the case in which pattern is across
6791/// multiple BBs. The logic in DAG Combine is kept to catch case generated
6792/// during code expansion.
6793static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6794                                const TargetLowering &TLI) {
6795  // Handle simple but common cases only.
6796  Type *StoreType = SI.getValueOperand()->getType();
6797  if (!DL.typeSizeEqualsStoreSize(StoreType) ||
6798      DL.getTypeSizeInBits(StoreType) == 0)
6799    return false;
6800
6801  unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6802  Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6803  if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
6804    return false;
6805
6806  // Don't split the store if it is volatile.
6807  if (SI.isVolatile())
6808    return false;
6809
6810  // Match the following patterns:
6811  // (store (or (zext LValue to i64),
6812  //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6813  //  or
6814  // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6815  //            (zext LValue to i64),
6816  // Expect both operands of OR and the first operand of SHL have only
6817  // one use.
6818  Value *LValue, *HValue;
6819  if (!match(SI.getValueOperand(),
6820             m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6821                    m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6822                                   m_SpecificInt(HalfValBitSize))))))
6823    return false;
6824
6825  // Check LValue and HValue are int with size less or equal than 32.
6826  if (!LValue->getType()->isIntegerTy() ||
6827      DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6828      !HValue->getType()->isIntegerTy() ||
6829      DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6830    return false;
6831
6832  // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6833  // as the input of target query.
6834  auto *LBC = dyn_cast<BitCastInst>(LValue);
6835  auto *HBC = dyn_cast<BitCastInst>(HValue);
6836  EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6837                  : EVT::getEVT(LValue->getType());
6838  EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6839                   : EVT::getEVT(HValue->getType());
6840  if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6841    return false;
6842
6843  // Start to split store.
6844  IRBuilder<> Builder(SI.getContext());
6845  Builder.SetInsertPoint(&SI);
6846
6847  // If LValue/HValue is a bitcast in another BB, create a new one in current
6848  // BB so it may be merged with the splitted stores by dag combiner.
6849  if (LBC && LBC->getParent() != SI.getParent())
6850    LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6851  if (HBC && HBC->getParent() != SI.getParent())
6852    HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6853
6854  bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6855  auto CreateSplitStore = [&](Value *V, bool Upper) {
6856    V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6857    Value *Addr = Builder.CreateBitCast(
6858        SI.getOperand(1),
6859        SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6860    const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
6861    if (IsOffsetStore)
6862      Addr = Builder.CreateGEP(
6863          SplitStoreType, Addr,
6864          ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6865    MaybeAlign Alignment(SI.getAlignment());
6866    if (IsOffsetStore && Alignment) {
6867      // When splitting the store in half, naturally one half will retain the
6868      // alignment of the original wider store, regardless of whether it was
6869      // over-aligned or not, while the other will require adjustment.
6870      Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
6871    }
6872    Builder.CreateAlignedStore(
6873        V, Addr, Alignment.hasValue() ? Alignment.getValue().value() : 0);
6874  };
6875
6876  CreateSplitStore(LValue, false);
6877  CreateSplitStore(HValue, true);
6878
6879  // Delete the old store.
6880  SI.eraseFromParent();
6881  return true;
6882}
6883
6884// Return true if the GEP has two operands, the first operand is of a sequential
6885// type, and the second operand is a constant.
6886static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6887  gep_type_iterator I = gep_type_begin(*GEP);
6888  return GEP->getNumOperands() == 2 &&
6889      I.isSequential() &&
6890      isa<ConstantInt>(GEP->getOperand(1));
6891}
6892
6893// Try unmerging GEPs to reduce liveness interference (register pressure) across
6894// IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6895// reducing liveness interference across those edges benefits global register
6896// allocation. Currently handles only certain cases.
6897//
6898// For example, unmerge %GEPI and %UGEPI as below.
6899//
6900// ---------- BEFORE ----------
6901// SrcBlock:
6902//   ...
6903//   %GEPIOp = ...
6904//   ...
6905//   %GEPI = gep %GEPIOp, Idx
6906//   ...
