1//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The implementation for the loop memory dependence that was originally
10// developed for the loop vectorizer.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/LoopAccessAnalysis.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DepthFirstIterator.h"
18#include "llvm/ADT/EquivalenceClasses.h"
19#include "llvm/ADT/PointerIntPair.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/AliasSetTracker.h"
28#include "llvm/Analysis/LoopAnalysisManager.h"
29#include "llvm/Analysis/LoopInfo.h"
30#include "llvm/Analysis/MemoryLocation.h"
31#include "llvm/Analysis/OptimizationRemarkEmitter.h"
32#include "llvm/Analysis/ScalarEvolution.h"
33#include "llvm/Analysis/ScalarEvolutionExpander.h"
34#include "llvm/Analysis/ScalarEvolutionExpressions.h"
35#include "llvm/Analysis/TargetLibraryInfo.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/Analysis/VectorUtils.h"
38#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/DiagnosticInfo.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/IRBuilder.h"
47#include "llvm/IR/InstrTypes.h"
48#include "llvm/IR/Instruction.h"
49#include "llvm/IR/Instructions.h"
50#include "llvm/IR/Operator.h"
51#include "llvm/IR/PassManager.h"
52#include "llvm/IR/Type.h"
53#include "llvm/IR/Value.h"
54#include "llvm/IR/ValueHandle.h"
55#include "llvm/InitializePasses.h"
56#include "llvm/Pass.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/CommandLine.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/raw_ostream.h"
62#include <algorithm>
63#include <cassert>
64#include <cstdint>
65#include <cstdlib>
66#include <iterator>
67#include <utility>
68#include <vector>
69
70using namespace llvm;
71
72#define DEBUG_TYPE "loop-accesses"
73
74static cl::opt<unsigned, true>
75VectorizationFactor("force-vector-width", cl::Hidden,
76                    cl::desc("Sets the SIMD width. Zero is autoselect."),
77                    cl::location(VectorizerParams::VectorizationFactor));
78unsigned VectorizerParams::VectorizationFactor;
79
80static cl::opt<unsigned, true>
81VectorizationInterleave("force-vector-interleave", cl::Hidden,
82                        cl::desc("Sets the vectorization interleave count. "
83                                 "Zero is autoselect."),
84                        cl::location(
85                            VectorizerParams::VectorizationInterleave));
86unsigned VectorizerParams::VectorizationInterleave;
87
88static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89    "runtime-memory-check-threshold", cl::Hidden,
90    cl::desc("When performing memory disambiguation checks at runtime do not "
91             "generate more than this number of comparisons (default = 8)."),
92    cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94
95/// The maximum iterations used to merge memory checks
96static cl::opt<unsigned> MemoryCheckMergeThreshold(
97    "memory-check-merge-threshold", cl::Hidden,
98    cl::desc("Maximum number of comparisons done when trying to merge "
99             "runtime memory checks. (default = 100)"),
100    cl::init(100));
101
102/// Maximum SIMD width.
103const unsigned VectorizerParams::MaxVectorWidth = 64;
104
105/// We collect dependences up to this threshold.
106static cl::opt<unsigned>
107    MaxDependences("max-dependences", cl::Hidden,
108                   cl::desc("Maximum number of dependences collected by "
109                            "loop-access analysis (default = 100)"),
110                   cl::init(100));
111
112/// This enables versioning on the strides of symbolically striding memory
113/// accesses in code like the following.
114///   for (i = 0; i < N; ++i)
115///     A[i * Stride1] += B[i * Stride2] ...
116///
117/// Will be roughly translated to
118///    if (Stride1 == 1 && Stride2 == 1) {
119///      for (i = 0; i < N; i+=4)
120///       A[i:i+3] += ...
121///    } else
122///      ...
123static cl::opt<bool> EnableMemAccessVersioning(
124    "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125    cl::desc("Enable symbolic stride memory access versioning"));
126
127/// Enable store-to-load forwarding conflict detection. This option can
128/// be disabled for correctness testing.
129static cl::opt<bool> EnableForwardingConflictDetection(
130    "store-to-load-forwarding-conflict-detection", cl::Hidden,
131    cl::desc("Enable conflict detection in loop-access analysis"),
132    cl::init(true));
133
134bool VectorizerParams::isInterleaveForced() {
135  return ::VectorizationInterleave.getNumOccurrences() > 0;
136}
137
138Value *llvm::stripIntegerCast(Value *V) {
139  if (auto *CI = dyn_cast<CastInst>(V))
140    if (CI->getOperand(0)->getType()->isIntegerTy())
141      return CI->getOperand(0);
142  return V;
143}
144
145const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
146                                            const ValueToValueMap &PtrToStride,
147                                            Value *Ptr, Value *OrigPtr) {
148  const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
149
150  // If there is an entry in the map return the SCEV of the pointer with the
151  // symbolic stride replaced by one.
152  ValueToValueMap::const_iterator SI =
153      PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
154  if (SI != PtrToStride.end()) {
155    Value *StrideVal = SI->second;
156
157    // Strip casts.
158    StrideVal = stripIntegerCast(StrideVal);
159
160    ScalarEvolution *SE = PSE.getSE();
161    const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
162    const auto *CT =
163        static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
164
165    PSE.addPredicate(*SE->getEqualPredicate(U, CT));
166    auto *Expr = PSE.getSCEV(Ptr);
167
168    LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
169                      << " by: " << *Expr << "\n");
170    return Expr;
171  }
172
173  // Otherwise, just return the SCEV of the original pointer.
174  return OrigSCEV;
175}
176
177/// Calculate Start and End points of memory access.
178/// Let's assume A is the first access and B is a memory access on N-th loop
179/// iteration. Then B is calculated as:
180///   B = A + Step*N .
181/// Step value may be positive or negative.
182/// N is a calculated back-edge taken count:
183///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
184/// Start and End points are calculated in the following way:
185/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
186/// where SizeOfElt is the size of single memory access in bytes.
187///
188/// There is no conflict when the intervals are disjoint:
189/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
190void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
191                                    unsigned DepSetId, unsigned ASId,
192                                    const ValueToValueMap &Strides,
193                                    PredicatedScalarEvolution &PSE) {
194  // Get the stride replaced scev.
195  const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
196  ScalarEvolution *SE = PSE.getSE();
197
198  const SCEV *ScStart;
199  const SCEV *ScEnd;
200
201  if (SE->isLoopInvariant(Sc, Lp))
202    ScStart = ScEnd = Sc;
203  else {
204    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
205    assert(AR && "Invalid addrec expression");
206    const SCEV *Ex = PSE.getBackedgeTakenCount();
207
208    ScStart = AR->getStart();
209    ScEnd = AR->evaluateAtIteration(Ex, *SE);
210    const SCEV *Step = AR->getStepRecurrence(*SE);
211
212    // For expressions with negative step, the upper bound is ScStart and the
213    // lower bound is ScEnd.
214    if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
215      if (CStep->getValue()->isNegative())
216        std::swap(ScStart, ScEnd);
217    } else {
218      // Fallback case: the step is not constant, but we can still
219      // get the upper and lower bounds of the interval by using min/max
220      // expressions.
221      ScStart = SE->getUMinExpr(ScStart, ScEnd);
222      ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
223    }
224    // Add the size of the pointed element to ScEnd.
225    unsigned EltSize =
226      Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8;
227    const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize);
228    ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
229  }
230
231  Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
232}
233
234SmallVector<RuntimePointerChecking::PointerCheck, 4>
235RuntimePointerChecking::generateChecks() const {
236  SmallVector<PointerCheck, 4> Checks;
237
238  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
239    for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
240      const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
241      const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
242
243      if (needsChecking(CGI, CGJ))
244        Checks.push_back(std::make_pair(&CGI, &CGJ));
245    }
246  }
247  return Checks;
248}
249
250void RuntimePointerChecking::generateChecks(
251    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
252  assert(Checks.empty() && "Checks is not empty");
253  groupChecks(DepCands, UseDependencies);
254  Checks = generateChecks();
255}
256
257bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
258                                           const CheckingPtrGroup &N) const {
259  for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
260    for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
261      if (needsChecking(M.Members[I], N.Members[J]))
262        return true;
263  return false;
264}
265
266/// Compare \p I and \p J and return the minimum.
267/// Return nullptr in case we couldn't find an answer.
268static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
269                                   ScalarEvolution *SE) {
270  const SCEV *Diff = SE->getMinusSCEV(J, I);
271  const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
272
273  if (!C)
274    return nullptr;
275  if (C->getValue()->isNegative())
276    return J;
277  return I;
278}
279
280bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
281  const SCEV *Start = RtCheck.Pointers[Index].Start;
282  const SCEV *End = RtCheck.Pointers[Index].End;
283
284  // Compare the starts and ends with the known minimum and maximum
285  // of this set. We need to know how we compare against the min/max
286  // of the set in order to be able to emit memchecks.
287  const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
288  if (!Min0)
289    return false;
290
291  const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
292  if (!Min1)
293    return false;
294
295  // Update the low bound  expression if we've found a new min value.
296  if (Min0 == Start)
297    Low = Start;
298
299  // Update the high bound expression if we've found a new max value.
300  if (Min1 != End)
301    High = End;
302
303  Members.push_back(Index);
304  return true;
305}
306
307void RuntimePointerChecking::groupChecks(
308    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
309  // We build the groups from dependency candidates equivalence classes
310  // because:
311  //    - We know that pointers in the same equivalence class share
312  //      the same underlying object and therefore there is a chance
313  //      that we can compare pointers
314  //    - We wouldn't be able to merge two pointers for which we need
315  //      to emit a memcheck. The classes in DepCands are already
316  //      conveniently built such that no two pointers in the same
317  //      class need checking against each other.
318
319  // We use the following (greedy) algorithm to construct the groups
320  // For every pointer in the equivalence class:
321  //   For each existing group:
322  //   - if the difference between this pointer and the min/max bounds
323  //     of the group is a constant, then make the pointer part of the
324  //     group and update the min/max bounds of that group as required.
325
326  CheckingGroups.clear();
327
328  // If we need to check two pointers to the same underlying object
329  // with a non-constant difference, we shouldn't perform any pointer
330  // grouping with those pointers. This is because we can easily get
331  // into cases where the resulting check would return false, even when
332  // the accesses are safe.
