1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements an analysis that determines, for a given memory
10// operation, what preceding memory operations it depends on.  It builds on
11// alias analysis information, and tries to provide a lazy, caching interface to
12// a common kind of alias information query.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/MemoryDependenceAnalysis.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/AssumptionCache.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/Analysis/MemoryLocation.h"
26#include "llvm/Analysis/OrderedBasicBlock.h"
27#include "llvm/Analysis/PHITransAddr.h"
28#include "llvm/Analysis/PhiValues.h"
29#include "llvm/Analysis/TargetLibraryInfo.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/IR/Attributes.h"
32#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Dominators.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InstrTypes.h"
39#include "llvm/IR/Instruction.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Metadata.h"
44#include "llvm/IR/Module.h"
45#include "llvm/IR/PredIteratorCache.h"
46#include "llvm/IR/Type.h"
47#include "llvm/IR/Use.h"
48#include "llvm/IR/User.h"
49#include "llvm/IR/Value.h"
50#include "llvm/InitializePasses.h"
51#include "llvm/Pass.h"
52#include "llvm/Support/AtomicOrdering.h"
53#include "llvm/Support/Casting.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Compiler.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/MathExtras.h"
58#include <algorithm>
59#include <cassert>
60#include <cstdint>
61#include <iterator>
62#include <utility>
63
64using namespace llvm;
65
66#define DEBUG_TYPE "memdep"
67
68STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
69STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
70STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
71
72STATISTIC(NumCacheNonLocalPtr,
73          "Number of fully cached non-local ptr responses");
74STATISTIC(NumCacheDirtyNonLocalPtr,
75          "Number of cached, but dirty, non-local ptr responses");
76STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
77STATISTIC(NumCacheCompleteNonLocalPtr,
78          "Number of block queries that were completely cached");
79
80// Limit for the number of instructions to scan in a block.
81
82static cl::opt<unsigned> BlockScanLimit(
83    "memdep-block-scan-limit", cl::Hidden, cl::init(100),
84    cl::desc("The number of instructions to scan in a block in memory "
85             "dependency analysis (default = 100)"));
86
87static cl::opt<unsigned>
88    BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
89                     cl::desc("The number of blocks to scan during memory "
90                              "dependency analysis (default = 1000)"));
91
92// Limit on the number of memdep results to process.
93static const unsigned int NumResultsLimit = 100;
94
95/// This is a helper function that removes Val from 'Inst's set in ReverseMap.
96///
97/// If the set becomes empty, remove Inst's entry.
98template <typename KeyTy>
99static void
100RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
101                     Instruction *Inst, KeyTy Val) {
102  typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
103      ReverseMap.find(Inst);
104  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
105  bool Found = InstIt->second.erase(Val);
106  assert(Found && "Invalid reverse map!");
107  (void)Found;
108  if (InstIt->second.empty())
109    ReverseMap.erase(InstIt);
110}
111
112/// If the given instruction references a specific memory location, fill in Loc
113/// with the details, otherwise set Loc.Ptr to null.
114///
115/// Returns a ModRefInfo value describing the general behavior of the
116/// instruction.
117static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
118                              const TargetLibraryInfo &TLI) {
119  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
120    if (LI->isUnordered()) {
121      Loc = MemoryLocation::get(LI);
122      return ModRefInfo::Ref;
123    }
124    if (LI->getOrdering() == AtomicOrdering::Monotonic) {
125      Loc = MemoryLocation::get(LI);
126      return ModRefInfo::ModRef;
127    }
128    Loc = MemoryLocation();
129    return ModRefInfo::ModRef;
130  }
131
132  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
133    if (SI->isUnordered()) {
134      Loc = MemoryLocation::get(SI);
135      return ModRefInfo::Mod;
136    }
137    if (SI->getOrdering() == AtomicOrdering::Monotonic) {
138      Loc = MemoryLocation::get(SI);
139      return ModRefInfo::ModRef;
140    }
141    Loc = MemoryLocation();
142    return ModRefInfo::ModRef;
143  }
144
145  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
146    Loc = MemoryLocation::get(V);
147    return ModRefInfo::ModRef;
148  }
149
150  if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
151    // calls to free() deallocate the entire structure
152    Loc = MemoryLocation(CI->getArgOperand(0));
153    return ModRefInfo::Mod;
154  }
155
156  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
157    switch (II->getIntrinsicID()) {
158    case Intrinsic::lifetime_start:
159    case Intrinsic::lifetime_end:
160    case Intrinsic::invariant_start:
161      Loc = MemoryLocation::getForArgument(II, 1, TLI);
162      // These intrinsics don't really modify the memory, but returning Mod
163      // will allow them to be handled conservatively.
164      return ModRefInfo::Mod;
165    case Intrinsic::invariant_end:
166      Loc = MemoryLocation::getForArgument(II, 2, TLI);
167      // These intrinsics don't really modify the memory, but returning Mod
168      // will allow them to be handled conservatively.
169      return ModRefInfo::Mod;
170    default:
171      break;
172    }
173  }
174
175  // Otherwise, just do the coarse-grained thing that always works.
176  if (Inst->mayWriteToMemory())
177    return ModRefInfo::ModRef;
178  if (Inst->mayReadFromMemory())
179    return ModRefInfo::Ref;
180  return ModRefInfo::NoModRef;
181}
182
183/// Private helper for finding the local dependencies of a call site.
184MemDepResult MemoryDependenceResults::getCallDependencyFrom(
185    CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
186    BasicBlock *BB) {
187  unsigned Limit = getDefaultBlockScanLimit();
188
189  // Walk backwards through the block, looking for dependencies.
190  while (ScanIt != BB->begin()) {
191    Instruction *Inst = &*--ScanIt;
192    // Debug intrinsics don't cause dependences and should not affect Limit
193    if (isa<DbgInfoIntrinsic>(Inst))
194      continue;
195
196    // Limit the amount of scanning we do so we don't end up with quadratic
197    // running time on extreme testcases.
198    --Limit;
199    if (!Limit)
200      return MemDepResult::getUnknown();
201
202    // If this inst is a memory op, get the pointer it accessed
203    MemoryLocation Loc;
204    ModRefInfo MR = GetLocation(Inst, Loc, TLI);
205    if (Loc.Ptr) {
206      // A simple instruction.
207      if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
208        return MemDepResult::getClobber(Inst);
209      continue;
210    }
211
212    if (auto *CallB = dyn_cast<CallBase>(Inst)) {
213      // If these two calls do not interfere, look past it.
214      if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
215        // If the two calls are the same, return Inst as a Def, so that
216        // Call can be found redundant and eliminated.
217        if (isReadOnlyCall && !isModSet(MR) &&
218            Call->isIdenticalToWhenDefined(CallB))
219          return MemDepResult::getDef(Inst);
220
221        // Otherwise if the two calls don't interact (e.g. CallB is readnone)
222        // keep scanning.
223        continue;
224      } else
225        return MemDepResult::getClobber(Inst);
226    }
227
228    // If we could not obtain a pointer for the instruction and the instruction
229    // touches memory then assume that this is a dependency.
230    if (isModOrRefSet(MR))
231      return MemDepResult::getClobber(Inst);
232  }
233
234  // No dependence found.  If this is the entry block of the function, it is
235  // unknown, otherwise it is non-local.
236  if (BB != &BB->getParent()->getEntryBlock())
237    return MemDepResult::getNonLocal();
238  return MemDepResult::getNonFuncLocal();
239}
240
241unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
242    const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
243    const LoadInst *LI) {
244  // We can only extend simple integer loads.
245  if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
246    return 0;
247
248  // Load widening is hostile to ThreadSanitizer: it may cause false positives
249  // or make the reports more cryptic (access sizes are wrong).
250  if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
251    return 0;
252
253  const DataLayout &DL = LI->getModule()->getDataLayout();
254
255  // Get the base of this load.