6907//   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6908//   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6909//   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6910//   %UGEPI)
6911//
6912// DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6913// DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6914// ...
6915//
6916// DstBi:
6917//   ...
6918//   %UGEPI = gep %GEPIOp, UIdx
6919// ...
6920// ---------------------------
6921//
6922// ---------- AFTER ----------
6923// SrcBlock:
6924//   ... (same as above)
6925//    (* %GEPI is still alive on the indirectbr edges)
6926//    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6927//    unmerging)
6928// ...
6929//
6930// DstBi:
6931//   ...
6932//   %UGEPI = gep %GEPI, (UIdx-Idx)
6933//   ...
6934// ---------------------------
6935//
6936// The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6937// no longer alive on them.
6938//
6939// We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6940// of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6941// not to disable further simplications and optimizations as a result of GEP
6942// merging.
6943//
6944// Note this unmerging may increase the length of the data flow critical path
6945// (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6946// between the register pressure and the length of data-flow critical
6947// path. Restricting this to the uncommon IndirectBr case would minimize the
6948// impact of potentially longer critical path, if any, and the impact on compile
6949// time.
6950static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6951                                             const TargetTransformInfo *TTI) {
6952  BasicBlock *SrcBlock = GEPI->getParent();
6953  // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6954  // (non-IndirectBr) cases exit early here.
6955  if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6956    return false;
6957  // Check that GEPI is a simple gep with a single constant index.
6958  if (!GEPSequentialConstIndexed(GEPI))
6959    return false;
6960  ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6961  // Check that GEPI is a cheap one.
6962  if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6963      > TargetTransformInfo::TCC_Basic)
6964    return false;
6965  Value *GEPIOp = GEPI->getOperand(0);
6966  // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6967  if (!isa<Instruction>(GEPIOp))
6968    return false;
6969  auto *GEPIOpI = cast<Instruction>(GEPIOp);
6970  if (GEPIOpI->getParent() != SrcBlock)
6971    return false;
6972  // Check that GEP is used outside the block, meaning it's alive on the
6973  // IndirectBr edge(s).
6974  if (find_if(GEPI->users(), [&](User *Usr) {
6975        if (auto *I = dyn_cast<Instruction>(Usr)) {
6976          if (I->getParent() != SrcBlock) {
6977            return true;
6978          }
6979        }
6980        return false;
6981      }) == GEPI->users().end())
6982    return false;
6983  // The second elements of the GEP chains to be unmerged.
6984  std::vector<GetElementPtrInst *> UGEPIs;
6985  // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6986  // on IndirectBr edges.
6987  for (User *Usr : GEPIOp->users()) {
6988    if (Usr == GEPI) continue;
6989    // Check if Usr is an Instruction. If not, give up.
6990    if (!isa<Instruction>(Usr))
6991      return false;
6992    auto *UI = cast<Instruction>(Usr);
6993    // Check if Usr in the same block as GEPIOp, which is fine, skip.
6994    if (UI->getParent() == SrcBlock)
6995      continue;
6996    // Check if Usr is a GEP. If not, give up.
6997    if (!isa<GetElementPtrInst>(Usr))
6998      return false;
6999    auto *UGEPI = cast<GetElementPtrInst>(Usr);
7000    // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7001    // the pointer operand to it. If so, record it in the vector. If not, give
7002    // up.
7003    if (!GEPSequentialConstIndexed(UGEPI))
7004      return false;
7005    if (UGEPI->getOperand(0) != GEPIOp)
7006      return false;
7007    if (GEPIIdx->getType() !=
7008        cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7009      return false;
7010    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7011    if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
7012        > TargetTransformInfo::TCC_Basic)
7013      return false;
7014    UGEPIs.push_back(UGEPI);
7015  }
7016  if (UGEPIs.size() == 0)
7017    return false;
7018  // Check the materializing cost of (Uidx-Idx).
7019  for (GetElementPtrInst *UGEPI : UGEPIs) {
7020    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7021    APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7022    unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
7023    if (ImmCost > TargetTransformInfo::TCC_Basic)
7024      return false;
7025  }
7026  // Now unmerge between GEPI and UGEPIs.