333  //
334  // The following example shows this:
335  // for (i = 0; i < 1000; ++i)
336  //   a[5000 + i * m] = a[i] + a[i + 9000]
337  //
338  // Here grouping gives a check of (5000, 5000 + 1000 * m) against
339  // (0, 10000) which is always false. However, if m is 1, there is no
340  // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
341  // us to perform an accurate check in this case.
342  //
343  // The above case requires that we have an UnknownDependence between
344  // accesses to the same underlying object. This cannot happen unless
345  // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
346  // is also false. In this case we will use the fallback path and create
347  // separate checking groups for all pointers.
348
349  // If we don't have the dependency partitions, construct a new
350  // checking pointer group for each pointer. This is also required
351  // for correctness, because in this case we can have checking between
352  // pointers to the same underlying object.
353  if (!UseDependencies) {
354    for (unsigned I = 0; I < Pointers.size(); ++I)
355      CheckingGroups.push_back(CheckingPtrGroup(I, *this));
356    return;
357  }
358
359  unsigned TotalComparisons = 0;
360
361  DenseMap<Value *, unsigned> PositionMap;
362  for (unsigned Index = 0; Index < Pointers.size(); ++Index)
363    PositionMap[Pointers[Index].PointerValue] = Index;
364
365  // We need to keep track of what pointers we've already seen so we
366  // don't process them twice.
367  SmallSet<unsigned, 2> Seen;
368
369  // Go through all equivalence classes, get the "pointer check groups"
370  // and add them to the overall solution. We use the order in which accesses
371  // appear in 'Pointers' to enforce determinism.
372  for (unsigned I = 0; I < Pointers.size(); ++I) {
373    // We've seen this pointer before, and therefore already processed
374    // its equivalence class.
375    if (Seen.count(I))
376      continue;
377
378    MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
379                                           Pointers[I].IsWritePtr);
380
381    SmallVector<CheckingPtrGroup, 2> Groups;
382    auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
383
384    // Because DepCands is constructed by visiting accesses in the order in
385    // which they appear in alias sets (which is deterministic) and the
386    // iteration order within an equivalence class member is only dependent on
387    // the order in which unions and insertions are performed on the
388    // equivalence class, the iteration order is deterministic.
389    for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
390         MI != ME; ++MI) {
391      unsigned Pointer = PositionMap[MI->getPointer()];
392      bool Merged = false;
393      // Mark this pointer as seen.
394      Seen.insert(Pointer);
395
396      // Go through all the existing sets and see if we can find one
397      // which can include this pointer.
398      for (CheckingPtrGroup &Group : Groups) {
399        // Don't perform more than a certain amount of comparisons.
400        // This should limit the cost of grouping the pointers to something
401        // reasonable.  If we do end up hitting this threshold, the algorithm
402        // will create separate groups for all remaining pointers.
403        if (TotalComparisons > MemoryCheckMergeThreshold)
404          break;
405
406        TotalComparisons++;
407
408        if (Group.addPointer(Pointer)) {
409          Merged = true;
410          break;
411        }
412      }
413
414      if (!Merged)
415        // We couldn't add this pointer to any existing set or the threshold
416        // for the number of comparisons has been reached. Create a new group
417        // to hold the current pointer.
418        Groups.push_back(CheckingPtrGroup(Pointer, *this));
419    }
420
421    // We've computed the grouped checks for this partition.
422    // Save the results and continue with the next one.
423    llvm::copy(Groups, std::back_inserter(CheckingGroups));
424  }
425}
426
427bool RuntimePointerChecking::arePointersInSamePartition(
428    const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
429    unsigned PtrIdx2) {
430  return (PtrToPartition[PtrIdx1] != -1 &&
431          PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
432}
433
434bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
435  const PointerInfo &PointerI = Pointers[I];
436  const PointerInfo &PointerJ = Pointers[J];
437
438  // No need to check if two readonly pointers intersect.
439  if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
440    return false;
441
442  // Only need to check pointers between two different dependency sets.
443  if (PointerI.DependencySetId == PointerJ.DependencySetId)
444    return false;
445
446  // Only need to check pointers in the same alias set.
447  if (PointerI.AliasSetId != PointerJ.AliasSetId)
448    return false;
449
450  return true;
451}
452
453void RuntimePointerChecking::printChecks(
454    raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
455    unsigned Depth) const {
456  unsigned N = 0;
457  for (const auto &Check : Checks) {
458    const auto &First = Check.first->Members, &Second = Check.second->Members;
459
460    OS.indent(Depth) << "Check " << N++ << ":\n";
461
462    OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
463    for (unsigned K = 0; K < First.size(); ++K)
464      OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
465
466    OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
467    for (unsigned K = 0; K < Second.size(); ++K)
468      OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
469  }
470}
471
472void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
473
474  OS.indent(Depth) << "Run-time memory checks:\n";
475  printChecks(OS, Checks, Depth);
476
477  OS.indent(Depth) << "Grouped accesses:\n";
478  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
479    const auto &CG = CheckingGroups[I];
480
481    OS.indent(Depth + 2) << "Group " << &CG << ":\n";
482    OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
483                         << ")\n";
484    for (unsigned J = 0; J < CG.Members.size(); ++J) {
485      OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
486                           << "\n";
487    }
488  }
489}
490
491namespace {
492
493/// Analyses memory accesses in a loop.
494///
495/// Checks whether run time pointer checks are needed and builds sets for data
496/// dependence checking.
497class AccessAnalysis {
498public:
499  /// Read or write access location.
500  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
501  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
502
503  AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA,
504                 LoopInfo *LI, MemoryDepChecker::DepCandidates &DA,
505                 PredicatedScalarEvolution &PSE)
506      : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
507        IsRTCheckAnalysisNeeded(false), PSE(PSE) {}
508
509  /// Register a load  and whether it is only read from.
510  void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
511    Value *Ptr = const_cast<Value*>(Loc.Ptr);
512    AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
513    Accesses.insert(MemAccessInfo(Ptr, false));
514    if (IsReadOnly)
515      ReadOnlyPtr.insert(Ptr);
516  }
517
518  /// Register a store.
519  void addStore(MemoryLocation &Loc) {
520    Value *Ptr = const_cast<Value*>(Loc.Ptr);
521    AST.add(Ptr, LocationSize::unknown(), Loc.AATags);
522    Accesses.insert(MemAccessInfo(Ptr, true));
523  }
524
525  /// Check if we can emit a run-time no-alias check for \p Access.
526  ///
527  /// Returns true if we can emit a run-time no alias check for \p Access.
528  /// If we can check this access, this also adds it to a dependence set and
529  /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
530  /// we will attempt to use additional run-time checks in order to get
531  /// the bounds of the pointer.
532  bool createCheckForAccess(RuntimePointerChecking &RtCheck,
533                            MemAccessInfo Access,
534                            const ValueToValueMap &Strides,
535                            DenseMap<Value *, unsigned> &DepSetId,
536                            Loop *TheLoop, unsigned &RunningDepId,
537                            unsigned ASId, bool ShouldCheckStride,
538                            bool Assume);
539
540  /// Check whether we can check the pointers at runtime for
541  /// non-intersection.
542  ///
543  /// Returns true if we need no check or if we do and we can generate them
544  /// (i.e. the pointers have computable bounds).
545  bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
546                       Loop *TheLoop, const ValueToValueMap &Strides,
547                       bool ShouldCheckWrap = false);
548
549  /// Goes over all memory accesses, checks whether a RT check is needed
550  /// and builds sets of dependent accesses.
551  void buildDependenceSets() {
552    processMemAccesses();
553  }
554
555  /// Initial processing of memory accesses determined that we need to
556  /// perform dependency checking.
557  ///
558  /// Note that this can later be cleared if we retry memcheck analysis without
559  /// dependency checking (i.e. FoundNonConstantDistanceDependence).
560  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
561
562  /// We decided that no dependence analysis would be used.  Reset the state.
563  void resetDepChecks(MemoryDepChecker &DepChecker) {
564    CheckDeps.clear();
565    DepChecker.clearDependences();
566  }
567
568  MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
569
570private:
571  typedef SetVector<MemAccessInfo> PtrAccessSet;
572
573  /// Go over all memory access and check whether runtime pointer checks
574  /// are needed and build sets of dependency check candidates.
575  void processMemAccesses();
576
577  /// Set of all accesses.
578  PtrAccessSet Accesses;
579
580  const DataLayout &DL;
581
582  /// The loop being checked.
583  const Loop *TheLoop;
584
585  /// List of accesses that need a further dependence check.
586  MemAccessInfoList CheckDeps;
587
588  /// Set of pointers that are read only.
589  SmallPtrSet<Value*, 16> ReadOnlyPtr;
590
591  /// An alias set tracker to partition the access set by underlying object and
592  //intrinsic property (such as TBAA metadata).
593  AliasSetTracker AST;
594
595  LoopInfo *LI;
596
597  /// Sets of potentially dependent accesses - members of one set share an
598  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
599  /// dependence check.
600  MemoryDepChecker::DepCandidates &DepCands;
601
602  /// Initial processing of memory accesses determined that we may need
603  /// to add memchecks.  Perform the analysis to determine the necessary checks.
604  ///
605  /// Note that, this is different from isDependencyCheckNeeded.  When we retry
606  /// memcheck analysis without dependency checking
607  /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
608  /// cleared while this remains set if we have potentially dependent accesses.
609  bool IsRTCheckAnalysisNeeded;
610
611  /// The SCEV predicate containing all the SCEV-related assumptions.
612  PredicatedScalarEvolution &PSE;
613};
614
615} // end anonymous namespace
616
617/// Check whether a pointer can participate in a runtime bounds check.
618/// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
619/// by adding run-time checks (overflow checks) if necessary.
620static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
621                                const ValueToValueMap &Strides, Value *Ptr,
622                                Loop *L, bool Assume) {
623  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
624
625  // The bounds for loop-invariant pointer is trivial.
