1//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements inline cost analysis.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Analysis/InlineCost.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/ADT/SetVector.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/Analysis/AssumptionCache.h"
20#include "llvm/Analysis/BlockFrequencyInfo.h"
21#include "llvm/Analysis/CFG.h"
22#include "llvm/Analysis/CodeMetrics.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/ProfileSummaryInfo.h"
27#include "llvm/Analysis/TargetTransformInfo.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Config/llvm-config.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/IR/GetElementPtrTypeIterator.h"
34#include "llvm/IR/GlobalAlias.h"
35#include "llvm/IR/InstVisitor.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/IR/PatternMatch.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/raw_ostream.h"
42
43using namespace llvm;
44
45#define DEBUG_TYPE "inline-cost"
46
47STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
48
49static cl::opt<int> InlineThreshold(
50    "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
51    cl::desc("Control the amount of inlining to perform (default = 225)"));
52
53static cl::opt<int> HintThreshold(
54    "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore,
55    cl::desc("Threshold for inlining functions with inline hint"));
56
57static cl::opt<int>
58    ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
59                          cl::init(45), cl::ZeroOrMore,
60                          cl::desc("Threshold for inlining cold callsites"));
61
62// We introduce this threshold to help performance of instrumentation based
63// PGO before we actually hook up inliner with analysis passes such as BPI and
64// BFI.
65static cl::opt<int> ColdThreshold(
66    "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore,
67    cl::desc("Threshold for inlining functions with cold attribute"));
68
69static cl::opt<int>
70    HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
71                         cl::ZeroOrMore,
72                         cl::desc("Threshold for hot callsites "));
73
74static cl::opt<int> LocallyHotCallSiteThreshold(
75    "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
76    cl::desc("Threshold for locally hot callsites "));
77
78static cl::opt<int> ColdCallSiteRelFreq(
79    "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
80    cl::desc("Maximum block frequency, expressed as a percentage of caller's "
81             "entry frequency, for a callsite to be cold in the absence of "
82             "profile information."));
83
84static cl::opt<int> HotCallSiteRelFreq(
85    "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
86    cl::desc("Minimum block frequency, expressed as a multiple of caller's "
87             "entry frequency, for a callsite to be hot in the absence of "
88             "profile information."));
89
90static cl::opt<bool> OptComputeFullInlineCost(
91    "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore,
92    cl::desc("Compute the full inline cost of a call site even when the cost "
93             "exceeds the threshold."));
94
95namespace {
96class InlineCostCallAnalyzer;
97class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
98  typedef InstVisitor<CallAnalyzer, bool> Base;
99  friend class InstVisitor<CallAnalyzer, bool>;
100
101protected:
102  virtual ~CallAnalyzer() {}
103  /// The TargetTransformInfo available for this compilation.
104  const TargetTransformInfo &TTI;
105
106  /// Getter for the cache of @llvm.assume intrinsics.
107  std::function<AssumptionCache &(Function &)> &GetAssumptionCache;
108
109  /// Getter for BlockFrequencyInfo
110  Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI;
111
112  /// Profile summary information.
113  ProfileSummaryInfo *PSI;
114
115  /// The called function.
116  Function &F;
117
118  // Cache the DataLayout since we use it a lot.
119  const DataLayout &DL;
120
121  /// The OptimizationRemarkEmitter available for this compilation.
122  OptimizationRemarkEmitter *ORE;
123
124  /// The candidate callsite being analyzed. Please do not use this to do
125  /// analysis in the caller function; we want the inline cost query to be
126  /// easily cacheable. Instead, use the cover function paramHasAttr.
127  CallBase &CandidateCall;
128
129  /// Extension points for handling callsite features.
130  /// Called after a basic block was analyzed.
131  virtual void onBlockAnalyzed(const BasicBlock *BB) {}
132
133  /// Called at the end of the analysis of the callsite. Return the outcome of
134  /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or
135  /// the reason it can't.
