1//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass statically checks for common and easily-identified constructs
10// which produce undefined or likely unintended behavior in LLVM IR.
11//
12// It is not a guarantee of correctness, in two ways. First, it isn't
13// comprehensive. There are checks which could be done statically which are
14// not yet implemented. Some of these are indicated by TODO comments, but
15// those aren't comprehensive either. Second, many conditions cannot be
16// checked statically. This pass does no dynamic instrumentation, so it
17// can't check for all possible problems.
18//
19// Another limitation is that it assumes all code will be executed. A store
20// through a null pointer in a basic block which is never reached is harmless,
21// but this pass will warn about it anyway. This is the main reason why most
22// of these checks live here instead of in the Verifier pass.
23//
24// Optimization passes may make conditions that this pass checks for more or
25// less obvious. If an optimization pass appears to be introducing a warning,
26// it may be that the optimization pass is merely exposing an existing
27// condition in the code.
28//
29// This code may be run before instcombine. In many cases, instcombine checks
30// for the same kinds of things and turns instructions with undefined behavior
31// into unreachable (or equivalent). Because of this, this pass makes some
32// effort to look through bitcasts and so on.
33//
34//===----------------------------------------------------------------------===//
35
36#include "llvm/Analysis/Lint.h"
37#include "llvm/ADT/APInt.h"
38#include "llvm/ADT/ArrayRef.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Twine.h"
41#include "llvm/Analysis/AliasAnalysis.h"
42#include "llvm/Analysis/AssumptionCache.h"
43#include "llvm/Analysis/ConstantFolding.h"
44#include "llvm/Analysis/InstructionSimplify.h"
45#include "llvm/Analysis/Loads.h"
46#include "llvm/Analysis/MemoryLocation.h"
47#include "llvm/Analysis/Passes.h"
48#include "llvm/Analysis/TargetLibraryInfo.h"
49#include "llvm/Analysis/ValueTracking.h"
50#include "llvm/IR/Argument.h"
51#include "llvm/IR/BasicBlock.h"
52#include "llvm/IR/CallSite.h"
53#include "llvm/IR/Constant.h"
54#include "llvm/IR/Constants.h"
55#include "llvm/IR/DataLayout.h"
56#include "llvm/IR/DerivedTypes.h"
57#include "llvm/IR/Dominators.h"
58#include "llvm/IR/Function.h"
59#include "llvm/IR/GlobalVariable.h"
60#include "llvm/IR/InstVisitor.h"
61#include "llvm/IR/InstrTypes.h"
62#include "llvm/IR/Instruction.h"
63#include "llvm/IR/Instructions.h"
64#include "llvm/IR/IntrinsicInst.h"
65#include "llvm/IR/LegacyPassManager.h"
66#include "llvm/IR/Module.h"
67#include "llvm/IR/Type.h"
68#include "llvm/IR/Value.h"
69#include "llvm/InitializePasses.h"
70#include "llvm/Pass.h"
71#include "llvm/Support/Casting.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/KnownBits.h"
74#include "llvm/Support/MathExtras.h"
75#include "llvm/Support/raw_ostream.h"
76#include <cassert>
77#include <cstdint>
78#include <iterator>
79#include <string>
80
81using namespace llvm;
82
83namespace {
84  namespace MemRef {
85    static const unsigned Read     = 1;
86    static const unsigned Write    = 2;
87    static const unsigned Callee   = 4;
88    static const unsigned Branchee = 8;
89  } // end namespace MemRef
90
91  class Lint : public FunctionPass, public InstVisitor<Lint> {
92    friend class InstVisitor<Lint>;
93
94    void visitFunction(Function &F);
95
96    void visitCallSite(CallSite CS);
97    void visitMemoryReference(Instruction &I, Value *Ptr,
98                              uint64_t Size, unsigned Align,
99                              Type *Ty, unsigned Flags);
100    void visitEHBeginCatch(IntrinsicInst *II);
101    void visitEHEndCatch(IntrinsicInst *II);
102
103    void visitCallInst(CallInst &I);
104    void visitInvokeInst(InvokeInst &I);
105    void visitReturnInst(ReturnInst &I);
106    void visitLoadInst(LoadInst &I);
107    void visitStoreInst(StoreInst &I);
108    void visitXor(BinaryOperator &I);