626  if (PSE.getSE()->isLoopInvariant(PtrScev, L))
627    return true;
628
629  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
630
631  if (!AR && Assume)
632    AR = PSE.getAsAddRec(Ptr);
633
634  if (!AR)
635    return false;
636
637  return AR->isAffine();
638}
639
640/// Check whether a pointer address cannot wrap.
641static bool isNoWrap(PredicatedScalarEvolution &PSE,
642                     const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
643  const SCEV *PtrScev = PSE.getSCEV(Ptr);
644  if (PSE.getSE()->isLoopInvariant(PtrScev, L))
645    return true;
646
647  int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
648  if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
649    return true;
650
651  return false;
652}
653
654bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
655                                          MemAccessInfo Access,
656                                          const ValueToValueMap &StridesMap,
657                                          DenseMap<Value *, unsigned> &DepSetId,
658                                          Loop *TheLoop, unsigned &RunningDepId,
659                                          unsigned ASId, bool ShouldCheckWrap,
660                                          bool Assume) {
661  Value *Ptr = Access.getPointer();
662
663  if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
664    return false;
665
666  // When we run after a failing dependency check we have to make sure
667  // we don't have wrapping pointers.
668  if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
669    auto *Expr = PSE.getSCEV(Ptr);
670    if (!Assume || !isa<SCEVAddRecExpr>(Expr))
671      return false;
672    PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
673  }
674
675  // The id of the dependence set.
676  unsigned DepId;
677
678  if (isDependencyCheckNeeded()) {
679    Value *Leader = DepCands.getLeaderValue(Access).getPointer();
680    unsigned &LeaderId = DepSetId[Leader];
681    if (!LeaderId)
682      LeaderId = RunningDepId++;
683    DepId = LeaderId;
684  } else
685    // Each access has its own dependence set.
686    DepId = RunningDepId++;
687
688  bool IsWrite = Access.getInt();
689  RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
690  LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
691
692  return true;
693 }
694
695bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
696                                     ScalarEvolution *SE, Loop *TheLoop,
697                                     const ValueToValueMap &StridesMap,
698                                     bool ShouldCheckWrap) {
699  // Find pointers with computable bounds. We are going to use this information
700  // to place a runtime bound check.
701  bool CanDoRT = true;
702
703  bool NeedRTCheck = false;
704  if (!IsRTCheckAnalysisNeeded) return true;
705
706  bool IsDepCheckNeeded = isDependencyCheckNeeded();
707
708  // We assign a consecutive id to access from different alias sets.
709  // Accesses between different groups doesn't need to be checked.
710  unsigned ASId = 1;
711  for (auto &AS : AST) {
712    int NumReadPtrChecks = 0;
713    int NumWritePtrChecks = 0;
714    bool CanDoAliasSetRT = true;
715
716    // We assign consecutive id to access from different dependence sets.
717    // Accesses within the same set don't need a runtime check.
718    unsigned RunningDepId = 1;
719    DenseMap<Value *, unsigned> DepSetId;
720
721    SmallVector<MemAccessInfo, 4> Retries;
722
723    for (auto A : AS) {
724      Value *Ptr = A.getValue();
725      bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
726      MemAccessInfo Access(Ptr, IsWrite);
727
728      if (IsWrite)
729        ++NumWritePtrChecks;
730      else
731        ++NumReadPtrChecks;
732
733      if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
734                                RunningDepId, ASId, ShouldCheckWrap, false)) {
735        LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
736        Retries.push_back(Access);
737        CanDoAliasSetRT = false;
738      }
739    }
740
741    // If we have at least two writes or one write and a read then we need to
742    // check them.  But there is no need to checks if there is only one
743    // dependence set for this alias set.
744    //
745    // Note that this function computes CanDoRT and NeedRTCheck independently.
746    // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
747    // for which we couldn't find the bounds but we don't actually need to emit
748    // any checks so it does not matter.
749    bool NeedsAliasSetRTCheck = false;
750    if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2))
751      NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 ||
752                             (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1));
753
754    // We need to perform run-time alias checks, but some pointers had bounds
755    // that couldn't be checked.
756    if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
757      // Reset the CanDoSetRt flag and retry all accesses that have failed.
758      // We know that we need these checks, so we can now be more aggressive
759      // and add further checks if required (overflow checks).
760      CanDoAliasSetRT = true;
761      for (auto Access : Retries)
762        if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
763                                  TheLoop, RunningDepId, ASId,
764                                  ShouldCheckWrap, /*Assume=*/true)) {
765          CanDoAliasSetRT = false;
766          break;
767        }
768    }
769
770    CanDoRT &= CanDoAliasSetRT;
771    NeedRTCheck |= NeedsAliasSetRTCheck;
772    ++ASId;
773  }
774
775  // If the pointers that we would use for the bounds comparison have different
776  // address spaces, assume the values aren't directly comparable, so we can't
777  // use them for the runtime check. We also have to assume they could
778  // overlap. In the future there should be metadata for whether address spaces
779  // are disjoint.
780  unsigned NumPointers = RtCheck.Pointers.size();
781  for (unsigned i = 0; i < NumPointers; ++i) {
782    for (unsigned j = i + 1; j < NumPointers; ++j) {
783      // Only need to check pointers between two different dependency sets.
784      if (RtCheck.Pointers[i].DependencySetId ==
785          RtCheck.Pointers[j].DependencySetId)
786       continue;
787      // Only need to check pointers in the same alias set.
788      if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
789        continue;
790
791      Value *PtrI = RtCheck.Pointers[i].PointerValue;
792      Value *PtrJ = RtCheck.Pointers[j].PointerValue;
793
794      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
795      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
796      if (ASi != ASj) {
797        LLVM_DEBUG(
798            dbgs() << "LAA: Runtime check would require comparison between"
799                      " different address spaces\n");
800        return false;
801      }
802    }
803  }
804
805  if (NeedRTCheck && CanDoRT)
806    RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
807
808  LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
809                    << " pointer comparisons.\n");
810
811  RtCheck.Need = NeedRTCheck;
812
813  bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
814  if (!CanDoRTIfNeeded)
815    RtCheck.reset();
816  return CanDoRTIfNeeded;
817}
818
819void AccessAnalysis::processMemAccesses() {
820  // We process the set twice: first we process read-write pointers, last we
821  // process read-only pointers. This allows us to skip dependence tests for
822  // read-only pointers.
823
824  LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
825  LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
826  LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
827  LLVM_DEBUG({
828    for (auto A : Accesses)
829      dbgs() << "\t" << *A.getPointer() << " (" <<
830                (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
831                                         "read-only" : "read")) << ")\n";
832  });
833
834  // The AliasSetTracker has nicely partitioned our pointers by metadata
835  // compatibility and potential for underlying-object overlap. As a result, we
836  // only need to check for potential pointer dependencies within each alias
837  // set.
838  for (auto &AS : AST) {
839    // Note that both the alias-set tracker and the alias sets themselves used
840    // linked lists internally and so the iteration order here is deterministic
841    // (matching the original instruction order within each set).
842
843    bool SetHasWrite = false;
844
845    // Map of pointers to last access encountered.
846    typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
847    UnderlyingObjToAccessMap ObjToLastAccess;
848
849    // Set of access to check after all writes have been processed.
850    PtrAccessSet DeferredAccesses;
851
852    // Iterate over each alias set twice, once to process read/write pointers,
853    // and then to process read-only pointers.
854    for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
855      bool UseDeferred = SetIteration > 0;
856      PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
857
858      for (auto AV : AS) {
859        Value *Ptr = AV.getValue();
860
861        // For a single memory access in AliasSetTracker, Accesses may contain
862        // both read and write, and they both need to be handled for CheckDeps.
863        for (auto AC : S) {
864          if (AC.getPointer() != Ptr)
865            continue;
866
867          bool IsWrite = AC.getInt();
868
869          // If we're using the deferred access set, then it contains only
870          // reads.
871          bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
872          if (UseDeferred && !IsReadOnlyPtr)
873            continue;
874          // Otherwise, the pointer must be in the PtrAccessSet, either as a
875          // read or a write.
876          assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
877                  S.count(MemAccessInfo(Ptr, false))) &&
878                 "Alias-set pointer not in the access set?");
879
880          MemAccessInfo Access(Ptr, IsWrite);
881          DepCands.insert(Access);
882
883          // Memorize read-only pointers for later processing and skip them in
884          // the first round (they need to be checked after we have seen all
885          // write pointers). Note: we also mark pointer that are not
886          // consecutive as "read-only" pointers (so that we check
887          // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
888          if (!UseDeferred && IsReadOnlyPtr) {
889            DeferredAccesses.insert(Access);
890            continue;
891          }
892
893          // If this is a write - check other reads and writes for conflicts. If
894          // this is a read only check other writes for conflicts (but only if
895          // there is no other write to the ptr - this is an optimization to
896          // catch "a[i] = a[i] + " without having to do a dependence check).
897          if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
898            CheckDeps.push_back(Access);
899            IsRTCheckAnalysisNeeded = true;
900          }
901
902          if (IsWrite)
903            SetHasWrite = true;
904
905          // Create sets of pointers connected by a shared alias set and
906          // underlying object.
907          typedef SmallVector<const Value *, 16> ValueVector;
908          ValueVector TempObjects;
909
910          GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
911          LLVM_DEBUG(dbgs()
912                     << "Underlying objects for pointer " << *Ptr << "\n");
913          for (const Value *UnderlyingObj : TempObjects) {
914            // nullptr never alias, don't join sets for pointer that have "null"
915            // in their UnderlyingObjects list.
916            if (isa<ConstantPointerNull>(UnderlyingObj) &&
917                !NullPointerIsDefined(
918                    TheLoop->getHeader()->getParent(),
919                    UnderlyingObj->getType()->getPointerAddressSpace()))
920              continue;
921
922            UnderlyingObjToAccessMap::iterator Prev =
923                ObjToLastAccess.find(UnderlyingObj);
924            if (Prev != ObjToLastAccess.end())
925              DepCands.unionSets(Access, Prev->second);
926
927            ObjToLastAccess[UnderlyingObj] = Access;
928            LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
929          }
930        }
931      }
932    }
933  }
934}
935
936static bool isInBoundsGep(Value *Ptr) {
937  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
938    return GEP->isInBounds();
939  return false;
940}
941
942/// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
943/// i.e. monotonically increasing/decreasing.