256  int64_t LIOffs = 0;
257  const Value *LIBase =
258      GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
259
260  // If the two pointers are not based on the same pointer, we can't tell that
261  // they are related.
262  if (LIBase != MemLocBase)
263    return 0;
264
265  // Okay, the two values are based on the same pointer, but returned as
266  // no-alias.  This happens when we have things like two byte loads at "P+1"
267  // and "P+3".  Check to see if increasing the size of the "LI" load up to its
268  // alignment (or the largest native integer type) will allow us to load all
269  // the bits required by MemLoc.
270
271  // If MemLoc is before LI, then no widening of LI will help us out.
272  if (MemLocOffs < LIOffs)
273    return 0;
274
275  // Get the alignment of the load in bytes.  We assume that it is safe to load
276  // any legal integer up to this size without a problem.  For example, if we're
277  // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
278  // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
279  // to i16.
280  unsigned LoadAlign = LI->getAlignment();
281
282  int64_t MemLocEnd = MemLocOffs + MemLocSize;
283
284  // If no amount of rounding up will let MemLoc fit into LI, then bail out.
285  if (LIOffs + LoadAlign < MemLocEnd)
286    return 0;
287
288  // This is the size of the load to try.  Start with the next larger power of
289  // two.
290  unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
291  NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
292
293  while (true) {
294    // If this load size is bigger than our known alignment or would not fit
295    // into a native integer register, then we fail.
296    if (NewLoadByteSize > LoadAlign ||
297        !DL.fitsInLegalInteger(NewLoadByteSize * 8))
298      return 0;
299
300    if (LIOffs + NewLoadByteSize > MemLocEnd &&
301        (LI->getParent()->getParent()->hasFnAttribute(
302             Attribute::SanitizeAddress) ||
303         LI->getParent()->getParent()->hasFnAttribute(
304             Attribute::SanitizeHWAddress)))
305      // We will be reading past the location accessed by the original program.
306      // While this is safe in a regular build, Address Safety analysis tools
307      // may start reporting false warnings. So, don't do widening.
308      return 0;
309
310    // If a load of this width would include all of MemLoc, then we succeed.
311    if (LIOffs + NewLoadByteSize >= MemLocEnd)
312      return NewLoadByteSize;
313
314    NewLoadByteSize <<= 1;
315  }
316}
317
318static bool isVolatile(Instruction *Inst) {
319  if (auto *LI = dyn_cast<LoadInst>(Inst))
320    return LI->isVolatile();
321  if (auto *SI = dyn_cast<StoreInst>(Inst))
322    return SI->isVolatile();
323  if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
324    return AI->isVolatile();
325  return false;
326}
327
328MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
329    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
330    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
331    OrderedBasicBlock *OBB) {
332  MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
333  if (QueryInst != nullptr) {
334    if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
335      InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
336
337      if (InvariantGroupDependency.isDef())
338        return InvariantGroupDependency;
339    }
340  }
341  MemDepResult SimpleDep = getSimplePointerDependencyFrom(
342      MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, OBB);
343  if (SimpleDep.isDef())
344    return SimpleDep;
345  // Non-local invariant group dependency indicates there is non local Def
346  // (it only returns nonLocal if it finds nonLocal def), which is better than
347  // local clobber and everything else.
348  if (InvariantGroupDependency.isNonLocal())
349    return InvariantGroupDependency;
350
351  assert(InvariantGroupDependency.isUnknown() &&
352         "InvariantGroupDependency should be only unknown at this point");
353  return SimpleDep;
354}
355
356MemDepResult
357MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
358                                                            BasicBlock *BB) {
359
360  if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
361    return MemDepResult::getUnknown();
362
363  // Take the ptr operand after all casts and geps 0. This way we can search
364  // cast graph down only.
365  Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
366
367  // It's is not safe to walk the use list of global value, because function
368  // passes aren't allowed to look outside their functions.
369  // FIXME: this could be fixed by filtering instructions from outside
370  // of current function.
371  if (isa<GlobalValue>(LoadOperand))
372    return MemDepResult::getUnknown();
373
374  // Queue to process all pointers that are equivalent to load operand.
375  SmallVector<const Value *, 8> LoadOperandsQueue;
376  LoadOperandsQueue.push_back(LoadOperand);
377
378  Instruction *ClosestDependency = nullptr;
379  // Order of instructions in uses list is unpredictible. In order to always
380  // get the same result, we will look for the closest dominance.
381  auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
382    assert(Other && "Must call it with not null instruction");
383    if (Best == nullptr || DT.dominates(Best, Other))
384      return Other;
385    return Best;
386  };
387
388  // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
389  // we will see all the instructions. This should be fixed in MSSA.
390  while (!LoadOperandsQueue.empty()) {
391    const Value *Ptr = LoadOperandsQueue.pop_back_val();
392    assert(Ptr && !isa<GlobalValue>(Ptr) &&
393           "Null or GlobalValue should not be inserted");
394
395    for (const Use &Us : Ptr->uses()) {
396      auto *U = dyn_cast<Instruction>(Us.getUser());
397      if (!U || U == LI || !DT.dominates(U, LI))
398        continue;
399
400      // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
401      // users.      U = bitcast Ptr
402      if (isa<BitCastInst>(U)) {
403        LoadOperandsQueue.push_back(U);
404        continue;
405      }
406      // Gep with zeros is equivalent to bitcast.
407      // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
408      // or gep 0 to bitcast because of SROA, so there are 2 forms. When
409      // typeless pointers will be ready then both cases will be gone
410      // (and this BFS also won't be needed).
411      if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
412        if (GEP->hasAllZeroIndices()) {
413          LoadOperandsQueue.push_back(U);
414          continue;
415        }
416
417      // If we hit load/store with the same invariant.group metadata (and the
418      // same pointer operand) we can assume that value pointed by pointer
419      // operand didn't change.
420      if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
421          U->hasMetadata(LLVMContext::MD_invariant_group))
422        ClosestDependency = GetClosestDependency(ClosestDependency, U);
423    }
424  }
425
426  if (!ClosestDependency)
427    return MemDepResult::getUnknown();
428  if (ClosestDependency->getParent() == BB)
429    return MemDepResult::getDef(ClosestDependency);
430  // Def(U) can't be returned here because it is non-local. If local
431  // dependency won't be found then return nonLocal counting that the
432  // user will call getNonLocalPointerDependency, which will return cached
433  // result.
434  NonLocalDefsCache.try_emplace(
435      LI, NonLocalDepResult(ClosestDependency->getParent(),
436                            MemDepResult::getDef(ClosestDependency), nullptr));
437  ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
438  return MemDepResult::getNonLocal();
439}
440
441MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
442    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
443    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
444    OrderedBasicBlock *OBB) {
445  bool isInvariantLoad = false;
446
447  unsigned DefaultLimit = getDefaultBlockScanLimit();
448  if (!Limit)
449    Limit = &DefaultLimit;
450
451  // We must be careful with atomic accesses, as they may allow another thread
452  //   to touch this location, clobbering it. We are conservative: if the
453  //   QueryInst is not a simple (non-atomic) memory access, we automatically
454  //   return getClobber.
455  // If it is simple, we know based on the results of
456  // "Compiler testing via a theory of sound optimisations in the C11/C++11
457  //   memory model" in PLDI 2013, that a non-atomic location can only be
458  //   clobbered between a pair of a release and an acquire action, with no
459  //   access to the location in between.
460  // Here is an example for giving the general intuition behind this rule.
461  // In the following code:
462  //   store x 0;
463  //   release action; [1]
464  //   acquire action; [4]
465  //   %val = load x;
466  // It is unsafe to replace %val by 0 because another thread may be running:
467  //   acquire action; [2]
468  //   store x 42;
469  //   release action; [3]
470  // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
471  // being 42. A key property of this program however is that if either
472  // 1 or 4 were missing, there would be a race between the store of 42
473  // either the store of 0 or the load (making the whole program racy).