136  virtual InlineResult finalizeAnalysis() { return true; }
137
138  /// Called when we're about to start processing a basic block, and every time
139  /// we are done processing an instruction. Return true if there is no point in
140  /// continuing the analysis (e.g. we've determined already the call site is
141  /// too expensive to inline)
142  virtual bool shouldStop() { return false; }
143
144  /// Called before the analysis of the callee body starts (with callsite
145  /// contexts propagated).  It checks callsite-specific information. Return a
146  /// reason analysis can't continue if that's the case, or 'true' if it may
147  /// continue.
148  virtual InlineResult onAnalysisStart() { return true; }
149
150  /// Called if the analysis engine decides SROA cannot be done for the given
151  /// alloca.
152  virtual void onDisableSROA(AllocaInst *Arg) {}
153
154  /// Called the analysis engine determines load elimination won't happen.
155  virtual void onDisableLoadElimination() {}
156
157  /// Called to account for a call.
158  virtual void onCallPenalty() {}
159
160  /// Called to account for the expectation the inlining would result in a load
161  /// elimination.
162  virtual void onLoadEliminationOpportunity() {}
163
164  /// Called to account for the cost of argument setup for the Call in the
165  /// callee's body (not the callsite currently under analysis).
166  virtual void onCallArgumentSetup(const CallBase &Call) {}
167
168  /// Called to account for a load relative intrinsic.
169  virtual void onLoadRelativeIntrinsic() {}
170
171  /// Called to account for a lowered call.
172  virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) {
173  }
174
175  /// Account for a jump table of given size. Return false to stop further
176  /// processing the switch instruction
177  virtual bool onJumpTable(unsigned JumpTableSize) { return true; }
178
179  /// Account for a case cluster of given size. Return false to stop further
180  /// processing of the instruction.
181  virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; }
182
183  /// Called at the end of processing a switch instruction, with the given
184  /// number of case clusters.
185  virtual void onFinalizeSwitch(unsigned JumpTableSize,
186                                unsigned NumCaseCluster) {}
187
188  /// Called to account for any other instruction not specifically accounted
189  /// for.
190  virtual void onCommonInstructionSimplification() {}
191
192  /// Start accounting potential benefits due to SROA for the given alloca.
193  virtual void onInitializeSROAArg(AllocaInst *Arg) {}
194
195  /// Account SROA savings for the AllocaInst value.
196  virtual void onAggregateSROAUse(AllocaInst *V) {}
197
198  bool handleSROA(Value *V, bool DoNotDisable) {
199    // Check for SROA candidates in comparisons.
200    if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
201      if (DoNotDisable) {
202        onAggregateSROAUse(SROAArg);
203        return true;
204      }
205      disableSROAForArg(SROAArg);
206    }
207    return false;
208  }
209
210  bool IsCallerRecursive = false;
211  bool IsRecursiveCall = false;
212  bool ExposesReturnsTwice = false;
213  bool HasDynamicAlloca = false;
214  bool ContainsNoDuplicateCall = false;
215  bool HasReturn = false;
216  bool HasIndirectBr = false;
217  bool HasUninlineableIntrinsic = false;
218  bool InitsVargArgs = false;
219
220  /// Number of bytes allocated statically by the callee.
221  uint64_t AllocatedSize = 0;
222  unsigned NumInstructions = 0;
223  unsigned NumVectorInstructions = 0;
224
225  /// While we walk the potentially-inlined instructions, we build up and
226  /// maintain a mapping of simplified values specific to this callsite. The
227  /// idea is to propagate any special information we have about arguments to
228  /// this call through the inlinable section of the function, and account for
229  /// likely simplifications post-inlining. The most important aspect we track
230  /// is CFG altering simplifications -- when we prove a basic block dead, that
231  /// can cause dramatic shifts in the cost of inlining a function.
232  DenseMap<Value *, Constant *> SimplifiedValues;
233
234  /// Keep track of the values which map back (through function arguments) to
235  /// allocas on the caller stack which could be simplified through SROA.
236  DenseMap<Value *, AllocaInst *> SROAArgValues;
237
238  /// Keep track of Allocas for which we believe we may get SROA optimization.
239  /// We don't delete entries in SROAArgValue because we still want
240  /// isAllocaDerivedArg to function correctly.
241  DenseSet<AllocaInst *> EnabledSROAArgValues;
242
243  /// Keep track of values which map to a pointer base and constant offset.
244  DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
245
246  /// Keep track of dead blocks due to the constant arguments.