944static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
945                           PredicatedScalarEvolution &PSE, const Loop *L) {
946  // FIXME: This should probably only return true for NUW.
947  if (AR->getNoWrapFlags(SCEV::NoWrapMask))
948    return true;
949
950  // Scalar evolution does not propagate the non-wrapping flags to values that
951  // are derived from a non-wrapping induction variable because non-wrapping
952  // could be flow-sensitive.
953  //
954  // Look through the potentially overflowing instruction to try to prove
955  // non-wrapping for the *specific* value of Ptr.
956
957  // The arithmetic implied by an inbounds GEP can't overflow.
958  auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
959  if (!GEP || !GEP->isInBounds())
960    return false;
961
962  // Make sure there is only one non-const index and analyze that.
963  Value *NonConstIndex = nullptr;
964  for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
965    if (!isa<ConstantInt>(Index)) {
966      if (NonConstIndex)
967        return false;
968      NonConstIndex = Index;
969    }
970  if (!NonConstIndex)
971    // The recurrence is on the pointer, ignore for now.
972    return false;
973
974  // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
975  // AddRec using a NSW operation.
976  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
977    if (OBO->hasNoSignedWrap() &&
978        // Assume constant for other the operand so that the AddRec can be
979        // easily found.
980        isa<ConstantInt>(OBO->getOperand(1))) {
981      auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
982
983      if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
984        return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
985    }
986
987  return false;
988}
989
990/// Check whether the access through \p Ptr has a constant stride.
991int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
992                           const Loop *Lp, const ValueToValueMap &StridesMap,
993                           bool Assume, bool ShouldCheckWrap) {
994  Type *Ty = Ptr->getType();
995  assert(Ty->isPointerTy() && "Unexpected non-ptr");
996
997  // Make sure that the pointer does not point to aggregate types.
998  auto *PtrTy = cast<PointerType>(Ty);
999  if (PtrTy->getElementType()->isAggregateType()) {
1000    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
1001                      << *Ptr << "\n");
1002    return 0;
1003  }
1004
1005  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1006
1007  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1008  if (Assume && !AR)
1009    AR = PSE.getAsAddRec(Ptr);
1010
1011  if (!AR) {
1012    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1013                      << " SCEV: " << *PtrScev << "\n");
1014    return 0;
1015  }
1016
1017  // The access function must stride over the innermost loop.
1018  if (Lp != AR->getLoop()) {
1019    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1020                      << *Ptr << " SCEV: " << *AR << "\n");
1021    return 0;
1022  }
1023
1024  // The address calculation must not wrap. Otherwise, a dependence could be
1025  // inverted.
1026  // An inbounds getelementptr that is a AddRec with a unit stride
1027  // cannot wrap per definition. The unit stride requirement is checked later.
1028  // An getelementptr without an inbounds attribute and unit stride would have
1029  // to access the pointer value "0" which is undefined behavior in address
1030  // space 0, therefore we can also vectorize this case.
1031  bool IsInBoundsGEP = isInBoundsGep(Ptr);
1032  bool IsNoWrapAddRec = !ShouldCheckWrap ||
1033    PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1034    isNoWrapAddRec(Ptr, AR, PSE, Lp);
1035  if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1036      NullPointerIsDefined(Lp->getHeader()->getParent(),
1037                           PtrTy->getAddressSpace())) {
1038    if (Assume) {
1039      PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1040      IsNoWrapAddRec = true;
1041      LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1042                        << "LAA:   Pointer: " << *Ptr << "\n"
1043                        << "LAA:   SCEV: " << *AR << "\n"
1044                        << "LAA:   Added an overflow assumption\n");
1045    } else {
1046      LLVM_DEBUG(
1047          dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1048                 << *Ptr << " SCEV: " << *AR << "\n");
1049      return 0;
1050    }
1051  }
1052
1053  // Check the step is constant.
1054  const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1055
1056  // Calculate the pointer stride and check if it is constant.
1057  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1058  if (!C) {
1059    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1060                      << " SCEV: " << *AR << "\n");
1061    return 0;
1062  }
1063
1064  auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1065  int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
1066  const APInt &APStepVal = C->getAPInt();
1067
1068  // Huge step value - give up.
1069  if (APStepVal.getBitWidth() > 64)
1070    return 0;
1071
1072  int64_t StepVal = APStepVal.getSExtValue();
1073
1074  // Strided access.
1075  int64_t Stride = StepVal / Size;
1076  int64_t Rem = StepVal % Size;
1077  if (Rem)
1078    return 0;
1079
1080  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1081  // know we can't "wrap around the address space". In case of address space
1082  // zero we know that this won't happen without triggering undefined behavior.
1083  if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1084      (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1085                                              PtrTy->getAddressSpace()))) {
1086    if (Assume) {
1087      // We can avoid this case by adding a run-time check.
1088      LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1089                        << "inbounds or in address space 0 may wrap:\n"
1090                        << "LAA:   Pointer: " << *Ptr << "\n"
1091                        << "LAA:   SCEV: " << *AR << "\n"
1092                        << "LAA:   Added an overflow assumption\n");
1093      PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1094    } else
1095      return 0;
1096  }
1097
1098  return Stride;
1099}
1100
1101bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1102                           ScalarEvolution &SE,
1103                           SmallVectorImpl<unsigned> &SortedIndices) {
1104  assert(llvm::all_of(
1105             VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1106         "Expected list of pointer operands.");
1107  SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
1108  OffValPairs.reserve(VL.size());
1109
1110  // Walk over the pointers, and map each of them to an offset relative to
1111  // first pointer in the array.
1112  Value *Ptr0 = VL[0];
1113  const SCEV *Scev0 = SE.getSCEV(Ptr0);
1114  Value *Obj0 = GetUnderlyingObject(Ptr0, DL);
1115
1116  llvm::SmallSet<int64_t, 4> Offsets;
1117  for (auto *Ptr : VL) {
1118    // TODO: Outline this code as a special, more time consuming, version of
1119    // computeConstantDifference() function.
1120    if (Ptr->getType()->getPointerAddressSpace() !=
1121        Ptr0->getType()->getPointerAddressSpace())
1122      return false;
1123    // If a pointer refers to a different underlying object, bail - the
1124    // pointers are by definition incomparable.
1125    Value *CurrObj = GetUnderlyingObject(Ptr, DL);
1126    if (CurrObj != Obj0)
1127      return false;
1128
1129    const SCEV *Scev = SE.getSCEV(Ptr);
1130    const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0));
1131    // The pointers may not have a constant offset from each other, or SCEV
1132    // may just not be smart enough to figure out they do. Regardless,
1133    // there's nothing we can do.
1134    if (!Diff)
1135      return false;
1136
1137    // Check if the pointer with the same offset is found.
1138    int64_t Offset = Diff->getAPInt().getSExtValue();
1139    if (!Offsets.insert(Offset).second)
1140      return false;
1141    OffValPairs.emplace_back(Offset, Ptr);
1142  }
1143  SortedIndices.clear();
1144  SortedIndices.resize(VL.size());
1145  std::iota(SortedIndices.begin(), SortedIndices.end(), 0);
1146
1147  // Sort the memory accesses and keep the order of their uses in UseOrder.
1148  llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) {
1149    return OffValPairs[Left].first < OffValPairs[Right].first;
1150  });
1151
1152  // Check if the order is consecutive already.
1153  if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) {
1154        return I == SortedIndices[I];
1155      }))
1156    SortedIndices.clear();
1157
1158  return true;
1159}
1160
1161/// Take the address space operand from the Load/Store instruction.
1162/// Returns -1 if this is not a valid Load/Store instruction.
1163static unsigned getAddressSpaceOperand(Value *I) {
1164  if (LoadInst *L = dyn_cast<LoadInst>(I))
1165    return L->getPointerAddressSpace();
1166  if (StoreInst *S = dyn_cast<StoreInst>(I))
1167    return S->getPointerAddressSpace();
1168  return -1;
1169}
1170
1171/// Returns true if the memory operations \p A and \p B are consecutive.
1172bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1173                               ScalarEvolution &SE, bool CheckType) {
1174  Value *PtrA = getLoadStorePointerOperand(A);
1175  Value *PtrB = getLoadStorePointerOperand(B);
1176  unsigned ASA = getAddressSpaceOperand(A);
1177  unsigned ASB = getAddressSpaceOperand(B);
1178
1179  // Check that the address spaces match and that the pointers are valid.
1180  if (!PtrA || !PtrB || (ASA != ASB))
1181    return false;
1182
1183  // Make sure that A and B are different pointers.
1184  if (PtrA == PtrB)
1185    return false;
1186
1187  // Make sure that A and B have the same type if required.
1188  if (CheckType && PtrA->getType() != PtrB->getType())
1189    return false;
1190
1191  unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1192  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1193
1194  APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1195  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1196  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1197
1198  // Retrieve the address space again as pointer stripping now tracks through
1199  // `addrspacecast`.
1200  ASA = cast<PointerType>(PtrA->getType())->getAddressSpace();
1201  ASB = cast<PointerType>(PtrB->getType())->getAddressSpace();
1202  // Check that the address spaces match and that the pointers are valid.
1203  if (ASA != ASB)
1204    return false;
1205
1206  IdxWidth = DL.getIndexSizeInBits(ASA);
1207  OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1208  OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1209
1210  APInt Size(IdxWidth, DL.getTypeStoreSize(Ty));
1211
1212  //  OffsetDelta = OffsetB - OffsetA;
1213  const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1214  const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1215  const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1216  const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt();
1217
1218  // Check if they are based on the same pointer. That makes the offsets
1219  // sufficient.
1220  if (PtrA == PtrB)
1221    return OffsetDelta == Size;
1222
1223  // Compute the necessary base pointer delta to have the necessary final delta
1224  // equal to the size.
1225  // BaseDelta = Size - OffsetDelta;
1226  const SCEV *SizeSCEV = SE.getConstant(Size);
1227  const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1228
1229  // Otherwise compute the distance with SCEV between the base pointers.