474  // The paper mentioned above shows that the same property is respected
475  // by every program that can detect any optimization of that kind: either
476  // it is racy (undefined) or there is a release followed by an acquire
477  // between the pair of accesses under consideration.
478
479  // If the load is invariant, we "know" that it doesn't alias *any* write. We
480  // do want to respect mustalias results since defs are useful for value
481  // forwarding, but any mayalias write can be assumed to be noalias.
482  // Arguably, this logic should be pushed inside AliasAnalysis itself.
483  if (isLoad && QueryInst) {
484    LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
485    if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
486      isInvariantLoad = true;
487  }
488
489  const DataLayout &DL = BB->getModule()->getDataLayout();
490
491  // If the caller did not provide an ordered basic block,
492  // create one to lazily compute and cache instruction
493  // positions inside a BB. This is used to provide fast queries for relative
494  // position between two instructions in a BB and can be used by
495  // AliasAnalysis::callCapturesBefore.
496  OrderedBasicBlock OBBTmp(BB);
497  if (!OBB)
498    OBB = &OBBTmp;
499
500  // Return "true" if and only if the instruction I is either a non-simple
501  // load or a non-simple store.
502  auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
503    if (auto *LI = dyn_cast<LoadInst>(I))
504      return !LI->isSimple();
505    if (auto *SI = dyn_cast<StoreInst>(I))
506      return !SI->isSimple();
507    return false;
508  };
509
510  // Return "true" if I is not a load and not a store, but it does access
511  // memory.
512  auto isOtherMemAccess = [](Instruction *I) -> bool {
513    return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
514  };
515
516  // Walk backwards through the basic block, looking for dependencies.
517  while (ScanIt != BB->begin()) {
518    Instruction *Inst = &*--ScanIt;
519
520    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
521      // Debug intrinsics don't (and can't) cause dependencies.
522      if (isa<DbgInfoIntrinsic>(II))
523        continue;
524
525    // Limit the amount of scanning we do so we don't end up with quadratic
526    // running time on extreme testcases.
527    --*Limit;
528    if (!*Limit)
529      return MemDepResult::getUnknown();
530
531    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
532      // If we reach a lifetime begin or end marker, then the query ends here
533      // because the value is undefined.
534      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
535        // FIXME: This only considers queries directly on the invariant-tagged
536        // pointer, not on query pointers that are indexed off of them.  It'd
537        // be nice to handle that at some point (the right approach is to use
538        // GetPointerBaseWithConstantOffset).
539        if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
540          return MemDepResult::getDef(II);
541        continue;
542      }
543    }
544
545    // Values depend on loads if the pointers are must aliased.  This means
546    // that a load depends on another must aliased load from the same value.
547    // One exception is atomic loads: a value can depend on an atomic load that
548    // it does not alias with when this atomic load indicates that another
549    // thread may be accessing the location.
550    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
551      // While volatile access cannot be eliminated, they do not have to clobber
552      // non-aliasing locations, as normal accesses, for example, can be safely
553      // reordered with volatile accesses.
554      if (LI->isVolatile()) {
555        if (!QueryInst)
556          // Original QueryInst *may* be volatile
557          return MemDepResult::getClobber(LI);
558        if (isVolatile(QueryInst))
559          // Ordering required if QueryInst is itself volatile
560          return MemDepResult::getClobber(LI);
561        // Otherwise, volatile doesn't imply any special ordering
562      }
563
564      // Atomic loads have complications involved.
565      // A Monotonic (or higher) load is OK if the query inst is itself not
566      // atomic.
567      // FIXME: This is overly conservative.
568      if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
569        if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
570            isOtherMemAccess(QueryInst))
571          return MemDepResult::getClobber(LI);
572        if (LI->getOrdering() != AtomicOrdering::Monotonic)
573          return MemDepResult::getClobber(LI);
574      }
575
576      MemoryLocation LoadLoc = MemoryLocation::get(LI);
577
578      // If we found a pointer, check if it could be the same as our pointer.
579      AliasResult R = AA.alias(LoadLoc, MemLoc);
580
581      if (isLoad) {
582        if (R == NoAlias)
583          continue;
584
585        // Must aliased loads are defs of each other.
586        if (R == MustAlias)
587          return MemDepResult::getDef(Inst);
588
589#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
590      // in terms of clobbering loads, but since it does this by looking
591      // at the clobbering load directly, it doesn't know about any
592      // phi translation that may have happened along the way.
593
594        // If we have a partial alias, then return this as a clobber for the
595        // client to handle.
596        if (R == PartialAlias)
597          return MemDepResult::getClobber(Inst);
598#endif
599
600        // Random may-alias loads don't depend on each other without a
601        // dependence.
602        continue;
603      }
604
605      // Stores don't depend on other no-aliased accesses.
606      if (R == NoAlias)
607        continue;
608
609      // Stores don't alias loads from read-only memory.
610      if (AA.pointsToConstantMemory(LoadLoc))
611        continue;
612
613      // Stores depend on may/must aliased loads.
614      return MemDepResult::getDef(Inst);
615    }
616
617    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
618      // Atomic stores have complications involved.
619      // A Monotonic store is OK if the query inst is itself not atomic.
620      // FIXME: This is overly conservative.
621      if (!SI->isUnordered() && SI->isAtomic()) {
622        if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
623            isOtherMemAccess(QueryInst))
624          return MemDepResult::getClobber(SI);
625        if (SI->getOrdering() != AtomicOrdering::Monotonic)
626          return MemDepResult::getClobber(SI);
627      }
628
629      // FIXME: this is overly conservative.
630      // While volatile access cannot be eliminated, they do not have to clobber
631      // non-aliasing locations, as normal accesses can for example be reordered
632      // with volatile accesses.
633      if (SI->isVolatile())
634        if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
635            isOtherMemAccess(QueryInst))
636          return MemDepResult::getClobber(SI);
637
638      // If alias analysis can tell that this store is guaranteed to not modify
639      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
640      // the query pointer points to constant memory etc.
641      if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc)))
642        continue;
643
644      // Ok, this store might clobber the query pointer.  Check to see if it is
645      // a must alias: in this case, we want to return this as a def.
646      // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
647      MemoryLocation StoreLoc = MemoryLocation::get(SI);
648
649      // If we found a pointer, check if it could be the same as our pointer.
650      AliasResult R = AA.alias(StoreLoc, MemLoc);
651
652      if (R == NoAlias)
653        continue;
654      if (R == MustAlias)
655        return MemDepResult::getDef(Inst);
656      if (isInvariantLoad)
657        continue;
658      return MemDepResult::getClobber(Inst);
659    }
660
661    // If this is an allocation, and if we know that the accessed pointer is to
662    // the allocation, return Def.  This means that there is no dependence and
663    // the access can be optimized based on that.  For example, a load could
664    // turn into undef.  Note that we can bypass the allocation itself when
665    // looking for a clobber in many cases; that's an alias property and is
666    // handled by BasicAA.
667    if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
668      const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
669      if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
670        return MemDepResult::getDef(Inst);
671    }
672
673    if (isInvariantLoad)
674      continue;
675
676    // A release fence requires that all stores complete before it, but does
677    // not prevent the reordering of following loads or stores 'before' the
678    // fence.  As a result, we look past it when finding a dependency for
679    // loads.  DSE uses this to find preceding stores to delete and thus we
680    // can't bypass the fence if the query instruction is a store.
681    if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
682      if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
683        continue;
684
685    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
686    ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
687    // If necessary, perform additional analysis.
688    if (isModAndRefSet(MR))
689      MR = AA.callCapturesBefore(Inst, MemLoc, &DT, OBB);
690    switch (clearMust(MR)) {
691    case ModRefInfo::NoModRef:
692      // If the call has no effect on the queried pointer, just ignore it.