247  SetVector<BasicBlock *> DeadBlocks;
248
249  /// The mapping of the blocks to their known unique successors due to the
250  /// constant arguments.
251  DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
252
253  /// Model the elimination of repeated loads that is expected to happen
254  /// whenever we simplify away the stores that would otherwise cause them to be
255  /// loads.
256  bool EnableLoadElimination;
257  SmallPtrSet<Value *, 16> LoadAddrSet;
258
259  AllocaInst *getSROAArgForValueOrNull(Value *V) const {
260    auto It = SROAArgValues.find(V);
261    if (It == SROAArgValues.end() ||
262        EnabledSROAArgValues.count(It->second) == 0)
263      return nullptr;
264    return It->second;
265  }
266
267  // Custom simplification helper routines.
268  bool isAllocaDerivedArg(Value *V);
269  void disableSROAForArg(AllocaInst *SROAArg);
270  void disableSROA(Value *V);
271  void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
272  void disableLoadElimination();
273  bool isGEPFree(GetElementPtrInst &GEP);
274  bool canFoldInboundsGEP(GetElementPtrInst &I);
275  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
276  bool simplifyCallSite(Function *F, CallBase &Call);
277  template <typename Callable>
278  bool simplifyInstruction(Instruction &I, Callable Evaluate);
279  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
280
281  /// Return true if the given argument to the function being considered for
282  /// inlining has the given attribute set either at the call site or the
283  /// function declaration.  Primarily used to inspect call site specific
284  /// attributes since these can be more precise than the ones on the callee
285  /// itself.
286  bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
287
288  /// Return true if the given value is known non null within the callee if
289  /// inlined through this particular callsite.
290  bool isKnownNonNullInCallee(Value *V);
291
292  /// Return true if size growth is allowed when inlining the callee at \p Call.
293  bool allowSizeGrowth(CallBase &Call);
294
295  // Custom analysis routines.
296  InlineResult analyzeBlock(BasicBlock *BB,
297                            SmallPtrSetImpl<const Value *> &EphValues);
298
299  // Disable several entry points to the visitor so we don't accidentally use
300  // them by declaring but not defining them here.
301  void visit(Module *);
302  void visit(Module &);
303  void visit(Function *);
304  void visit(Function &);
305  void visit(BasicBlock *);
306  void visit(BasicBlock &);
307
308  // Provide base case for our instruction visit.
309  bool visitInstruction(Instruction &I);
310
311  // Our visit overrides.
312  bool visitAlloca(AllocaInst &I);
313  bool visitPHI(PHINode &I);
314  bool visitGetElementPtr(GetElementPtrInst &I);
315  bool visitBitCast(BitCastInst &I);
316  bool visitPtrToInt(PtrToIntInst &I);
317  bool visitIntToPtr(IntToPtrInst &I);
318  bool visitCastInst(CastInst &I);
319  bool visitUnaryInstruction(UnaryInstruction &I);
320  bool visitCmpInst(CmpInst &I);
321  bool visitSub(BinaryOperator &I);
322  bool visitBinaryOperator(BinaryOperator &I);
323  bool visitFNeg(UnaryOperator &I);
324  bool visitLoad(LoadInst &I);
325  bool visitStore(StoreInst &I);
326  bool visitExtractValue(ExtractValueInst &I);
327  bool visitInsertValue(InsertValueInst &I);
328  bool visitCallBase(CallBase &Call);
329  bool visitReturnInst(ReturnInst &RI);
330  bool visitBranchInst(BranchInst &BI);
331  bool visitSelectInst(SelectInst &SI);
332  bool visitSwitchInst(SwitchInst &SI);
333  bool visitIndirectBrInst(IndirectBrInst &IBI);
334  bool visitResumeInst(ResumeInst &RI);
335  bool visitCleanupReturnInst(CleanupReturnInst &RI);
336  bool visitCatchReturnInst(CatchReturnInst &RI);
337  bool visitUnreachableInst(UnreachableInst &I);
338
339public:
340  CallAnalyzer(const TargetTransformInfo &TTI,
341               std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
342               Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI,
343               ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE,
344               Function &Callee, CallBase &Call)
345      : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
346        PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
347        CandidateCall(Call), EnableLoadElimination(true) {}
348
349  InlineResult analyze();
350
351  // Keep a bunch of stats about the cost savings found so we can print them
352  // out when debugging.