1230  const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1231  const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1232  const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1233  return X == PtrSCEVB;
1234}
1235
1236MemoryDepChecker::VectorizationSafetyStatus
1237MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1238  switch (Type) {
1239  case NoDep:
1240  case Forward:
1241  case BackwardVectorizable:
1242    return VectorizationSafetyStatus::Safe;
1243
1244  case Unknown:
1245    return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1246  case ForwardButPreventsForwarding:
1247  case Backward:
1248  case BackwardVectorizableButPreventsForwarding:
1249    return VectorizationSafetyStatus::Unsafe;
1250  }
1251  llvm_unreachable("unexpected DepType!");
1252}
1253
1254bool MemoryDepChecker::Dependence::isBackward() const {
1255  switch (Type) {
1256  case NoDep:
1257  case Forward:
1258  case ForwardButPreventsForwarding:
1259  case Unknown:
1260    return false;
1261
1262  case BackwardVectorizable:
1263  case Backward:
1264  case BackwardVectorizableButPreventsForwarding:
1265    return true;
1266  }
1267  llvm_unreachable("unexpected DepType!");
1268}
1269
1270bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1271  return isBackward() || Type == Unknown;
1272}
1273
1274bool MemoryDepChecker::Dependence::isForward() const {
1275  switch (Type) {
1276  case Forward:
1277  case ForwardButPreventsForwarding:
1278    return true;
1279
1280  case NoDep:
1281  case Unknown:
1282  case BackwardVectorizable:
1283  case Backward:
1284  case BackwardVectorizableButPreventsForwarding:
1285    return false;
1286  }
1287  llvm_unreachable("unexpected DepType!");
1288}
1289
1290bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1291                                                    uint64_t TypeByteSize) {
1292  // If loads occur at a distance that is not a multiple of a feasible vector
1293  // factor store-load forwarding does not take place.
1294  // Positive dependences might cause troubles because vectorizing them might
1295  // prevent store-load forwarding making vectorized code run a lot slower.
1296  //   a[i] = a[i-3] ^ a[i-8];
1297  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1298  //   hence on your typical architecture store-load forwarding does not take
1299  //   place. Vectorizing in such cases does not make sense.
1300  // Store-load forwarding distance.
1301
1302  // After this many iterations store-to-load forwarding conflicts should not
1303  // cause any slowdowns.
1304  const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1305  // Maximum vector factor.
1306  uint64_t MaxVFWithoutSLForwardIssues = std::min(
1307      VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1308
1309  // Compute the smallest VF at which the store and load would be misaligned.
1310  for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1311       VF *= 2) {
1312    // If the number of vector iteration between the store and the load are
1313    // small we could incur conflicts.
1314    if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1315      MaxVFWithoutSLForwardIssues = (VF >>= 1);
1316      break;
1317    }
1318  }
1319
1320  if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1321    LLVM_DEBUG(
1322        dbgs() << "LAA: Distance " << Distance
1323               << " that could cause a store-load forwarding conflict\n");
1324    return true;
1325  }
1326
1327  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1328      MaxVFWithoutSLForwardIssues !=
1329          VectorizerParams::MaxVectorWidth * TypeByteSize)
1330    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1331  return false;
1332}
1333
1334void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1335  if (Status < S)
1336    Status = S;
1337}
1338
1339/// Given a non-constant (unknown) dependence-distance \p Dist between two
1340/// memory accesses, that have the same stride whose absolute value is given
1341/// in \p Stride, and that have the same type size \p TypeByteSize,
1342/// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1343/// possible to prove statically that the dependence distance is larger
1344/// than the range that the accesses will travel through the execution of
1345/// the loop. If so, return true; false otherwise. This is useful for
1346/// example in loops such as the following (PR31098):
1347///     for (i = 0; i < D; ++i) {
1348///                = out[i];
1349///       out[i+D] =
1350///     }
1351static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1352                                     const SCEV &BackedgeTakenCount,
1353                                     const SCEV &Dist, uint64_t Stride,
1354                                     uint64_t TypeByteSize) {
1355
1356  // If we can prove that
1357  //      (**) |Dist| > BackedgeTakenCount * Step
1358  // where Step is the absolute stride of the memory accesses in bytes,
1359  // then there is no dependence.
1360  //
1361  // Rationale:
1362  // We basically want to check if the absolute distance (|Dist/Step|)
1363  // is >= the loop iteration count (or > BackedgeTakenCount).
1364  // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1365  // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1366  // that the dependence distance is >= VF; This is checked elsewhere.
1367  // But in some cases we can prune unknown dependence distances early, and
1368  // even before selecting the VF, and without a runtime test, by comparing
1369  // the distance against the loop iteration count. Since the vectorized code
1370  // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1371  // also guarantees that distance >= VF.
1372  //
1373  const uint64_t ByteStride = Stride * TypeByteSize;
1374  const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1375  const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1376
1377  const SCEV *CastedDist = &Dist;
1378  const SCEV *CastedProduct = Product;
1379  uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1380  uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1381
1382  // The dependence distance can be positive/negative, so we sign extend Dist;
1383  // The multiplication of the absolute stride in bytes and the
1384  // backedgeTakenCount is non-negative, so we zero extend Product.
1385  if (DistTypeSize > ProductTypeSize)
1386    CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1387  else
1388    CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1389
1390  // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1391  // (If so, then we have proven (**) because |Dist| >= Dist)
1392  const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1393  if (SE.isKnownPositive(Minus))
1394    return true;
1395
1396  // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1397  // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1398  const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1399  Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1400  if (SE.isKnownPositive(Minus))
1401    return true;
1402
1403  return false;
1404}
1405
1406/// Check the dependence for two accesses with the same stride \p Stride.
1407/// \p Distance is the positive distance and \p TypeByteSize is type size in
1408/// bytes.
1409///
1410/// \returns true if they are independent.
1411static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1412                                          uint64_t TypeByteSize) {
1413  assert(Stride > 1 && "The stride must be greater than 1");
1414  assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1415  assert(Distance > 0 && "The distance must be non-zero");
1416
1417  // Skip if the distance is not multiple of type byte size.
1418  if (Distance % TypeByteSize)
1419    return false;
1420
1421  uint64_t ScaledDist = Distance / TypeByteSize;
1422
1423  // No dependence if the scaled distance is not multiple of the stride.
1424  // E.g.
1425  //      for (i = 0; i < 1024 ; i += 4)
1426  //        A[i+2] = A[i] + 1;
1427  //
1428  // Two accesses in memory (scaled distance is 2, stride is 4):
1429  //     | A[0] |      |      |      | A[4] |      |      |      |
1430  //     |      |      | A[2] |      |      |      | A[6] |      |
1431  //
1432  // E.g.
1433  //      for (i = 0; i < 1024 ; i += 3)
1434  //        A[i+4] = A[i] + 1;
1435  //
1436  // Two accesses in memory (scaled distance is 4, stride is 3):
1437  //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1438  //     |      |      |      |      | A[4] |      |      | A[7] |      |
1439  return ScaledDist % Stride;
1440}
1441
1442MemoryDepChecker::Dependence::DepType
1443MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1444                              const MemAccessInfo &B, unsigned BIdx,
1445                              const ValueToValueMap &Strides) {
1446  assert (AIdx < BIdx && "Must pass arguments in program order");
1447
1448  Value *APtr = A.getPointer();
1449  Value *BPtr = B.getPointer();
1450  bool AIsWrite = A.getInt();
1451  bool BIsWrite = B.getInt();
1452
1453  // Two reads are independent.
1454  if (!AIsWrite && !BIsWrite)
1455    return Dependence::NoDep;
1456
1457  // We cannot check pointers in different address spaces.
1458  if (APtr->getType()->getPointerAddressSpace() !=
1459      BPtr->getType()->getPointerAddressSpace())
1460    return Dependence::Unknown;
1461
1462  int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1463  int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
1464
1465  const SCEV *Src = PSE.getSCEV(APtr);
1466  const SCEV *Sink = PSE.getSCEV(BPtr);
1467
1468  // If the induction step is negative we have to invert source and sink of the
1469  // dependence.
1470  if (StrideAPtr < 0) {
1471    std::swap(APtr, BPtr);
1472    std::swap(Src, Sink);
1473    std::swap(AIsWrite, BIsWrite);
1474    std::swap(AIdx, BIdx);
1475    std::swap(StrideAPtr, StrideBPtr);
1476  }
1477
1478  const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1479
1480  LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1481                    << "(Induction step: " << StrideAPtr << ")\n");
1482  LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1483                    << *InstMap[BIdx] << ": " << *Dist << "\n");
1484
1485  // Need accesses with constant stride. We don't want to vectorize
1486  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1487  // the address space.
1488  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1489    LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1490    return Dependence::Unknown;
1491  }
1492
1493  Type *ATy = APtr->getType()->getPointerElementType();
1494  Type *BTy = BPtr->getType()->getPointerElementType();
1495  auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1496  uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1497  uint64_t Stride = std::abs(StrideAPtr);
1498  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1499  if (!C) {
1500    if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1501        isSafeDependenceDistance(DL, *(PSE.getSE()),
1502                                 *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1503                                 TypeByteSize))
1504      return Dependence::NoDep;
1505
1506    LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1507    FoundNonConstantDistanceDependence = true;
1508    return Dependence::Unknown;
1509  }
1510
1511  const APInt &Val = C->getAPInt();
1512  int64_t Distance = Val.getSExtValue();
1513
1514  // Attempt to prove strided accesses independent.
1515  if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1516      areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1517    LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1518    return Dependence::NoDep;
1519  }
1520
1521  // Negative distances are not plausible dependencies.
1522  if (Val.isNegative()) {
1523    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1524    if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1525        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1526         ATy != BTy)) {
1527      LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1528      return Dependence::ForwardButPreventsForwarding;
1529    }
1530
1531    LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1532    return Dependence::Forward;
1533  }
1534
1535  // Write to the same location with the same size.
1536  // Could be improved to assert type sizes are the same (i32 == float, etc).