693      continue;
694    case ModRefInfo::Mod:
695      return MemDepResult::getClobber(Inst);
696    case ModRefInfo::Ref:
697      // If the call is known to never store to the pointer, and if this is a
698      // load query, we can safely ignore it (scan past it).
699      if (isLoad)
700        continue;
701      LLVM_FALLTHROUGH;
702    default:
703      // Otherwise, there is a potential dependence.  Return a clobber.
704      return MemDepResult::getClobber(Inst);
705    }
706  }
707
708  // No dependence found.  If this is the entry block of the function, it is
709  // unknown, otherwise it is non-local.
710  if (BB != &BB->getParent()->getEntryBlock())
711    return MemDepResult::getNonLocal();
712  return MemDepResult::getNonFuncLocal();
713}
714
715MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst,
716                                                    OrderedBasicBlock *OBB) {
717  Instruction *ScanPos = QueryInst;
718
719  // Check for a cached result
720  MemDepResult &LocalCache = LocalDeps[QueryInst];
721
722  // If the cached entry is non-dirty, just return it.  Note that this depends
723  // on MemDepResult's default constructing to 'dirty'.
724  if (!LocalCache.isDirty())
725    return LocalCache;
726
727  // Otherwise, if we have a dirty entry, we know we can start the scan at that
728  // instruction, which may save us some work.
729  if (Instruction *Inst = LocalCache.getInst()) {
730    ScanPos = Inst;
731
732    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
733  }
734
735  BasicBlock *QueryParent = QueryInst->getParent();
736
737  // Do the scan.
738  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
739    // No dependence found. If this is the entry block of the function, it is
740    // unknown, otherwise it is non-local.
741    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
742      LocalCache = MemDepResult::getNonLocal();
743    else
744      LocalCache = MemDepResult::getNonFuncLocal();
745  } else {
746    MemoryLocation MemLoc;
747    ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
748    if (MemLoc.Ptr) {
749      // If we can do a pointer scan, make it happen.
750      bool isLoad = !isModSet(MR);
751      if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
752        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
753
754      LocalCache =
755          getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
756                                   QueryParent, QueryInst, nullptr, OBB);
757    } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
758      bool isReadOnly = AA.onlyReadsMemory(QueryCall);
759      LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
760                                         ScanPos->getIterator(), QueryParent);
761    } else
762      // Non-memory instruction.
763      LocalCache = MemDepResult::getUnknown();
764  }
765
766  // Remember the result!
767  if (Instruction *I = LocalCache.getInst())
768    ReverseLocalDeps[I].insert(QueryInst);
769
770  return LocalCache;
771}
772
773#ifndef NDEBUG
774/// This method is used when -debug is specified to verify that cache arrays
775/// are properly kept sorted.
776static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
777                         int Count = -1) {
778  if (Count == -1)
779    Count = Cache.size();
780  assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
781         "Cache isn't sorted!");
782}
783#endif
784
785const MemoryDependenceResults::NonLocalDepInfo &
786MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
787  assert(getDependency(QueryCall).isNonLocal() &&
788         "getNonLocalCallDependency should only be used on calls with "
789         "non-local deps!");
790  PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
791  NonLocalDepInfo &Cache = CacheP.first;
792
793  // This is the set of blocks that need to be recomputed.  In the cached case,
794  // this can happen due to instructions being deleted etc. In the uncached
795  // case, this starts out as the set of predecessors we care about.
796  SmallVector<BasicBlock *, 32> DirtyBlocks;
797
798  if (!Cache.empty()) {
799    // Okay, we have a cache entry.  If we know it is not dirty, just return it
800    // with no computation.
801    if (!CacheP.second) {
802      ++NumCacheNonLocal;
803      return Cache;
804    }
805
806    // If we already have a partially computed set of results, scan them to
807    // determine what is dirty, seeding our initial DirtyBlocks worklist.
808    for (auto &Entry : Cache)
809      if (Entry.getResult().isDirty())
810        DirtyBlocks.push_back(Entry.getBB());
811
812    // Sort the cache so that we can do fast binary search lookups below.
813    llvm::sort(Cache);
814
815    ++NumCacheDirtyNonLocal;
816    // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
817    //     << Cache.size() << " cached: " << *QueryInst;
818  } else {
819    // Seed DirtyBlocks with each of the preds of QueryInst's block.
820    BasicBlock *QueryBB = QueryCall->getParent();
821    for (BasicBlock *Pred : PredCache.get(QueryBB))
822      DirtyBlocks.push_back(Pred);
823    ++NumUncacheNonLocal;
824  }
825
826  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
827  bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
828
829  SmallPtrSet<BasicBlock *, 32> Visited;
830
831  unsigned NumSortedEntries = Cache.size();
832  LLVM_DEBUG(AssertSorted(Cache));
833
834  // Iterate while we still have blocks to update.
835  while (!DirtyBlocks.empty()) {
836    BasicBlock *DirtyBB = DirtyBlocks.back();
837    DirtyBlocks.pop_back();
838
839    // Already processed this block?
840    if (!Visited.insert(DirtyBB).second)
841      continue;
842
843    // Do a binary search to see if we already have an entry for this block in
844    // the cache set.  If so, find it.
845    LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
846    NonLocalDepInfo::iterator Entry =
847        std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
848                         NonLocalDepEntry(DirtyBB));
849    if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
850      --Entry;
851
852    NonLocalDepEntry *ExistingResult = nullptr;
853    if (Entry != Cache.begin() + NumSortedEntries &&
854        Entry->getBB() == DirtyBB) {
855      // If we already have an entry, and if it isn't already dirty, the block
856      // is done.
857      if (!Entry->getResult().isDirty())
858        continue;
859
860      // Otherwise, remember this slot so we can update the value.
861      ExistingResult = &*Entry;
862    }
863
864    // If the dirty entry has a pointer, start scanning from it so we don't have
865    // to rescan the entire block.
866    BasicBlock::iterator ScanPos = DirtyBB->end();
867    if (ExistingResult) {
868      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
869        ScanPos = Inst->getIterator();
870        // We're removing QueryInst's use of Inst.
871        RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
872                                            QueryCall);
873      }
874    }
875
876    // Find out if this block has a local dependency for QueryInst.
877    MemDepResult Dep;
878
879    if (ScanPos != DirtyBB->begin()) {
880      Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
881    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
882      // No dependence found.  If this is the entry block of the function, it is
883      // a clobber, otherwise it is unknown.
884      Dep = MemDepResult::getNonLocal();
885    } else {
886      Dep = MemDepResult::getNonFuncLocal();
887    }
888
889    // If we had a dirty entry for the block, update it.  Otherwise, just add
890    // a new entry.
891    if (ExistingResult)
892      ExistingResult->setResult(Dep);
893    else
894      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
895
896    // If the block has a dependency (i.e. it isn't completely transparent to
897    // the value), remember the association!
898    if (!Dep.isNonLocal()) {
899      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
900      // update this when we remove instructions.
901      if (Instruction *Inst = Dep.getInst())
902        ReverseNonLocalDeps[Inst].insert(QueryCall);
903    } else {
904
905      // If the block *is* completely transparent to the load, we need to check
906      // the predecessors of this block.  Add them to our worklist.
907      for (BasicBlock *Pred : PredCache.get(DirtyBB))
908        DirtyBlocks.push_back(Pred);
909    }
910  }
911
912  return Cache;
913}
914
915void MemoryDependenceResults::getNonLocalPointerDependency(
916    Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
917  const MemoryLocation Loc = MemoryLocation::get(QueryInst);
918  bool isLoad = isa<LoadInst>(QueryInst);
919  BasicBlock *FromBB = QueryInst->getParent();
920  assert(FromBB);
921
922  assert(Loc.Ptr->getType()->isPointerTy() &&
923         "Can't get pointer deps of a non-pointer!");
924  Result.clear();
925  {
926    // Check if there is cached Def with invariant.group.