353  unsigned NumConstantArgs = 0;
354  unsigned NumConstantOffsetPtrArgs = 0;
355  unsigned NumAllocaArgs = 0;
356  unsigned NumConstantPtrCmps = 0;
357  unsigned NumConstantPtrDiffs = 0;
358  unsigned NumInstructionsSimplified = 0;
359
360  void dump();
361};
362
363/// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note
364/// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer
365class InlineCostCallAnalyzer final : public CallAnalyzer {
366  const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
367  const bool ComputeFullInlineCost;
368  int LoadEliminationCost = 0;
369  /// Bonus to be applied when percentage of vector instructions in callee is
370  /// high (see more details in updateThreshold).
371  int VectorBonus = 0;
372  /// Bonus to be applied when the callee has only one reachable basic block.
373  int SingleBBBonus = 0;
374
375  /// Tunable parameters that control the analysis.
376  const InlineParams &Params;
377
378  /// Upper bound for the inlining cost. Bonuses are being applied to account
379  /// for speculative "expected profit" of the inlining decision.
380  int Threshold = 0;
381
382  /// Attempt to evaluate indirect calls to boost its inline cost.
383  const bool BoostIndirectCalls;
384
385  /// Inlining cost measured in abstract units, accounts for all the
386  /// instructions expected to be executed for a given function invocation.
387  /// Instructions that are statically proven to be dead based on call-site
388  /// arguments are not counted here.
389  int Cost = 0;
390
391  bool SingleBB = true;
392
393  unsigned SROACostSavings = 0;
394  unsigned SROACostSavingsLost = 0;
395
396  /// The mapping of caller Alloca values to their accumulated cost savings. If
397  /// we have to disable SROA for one of the allocas, this tells us how much
398  /// cost must be added.
399  DenseMap<AllocaInst *, int> SROAArgCosts;
400
401  /// Return true if \p Call is a cold callsite.
402  bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
403
404  /// Update Threshold based on callsite properties such as callee
405  /// attributes and callee hotness for PGO builds. The Callee is explicitly
406  /// passed to support analyzing indirect calls whose target is inferred by
407  /// analysis.
408  void updateThreshold(CallBase &Call, Function &Callee);
409  /// Return a higher threshold if \p Call is a hot callsite.
410  Optional<int> getHotCallSiteThreshold(CallBase &Call,
411                                        BlockFrequencyInfo *CallerBFI);
412
413  /// Handle a capped 'int' increment for Cost.
414  void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) {
415    assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound");
416    Cost = (int)std::min(UpperBound, Cost + Inc);
417  }
418
419  void onDisableSROA(AllocaInst *Arg) override {
420    auto CostIt = SROAArgCosts.find(Arg);
421    if (CostIt == SROAArgCosts.end())
422      return;
423    addCost(CostIt->second);
424    SROACostSavings -= CostIt->second;
425    SROACostSavingsLost += CostIt->second;
426    SROAArgCosts.erase(CostIt);
427  }
428
429  void onDisableLoadElimination() override {
430    addCost(LoadEliminationCost);
431    LoadEliminationCost = 0;
432  }
433  void onCallPenalty() override { addCost(InlineConstants::CallPenalty); }
434  void onCallArgumentSetup(const CallBase &Call) override {
435    // Pay the price of the argument setup. We account for the average 1
436    // instruction per call argument setup here.
437    addCost(Call.arg_size() * InlineConstants::InstrCost);
438  }
439  void onLoadRelativeIntrinsic() override {
440    // This is normally lowered to 4 LLVM instructions.
441    addCost(3 * InlineConstants::InstrCost);
442  }
443  void onLoweredCall(Function *F, CallBase &Call,
444                     bool IsIndirectCall) override {
445    // We account for the average 1 instruction per call argument setup here.
446    addCost(Call.arg_size() * InlineConstants::InstrCost);
447
448    // If we have a constant that we are calling as a function, we can peer
449    // through it and see the function target. This happens not infrequently
450    // during devirtualization and so we want to give it a hefty bonus for
451    // inlining, but cap that bonus in the event that inlining wouldn't pan out.