109    void visitSub(BinaryOperator &I);
110    void visitLShr(BinaryOperator &I);
111    void visitAShr(BinaryOperator &I);
112    void visitShl(BinaryOperator &I);
113    void visitSDiv(BinaryOperator &I);
114    void visitUDiv(BinaryOperator &I);
115    void visitSRem(BinaryOperator &I);
116    void visitURem(BinaryOperator &I);
117    void visitAllocaInst(AllocaInst &I);
118    void visitVAArgInst(VAArgInst &I);
119    void visitIndirectBrInst(IndirectBrInst &I);
120    void visitExtractElementInst(ExtractElementInst &I);
121    void visitInsertElementInst(InsertElementInst &I);
122    void visitUnreachableInst(UnreachableInst &I);
123
124    Value *findValue(Value *V, bool OffsetOk) const;
125    Value *findValueImpl(Value *V, bool OffsetOk,
126                         SmallPtrSetImpl<Value *> &Visited) const;
127
128  public:
129    Module *Mod;
130    const DataLayout *DL;
131    AliasAnalysis *AA;
132    AssumptionCache *AC;
133    DominatorTree *DT;
134    TargetLibraryInfo *TLI;
135
136    std::string Messages;
137    raw_string_ostream MessagesStr;
138
139    static char ID; // Pass identification, replacement for typeid
140    Lint() : FunctionPass(ID), MessagesStr(Messages) {
141      initializeLintPass(*PassRegistry::getPassRegistry());
142    }
143
144    bool runOnFunction(Function &F) override;
145
146    void getAnalysisUsage(AnalysisUsage &AU) const override {
147      AU.setPreservesAll();
148      AU.addRequired<AAResultsWrapperPass>();
149      AU.addRequired<AssumptionCacheTracker>();
150      AU.addRequired<TargetLibraryInfoWrapperPass>();
151      AU.addRequired<DominatorTreeWrapperPass>();
152    }
153    void print(raw_ostream &O, const Module *M) const override {}
154
155    void WriteValues(ArrayRef<const Value *> Vs) {
156      for (const Value *V : Vs) {
157        if (!V)
158          continue;
159        if (isa<Instruction>(V)) {
160          MessagesStr << *V << '\n';
161        } else {
162          V->printAsOperand(MessagesStr, true, Mod);
163          MessagesStr << '\n';
164        }
165      }
166    }
167
168    /// A check failed, so printout out the condition and the message.
169    ///
170    /// This provides a nice place to put a breakpoint if you want to see why
171    /// something is not correct.
172    void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
173
174    /// A check failed (with values to print).
175    ///
176    /// This calls the Message-only version so that the above is easier to set
177    /// a breakpoint on.
178    template <typename T1, typename... Ts>
179    void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
180      CheckFailed(Message);
181      WriteValues({V1, Vs...});
182    }
183  };
184} // end anonymous namespace
185
186char Lint::ID = 0;
187INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
188                      false, true)
189INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
190INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
191INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
192INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
193INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
194                    false, true)
195
196// Assert - We know that cond should be true, if not print an error message.
197#define Assert(C, ...) \
198    do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
199
200// Lint::run - This is the main Analysis entry point for a
201// function.
202//
203bool Lint::runOnFunction(Function &F) {
204  Mod = F.getParent();
205  DL = &F.getParent()->getDataLayout();
206  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
207  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
208  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
209  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
210  visit(F);
211  dbgs() << MessagesStr.str();
212  Messages.clear();
213  return false;
214}
215
216void Lint::visitFunction(Function &F) {
217  // This isn't undefined behavior, it's just a little unusual, and it's a
218  // fairly common mistake to neglect to name a function.