927    auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
928    if (NonLocalDefIt != NonLocalDefsCache.end()) {
929      Result.push_back(NonLocalDefIt->second);
930      ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
931          .erase(QueryInst);
932      NonLocalDefsCache.erase(NonLocalDefIt);
933      return;
934    }
935  }
936  // This routine does not expect to deal with volatile instructions.
937  // Doing so would require piping through the QueryInst all the way through.
938  // TODO: volatiles can't be elided, but they can be reordered with other
939  // non-volatile accesses.
940
941  // We currently give up on any instruction which is ordered, but we do handle
942  // atomic instructions which are unordered.
943  // TODO: Handle ordered instructions
944  auto isOrdered = [](Instruction *Inst) {
945    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
946      return !LI->isUnordered();
947    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
948      return !SI->isUnordered();
949    }
950    return false;
951  };
952  if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
953    Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
954                                       const_cast<Value *>(Loc.Ptr)));
955    return;
956  }
957  const DataLayout &DL = FromBB->getModule()->getDataLayout();
958  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
959
960  // This is the set of blocks we've inspected, and the pointer we consider in
961  // each block.  Because of critical edges, we currently bail out if querying
962  // a block with multiple different pointers.  This can happen during PHI
963  // translation.
964  DenseMap<BasicBlock *, Value *> Visited;
965  if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
966                                   Result, Visited, true))
967    return;
968  Result.clear();
969  Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
970                                     const_cast<Value *>(Loc.Ptr)));
971}
972
973/// Compute the memdep value for BB with Pointer/PointeeSize using either
974/// cached information in Cache or by doing a lookup (which may use dirty cache
975/// info if available).
976///
977/// If we do a lookup, add the result to the cache.
978MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
979    Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
980    BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
981
982  // Do a binary search to see if we already have an entry for this block in
983  // the cache set.  If so, find it.
984  NonLocalDepInfo::iterator Entry = std::upper_bound(
985      Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
986  if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
987    --Entry;
988
989  NonLocalDepEntry *ExistingResult = nullptr;
990  if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
991    ExistingResult = &*Entry;
992
993  // If we have a cached entry, and it is non-dirty, use it as the value for
994  // this dependency.
995  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
996    ++NumCacheNonLocalPtr;
997    return ExistingResult->getResult();
998  }
999
1000  // Otherwise, we have to scan for the value.  If we have a dirty cache
1001  // entry, start scanning from its position, otherwise we scan from the end
1002  // of the block.
1003  BasicBlock::iterator ScanPos = BB->end();
1004  if (ExistingResult && ExistingResult->getResult().getInst()) {
1005    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
1006           "Instruction invalidated?");
1007    ++NumCacheDirtyNonLocalPtr;
1008    ScanPos = ExistingResult->getResult().getInst()->getIterator();
1009
1010    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1011    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1012    RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
1013  } else {
1014    ++NumUncacheNonLocalPtr;
1015  }
1016
1017  // Scan the block for the dependency.
1018  MemDepResult Dep =
1019      getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
1020
1021  // If we had a dirty entry for the block, update it.  Otherwise, just add
1022  // a new entry.
1023  if (ExistingResult)
1024    ExistingResult->setResult(Dep);
1025  else
1026    Cache->push_back(NonLocalDepEntry(BB, Dep));
1027
1028  // If the block has a dependency (i.e. it isn't completely transparent to
1029  // the value), remember the reverse association because we just added it
1030  // to Cache!
1031  if (!Dep.isDef() && !Dep.isClobber())
1032    return Dep;
1033
1034  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
1035  // update MemDep when we remove instructions.
1036  Instruction *Inst = Dep.getInst();
1037  assert(Inst && "Didn't depend on anything?");
1038  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1039  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
1040  return Dep;
1041}
1042
1043/// Sort the NonLocalDepInfo cache, given a certain number of elements in the
1044/// array that are already properly ordered.
1045///
1046/// This is optimized for the case when only a few entries are added.
1047static void
1048SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
1049                         unsigned NumSortedEntries) {
1050  switch (Cache.size() - NumSortedEntries) {
1051  case 0:
1052    // done, no new entries.
1053    break;
1054  case 2: {
1055    // Two new entries, insert the last one into place.
1056    NonLocalDepEntry Val = Cache.back();
1057    Cache.pop_back();
1058    MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1059        std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1060    Cache.insert(Entry, Val);
1061    LLVM_FALLTHROUGH;
1062  }
1063  case 1:
1064    // One new entry, Just insert the new value at the appropriate position.
1065    if (Cache.size() != 1) {
1066      NonLocalDepEntry Val = Cache.back();
1067      Cache.pop_back();
1068      MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1069          std::upper_bound(Cache.begin(), Cache.end(), Val);
1070      Cache.insert(Entry, Val);
1071    }
1072    break;
1073  default:
1074    // Added many values, do a full scale sort.
1075    llvm::sort(Cache);
1076    break;
1077  }
1078}
1079
1080/// Perform a dependency query based on pointer/pointeesize starting at the end
1081/// of StartBB.
1082///
1083/// Add any clobber/def results to the results vector and keep track of which
1084/// blocks are visited in 'Visited'.
1085///
1086/// This has special behavior for the first block queries (when SkipFirstBlock
1087/// is true).  In this special case, it ignores the contents of the specified
1088/// block and starts returning dependence info for its predecessors.
1089///
1090/// This function returns true on success, or false to indicate that it could
1091/// not compute dependence information for some reason.  This should be treated
1092/// as a clobber dependence on the first instruction in the predecessor block.
1093bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1094    Instruction *QueryInst, const PHITransAddr &Pointer,
1095    const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1096    SmallVectorImpl<NonLocalDepResult> &Result,
1097    DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
1098  // Look up the cached info for Pointer.
1099  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1100
1101  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1102  // CacheKey, this value will be inserted as the associated value. Otherwise,
1103  // it'll be ignored, and we'll have to check to see if the cached size and
1104  // aa tags are consistent with the current query.
1105  NonLocalPointerInfo InitialNLPI;
1106  InitialNLPI.Size = Loc.Size;
1107  InitialNLPI.AATags = Loc.AATags;
1108
1109  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1110  // already have one.
1111  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1112      NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1113  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1114
1115  // If we already have a cache entry for this CacheKey, we may need to do some
1116  // work to reconcile the cache entry and the current query.
1117  if (!Pair.second) {
1118    if (CacheInfo->Size != Loc.Size) {
1119      bool ThrowOutEverything;
1120      if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1121        // FIXME: We may be able to do better in the face of results with mixed
1122        // precision. We don't appear to get them in practice, though, so just
1123        // be conservative.
1124        ThrowOutEverything =
1125            CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1126            CacheInfo->Size.getValue() < Loc.Size.getValue();
1127      } else {
1128        // For our purposes, unknown size > all others.
1129        ThrowOutEverything = !Loc.Size.hasValue();
1130      }
1131
1132      if (ThrowOutEverything) {
1133        // The query's Size is greater than the cached one. Throw out the
1134        // cached data and proceed with the query at the greater size.
1135        CacheInfo->Pair = BBSkipFirstBlockPair();
1136        CacheInfo->Size = Loc.Size;
1137        for (auto &Entry : CacheInfo->NonLocalDeps)
1138          if (Instruction *Inst = Entry.getResult().getInst())
1139            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1140        CacheInfo->NonLocalDeps.clear();
1141      } else {
1142        // This query's Size is less than the cached one. Conservatively restart
1143        // the query using the greater size.
1144        return getNonLocalPointerDepFromBB(
1145            QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1146            StartBB, Result, Visited, SkipFirstBlock);
1147      }
1148    }
1149
1150    // If the query's AATags are inconsistent with the cached one,
1151    // conservatively throw out the cached data and restart the query with
1152    // no tag if needed.