452    // Pretend to inline the function, with a custom threshold.
453    if (IsIndirectCall && BoostIndirectCalls) {
454      auto IndirectCallParams = Params;
455      IndirectCallParams.DefaultThreshold =
456          InlineConstants::IndirectCallThreshold;
457      /// FIXME: if InlineCostCallAnalyzer is derived from, this may need
458      /// to instantiate the derived class.
459      InlineCostCallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F,
460                                Call, IndirectCallParams, false);
461      if (CA.analyze()) {
462        // We were able to inline the indirect call! Subtract the cost from the
463        // threshold to get the bonus we want to apply, but don't go below zero.
464        Cost -= std::max(0, CA.getThreshold() - CA.getCost());
465      }
466    } else
467      // Otherwise simply add the cost for merely making the call.
468      addCost(InlineConstants::CallPenalty);
469  }
470
471  void onFinalizeSwitch(unsigned JumpTableSize,
472                        unsigned NumCaseCluster) override {
473    // If suitable for a jump table, consider the cost for the table size and
474    // branch to destination.
475    // Maximum valid cost increased in this function.
476    if (JumpTableSize) {
477      int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
478                       4 * InlineConstants::InstrCost;
479
480      addCost(JTCost, (int64_t)CostUpperBound);
481      return;
482    }
483    // Considering forming a binary search, we should find the number of nodes
484    // which is same as the number of comparisons when lowered. For a given
485    // number of clusters, n, we can define a recursive function, f(n), to find
486    // the number of nodes in the tree. The recursion is :
487    // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
488    // and f(n) = n, when n <= 3.
489    // This will lead a binary tree where the leaf should be either f(2) or f(3)
490    // when n > 3.  So, the number of comparisons from leaves should be n, while
491    // the number of non-leaf should be :
492    //   2^(log2(n) - 1) - 1
493    //   = 2^log2(n) * 2^-1 - 1
494    //   = n / 2 - 1.
495    // Considering comparisons from leaf and non-leaf nodes, we can estimate the
496    // number of comparisons in a simple closed form :
497    //   n + n / 2 - 1 = n * 3 / 2 - 1
498    if (NumCaseCluster <= 3) {
499      // Suppose a comparison includes one compare and one conditional branch.
500      addCost(NumCaseCluster * 2 * InlineConstants::InstrCost);
501      return;
502    }
503
504    int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
505    int64_t SwitchCost =
506        ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;
507
508    addCost(SwitchCost, (int64_t)CostUpperBound);
509  }
510  void onCommonInstructionSimplification() override {
511    addCost(InlineConstants::InstrCost);
512  }
513
514  void onInitializeSROAArg(AllocaInst *Arg) override {
515    assert(Arg != nullptr &&
516           "Should not initialize SROA costs for null value.");
517    SROAArgCosts[Arg] = 0;
518    EnabledSROAArgValues.insert(Arg);
519  }
520
521  void onAggregateSROAUse(AllocaInst *SROAArg) override {
522    auto CostIt = SROAArgCosts.find(SROAArg);
523    assert(CostIt != SROAArgCosts.end() &&
524           "expected this argument to have a cost");
525    CostIt->second += InlineConstants::InstrCost;
526    SROACostSavings += InlineConstants::InstrCost;
527  }
528
529  void onBlockAnalyzed(const BasicBlock *BB) override {
530    auto *TI = BB->getTerminator();
531    // If we had any successors at this point, than post-inlining is likely to
532    // have them as well. Note that we assume any basic blocks which existed
533    // due to branches or switches which folded above will also fold after
534    // inlining.
535    if (SingleBB && TI->getNumSuccessors() > 1) {
536      // Take off the bonus we applied to the threshold.
537      Threshold -= SingleBBBonus;
538      SingleBB = false;
539    }
540  }
541  InlineResult finalizeAnalysis() override {
542    // Loops generally act a lot like calls in that they act like barriers to
543    // movement, require a certain amount of setup, etc. So when optimising for
544    // size, we penalise any call sites that perform loops. We do this after all
545    // other costs here, so will likely only be dealing with relatively small
546    // functions (and hence DT and LI will hopefully be cheap).