219  Assert(F.hasName() || F.hasLocalLinkage(),
220         "Unusual: Unnamed function with non-local linkage", &F);
221
222  // TODO: Check for irreducible control flow.
223}
224
225void Lint::visitCallSite(CallSite CS) {
226  Instruction &I = *CS.getInstruction();
227  Value *Callee = CS.getCalledValue();
228
229  visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr,
230                       MemRef::Callee);
231
232  if (Function *F = dyn_cast<Function>(findValue(Callee,
233                                                 /*OffsetOk=*/false))) {
234    Assert(CS.getCallingConv() == F->getCallingConv(),
235           "Undefined behavior: Caller and callee calling convention differ",
236           &I);
237
238    FunctionType *FT = F->getFunctionType();
239    unsigned NumActualArgs = CS.arg_size();
240
241    Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
242                          : FT->getNumParams() == NumActualArgs,
243           "Undefined behavior: Call argument count mismatches callee "
244           "argument count",
245           &I);
246
247    Assert(FT->getReturnType() == I.getType(),
248           "Undefined behavior: Call return type mismatches "
249           "callee return type",
250           &I);
251
252    // Check argument types (in case the callee was casted) and attributes.
253    // TODO: Verify that caller and callee attributes are compatible.
254    Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
255    CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
256    for (; AI != AE; ++AI) {
257      Value *Actual = *AI;
258      if (PI != PE) {
259        Argument *Formal = &*PI++;
260        Assert(Formal->getType() == Actual->getType(),
261               "Undefined behavior: Call argument type mismatches "
262               "callee parameter type",
263               &I);
264
265        // Check that noalias arguments don't alias other arguments. This is
266        // not fully precise because we don't know the sizes of the dereferenced
267        // memory regions.
268        if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
269          AttributeList PAL = CS.getAttributes();
270          unsigned ArgNo = 0;
271          for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE;
272               ++BI, ++ArgNo) {
273            // Skip ByVal arguments since they will be memcpy'd to the callee's
274            // stack so we're not really passing the pointer anyway.
275            if (PAL.hasParamAttribute(ArgNo, Attribute::ByVal))
276              continue;
277            // If both arguments are readonly, they have no dependence.
278            if (Formal->onlyReadsMemory() && CS.onlyReadsMemory(ArgNo))
279              continue;
280            if (AI != BI && (*BI)->getType()->isPointerTy()) {
281              AliasResult Result = AA->alias(*AI, *BI);
282              Assert(Result != MustAlias && Result != PartialAlias,
283                     "Unusual: noalias argument aliases another argument", &I);
284            }
285          }
286        }
287
288        // Check that an sret argument points to valid memory.
289        if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
290          Type *Ty =
291            cast<PointerType>(Formal->getType())->getElementType();
292          visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty),
293                               DL->getABITypeAlignment(Ty), Ty,
294                               MemRef::Read | MemRef::Write);
295        }
296      }
297    }
298  }
299
300  if (CS.isCall()) {
301    const CallInst *CI = cast<CallInst>(CS.getInstruction());
302    if (CI->isTailCall()) {
303      const AttributeList &PAL = CI->getAttributes();
304      unsigned ArgNo = 0;
305      for (Value *Arg : CS.args()) {
306        // Skip ByVal arguments since they will be memcpy'd to the callee's
307        // stack anyway.
308        if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
309          continue;
310        Value *Obj = findValue(Arg, /*OffsetOk=*/true);
311        Assert(!isa<AllocaInst>(Obj),
312               "Undefined behavior: Call with \"tail\" keyword references "
313               "alloca",
314               &I);
315      }
316    }
317  }
318
319
320  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
321    switch (II->getIntrinsicID()) {
322    default: break;
323
324    // TODO: Check more intrinsics
325
326    case Intrinsic::memcpy: {
327      MemCpyInst *MCI = cast<MemCpyInst>(&I);
328      // TODO: If the size is known, use it.