1153    if (CacheInfo->AATags != Loc.AATags) {
1154      if (CacheInfo->AATags) {
1155        CacheInfo->Pair = BBSkipFirstBlockPair();
1156        CacheInfo->AATags = AAMDNodes();
1157        for (auto &Entry : CacheInfo->NonLocalDeps)
1158          if (Instruction *Inst = Entry.getResult().getInst())
1159            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1160        CacheInfo->NonLocalDeps.clear();
1161      }
1162      if (Loc.AATags)
1163        return getNonLocalPointerDepFromBB(
1164            QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1165            Visited, SkipFirstBlock);
1166    }
1167  }
1168
1169  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1170
1171  // If we have valid cached information for exactly the block we are
1172  // investigating, just return it with no recomputation.
1173  if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1174    // We have a fully cached result for this query then we can just return the
1175    // cached results and populate the visited set.  However, we have to verify
1176    // that we don't already have conflicting results for these blocks.  Check
1177    // to ensure that if a block in the results set is in the visited set that
1178    // it was for the same pointer query.
1179    if (!Visited.empty()) {
1180      for (auto &Entry : *Cache) {
1181        DenseMap<BasicBlock *, Value *>::iterator VI =
1182            Visited.find(Entry.getBB());
1183        if (VI == Visited.end() || VI->second == Pointer.getAddr())
1184          continue;
1185
1186        // We have a pointer mismatch in a block.  Just return false, saying
1187        // that something was clobbered in this result.  We could also do a
1188        // non-fully cached query, but there is little point in doing this.
1189        return false;
1190      }
1191    }
1192
1193    Value *Addr = Pointer.getAddr();
1194    for (auto &Entry : *Cache) {
1195      Visited.insert(std::make_pair(Entry.getBB(), Addr));
1196      if (Entry.getResult().isNonLocal()) {
1197        continue;
1198      }
1199
1200      if (DT.isReachableFromEntry(Entry.getBB())) {
1201        Result.push_back(
1202            NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1203      }
1204    }
1205    ++NumCacheCompleteNonLocalPtr;
1206    return true;
1207  }
1208
1209  // Otherwise, either this is a new block, a block with an invalid cache
1210  // pointer or one that we're about to invalidate by putting more info into it
1211  // than its valid cache info.  If empty, the result will be valid cache info,
1212  // otherwise it isn't.
1213  if (Cache->empty())
1214    CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1215  else
1216    CacheInfo->Pair = BBSkipFirstBlockPair();
1217
1218  SmallVector<BasicBlock *, 32> Worklist;
1219  Worklist.push_back(StartBB);
1220
1221  // PredList used inside loop.
1222  SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1223
1224  // Keep track of the entries that we know are sorted.  Previously cached
1225  // entries will all be sorted.  The entries we add we only sort on demand (we
1226  // don't insert every element into its sorted position).  We know that we
1227  // won't get any reuse from currently inserted values, because we don't
1228  // revisit blocks after we insert info for them.
1229  unsigned NumSortedEntries = Cache->size();
1230  unsigned WorklistEntries = BlockNumberLimit;
1231  bool GotWorklistLimit = false;
1232  LLVM_DEBUG(AssertSorted(*Cache));
1233
1234  while (!Worklist.empty()) {
1235    BasicBlock *BB = Worklist.pop_back_val();
1236
1237    // If we do process a large number of blocks it becomes very expensive and
1238    // likely it isn't worth worrying about
1239    if (Result.size() > NumResultsLimit) {
1240      Worklist.clear();
1241      // Sort it now (if needed) so that recursive invocations of
1242      // getNonLocalPointerDepFromBB and other routines that could reuse the
1243      // cache value will only see properly sorted cache arrays.
1244      if (Cache && NumSortedEntries != Cache->size()) {
1245        SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1246      }
1247      // Since we bail out, the "Cache" set won't contain all of the
1248      // results for the query.  This is ok (we can still use it to accelerate
1249      // specific block queries) but we can't do the fastpath "return all
1250      // results from the set".  Clear out the indicator for this.
1251      CacheInfo->Pair = BBSkipFirstBlockPair();
1252      return false;
1253    }
1254
1255    // Skip the first block if we have it.
1256    if (!SkipFirstBlock) {
1257      // Analyze the dependency of *Pointer in FromBB.  See if we already have
1258      // been here.
1259      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1260
1261      // Get the dependency info for Pointer in BB.  If we have cached
1262      // information, we will use it, otherwise we compute it.
1263      LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1264      MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1265                                                 Cache, NumSortedEntries);
1266
1267      // If we got a Def or Clobber, add this to the list of results.
1268      if (!Dep.isNonLocal()) {
1269        if (DT.isReachableFromEntry(BB)) {
1270          Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1271          continue;
1272        }
1273      }
1274    }
1275
1276    // If 'Pointer' is an instruction defined in this block, then we need to do
1277    // phi translation to change it into a value live in the predecessor block.
1278    // If not, we just add the predecessors to the worklist and scan them with
1279    // the same Pointer.
1280    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1281      SkipFirstBlock = false;
1282      SmallVector<BasicBlock *, 16> NewBlocks;
1283      for (BasicBlock *Pred : PredCache.get(BB)) {
1284        // Verify that we haven't looked at this block yet.
1285        std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1286            Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1287        if (InsertRes.second) {
1288          // First time we've looked at *PI.
1289          NewBlocks.push_back(Pred);
1290          continue;
1291        }
1292
1293        // If we have seen this block before, but it was with a different
1294        // pointer then we have a phi translation failure and we have to treat
1295        // this as a clobber.
1296        if (InsertRes.first->second != Pointer.getAddr()) {
1297          // Make sure to clean up the Visited map before continuing on to
1298          // PredTranslationFailure.
1299          for (unsigned i = 0; i < NewBlocks.size(); i++)
1300            Visited.erase(NewBlocks[i]);
1301          goto PredTranslationFailure;
1302        }
1303      }
1304      if (NewBlocks.size() > WorklistEntries) {
1305        // Make sure to clean up the Visited map before continuing on to
1306        // PredTranslationFailure.
1307        for (unsigned i = 0; i < NewBlocks.size(); i++)
1308          Visited.erase(NewBlocks[i]);
1309        GotWorklistLimit = true;
1310        goto PredTranslationFailure;
1311      }
1312      WorklistEntries -= NewBlocks.size();
1313      Worklist.append(NewBlocks.begin(), NewBlocks.end());
1314      continue;
1315    }
1316
1317    // We do need to do phi translation, if we know ahead of time we can't phi
1318    // translate this value, don't even try.
1319    if (!Pointer.IsPotentiallyPHITranslatable())
1320      goto PredTranslationFailure;
1321
1322    // We may have added values to the cache list before this PHI translation.
1323    // If so, we haven't done anything to ensure that the cache remains sorted.
1324    // Sort it now (if needed) so that recursive invocations of
1325    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1326    // value will only see properly sorted cache arrays.
1327    if (Cache && NumSortedEntries != Cache->size()) {
1328      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1329      NumSortedEntries = Cache->size();
1330    }
1331    Cache = nullptr;
1332
1333    PredList.clear();
1334    for (BasicBlock *Pred : PredCache.get(BB)) {
1335      PredList.push_back(std::make_pair(Pred, Pointer));
1336
1337      // Get the PHI translated pointer in this predecessor.  This can fail if
1338      // not translatable, in which case the getAddr() returns null.
1339      PHITransAddr &PredPointer = PredList.back().second;
1340      PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1341      Value *PredPtrVal = PredPointer.getAddr();
1342
1343      // Check to see if we have already visited this pred block with another
1344      // pointer.  If so, we can't do this lookup.  This failure can occur
1345      // with PHI translation when a critical edge exists and the PHI node in
1346      // the successor translates to a pointer value different than the
1347      // pointer the block was first analyzed with.