7027  for (GetElementPtrInst *UGEPI : UGEPIs) {
7028    UGEPI->setOperand(0, GEPI);
7029    ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7030    Constant *NewUGEPIIdx =
7031        ConstantInt::get(GEPIIdx->getType(),
7032                         UGEPIIdx->getValue() - GEPIIdx->getValue());
7033    UGEPI->setOperand(1, NewUGEPIIdx);
7034    // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7035    // inbounds to avoid UB.
7036    if (!GEPI->isInBounds()) {
7037      UGEPI->setIsInBounds(false);
7038    }
7039  }
7040  // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7041  // alive on IndirectBr edges).
7042  assert(find_if(GEPIOp->users(), [&](User *Usr) {
7043        return cast<Instruction>(Usr)->getParent() != SrcBlock;
7044      }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7045  return true;
7046}
7047
7048bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7049  // Bail out if we inserted the instruction to prevent optimizations from
7050  // stepping on each other's toes.
7051  if (InsertedInsts.count(I))
7052    return false;
7053
7054  // TODO: Move into the switch on opcode below here.
7055  if (PHINode *P = dyn_cast<PHINode>(I)) {
7056    // It is possible for very late stage optimizations (such as SimplifyCFG)
7057    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
7058    // trivial PHI, go ahead and zap it here.
7059    if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7060      LargeOffsetGEPMap.erase(P);
7061      P->replaceAllUsesWith(V);
7062      P->eraseFromParent();
7063      ++NumPHIsElim;
7064      return true;
7065    }
7066    return false;
7067  }
7068
7069  if (CastInst *CI = dyn_cast<CastInst>(I)) {
7070    // If the source of the cast is a constant, then this should have
7071    // already been constant folded.  The only reason NOT to constant fold
7072    // it is if something (e.g. LSR) was careful to place the constant
7073    // evaluation in a block other than then one that uses it (e.g. to hoist
7074    // the address of globals out of a loop).  If this is the case, we don't
7075    // want to forward-subst the cast.
7076    if (isa<Constant>(CI->getOperand(0)))
7077      return false;
7078
7079    if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
7080      return true;
7081
7082    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7083      /// Sink a zext or sext into its user blocks if the target type doesn't
7084      /// fit in one register
7085      if (TLI &&
7086          TLI->getTypeAction(CI->getContext(),
7087                             TLI->getValueType(*DL, CI->getType())) ==
7088              TargetLowering::TypeExpandInteger) {
7089        return SinkCast(CI);
7090      } else {
7091        bool MadeChange = optimizeExt(I);
7092        return MadeChange | optimizeExtUses(I);
7093      }
7094    }
7095    return false;
7096  }
7097
7098  if (auto *Cmp = dyn_cast<CmpInst>(I))
7099    if (TLI && optimizeCmp(Cmp, ModifiedDT))
7100      return true;
7101
7102  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7103    LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7104    if (TLI) {
7105      bool Modified = optimizeLoadExt(LI);
7106      unsigned AS = LI->getPointerAddressSpace();
7107      Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7108      return Modified;
7109    }
7110    return false;
7111  }
7112
7113  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7114    if (TLI && splitMergedValStore(*SI, *DL, *TLI))
7115      return true;
7116    SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7117    if (TLI) {
7118      unsigned AS = SI->getPointerAddressSpace();
7119      return optimizeMemoryInst(I, SI->getOperand(1),
7120                                SI->getOperand(0)->getType(), AS);
7121    }
7122    return false;
7123  }
7124
7125  if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7126      unsigned AS = RMW->getPointerAddressSpace();
7127      return optimizeMemoryInst(I, RMW->getPointerOperand(),
7128                                RMW->getType(), AS);
7129  }
7130
7131  if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7132      unsigned AS = CmpX->getPointerAddressSpace();
7133      return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7134                                CmpX->getCompareOperand()->getType(), AS);
7135  }
7136
7137  BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7138
7139  if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
7140      EnableAndCmpSinking && TLI)
7141    return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7142
7143  // TODO: Move this into the switch on opcode - it handles shifts already.