329      visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
330                           MCI->getDestAlignment(), nullptr, MemRef::Write);
331      visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
332                           MCI->getSourceAlignment(), nullptr, MemRef::Read);
333
334      // Check that the memcpy arguments don't overlap. The AliasAnalysis API
335      // isn't expressive enough for what we really want to do. Known partial
336      // overlap is not distinguished from the case where nothing is known.
337      auto Size = LocationSize::unknown();
338      if (const ConstantInt *Len =
339              dyn_cast<ConstantInt>(findValue(MCI->getLength(),
340                                              /*OffsetOk=*/false)))
341        if (Len->getValue().isIntN(32))
342          Size = LocationSize::precise(Len->getValue().getZExtValue());
343      Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
344                 MustAlias,
345             "Undefined behavior: memcpy source and destination overlap", &I);
346      break;
347    }
348    case Intrinsic::memmove: {
349      MemMoveInst *MMI = cast<MemMoveInst>(&I);
350      // TODO: If the size is known, use it.
351      visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
352                           MMI->getDestAlignment(), nullptr, MemRef::Write);
353      visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
354                           MMI->getSourceAlignment(), nullptr, MemRef::Read);
355      break;
356    }
357    case Intrinsic::memset: {
358      MemSetInst *MSI = cast<MemSetInst>(&I);
359      // TODO: If the size is known, use it.
360      visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
361                           MSI->getDestAlignment(), nullptr, MemRef::Write);
362      break;
363    }
364
365    case Intrinsic::vastart:
366      Assert(I.getParent()->getParent()->isVarArg(),
367             "Undefined behavior: va_start called in a non-varargs function",
368             &I);
369
370      visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
371                           nullptr, MemRef::Read | MemRef::Write);
372      break;
373    case Intrinsic::vacopy:
374      visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
375                           nullptr, MemRef::Write);
376      visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0,
377                           nullptr, MemRef::Read);
378      break;
379    case Intrinsic::vaend:
380      visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
381                           nullptr, MemRef::Read | MemRef::Write);
382      break;
383
384    case Intrinsic::stackrestore:
385      // Stackrestore doesn't read or write memory, but it sets the
386      // stack pointer, which the compiler may read from or write to
387      // at any time, so check it for both readability and writeability.
388      visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
389                           nullptr, MemRef::Read | MemRef::Write);
390      break;
391    }
392}
393
394void Lint::visitCallInst(CallInst &I) {
395  return visitCallSite(&I);
396}
397
398void Lint::visitInvokeInst(InvokeInst &I) {
399  return visitCallSite(&I);
400}
401
402void Lint::visitReturnInst(ReturnInst &I) {
403  Function *F = I.getParent()->getParent();
404  Assert(!F->doesNotReturn(),
405         "Unusual: Return statement in function with noreturn attribute", &I);
406
407  if (Value *V = I.getReturnValue()) {
408    Value *Obj = findValue(V, /*OffsetOk=*/true);
409    Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
410  }
411}
412
413// TODO: Check that the reference is in bounds.
414// TODO: Check readnone/readonly function attributes.
415void Lint::visitMemoryReference(Instruction &I,
416                                Value *Ptr, uint64_t Size, unsigned Align,
417                                Type *Ty, unsigned Flags) {
418  // If no memory is being referenced, it doesn't matter if the pointer
419  // is valid.