1537  if (Val == 0) {
1538    if (ATy == BTy)
1539      return Dependence::Forward;
1540    LLVM_DEBUG(
1541        dbgs() << "LAA: Zero dependence difference but different types\n");
1542    return Dependence::Unknown;
1543  }
1544
1545  assert(Val.isStrictlyPositive() && "Expect a positive value");
1546
1547  if (ATy != BTy) {
1548    LLVM_DEBUG(
1549        dbgs()
1550        << "LAA: ReadWrite-Write positive dependency with different types\n");
1551    return Dependence::Unknown;
1552  }
1553
1554  // Bail out early if passed-in parameters make vectorization not feasible.
1555  unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1556                           VectorizerParams::VectorizationFactor : 1);
1557  unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1558                           VectorizerParams::VectorizationInterleave : 1);
1559  // The minimum number of iterations for a vectorized/unrolled version.
1560  unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1561
1562  // It's not vectorizable if the distance is smaller than the minimum distance
1563  // needed for a vectroized/unrolled version. Vectorizing one iteration in
1564  // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1565  // TypeByteSize (No need to plus the last gap distance).
1566  //
1567  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1568  //      foo(int *A) {
1569  //        int *B = (int *)((char *)A + 14);
1570  //        for (i = 0 ; i < 1024 ; i += 2)
1571  //          B[i] = A[i] + 1;
1572  //      }
1573  //
1574  // Two accesses in memory (stride is 2):
1575  //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1576  //                              | B[0] |      | B[2] |      | B[4] |
1577  //
1578  // Distance needs for vectorizing iterations except the last iteration:
1579  // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1580  // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1581  //
1582  // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1583  // 12, which is less than distance.
1584  //
1585  // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1586  // the minimum distance needed is 28, which is greater than distance. It is
1587  // not safe to do vectorization.
1588  uint64_t MinDistanceNeeded =
1589      TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1590  if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1591    LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1592                      << Distance << '\n');
1593    return Dependence::Backward;
1594  }
1595
1596  // Unsafe if the minimum distance needed is greater than max safe distance.
1597  if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1598    LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1599                      << MinDistanceNeeded << " size in bytes");
1600    return Dependence::Backward;
1601  }
1602
1603  // Positive distance bigger than max vectorization factor.
1604  // FIXME: Should use max factor instead of max distance in bytes, which could
1605  // not handle different types.
1606  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1607  //      void foo (int *A, char *B) {
1608  //        for (unsigned i = 0; i < 1024; i++) {
1609  //          A[i+2] = A[i] + 1;
1610  //          B[i+2] = B[i] + 1;
1611  //        }
1612  //      }
1613  //
1614  // This case is currently unsafe according to the max safe distance. If we
1615  // analyze the two accesses on array B, the max safe dependence distance
1616  // is 2. Then we analyze the accesses on array A, the minimum distance needed
1617  // is 8, which is less than 2 and forbidden vectorization, But actually
1618  // both A and B could be vectorized by 2 iterations.
1619  MaxSafeDepDistBytes =
1620      std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1621
1622  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1623  if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1624      couldPreventStoreLoadForward(Distance, TypeByteSize))
1625    return Dependence::BackwardVectorizableButPreventsForwarding;
1626
1627  uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1628  LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1629                    << " with max VF = " << MaxVF << '\n');
1630  uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1631  MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits);
1632  return Dependence::BackwardVectorizable;
1633}
1634
1635bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1636                                   MemAccessInfoList &CheckDeps,
1637                                   const ValueToValueMap &Strides) {
1638
1639  MaxSafeDepDistBytes = -1;
1640  SmallPtrSet<MemAccessInfo, 8> Visited;
1641  for (MemAccessInfo CurAccess : CheckDeps) {
1642    if (Visited.count(CurAccess))
1643      continue;
1644
1645    // Get the relevant memory access set.
1646    EquivalenceClasses<MemAccessInfo>::iterator I =
1647      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1648
1649    // Check accesses within this set.
1650    EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1651        AccessSets.member_begin(I);
1652    EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1653        AccessSets.member_end();
1654
1655    // Check every access pair.
1656    while (AI != AE) {
1657      Visited.insert(*AI);
1658      bool AIIsWrite = AI->getInt();
1659      // Check loads only against next equivalent class, but stores also against
1660      // other stores in the same equivalence class - to the same address.
1661      EquivalenceClasses<MemAccessInfo>::member_iterator OI =
1662          (AIIsWrite ? AI : std::next(AI));
1663      while (OI != AE) {
1664        // Check every accessing instruction pair in program order.
1665        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1666             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1667          // Scan all accesses of another equivalence class, but only the next
1668          // accesses of the same equivalent class.
1669          for (std::vector<unsigned>::iterator
1670                   I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
1671                   I2E = (OI == AI ? I1E : Accesses[*OI].end());
1672               I2 != I2E; ++I2) {
1673            auto A = std::make_pair(&*AI, *I1);
1674            auto B = std::make_pair(&*OI, *I2);
1675
1676            assert(*I1 != *I2);
1677            if (*I1 > *I2)
1678              std::swap(A, B);
1679
1680            Dependence::DepType Type =
1681                isDependent(*A.first, A.second, *B.first, B.second, Strides);
1682            mergeInStatus(Dependence::isSafeForVectorization(Type));
1683
1684            // Gather dependences unless we accumulated MaxDependences
1685            // dependences.  In that case return as soon as we find the first
1686            // unsafe dependence.  This puts a limit on this quadratic
1687            // algorithm.
1688            if (RecordDependences) {
1689              if (Type != Dependence::NoDep)
1690                Dependences.push_back(Dependence(A.second, B.second, Type));
1691
1692              if (Dependences.size() >= MaxDependences) {
1693                RecordDependences = false;
1694                Dependences.clear();
1695                LLVM_DEBUG(dbgs()
1696                           << "Too many dependences, stopped recording\n");
1697              }
1698            }
1699            if (!RecordDependences && !isSafeForVectorization())
1700              return false;
1701          }
1702        ++OI;
1703      }
1704      AI++;
1705    }
1706  }
1707
1708  LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1709  return isSafeForVectorization();
1710}
1711
1712SmallVector<Instruction *, 4>
1713MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1714  MemAccessInfo Access(Ptr, isWrite);
1715  auto &IndexVector = Accesses.find(Access)->second;
1716
1717  SmallVector<Instruction *, 4> Insts;
1718  transform(IndexVector,
1719                 std::back_inserter(Insts),
1720                 [&](unsigned Idx) { return this->InstMap[Idx]; });
1721  return Insts;
1722}
1723
1724const char *MemoryDepChecker::Dependence::DepName[] = {
1725    "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1726    "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1727
1728void MemoryDepChecker::Dependence::print(
1729    raw_ostream &OS, unsigned Depth,
1730    const SmallVectorImpl<Instruction *> &Instrs) const {
1731  OS.indent(Depth) << DepName[Type] << ":\n";
1732  OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1733  OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1734}
1735
1736bool LoopAccessInfo::canAnalyzeLoop() {
1737  // We need to have a loop header.
1738  LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1739                    << TheLoop->getHeader()->getParent()->getName() << ": "
1740                    << TheLoop->getHeader()->getName() << '\n');
1741
1742  // We can only analyze innermost loops.
1743  if (!TheLoop->empty()) {
1744    LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1745    recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1746    return false;
1747  }
1748
1749  // We must have a single backedge.
1750  if (TheLoop->getNumBackEdges() != 1) {
1751    LLVM_DEBUG(
1752        dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1753    recordAnalysis("CFGNotUnderstood")
1754        << "loop control flow is not understood by analyzer";
1755    return false;
1756  }
1757
1758  // We must have a single exiting block.
1759  if (!TheLoop->getExitingBlock()) {
1760    LLVM_DEBUG(
1761        dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1762    recordAnalysis("CFGNotUnderstood")
1763        << "loop control flow is not understood by analyzer";
1764    return false;
1765  }
1766
1767  // We only handle bottom-tested loops, i.e. loop in which the condition is
1768  // checked at the end of each iteration. With that we can assume that all
1769  // instructions in the loop are executed the same number of times.
1770  if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1771    LLVM_DEBUG(
1772        dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1773    recordAnalysis("CFGNotUnderstood")
1774        << "loop control flow is not understood by analyzer";
1775    return false;
1776  }
1777
1778  // ScalarEvolution needs to be able to find the exit count.
1779  const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1780  if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
1781    recordAnalysis("CantComputeNumberOfIterations")
1782        << "could not determine number of loop iterations";
1783    LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1784    return false;
1785  }
1786
1787  return true;
1788}
1789
1790void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
1791                                 const TargetLibraryInfo *TLI,
1792                                 DominatorTree *DT) {
1793  typedef SmallPtrSet<Value*, 16> ValueSet;
1794
1795  // Holds the Load and Store instructions.
1796  SmallVector<LoadInst *, 16> Loads;
1797  SmallVector<StoreInst *, 16> Stores;
1798
1799  // Holds all the different accesses in the loop.
1800  unsigned NumReads = 0;
1801  unsigned NumReadWrites = 0;
1802
1803  bool HasComplexMemInst = false;
1804
1805  // A runtime check is only legal to insert if there are no convergent calls.
1806  HasConvergentOp = false;
1807
1808  PtrRtChecking->Pointers.clear();
1809  PtrRtChecking->Need = false;
1810
1811  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1812
1813  // For each block.
1814  for (BasicBlock *BB : TheLoop->blocks()) {
1815    // Scan the BB and collect legal loads and stores. Also detect any
1816    // convergent instructions.
1817    for (Instruction &I : *BB) {
1818      if (auto *Call = dyn_cast<CallBase>(&I)) {
1819        if (Call->isConvergent())
1820          HasConvergentOp = true;
1821      }
1822
1823      // With both a non-vectorizable memory instruction and a convergent
1824      // operation, found in this loop, no reason to continue the search.
1825      if (HasComplexMemInst && HasConvergentOp) {
1826        CanVecMem = false;
1827        return;
1828      }
1829
1830      // Avoid hitting recordAnalysis multiple times.
1831      if (HasComplexMemInst)
1832        continue;
1833
1834      // If this is a load, save it. If this instruction can read from memory
1835      // but is not a load, then we quit. Notice that we don't handle function
1836      // calls that read or write.