1348      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1349          Visited.insert(std::make_pair(Pred, PredPtrVal));
1350
1351      if (!InsertRes.second) {
1352        // We found the pred; take it off the list of preds to visit.
1353        PredList.pop_back();
1354
1355        // If the predecessor was visited with PredPtr, then we already did
1356        // the analysis and can ignore it.
1357        if (InsertRes.first->second == PredPtrVal)
1358          continue;
1359
1360        // Otherwise, the block was previously analyzed with a different
1361        // pointer.  We can't represent the result of this case, so we just
1362        // treat this as a phi translation failure.
1363
1364        // Make sure to clean up the Visited map before continuing on to
1365        // PredTranslationFailure.
1366        for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1367          Visited.erase(PredList[i].first);
1368
1369        goto PredTranslationFailure;
1370      }
1371    }
1372
1373    // Actually process results here; this need to be a separate loop to avoid
1374    // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1375    // any results for.  (getNonLocalPointerDepFromBB will modify our
1376    // datastructures in ways the code after the PredTranslationFailure label
1377    // doesn't expect.)
1378    for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1379      BasicBlock *Pred = PredList[i].first;
1380      PHITransAddr &PredPointer = PredList[i].second;
1381      Value *PredPtrVal = PredPointer.getAddr();
1382
1383      bool CanTranslate = true;
1384      // If PHI translation was unable to find an available pointer in this
1385      // predecessor, then we have to assume that the pointer is clobbered in
1386      // that predecessor.  We can still do PRE of the load, which would insert
1387      // a computation of the pointer in this predecessor.
1388      if (!PredPtrVal)
1389        CanTranslate = false;
1390
1391      // FIXME: it is entirely possible that PHI translating will end up with
1392      // the same value.  Consider PHI translating something like:
1393      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1394      // to recurse here, pedantically speaking.
1395
1396      // If getNonLocalPointerDepFromBB fails here, that means the cached
1397      // result conflicted with the Visited list; we have to conservatively
1398      // assume it is unknown, but this also does not block PRE of the load.
1399      if (!CanTranslate ||
1400          !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1401                                      Loc.getWithNewPtr(PredPtrVal), isLoad,
1402                                      Pred, Result, Visited)) {
1403        // Add the entry to the Result list.
1404        NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1405        Result.push_back(Entry);
1406
1407        // Since we had a phi translation failure, the cache for CacheKey won't
1408        // include all of the entries that we need to immediately satisfy future
1409        // queries.  Mark this in NonLocalPointerDeps by setting the
1410        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1411        // cached value to do more work but not miss the phi trans failure.
1412        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1413        NLPI.Pair = BBSkipFirstBlockPair();
1414        continue;
1415      }
1416    }
1417
1418    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1419    CacheInfo = &NonLocalPointerDeps[CacheKey];
1420    Cache = &CacheInfo->NonLocalDeps;
1421    NumSortedEntries = Cache->size();
1422
1423    // Since we did phi translation, the "Cache" set won't contain all of the
1424    // results for the query.  This is ok (we can still use it to accelerate
1425    // specific block queries) but we can't do the fastpath "return all
1426    // results from the set"  Clear out the indicator for this.
1427    CacheInfo->Pair = BBSkipFirstBlockPair();
1428    SkipFirstBlock = false;
1429    continue;
1430
1431  PredTranslationFailure:
1432    // The following code is "failure"; we can't produce a sane translation
1433    // for the given block.  It assumes that we haven't modified any of
1434    // our datastructures while processing the current block.
1435
1436    if (!Cache) {
1437      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1438      CacheInfo = &NonLocalPointerDeps[CacheKey];
1439      Cache = &CacheInfo->NonLocalDeps;
1440      NumSortedEntries = Cache->size();
1441    }
1442
1443    // Since we failed phi translation, the "Cache" set won't contain all of the
1444    // results for the query.  This is ok (we can still use it to accelerate
1445    // specific block queries) but we can't do the fastpath "return all
1446    // results from the set".  Clear out the indicator for this.
1447    CacheInfo->Pair = BBSkipFirstBlockPair();
1448
1449    // If *nothing* works, mark the pointer as unknown.
1450    //
1451    // If this is the magic first block, return this as a clobber of the whole
1452    // incoming value.  Since we can't phi translate to one of the predecessors,
1453    // we have to bail out.
1454    if (SkipFirstBlock)
1455      return false;
1456
1457    bool foundBlock = false;
1458    for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1459      if (I.getBB() != BB)
1460        continue;
1461
1462      assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1463              !DT.isReachableFromEntry(BB)) &&
1464             "Should only be here with transparent block");
1465      foundBlock = true;
1466      I.setResult(MemDepResult::getUnknown());
1467      Result.push_back(
1468          NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr()));
1469      break;
1470    }
1471    (void)foundBlock; (void)GotWorklistLimit;
1472    assert((foundBlock || GotWorklistLimit) && "Current block not in cache?");
1473  }
1474
1475  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1476  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1477  LLVM_DEBUG(AssertSorted(*Cache));
1478  return true;
1479}
1480
1481/// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1482void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1483    ValueIsLoadPair P) {
1484
1485  // Most of the time this cache is empty.
1486  if (!NonLocalDefsCache.empty()) {
1487    auto it = NonLocalDefsCache.find(P.getPointer());
1488    if (it != NonLocalDefsCache.end()) {
1489      RemoveFromReverseMap(ReverseNonLocalDefsCache,
1490                           it->second.getResult().getInst(), P.getPointer());
1491      NonLocalDefsCache.erase(it);
1492    }
1493
1494    if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1495      auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1496      if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1497        for (const auto *entry : toRemoveIt->second)
1498          NonLocalDefsCache.erase(entry);
1499        ReverseNonLocalDefsCache.erase(toRemoveIt);
1500      }
1501    }
1502  }
1503
1504  CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1505  if (It == NonLocalPointerDeps.end())
1506    return;
1507
1508  // Remove all of the entries in the BB->val map.  This involves removing
1509  // instructions from the reverse map.
1510  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1511
1512  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1513    Instruction *Target = PInfo[i].getResult().getInst();
1514    if (!Target)
1515      continue; // Ignore non-local dep results.
1516    assert(Target->getParent() == PInfo[i].getBB());
1517
1518    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1519    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1520  }
1521
1522  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1523  NonLocalPointerDeps.erase(It);
1524}
1525
1526void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1527  // If Ptr isn't really a pointer, just ignore it.
1528  if (!Ptr->getType()->isPointerTy())
1529    return;
1530  // Flush store info for the pointer.
1531  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1532  // Flush load info for the pointer.
1533  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1534  // Invalidate phis that use the pointer.
1535  PV.invalidateValue(Ptr);
1536}
1537
1538void MemoryDependenceResults::invalidateCachedPredecessors() {
1539  PredCache.clear();
1540}
1541
1542void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1543  // Walk through the Non-local dependencies, removing this one as the value
1544  // for any cached queries.
1545  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1546  if (NLDI != NonLocalDeps.end()) {
1547    NonLocalDepInfo &BlockMap = NLDI->second.first;
1548    for (auto &Entry : BlockMap)
1549      if (Instruction *Inst = Entry.getResult().getInst())
1550        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1551    NonLocalDeps.erase(NLDI);
1552  }
1553
1554  // If we have a cached local dependence query for this instruction, remove it.
1555  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1556  if (LocalDepEntry != LocalDeps.end()) {
1557    // Remove us from DepInst's reverse set now that the local dep info is gone.
1558    if (Instruction *Inst = LocalDepEntry->second.getInst())
1559      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1560
1561    // Remove this local dependency info.