420  if (Size == 0)
421    return;
422
423  Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
424  Assert(!isa<ConstantPointerNull>(UnderlyingObject),
425         "Undefined behavior: Null pointer dereference", &I);
426  Assert(!isa<UndefValue>(UnderlyingObject),
427         "Undefined behavior: Undef pointer dereference", &I);
428  Assert(!isa<ConstantInt>(UnderlyingObject) ||
429             !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
430         "Unusual: All-ones pointer dereference", &I);
431  Assert(!isa<ConstantInt>(UnderlyingObject) ||
432             !cast<ConstantInt>(UnderlyingObject)->isOne(),
433         "Unusual: Address one pointer dereference", &I);
434
435  if (Flags & MemRef::Write) {
436    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
437      Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
438             &I);
439    Assert(!isa<Function>(UnderlyingObject) &&
440               !isa<BlockAddress>(UnderlyingObject),
441           "Undefined behavior: Write to text section", &I);
442  }
443  if (Flags & MemRef::Read) {
444    Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
445           &I);
446    Assert(!isa<BlockAddress>(UnderlyingObject),
447           "Undefined behavior: Load from block address", &I);
448  }
449  if (Flags & MemRef::Callee) {
450    Assert(!isa<BlockAddress>(UnderlyingObject),
451           "Undefined behavior: Call to block address", &I);
452  }
453  if (Flags & MemRef::Branchee) {
454    Assert(!isa<Constant>(UnderlyingObject) ||
455               isa<BlockAddress>(UnderlyingObject),
456           "Undefined behavior: Branch to non-blockaddress", &I);
457  }
458
459  // Check for buffer overflows and misalignment.
460  // Only handles memory references that read/write something simple like an
461  // alloca instruction or a global variable.
462  int64_t Offset = 0;
463  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
464    // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
465    // something we can handle and if so extract the size of this base object
466    // along with its alignment.
467    uint64_t BaseSize = MemoryLocation::UnknownSize;
468    unsigned BaseAlign = 0;
469
470    if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
471      Type *ATy = AI->getAllocatedType();
472      if (!AI->isArrayAllocation() && ATy->isSized())
473        BaseSize = DL->getTypeAllocSize(ATy);
474      BaseAlign = AI->getAlignment();
475      if (BaseAlign == 0 && ATy->isSized())
476        BaseAlign = DL->getABITypeAlignment(ATy);
477    } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
478      // If the global may be defined differently in another compilation unit
479      // then don't warn about funky memory accesses.
480      if (GV->hasDefinitiveInitializer()) {
481        Type *GTy = GV->getValueType();
482        if (GTy->isSized())
483          BaseSize = DL->getTypeAllocSize(GTy);
484        BaseAlign = GV->getAlignment();
485        if (BaseAlign == 0 && GTy->isSized())
486          BaseAlign = DL->getABITypeAlignment(GTy);
487      }
488    }
489
490    // Accesses from before the start or after the end of the object are not
491    // defined.
492    Assert(Size == MemoryLocation::UnknownSize ||
493               BaseSize == MemoryLocation::UnknownSize ||
494               (Offset >= 0 && Offset + Size <= BaseSize),
495           "Undefined behavior: Buffer overflow", &I);
496
497    // Accesses that say that the memory is more aligned than it is are not
498    // defined.
499    if (Align == 0 && Ty && Ty->isSized())
500      Align = DL->getABITypeAlignment(Ty);
501    Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
502           "Undefined behavior: Memory reference address is misaligned", &I);
503  }
504}
505
506void Lint::visitLoadInst(LoadInst &I) {
507  visitMemoryReference(I, I.getPointerOperand(),
508                       DL->getTypeStoreSize(I.getType()), I.getAlignment(),
509                       I.getType(), MemRef::Read);
510}
511
512void Lint::visitStoreInst(StoreInst &I) {
513  visitMemoryReference(I, I.getPointerOperand(),
514                       DL->getTypeStoreSize(I.getOperand(0)->getType()),
515                       I.getAlignment(),
516                       I.getOperand(0)->getType(), MemRef::Write);
517}
518
519void Lint::visitXor(BinaryOperator &I) {
520  Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
521         "Undefined result: xor(undef, undef)", &I);
522}
523
524void Lint::visitSub(BinaryOperator &I) {
525  Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
526         "Undefined result: sub(undef, undef)", &I);
527}
528
529void Lint::visitLShr(BinaryOperator &I) {
530  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
531                                                        /*OffsetOk=*/false)))
532    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
533           "Undefined result: Shift count out of range", &I);
534}
535
536void Lint::visitAShr(BinaryOperator &I) {
537  if (ConstantInt *CI =
538          dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
539    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
540           "Undefined result: Shift count out of range", &I);
541}
542
543void Lint::visitShl(BinaryOperator &I) {
544  if (ConstantInt *CI =
545          dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
546    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
547           "Undefined result: Shift count out of range", &I);
548}
549
550static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
551                   AssumptionCache *AC) {
552  // Assume undef could be zero.