7144  if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7145                BinOp->getOpcode() == Instruction::LShr)) {
7146    ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7147    if (TLI && CI && TLI->hasExtractBitsInsn())
7148      if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7149        return true;
7150  }
7151
7152  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7153    if (GEPI->hasAllZeroIndices()) {
7154      /// The GEP operand must be a pointer, so must its result -> BitCast
7155      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7156                                        GEPI->getName(), GEPI);
7157      NC->setDebugLoc(GEPI->getDebugLoc());
7158      GEPI->replaceAllUsesWith(NC);
7159      GEPI->eraseFromParent();
7160      ++NumGEPsElim;
7161      optimizeInst(NC, ModifiedDT);
7162      return true;
7163    }
7164    if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7165      return true;
7166    }
7167    return false;
7168  }
7169
7170  if (tryToSinkFreeOperands(I))
7171    return true;
7172
7173  switch (I->getOpcode()) {
7174  case Instruction::Shl:
7175  case Instruction::LShr:
7176  case Instruction::AShr:
7177    return optimizeShiftInst(cast<BinaryOperator>(I));
7178  case Instruction::Call:
7179    return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7180  case Instruction::Select:
7181    return optimizeSelectInst(cast<SelectInst>(I));
7182  case Instruction::ShuffleVector:
7183    return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7184  case Instruction::Switch:
7185    return optimizeSwitchInst(cast<SwitchInst>(I));
7186  case Instruction::ExtractElement:
7187    return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7188  }
7189
7190  return false;
7191}
7192
7193/// Given an OR instruction, check to see if this is a bitreverse
7194/// idiom. If so, insert the new intrinsic and return true.
7195static bool makeBitReverse(Instruction &I, const DataLayout &DL,
7196                           const TargetLowering &TLI) {
7197  if (!I.getType()->isIntegerTy() ||
7198      !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
7199                                    TLI.getValueType(DL, I.getType(), true)))
7200    return false;
7201
7202  SmallVector<Instruction*, 4> Insts;
7203  if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7204    return false;
7205  Instruction *LastInst = Insts.back();
7206  I.replaceAllUsesWith(LastInst);
7207  RecursivelyDeleteTriviallyDeadInstructions(&I);
7208  return true;
7209}
7210
7211// In this pass we look for GEP and cast instructions that are used
7212// across basic blocks and rewrite them to improve basic-block-at-a-time
7213// selection.
7214bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7215  SunkAddrs.clear();
7216  bool MadeChange = false;
7217
7218  CurInstIterator = BB.begin();
7219  while (CurInstIterator != BB.end()) {
7220    MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7221    if (ModifiedDT)
7222      return true;
7223  }
7224
7225  bool MadeBitReverse = true;
7226  while (TLI && MadeBitReverse) {
7227    MadeBitReverse = false;
7228    for (auto &I : reverse(BB)) {
7229      if (makeBitReverse(I, *DL, *TLI)) {
7230        MadeBitReverse = MadeChange = true;
7231        break;
7232      }
7233    }
7234  }
7235  MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7236
7237  return MadeChange;
7238}
7239
7240// Some CGP optimizations may move or alter what's computed in a block. Check
7241// whether a dbg.value intrinsic could be pointed at a more appropriate operand.
7242bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
7243  assert(isa<DbgValueInst>(I));
7244  DbgValueInst &DVI = *cast<DbgValueInst>(I);
7245
7246  // Does this dbg.value refer to a sunk address calculation?
7247  Value *Location = DVI.getVariableLocation();
7248  WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
7249  Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
7250  if (SunkAddr) {
7251    // Point dbg.value at locally computed address, which should give the best
7252    // opportunity to be accurately lowered. This update may change the type of
7253    // pointer being referred to; however this makes no difference to debugging
7254    // information, and we can't generate bitcasts that may affect codegen.
7255    DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(),
7256                                           ValueAsMetadata::get(SunkAddr)));
7257    return true;
7258  }
7259  return false;
7260}
7261
7262// A llvm.dbg.value may be using a value before its definition, due to
7263// optimizations in this pass and others. Scan for such dbg.values, and rescue
7264// them by moving the dbg.value to immediately after the value definition.