1837      if (I.mayReadFromMemory()) {
1838        // Many math library functions read the rounding mode. We will only
1839        // vectorize a loop if it contains known function calls that don't set
1840        // the flag. Therefore, it is safe to ignore this read from memory.
1841        auto *Call = dyn_cast<CallInst>(&I);
1842        if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1843          continue;
1844
1845        // If the function has an explicit vectorized counterpart, we can safely
1846        // assume that it can be vectorized.
1847        if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1848            TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1849          continue;
1850
1851        auto *Ld = dyn_cast<LoadInst>(&I);
1852        if (!Ld) {
1853          recordAnalysis("CantVectorizeInstruction", Ld)
1854            << "instruction cannot be vectorized";
1855          HasComplexMemInst = true;
1856          continue;
1857        }
1858        if (!Ld->isSimple() && !IsAnnotatedParallel) {
1859          recordAnalysis("NonSimpleLoad", Ld)
1860              << "read with atomic ordering or volatile read";
1861          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1862          HasComplexMemInst = true;
1863          continue;
1864        }
1865        NumLoads++;
1866        Loads.push_back(Ld);
1867        DepChecker->addAccess(Ld);
1868        if (EnableMemAccessVersioning)
1869          collectStridedAccess(Ld);
1870        continue;
1871      }
1872
1873      // Save 'store' instructions. Abort if other instructions write to memory.
1874      if (I.mayWriteToMemory()) {
1875        auto *St = dyn_cast<StoreInst>(&I);
1876        if (!St) {
1877          recordAnalysis("CantVectorizeInstruction", St)
1878              << "instruction cannot be vectorized";
1879          HasComplexMemInst = true;
1880          continue;
1881        }
1882        if (!St->isSimple() && !IsAnnotatedParallel) {
1883          recordAnalysis("NonSimpleStore", St)
1884              << "write with atomic ordering or volatile write";
1885          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1886          HasComplexMemInst = true;
1887          continue;
1888        }
1889        NumStores++;
1890        Stores.push_back(St);
1891        DepChecker->addAccess(St);
1892        if (EnableMemAccessVersioning)
1893          collectStridedAccess(St);
1894      }
1895    } // Next instr.
1896  } // Next block.
1897
1898  if (HasComplexMemInst) {
1899    CanVecMem = false;
1900    return;
1901  }
1902
1903  // Now we have two lists that hold the loads and the stores.
1904  // Next, we find the pointers that they use.
1905
1906  // Check if we see any stores. If there are no stores, then we don't
1907  // care if the pointers are *restrict*.
1908  if (!Stores.size()) {
1909    LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1910    CanVecMem = true;
1911    return;
1912  }
1913
1914  MemoryDepChecker::DepCandidates DependentAccesses;
1915  AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1916                          TheLoop, AA, LI, DependentAccesses, *PSE);
1917
1918  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1919  // multiple times on the same object. If the ptr is accessed twice, once
1920  // for read and once for write, it will only appear once (on the write
1921  // list). This is okay, since we are going to check for conflicts between
1922  // writes and between reads and writes, but not between reads and reads.
1923  ValueSet Seen;
1924
1925  // Record uniform store addresses to identify if we have multiple stores
1926  // to the same address.
1927  ValueSet UniformStores;
1928
1929  for (StoreInst *ST : Stores) {
1930    Value *Ptr = ST->getPointerOperand();
1931
1932    if (isUniform(Ptr))
1933      HasDependenceInvolvingLoopInvariantAddress |=
1934          !UniformStores.insert(Ptr).second;
1935
1936    // If we did *not* see this pointer before, insert it to  the read-write
1937    // list. At this phase it is only a 'write' list.
1938    if (Seen.insert(Ptr).second) {
1939      ++NumReadWrites;
1940
1941      MemoryLocation Loc = MemoryLocation::get(ST);
1942      // The TBAA metadata could have a control dependency on the predication
1943      // condition, so we cannot rely on it when determining whether or not we
1944      // need runtime pointer checks.
1945      if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1946        Loc.AATags.TBAA = nullptr;
1947
1948      Accesses.addStore(Loc);
1949    }
1950  }
1951
1952  if (IsAnnotatedParallel) {
1953    LLVM_DEBUG(
1954        dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
1955               << "checks.\n");
1956    CanVecMem = true;
1957    return;
1958  }
1959
1960  for (LoadInst *LD : Loads) {
1961    Value *Ptr = LD->getPointerOperand();
1962    // If we did *not* see this pointer before, insert it to the
1963    // read list. If we *did* see it before, then it is already in
1964    // the read-write list. This allows us to vectorize expressions
1965    // such as A[i] += x;  Because the address of A[i] is a read-write
1966    // pointer. This only works if the index of A[i] is consecutive.
1967    // If the address of i is unknown (for example A[B[i]]) then we may
1968    // read a few words, modify, and write a few words, and some of the
1969    // words may be written to the same address.
1970    bool IsReadOnlyPtr = false;
1971    if (Seen.insert(Ptr).second ||
1972        !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
1973      ++NumReads;
1974      IsReadOnlyPtr = true;
1975    }
1976
1977    // See if there is an unsafe dependency between a load to a uniform address and
1978    // store to the same uniform address.
1979    if (UniformStores.count(Ptr)) {
1980      LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
1981                           "load and uniform store to the same address!\n");
1982      HasDependenceInvolvingLoopInvariantAddress = true;
1983    }
1984
1985    MemoryLocation Loc = MemoryLocation::get(LD);
1986    // The TBAA metadata could have a control dependency on the predication
1987    // condition, so we cannot rely on it when determining whether or not we
1988    // need runtime pointer checks.
1989    if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1990      Loc.AATags.TBAA = nullptr;
1991
1992    Accesses.addLoad(Loc, IsReadOnlyPtr);
1993  }
1994
1995  // If we write (or read-write) to a single destination and there are no
1996  // other reads in this loop then is it safe to vectorize.
1997  if (NumReadWrites == 1 && NumReads == 0) {
1998    LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1999    CanVecMem = true;
2000    return;
2001  }
2002
2003  // Build dependence sets and check whether we need a runtime pointer bounds
2004  // check.
2005  Accesses.buildDependenceSets();
2006
2007  // Find pointers with computable bounds. We are going to use this information
2008  // to place a runtime bound check.
2009  bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
2010                                                  TheLoop, SymbolicStrides);
2011  if (!CanDoRTIfNeeded) {
2012    recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
2013    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2014                      << "the array bounds.\n");
2015    CanVecMem = false;
2016    return;
2017  }
2018
2019  LLVM_DEBUG(
2020    dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2021
2022  CanVecMem = true;
2023  if (Accesses.isDependencyCheckNeeded()) {
2024    LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2025    CanVecMem = DepChecker->areDepsSafe(
2026        DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2027    MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2028
2029    if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2030      LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2031
2032      // Clear the dependency checks. We assume they are not needed.
2033      Accesses.resetDepChecks(*DepChecker);
2034
2035      PtrRtChecking->reset();
2036      PtrRtChecking->Need = true;
2037
2038      auto *SE = PSE->getSE();
2039      CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
2040                                                 SymbolicStrides, true);
2041
2042      // Check that we found the bounds for the pointer.
2043      if (!CanDoRTIfNeeded) {
2044        recordAnalysis("CantCheckMemDepsAtRunTime")
2045            << "cannot check memory dependencies at runtime";
2046        LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2047        CanVecMem = false;
2048        return;
2049      }
2050
2051      CanVecMem = true;
2052    }
2053  }
2054
2055  if (HasConvergentOp) {
2056    recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2057      << "cannot add control dependency to convergent operation";
2058    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2059                         "would be needed with a convergent operation\n");
2060    CanVecMem = false;
2061    return;
2062  }
2063
2064  if (CanVecMem)
2065    LLVM_DEBUG(
2066        dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2067               << (PtrRtChecking->Need ? "" : " don't")
2068               << " need runtime memory checks.\n");
2069  else {
2070    recordAnalysis("UnsafeMemDep")
2071        << "unsafe dependent memory operations in loop. Use "
2072           "#pragma loop distribute(enable) to allow loop distribution "
2073           "to attempt to isolate the offending operations into a separate "
2074           "loop";
2075    LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2076  }
2077}
2078
2079bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2080                                           DominatorTree *DT)  {
2081  assert(TheLoop->contains(BB) && "Unknown block used");
2082
2083  // Blocks that do not dominate the latch need predication.
2084  BasicBlock* Latch = TheLoop->getLoopLatch();
2085  return !DT->dominates(BB, Latch);
2086}
2087
2088OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2089                                                           Instruction *I) {
2090  assert(!Report && "Multiple reports generated");
2091
2092  Value *CodeRegion = TheLoop->getHeader();
2093  DebugLoc DL = TheLoop->getStartLoc();
2094
2095  if (I) {
2096    CodeRegion = I->getParent();
2097    // If there is no debug location attached to the instruction, revert back to
2098    // using the loop's.
2099    if (I->getDebugLoc())
2100      DL = I->getDebugLoc();
2101  }
2102
2103  Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2104                                                   CodeRegion);
2105  return *Report;
2106}
2107
2108bool LoopAccessInfo::isUniform(Value *V) const {
2109  auto *SE = PSE->getSE();
2110  // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2111  // never considered uniform.
2112  // TODO: Is this really what we want? Even without FP SCEV, we may want some
2113  // trivially loop-invariant FP values to be considered uniform.
2114  if (!SE->isSCEVable(V->getType()))
2115    return false;
2116  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2117}
2118
2119// FIXME: this function is currently a duplicate of the one in
2120// LoopVectorize.cpp.
2121static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
2122                                 Instruction *Loc) {
2123  if (FirstInst)
2124    return FirstInst;
2125  if (Instruction *I = dyn_cast<Instruction>(V))
2126    return I->getParent() == Loc->getParent() ? I : nullptr;
2127  return nullptr;
2128}
2129
2130namespace {
2131
2132/// IR Values for the lower and upper bounds of a pointer evolution.  We
2133/// need to use value-handles because SCEV expansion can invalidate previously
2134/// expanded values.  Thus expansion of a pointer can invalidate the bounds for
2135/// a previous one.