553  if (isa<UndefValue>(V))
554    return true;
555
556  VectorType *VecTy = dyn_cast<VectorType>(V->getType());
557  if (!VecTy) {
558    KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
559    return Known.isZero();
560  }
561
562  // Per-component check doesn't work with zeroinitializer
563  Constant *C = dyn_cast<Constant>(V);
564  if (!C)
565    return false;
566
567  if (C->isZeroValue())
568    return true;
569
570  // For a vector, KnownZero will only be true if all values are zero, so check
571  // this per component
572  for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
573    Constant *Elem = C->getAggregateElement(I);
574    if (isa<UndefValue>(Elem))
575      return true;
576
577    KnownBits Known = computeKnownBits(Elem, DL);
578    if (Known.isZero())
579      return true;
580  }
581
582  return false;
583}
584
585void Lint::visitSDiv(BinaryOperator &I) {
586  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
587         "Undefined behavior: Division by zero", &I);
588}
589
590void Lint::visitUDiv(BinaryOperator &I) {
591  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
592         "Undefined behavior: Division by zero", &I);
593}
594
595void Lint::visitSRem(BinaryOperator &I) {
596  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
597         "Undefined behavior: Division by zero", &I);
598}
599
600void Lint::visitURem(BinaryOperator &I) {
601  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
602         "Undefined behavior: Division by zero", &I);
603}
604
605void Lint::visitAllocaInst(AllocaInst &I) {
606  if (isa<ConstantInt>(I.getArraySize()))
607    // This isn't undefined behavior, it's just an obvious pessimization.
608    Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
609           "Pessimization: Static alloca outside of entry block", &I);
610
611  // TODO: Check for an unusual size (MSB set?)
612}
613
614void Lint::visitVAArgInst(VAArgInst &I) {
615  visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0,
616                       nullptr, MemRef::Read | MemRef::Write);
617}
618
619void Lint::visitIndirectBrInst(IndirectBrInst &I) {
620  visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0,
621                       nullptr, MemRef::Branchee);
622
623  Assert(I.getNumDestinations() != 0,
624         "Undefined behavior: indirectbr with no destinations", &I);
625}
626
627void Lint::visitExtractElementInst(ExtractElementInst &I) {
628  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
629                                                        /*OffsetOk=*/false)))
630    Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
631           "Undefined result: extractelement index out of range", &I);
632}
633
634void Lint::visitInsertElementInst(InsertElementInst &I) {
635  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
636                                                        /*OffsetOk=*/false)))
637    Assert(CI->getValue().ult(I.getType()->getNumElements()),
638           "Undefined result: insertelement index out of range", &I);
639}
640
641void Lint::visitUnreachableInst(UnreachableInst &I) {
642  // This isn't undefined behavior, it's merely suspicious.
643  Assert(&I == &I.getParent()->front() ||
644             std::prev(I.getIterator())->mayHaveSideEffects(),
645         "Unusual: unreachable immediately preceded by instruction without "
646         "side effects",
647         &I);
648}
649
650/// findValue - Look through bitcasts and simple memory reference patterns
651/// to identify an equivalent, but more informative, value.  If OffsetOk
652/// is true, look through getelementptrs with non-zero offsets too.