7265// FIXME: Ideally this should never be necessary, and this has the potential
7266// to re-order dbg.value intrinsics.
7267bool CodeGenPrepare::placeDbgValues(Function &F) {
7268  bool MadeChange = false;
7269  DominatorTree DT(F);
7270
7271  for (BasicBlock &BB : F) {
7272    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7273      Instruction *Insn = &*BI++;
7274      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7275      if (!DVI)
7276        continue;
7277
7278      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7279
7280      if (!VI || VI->isTerminator())
7281        continue;
7282
7283      // If VI is a phi in a block with an EHPad terminator, we can't insert
7284      // after it.
7285      if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7286        continue;
7287
7288      // If the defining instruction dominates the dbg.value, we do not need
7289      // to move the dbg.value.
7290      if (DT.dominates(VI, DVI))
7291        continue;
7292
7293      LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7294                        << *DVI << ' ' << *VI);
7295      DVI->removeFromParent();
7296      if (isa<PHINode>(VI))
7297        DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7298      else
7299        DVI->insertAfter(VI);
7300      MadeChange = true;
7301      ++NumDbgValueMoved;
7302    }
7303  }
7304  return MadeChange;
7305}
7306
7307/// Scale down both weights to fit into uint32_t.
7308static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7309  uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7310  uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7311  NewTrue = NewTrue / Scale;
7312  NewFalse = NewFalse / Scale;
7313}
7314
7315/// Some targets prefer to split a conditional branch like:
7316/// \code
7317///   %0 = icmp ne i32 %a, 0
7318///   %1 = icmp ne i32 %b, 0
7319///   %or.cond = or i1 %0, %1
7320///   br i1 %or.cond, label %TrueBB, label %FalseBB
7321/// \endcode
7322/// into multiple branch instructions like:
7323/// \code
7324///   bb1:
7325///     %0 = icmp ne i32 %a, 0
7326///     br i1 %0, label %TrueBB, label %bb2
7327///   bb2:
7328///     %1 = icmp ne i32 %b, 0
7329///     br i1 %1, label %TrueBB, label %FalseBB
7330/// \endcode
7331/// This usually allows instruction selection to do even further optimizations
7332/// and combine the compare with the branch instruction. Currently this is
7333/// applied for targets which have "cheap" jump instructions.
7334///
7335/// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7336///
7337bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7338  if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
7339    return false;
7340
7341  bool MadeChange = false;
7342  for (auto &BB : F) {
7343    // Does this BB end with the following?
7344    //   %cond1 = icmp|fcmp|binary instruction ...
7345    //   %cond2 = icmp|fcmp|binary instruction ...
7346    //   %cond.or = or|and i1 %cond1, cond2
7347    //   br i1 %cond.or label %dest1, label %dest2"
7348    BinaryOperator *LogicOp;
7349    BasicBlock *TBB, *FBB;
7350    if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7351      continue;
7352
7353    auto *Br1 = cast<BranchInst>(BB.getTerminator());
7354    if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7355      continue;
7356
7357    // The merging of mostly empty BB can cause a degenerate branch.
7358    if (TBB == FBB)
7359      continue;
7360
7361    unsigned Opc;
7362    Value *Cond1, *Cond2;
7363    if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7364                             m_OneUse(m_Value(Cond2)))))
7365      Opc = Instruction::And;
7366    else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7367                                 m_OneUse(m_Value(Cond2)))))
7368      Opc = Instruction::Or;
7369    else
7370      continue;
7371
7372    if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7373        !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
7374      continue;
7375
7376    LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7377
7378    // Create a new BB.
7379    auto TmpBB =
7380        BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7381                           BB.getParent(), BB.getNextNode());
7382
7383    // Update original basic block by using the first condition directly by the
7384    // branch instruction and removing the no longer needed and/or instruction.