1562    LocalDeps.erase(LocalDepEntry);
1563  }
1564
1565  // If we have any cached pointer dependencies on this instruction, remove
1566  // them.  If the instruction has non-pointer type, then it can't be a pointer
1567  // base.
1568
1569  // Remove it from both the load info and the store info.  The instruction
1570  // can't be in either of these maps if it is non-pointer.
1571  if (RemInst->getType()->isPointerTy()) {
1572    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1573    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1574  }
1575
1576  // Loop over all of the things that depend on the instruction we're removing.
1577  SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1578
1579  // If we find RemInst as a clobber or Def in any of the maps for other values,
1580  // we need to replace its entry with a dirty version of the instruction after
1581  // it.  If RemInst is a terminator, we use a null dirty value.
1582  //
1583  // Using a dirty version of the instruction after RemInst saves having to scan
1584  // the entire block to get to this point.
1585  MemDepResult NewDirtyVal;
1586  if (!RemInst->isTerminator())
1587    NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1588
1589  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1590  if (ReverseDepIt != ReverseLocalDeps.end()) {
1591    // RemInst can't be the terminator if it has local stuff depending on it.
1592    assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1593           "Nothing can locally depend on a terminator");
1594
1595    for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1596      assert(InstDependingOnRemInst != RemInst &&
1597             "Already removed our local dep info");
1598
1599      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1600
1601      // Make sure to remember that new things depend on NewDepInst.
1602      assert(NewDirtyVal.getInst() &&
1603             "There is no way something else can have "
1604             "a local dep on this if it is a terminator!");
1605      ReverseDepsToAdd.push_back(
1606          std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1607    }
1608
1609    ReverseLocalDeps.erase(ReverseDepIt);
1610
1611    // Add new reverse deps after scanning the set, to avoid invalidating the
1612    // 'ReverseDeps' reference.
1613    while (!ReverseDepsToAdd.empty()) {
1614      ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1615          ReverseDepsToAdd.back().second);
1616      ReverseDepsToAdd.pop_back();
1617    }
1618  }
1619
1620  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1621  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1622    for (Instruction *I : ReverseDepIt->second) {
1623      assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1624
1625      PerInstNLInfo &INLD = NonLocalDeps[I];
1626      // The information is now dirty!
1627      INLD.second = true;
1628
1629      for (auto &Entry : INLD.first) {
1630        if (Entry.getResult().getInst() != RemInst)
1631          continue;
1632
1633        // Convert to a dirty entry for the subsequent instruction.
1634        Entry.setResult(NewDirtyVal);
1635
1636        if (Instruction *NextI = NewDirtyVal.getInst())
1637          ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1638      }
1639    }
1640
1641    ReverseNonLocalDeps.erase(ReverseDepIt);
1642
1643    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1644    while (!ReverseDepsToAdd.empty()) {
1645      ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1646          ReverseDepsToAdd.back().second);
1647      ReverseDepsToAdd.pop_back();
1648    }
1649  }
1650
1651  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1652  // value in the NonLocalPointerDeps info.
1653  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1654      ReverseNonLocalPtrDeps.find(RemInst);
1655  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1656    SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1657        ReversePtrDepsToAdd;
1658
1659    for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1660      assert(P.getPointer() != RemInst &&
1661             "Already removed NonLocalPointerDeps info for RemInst");
1662
1663      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1664
1665      // The cache is not valid for any specific block anymore.
1666      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1667
1668      // Update any entries for RemInst to use the instruction after it.
1669      for (auto &Entry : NLPDI) {
1670        if (Entry.getResult().getInst() != RemInst)
1671          continue;
1672
1673        // Convert to a dirty entry for the subsequent instruction.
1674        Entry.setResult(NewDirtyVal);
1675
1676        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1677          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1678      }
1679
1680      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1681      // subsequent value may invalidate the sortedness.
1682      llvm::sort(NLPDI);
1683    }
1684
1685    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1686
1687    while (!ReversePtrDepsToAdd.empty()) {
1688      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1689          ReversePtrDepsToAdd.back().second);
1690      ReversePtrDepsToAdd.pop_back();
1691    }
1692  }
1693
1694  // Invalidate phis that use the removed instruction.
1695  PV.invalidateValue(RemInst);
1696
1697  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1698  LLVM_DEBUG(verifyRemoved(RemInst));
1699}
1700
1701/// Verify that the specified instruction does not occur in our internal data
1702/// structures.
1703///
1704/// This function verifies by asserting in debug builds.
1705void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1706#ifndef NDEBUG
1707  for (const auto &DepKV : LocalDeps) {
1708    assert(DepKV.first != D && "Inst occurs in data structures");
1709    assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1710  }
1711
1712  for (const auto &DepKV : NonLocalPointerDeps) {
1713    assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1714    for (const auto &Entry : DepKV.second.NonLocalDeps)
1715      assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1716  }
1717
1718  for (const auto &DepKV : NonLocalDeps) {
1719    assert(DepKV.first != D && "Inst occurs in data structures");
1720    const PerInstNLInfo &INLD = DepKV.second;
1721    for (const auto &Entry : INLD.first)
1722      assert(Entry.getResult().getInst() != D &&
1723             "Inst occurs in data structures");
1724  }
1725
1726  for (const auto &DepKV : ReverseLocalDeps) {
1727    assert(DepKV.first != D && "Inst occurs in data structures");
1728    for (Instruction *Inst : DepKV.second)
1729      assert(Inst != D && "Inst occurs in data structures");
1730  }
1731
1732  for (const auto &DepKV : ReverseNonLocalDeps) {
1733    assert(DepKV.first != D && "Inst occurs in data structures");
1734    for (Instruction *Inst : DepKV.second)
1735      assert(Inst != D && "Inst occurs in data structures");
1736  }
1737
1738  for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1739    assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1740
1741    for (ValueIsLoadPair P : DepKV.second)
1742      assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1743             "Inst occurs in ReverseNonLocalPtrDeps map");
1744  }
1745#endif
1746}
1747
1748AnalysisKey MemoryDependenceAnalysis::Key;
1749
1750MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1751    : DefaultBlockScanLimit(BlockScanLimit) {}
1752
1753MemoryDependenceResults
1754MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1755  auto &AA = AM.getResult<AAManager>(F);
1756  auto &AC = AM.getResult<AssumptionAnalysis>(F);
1757  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1758  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1759  auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1760  return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1761}
1762
1763char MemoryDependenceWrapperPass::ID = 0;
1764
1765INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1766                      "Memory Dependence Analysis", false, true)
1767INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1768INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1769INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1770INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1771INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1772INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1773                    "Memory Dependence Analysis", false, true)
1774
1775MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1776  initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1777}
1778
1779MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1780
1781void MemoryDependenceWrapperPass::releaseMemory() {
1782  MemDep.reset();
1783}
1784
1785void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1786  AU.setPreservesAll();
1787  AU.addRequired<AssumptionCacheTracker>();
1788  AU.addRequired<DominatorTreeWrapperPass>();
1789  AU.addRequired<PhiValuesWrapperPass>();
1790  AU.addRequiredTransitive<AAResultsWrapperPass>();
1791  AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1792}
1793
1794bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1795                               FunctionAnalysisManager::Invalidator &Inv) {
1796  // Check whether our analysis is preserved.
1797  auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1798  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1799    // If not, give up now.
1800    return true;
1801
1802  // Check whether the analyses we depend on became invalid for any reason.
1803  if (Inv.invalidate<AAManager>(F, PA) ||
1804      Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1805      Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1806      Inv.invalidate<PhiValuesAnalysis>(F, PA))
1807    return true;
1808
1809  // Otherwise this analysis result remains valid.
1810  return false;
1811}
1812
1813unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1814  return DefaultBlockScanLimit;
1815}
1816
1817bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1818  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1819  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1820  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1821  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1822  auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1823  MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1824  return false;
1825}
1826