653///
654/// Most analysis passes don't require this logic, because instcombine
655/// will simplify most of these kinds of things away. But it's a goal of
656/// this Lint pass to be useful even on non-optimized IR.
657Value *Lint::findValue(Value *V, bool OffsetOk) const {
658  SmallPtrSet<Value *, 4> Visited;
659  return findValueImpl(V, OffsetOk, Visited);
660}
661
662/// findValueImpl - Implementation helper for findValue.
663Value *Lint::findValueImpl(Value *V, bool OffsetOk,
664                           SmallPtrSetImpl<Value *> &Visited) const {
665  // Detect self-referential values.
666  if (!Visited.insert(V).second)
667    return UndefValue::get(V->getType());
668
669  // TODO: Look through sext or zext cast, when the result is known to
670  // be interpreted as signed or unsigned, respectively.
671  // TODO: Look through eliminable cast pairs.
672  // TODO: Look through calls with unique return values.
673  // TODO: Look through vector insert/extract/shuffle.
674  V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts();
675  if (LoadInst *L = dyn_cast<LoadInst>(V)) {
676    BasicBlock::iterator BBI = L->getIterator();
677    BasicBlock *BB = L->getParent();
678    SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
679    for (;;) {
680      if (!VisitedBlocks.insert(BB).second)
681        break;
682      if (Value *U =
683          FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
684        return findValueImpl(U, OffsetOk, Visited);
685      if (BBI != BB->begin()) break;
686      BB = BB->getUniquePredecessor();
687      if (!BB) break;
688      BBI = BB->end();
689    }
690  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
691    if (Value *W = PN->hasConstantValue())
692      if (W != V)
693        return findValueImpl(W, OffsetOk, Visited);
694  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
695    if (CI->isNoopCast(*DL))
696      return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
697  } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
698    if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
699                                     Ex->getIndices()))
700      if (W != V)
701        return findValueImpl(W, OffsetOk, Visited);
702  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
703    // Same as above, but for ConstantExpr instead of Instruction.
704    if (Instruction::isCast(CE->getOpcode())) {
705      if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
706                               CE->getOperand(0)->getType(), CE->getType(),
707                               *DL))
708        return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
709    } else if (CE->getOpcode() == Instruction::ExtractValue) {
710      ArrayRef<unsigned> Indices = CE->getIndices();
711      if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
712        if (W != V)
713          return findValueImpl(W, OffsetOk, Visited);
714    }
715  }
716
717  // As a last resort, try SimplifyInstruction or constant folding.
718  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
719    if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC}))
720      return findValueImpl(W, OffsetOk, Visited);
721  } else if (auto *C = dyn_cast<Constant>(V)) {
722    if (Value *W = ConstantFoldConstant(C, *DL, TLI))
723      if (W && W != V)
724        return findValueImpl(W, OffsetOk, Visited);
725  }
726
727  return V;
728}
729
730//===----------------------------------------------------------------------===//
731//  Implement the public interfaces to this file...
732//===----------------------------------------------------------------------===//
733
734FunctionPass *llvm::createLintPass() {
735  return new Lint();
736}
737
738/// lintFunction - Check a function for errors, printing messages on stderr.
739///
740void llvm::lintFunction(const Function &f) {
741  Function &F = const_cast<Function&>(f);
742  assert(!F.isDeclaration() && "Cannot lint external functions");
743
744  legacy::FunctionPassManager FPM(F.getParent());
745  Lint *V = new Lint();
746  FPM.add(V);
747  FPM.run(F);
748}
749
750/// lintModule - Check a module for errors, printing messages on stderr.
751///
752void llvm::lintModule(const Module &M) {
753  legacy::PassManager PM;
754  Lint *V = new Lint();
755  PM.add(V);
756  PM.run(const_cast<Module&>(M));
757}
758