7385    Br1->setCondition(Cond1);
7386    LogicOp->eraseFromParent();
7387
7388    // Depending on the condition we have to either replace the true or the
7389    // false successor of the original branch instruction.
7390    if (Opc == Instruction::And)
7391      Br1->setSuccessor(0, TmpBB);
7392    else
7393      Br1->setSuccessor(1, TmpBB);
7394
7395    // Fill in the new basic block.
7396    auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7397    if (auto *I = dyn_cast<Instruction>(Cond2)) {
7398      I->removeFromParent();
7399      I->insertBefore(Br2);
7400    }
7401
7402    // Update PHI nodes in both successors. The original BB needs to be
7403    // replaced in one successor's PHI nodes, because the branch comes now from
7404    // the newly generated BB (NewBB). In the other successor we need to add one
7405    // incoming edge to the PHI nodes, because both branch instructions target
7406    // now the same successor. Depending on the original branch condition
7407    // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7408    // we perform the correct update for the PHI nodes.
7409    // This doesn't change the successor order of the just created branch
7410    // instruction (or any other instruction).
7411    if (Opc == Instruction::Or)
7412      std::swap(TBB, FBB);
7413
7414    // Replace the old BB with the new BB.
7415    TBB->replacePhiUsesWith(&BB, TmpBB);
7416
7417    // Add another incoming edge form the new BB.
7418    for (PHINode &PN : FBB->phis()) {
7419      auto *Val = PN.getIncomingValueForBlock(&BB);
7420      PN.addIncoming(Val, TmpBB);
7421    }
7422
7423    // Update the branch weights (from SelectionDAGBuilder::
7424    // FindMergedConditions).
7425    if (Opc == Instruction::Or) {
7426      // Codegen X | Y as:
7427      // BB1:
7428      //   jmp_if_X TBB
7429      //   jmp TmpBB
7430      // TmpBB:
7431      //   jmp_if_Y TBB
7432      //   jmp FBB
7433      //
7434
7435      // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7436      // The requirement is that
7437      //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7438      //     = TrueProb for original BB.
7439      // Assuming the original weights are A and B, one choice is to set BB1's
7440      // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7441      // assumes that
7442      //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7443      // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7444      // TmpBB, but the math is more complicated.
7445      uint64_t TrueWeight, FalseWeight;
7446      if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7447        uint64_t NewTrueWeight = TrueWeight;
7448        uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7449        scaleWeights(NewTrueWeight, NewFalseWeight);
7450        Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7451                         .createBranchWeights(TrueWeight, FalseWeight));
7452
7453        NewTrueWeight = TrueWeight;
7454        NewFalseWeight = 2 * FalseWeight;
7455        scaleWeights(NewTrueWeight, NewFalseWeight);
7456        Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7457                         .createBranchWeights(TrueWeight, FalseWeight));
7458      }
7459    } else {
7460      // Codegen X & Y as:
7461      // BB1:
7462      //   jmp_if_X TmpBB
7463      //   jmp FBB
7464      // TmpBB:
7465      //   jmp_if_Y TBB
7466      //   jmp FBB
7467      //
7468      //  This requires creation of TmpBB after CurBB.
7469
7470      // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7471      // The requirement is that
7472      //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7473      //     = FalseProb for original BB.
7474      // Assuming the original weights are A and B, one choice is to set BB1's
7475      // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7476      // assumes that
7477      //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7478      uint64_t TrueWeight, FalseWeight;
7479      if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7480        uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7481        uint64_t NewFalseWeight = FalseWeight;
7482        scaleWeights(NewTrueWeight, NewFalseWeight);
7483        Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7484                         .createBranchWeights(TrueWeight, FalseWeight));
7485
7486        NewTrueWeight = 2 * TrueWeight;
7487        NewFalseWeight = FalseWeight;
7488        scaleWeights(NewTrueWeight, NewFalseWeight);
7489        Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7490                         .createBranchWeights(TrueWeight, FalseWeight));
7491      }
7492    }
7493
7494    ModifiedDT = true;
7495    MadeChange = true;
7496
7497    LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7498               TmpBB->dump());
7499  }
7500  return MadeChange;
7501}
7502