2136struct PointerBounds {
2137  TrackingVH<Value> Start;
2138  TrackingVH<Value> End;
2139};
2140
2141} // end anonymous namespace
2142
2143/// Expand code for the lower and upper bound of the pointer group \p CG
2144/// in \p TheLoop.  \return the values for the bounds.
2145static PointerBounds
2146expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
2147             Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
2148             const RuntimePointerChecking &PtrRtChecking) {
2149  Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
2150  const SCEV *Sc = SE->getSCEV(Ptr);
2151
2152  unsigned AS = Ptr->getType()->getPointerAddressSpace();
2153  LLVMContext &Ctx = Loc->getContext();
2154
2155  // Use this type for pointer arithmetic.
2156  Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
2157
2158  if (SE->isLoopInvariant(Sc, TheLoop)) {
2159    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
2160                      << *Ptr << "\n");
2161    // Ptr could be in the loop body. If so, expand a new one at the correct
2162    // location.
2163    Instruction *Inst = dyn_cast<Instruction>(Ptr);
2164    Value *NewPtr = (Inst && TheLoop->contains(Inst))
2165                        ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
2166                        : Ptr;
2167    // We must return a half-open range, which means incrementing Sc.
2168    const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
2169    Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
2170    return {NewPtr, NewPtrPlusOne};
2171  } else {
2172    Value *Start = nullptr, *End = nullptr;
2173    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
2174    Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
2175    End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
2176    LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
2177                      << "\n");
2178    return {Start, End};
2179  }
2180}
2181
2182/// Turns a collection of checks into a collection of expanded upper and
2183/// lower bounds for both pointers in the check.
2184static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
2185    const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
2186    Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
2187    const RuntimePointerChecking &PtrRtChecking) {
2188  SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
2189
2190  // Here we're relying on the SCEV Expander's cache to only emit code for the
2191  // same bounds once.
2192  transform(
2193      PointerChecks, std::back_inserter(ChecksWithBounds),
2194      [&](const RuntimePointerChecking::PointerCheck &Check) {
2195        PointerBounds
2196          First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
2197          Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
2198        return std::make_pair(First, Second);
2199      });
2200
2201  return ChecksWithBounds;
2202}
2203
2204std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
2205    Instruction *Loc,
2206    const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
2207    const {
2208  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2209  auto *SE = PSE->getSE();
2210  SCEVExpander Exp(*SE, DL, "induction");
2211  auto ExpandedChecks =
2212      expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
2213
2214  LLVMContext &Ctx = Loc->getContext();
2215  Instruction *FirstInst = nullptr;
2216  IRBuilder<> ChkBuilder(Loc);
2217  // Our instructions might fold to a constant.
2218  Value *MemoryRuntimeCheck = nullptr;
2219
2220  for (const auto &Check : ExpandedChecks) {
2221    const PointerBounds &A = Check.first, &B = Check.second;
2222    // Check if two pointers (A and B) conflict where conflict is computed as:
2223    // start(A) <= end(B) && start(B) <= end(A)
2224    unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
2225    unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
2226
2227    assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
2228           (AS1 == A.End->getType()->getPointerAddressSpace()) &&
2229           "Trying to bounds check pointers with different address spaces");
2230
2231    Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
2232    Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
2233
2234    Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
2235    Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
2236    Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
2237    Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
2238
2239    // [A|B].Start points to the first accessed byte under base [A|B].
2240    // [A|B].End points to the last accessed byte, plus one.
2241    // There is no conflict when the intervals are disjoint:
2242    // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
2243    //
2244    // bound0 = (B.Start < A.End)
2245    // bound1 = (A.Start < B.End)
2246    //  IsConflict = bound0 & bound1
2247    Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
2248    FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
2249    Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
2250    FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2251    Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2252    FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2253    if (MemoryRuntimeCheck) {
2254      IsConflict =
2255          ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2256      FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2257    }
2258    MemoryRuntimeCheck = IsConflict;
2259  }
2260
2261  if (!MemoryRuntimeCheck)
2262    return std::make_pair(nullptr, nullptr);
2263
2264  // We have to do this trickery because the IRBuilder might fold the check to a
2265  // constant expression in which case there is no Instruction anchored in a
2266  // the block.
2267  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2268                                                 ConstantInt::getTrue(Ctx));
2269  ChkBuilder.Insert(Check, "memcheck.conflict");
2270  FirstInst = getFirstInst(FirstInst, Check, Loc);
2271  return std::make_pair(FirstInst, Check);
2272}
2273
2274std::pair<Instruction *, Instruction *>
2275LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
2276  if (!PtrRtChecking->Need)
2277    return std::make_pair(nullptr, nullptr);
2278
2279  return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
2280}
2281
2282void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2283  Value *Ptr = nullptr;
2284  if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
2285    Ptr = LI->getPointerOperand();
2286  else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
2287    Ptr = SI->getPointerOperand();
2288  else
2289    return;
2290
2291  Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2292  if (!Stride)
2293    return;
2294
2295  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2296                       "versioning:");
2297  LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2298
2299  // Avoid adding the "Stride == 1" predicate when we know that
2300  // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2301  // or zero iteration loop, as Trip-Count <= Stride == 1.
2302  //
2303  // TODO: We are currently not making a very informed decision on when it is
2304  // beneficial to apply stride versioning. It might make more sense that the
2305  // users of this analysis (such as the vectorizer) will trigger it, based on
2306  // their specific cost considerations; For example, in cases where stride
2307  // versioning does  not help resolving memory accesses/dependences, the
2308  // vectorizer should evaluate the cost of the runtime test, and the benefit
2309  // of various possible stride specializations, considering the alternatives
2310  // of using gather/scatters (if available).
2311
2312  const SCEV *StrideExpr = PSE->getSCEV(Stride);
2313  const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2314
2315  // Match the types so we can compare the stride and the BETakenCount.
2316  // The Stride can be positive/negative, so we sign extend Stride;
2317  // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2318  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2319  uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2320  uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2321  const SCEV *CastedStride = StrideExpr;
2322  const SCEV *CastedBECount = BETakenCount;
2323  ScalarEvolution *SE = PSE->getSE();
2324  if (BETypeSize >= StrideTypeSize)
2325    CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2326  else
2327    CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2328  const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2329  // Since TripCount == BackEdgeTakenCount + 1, checking:
2330  // "Stride >= TripCount" is equivalent to checking:
2331  // Stride - BETakenCount > 0
2332  if (SE->isKnownPositive(StrideMinusBETaken)) {
2333    LLVM_DEBUG(
2334        dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2335                  "Stride==1 predicate will imply that the loop executes "
2336                  "at most once.\n");
2337    return;
2338  }
2339  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2340
2341  SymbolicStrides[Ptr] = Stride;
2342  StrideSet.insert(Stride);
2343}
2344
2345LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2346                               const TargetLibraryInfo *TLI, AliasAnalysis *AA,
2347                               DominatorTree *DT, LoopInfo *LI)
2348    : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2349      PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)),
2350      DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
2351      NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2352      HasConvergentOp(false),
2353      HasDependenceInvolvingLoopInvariantAddress(false) {
2354  if (canAnalyzeLoop())
2355    analyzeLoop(AA, LI, TLI, DT);
2356}
2357
2358void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2359  if (CanVecMem) {
2360    OS.indent(Depth) << "Memory dependences are safe";
2361    if (MaxSafeDepDistBytes != -1ULL)
2362      OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2363         << " bytes";
2364    if (PtrRtChecking->Need)
2365      OS << " with run-time checks";
2366    OS << "\n";
2367  }
2368
2369  if (HasConvergentOp)
2370    OS.indent(Depth) << "Has convergent operation in loop\n";
2371
2372  if (Report)
2373    OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2374
2375  if (auto *Dependences = DepChecker->getDependences()) {
2376    OS.indent(Depth) << "Dependences:\n";
2377    for (auto &Dep : *Dependences) {
2378      Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2379      OS << "\n";
2380    }
2381  } else
2382    OS.indent(Depth) << "Too many dependences, not recorded\n";
2383
2384  // List the pair of accesses need run-time checks to prove independence.
2385  PtrRtChecking->print(OS, Depth);
2386  OS << "\n";
2387
2388  OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2389                   << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2390                   << "found in loop.\n";
2391
2392  OS.indent(Depth) << "SCEV assumptions:\n";
2393  PSE->getUnionPredicate().print(OS, Depth);
2394
2395  OS << "\n";
2396
2397  OS.indent(Depth) << "Expressions re-written:\n";
2398  PSE->print(OS, Depth);
2399}
2400
2401LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
2402  initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
2403}
2404
2405const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2406  auto &LAI = LoopAccessInfoMap[L];
2407
2408  if (!LAI)
2409    LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2410
2411  return *LAI.get();
2412}
2413
2414void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2415  LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2416
2417  for (Loop *TopLevelLoop : *LI)
2418    for (Loop *L : depth_first(TopLevelLoop)) {
2419      OS.indent(2) << L->getHeader()->getName() << ":\n";
2420      auto &LAI = LAA.getInfo(L);
2421      LAI.print(OS, 4);
2422    }
2423}
2424
2425bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2426  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2427  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2428  TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2429  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2430  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2431  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2432
2433  return false;
2434}
2435
2436void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2437    AU.addRequired<ScalarEvolutionWrapperPass>();
2438    AU.addRequired<AAResultsWrapperPass>();
2439    AU.addRequired<DominatorTreeWrapperPass>();
2440    AU.addRequired<LoopInfoWrapperPass>();
2441
2442    AU.setPreservesAll();
2443}
2444
2445char LoopAccessLegacyAnalysis::ID = 0;
2446static const char laa_name[] = "Loop Access Analysis";
2447#define LAA_NAME "loop-accesses"
2448
2449INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2450INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2451INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2452INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2453INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2454INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2455
2456AnalysisKey LoopAccessAnalysis::Key;
2457
2458LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2459                                       LoopStandardAnalysisResults &AR) {
2460  return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2461}
2462
2463namespace llvm {
2464
2465  Pass *createLAAPass() {
2466    return new LoopAccessLegacyAnalysis();
2467  }
2468
2469} // end namespace llvm
2470