547    auto *Caller = CandidateCall.getFunction();
548    if (Caller->hasMinSize()) {
549      DominatorTree DT(F);
550      LoopInfo LI(DT);
551      int NumLoops = 0;
552      for (Loop *L : LI) {
553        // Ignore loops that will not be executed
554        if (DeadBlocks.count(L->getHeader()))
555          continue;
556        NumLoops++;
557      }
558      addCost(NumLoops * InlineConstants::CallPenalty);
559    }
560
561    // We applied the maximum possible vector bonus at the beginning. Now,
562    // subtract the excess bonus, if any, from the Threshold before
563    // comparing against Cost.
564    if (NumVectorInstructions <= NumInstructions / 10)
565      Threshold -= VectorBonus;
566    else if (NumVectorInstructions <= NumInstructions / 2)
567      Threshold -= VectorBonus / 2;
568
569    return Cost < std::max(1, Threshold);
570  }
571  bool shouldStop() override {
572    // Bail out the moment we cross the threshold. This means we'll under-count
573    // the cost, but only when undercounting doesn't matter.
574    return Cost >= Threshold && !ComputeFullInlineCost;
575  }
576
577  void onLoadEliminationOpportunity() override {
578    LoadEliminationCost += InlineConstants::InstrCost;
579  }
580
581  InlineResult onAnalysisStart() override {
582    // Perform some tweaks to the cost and threshold based on the direct
583    // callsite information.
584
585    // We want to more aggressively inline vector-dense kernels, so up the
586    // threshold, and we'll lower it if the % of vector instructions gets too
587    // low. Note that these bonuses are some what arbitrary and evolved over
588    // time by accident as much as because they are principled bonuses.
589    //
590    // FIXME: It would be nice to remove all such bonuses. At least it would be
591    // nice to base the bonus values on something more scientific.
592    assert(NumInstructions == 0);
593    assert(NumVectorInstructions == 0);
594
595    // Update the threshold based on callsite properties
596    updateThreshold(CandidateCall, F);
597
598    // While Threshold depends on commandline options that can take negative
599    // values, we want to enforce the invariant that the computed threshold and
600    // bonuses are non-negative.
601    assert(Threshold >= 0);
602    assert(SingleBBBonus >= 0);
603    assert(VectorBonus >= 0);
604
605    // Speculatively apply all possible bonuses to Threshold. If cost exceeds
606    // this Threshold any time, and cost cannot decrease, we can stop processing
607    // the rest of the function body.
608    Threshold += (SingleBBBonus + VectorBonus);
609
610    // Give out bonuses for the callsite, as the instructions setting them up
611    // will be gone after inlining.
612    addCost(-getCallsiteCost(this->CandidateCall, DL));
613
614    // If this function uses the coldcc calling convention, prefer not to inline
615    // it.
616    if (F.getCallingConv() == CallingConv::Cold)
617      Cost += InlineConstants::ColdccPenalty;
618
619    // Check if we're done. This can happen due to bonuses and penalties.
620    if (Cost >= Threshold && !ComputeFullInlineCost)
621      return "high cost";
622
623    return true;
624  }
625
626public:
627  InlineCostCallAnalyzer(
628      const TargetTransformInfo &TTI,
629      std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
630      Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI,
631      ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee,
632      CallBase &Call, const InlineParams &Params, bool BoostIndirect = true)
633      : CallAnalyzer(TTI, GetAssumptionCache, GetBFI, PSI, ORE, Callee, Call),
634        ComputeFullInlineCost(OptComputeFullInlineCost ||
635                              Params.ComputeFullInlineCost || ORE),
636        Params(Params), Threshold(Params.DefaultThreshold),
637        BoostIndirectCalls(BoostIndirect) {}
638  void dump();
639
640  virtual ~InlineCostCallAnalyzer() {}
641  int getThreshold() { return Threshold; }
642  int getCost() { return Cost; }
643};
644} // namespace
645
646/// Test whether the given value is an Alloca-derived function argument.
647bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
648  return SROAArgValues.count(V);
649}
650
651void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) {
652  onDisableSROA(SROAArg);
653  EnabledSROAArgValues.erase(SROAArg);
654  disableLoadElimination();
655}
656/// If 'V' maps to a SROA candidate, disable SROA for it.
657void CallAnalyzer::disableSROA(Value *V) {
658  if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
659    disableSROAForArg(SROAArg);
660  }
661}
662
663void CallAnalyzer::disableLoadElimination() {
664  if (EnableLoadElimination) {
665    onDisableLoadElimination();
666    EnableLoadElimination = false;
667  }
668}
669
670/// Accumulate a constant GEP offset into an APInt if possible.
671///
672/// Returns false if unable to compute the offset for any reason. Respects any
673/// simplified values known during the analysis of this callsite.
674bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
675  unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
676  assert(IntPtrWidth == Offset.getBitWidth());
677
678  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
679       GTI != GTE; ++GTI) {
680    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
681    if (!OpC)
682      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
683        OpC = dyn_cast<ConstantInt>(SimpleOp);
684    if (!OpC)
685      return false;
686    if (OpC->isZero())
687      continue;
688
689    // Handle a struct index, which adds its field offset to the pointer.
690    if (StructType *STy = GTI.getStructTypeOrNull()) {
691      unsigned ElementIdx = OpC->getZExtValue();
692      const StructLayout *SL = DL.getStructLayout(STy);
693      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
694      continue;
695    }
696
697    APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
698    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
699  }
700  return true;
701}
702
703/// Use TTI to check whether a GEP is free.
704///
705/// Respects any simplified values known during the analysis of this callsite.
706bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
707  SmallVector<Value *, 4> Operands;
708  Operands.push_back(GEP.getOperand(0));
709  for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
710    if (Constant *SimpleOp = SimplifiedValues.lookup(*I))
711      Operands.push_back(SimpleOp);
712    else
713      Operands.push_back(*I);
714  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands);
715}
716
717bool CallAnalyzer::visitAlloca(AllocaInst &I) {
718  // Check whether inlining will turn a dynamic alloca into a static
719  // alloca and handle that case.
720  if (I.isArrayAllocation()) {
721    Constant *Size = SimplifiedValues.lookup(I.getArraySize());
722    if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
723      Type *Ty = I.getAllocatedType();
724      AllocatedSize = SaturatingMultiplyAdd(
725          AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getFixedSize(),
726          AllocatedSize);
727      return Base::visitAlloca(I);
728    }
729  }
730
731  // Accumulate the allocated size.
732  if (I.isStaticAlloca()) {
733    Type *Ty = I.getAllocatedType();
734    AllocatedSize =
735        SaturatingAdd(DL.getTypeAllocSize(Ty).getFixedSize(), AllocatedSize);
736  }
737
738  // We will happily inline static alloca instructions.
739  if (I.isStaticAlloca())
740    return Base::visitAlloca(I);
741
742  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
743  // a variety of reasons, and so we would like to not inline them into
744  // functions which don't currently have a dynamic alloca. This simply
745  // disables inlining altogether in the presence of a dynamic alloca.
746  HasDynamicAlloca = true;
747  return false;
748}
749
750bool CallAnalyzer::visitPHI(PHINode &I) {
751  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
752  // though we don't want to propagate it's bonuses. The idea is to disable
753  // SROA if it *might* be used in an inappropriate manner.
754
755  // Phi nodes are always zero-cost.
756  // FIXME: Pointer sizes may differ between different address spaces, so do we
757  // need to use correct address space in the call to getPointerSizeInBits here?
758  // Or could we skip the getPointerSizeInBits call completely? As far as I can
759  // see the ZeroOffset is used as a dummy value, so we can probably use any
760  // bit width for the ZeroOffset?
761  APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
762  bool CheckSROA = I.getType()->isPointerTy();
763
764  // Track the constant or pointer with constant offset we've seen so far.
765  Constant *FirstC = nullptr;
766  std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
767  Value *FirstV = nullptr;
768
769  for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
770    BasicBlock *Pred = I.getIncomingBlock(i);
771    // If the incoming block is dead, skip the incoming block.
772    if (DeadBlocks.count(Pred))
773      continue;
774    // If the parent block of phi is not the known successor of the incoming
775    // block, skip the incoming block.
776    BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
777    if (KnownSuccessor && KnownSuccessor != I.getParent())
778      continue;
779
780    Value *V = I.getIncomingValue(i);
781    // If the incoming value is this phi itself, skip the incoming value.
782    if (&I == V)
783      continue;
784
785    Constant *C = dyn_cast<Constant>(V);
786    if (!C)
787      C = SimplifiedValues.lookup(V);
788
789    std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
790    if (!C && CheckSROA)
791      BaseAndOffset = ConstantOffsetPtrs.lookup(V);
792
793    if (!C && !BaseAndOffset.first)
794      // The incoming value is neither a constant nor a pointer with constant
795      // offset, exit early.
796      return true;
797
798    if (FirstC) {
799      if (FirstC == C)
800        // If we've seen a constant incoming value before and it is the same
801        // constant we see this time, continue checking the next incoming value.
802        continue;
803      // Otherwise early exit because we either see a different constant or saw
804      // a constant before but we have a pointer with constant offset this time.
805      return true;
806    }
807
808    if (FirstV) {
809      // The same logic as above, but check pointer with constant offset here.
810      if (FirstBaseAndOffset == BaseAndOffset)
811        continue;
812      return true;
813    }
814
815    if (C) {
816      // This is the 1st time we've seen a constant, record it.
817      FirstC = C;
818      continue;
819    }
820
821    // The remaining case is that this is the 1st time we've seen a pointer with
822    // constant offset, record it.
823    FirstV = V;
824    FirstBaseAndOffset = BaseAndOffset;
825  }
826
827  // Check if we can map phi to a constant.
828  if (FirstC) {
829    SimplifiedValues[&I] = FirstC;
830    return true;
831  }
832
833  // Check if we can map phi to a pointer with constant offset.
834  if (FirstBaseAndOffset.first) {
835    ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
836
837    if (auto *SROAArg = getSROAArgForValueOrNull(FirstV))
838      SROAArgValues[&I] = SROAArg;
839  }
840
841  return true;
842}
843
844/// Check we can fold GEPs of constant-offset call site argument pointers.
845/// This requires target data and inbounds GEPs.
846///
847/// \return true if the specified GEP can be folded.
848bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
849  // Check if we have a base + offset for the pointer.
850  std::pair<Value *, APInt> BaseAndOffset =
851      ConstantOffsetPtrs.lookup(I.getPointerOperand());
852  if (!BaseAndOffset.first)
853    return false;
854
855  // Check if the offset of this GEP is constant, and if so accumulate it
856  // into Offset.
857  if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
858    return false;
859
860  // Add the result as a new mapping to Base + Offset.
861  ConstantOffsetPtrs[&I] = BaseAndOffset;
862
863  return true;
864}
865
866bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
867  auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand());
868
869  // Lambda to check whether a GEP's indices are all constant.
870  auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
871    for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
872      if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
873        return false;
874    return true;
875  };
876
877  if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
878    if (SROAArg)
879      SROAArgValues[&I] = SROAArg;
880
881    // Constant GEPs are modeled as free.
882    return true;
883  }
884
885  // Variable GEPs will require math and will disable SROA.
886  if (SROAArg)
887    disableSROAForArg(SROAArg);
888  return isGEPFree(I);
889}
890
891/// Simplify \p I if its operands are constants and update SimplifiedValues.
892/// \p Evaluate is a callable specific to instruction type that evaluates the
893/// instruction when all the operands are constants.
894template <typename Callable>
895bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
896  SmallVector<Constant *, 2> COps;
897  for (Value *Op : I.operands()) {
898    Constant *COp = dyn_cast<Constant>(Op);
899    if (!COp)
900      COp = SimplifiedValues.lookup(Op);
901    if (!COp)
902      return false;
903    COps.push_back(COp);
904  }
905  auto *C = Evaluate(COps);
906  if (!C)
907    return false;
908  SimplifiedValues[&I] = C;
909  return true;
910}
911
912bool CallAnalyzer::visitBitCast(BitCastInst &I) {
913  // Propagate constants through bitcasts.
914  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
915        return ConstantExpr::getBitCast(COps[0], I.getType());
916      }))
917    return true;
918
919  // Track base/offsets through casts
920  std::pair<Value *, APInt> BaseAndOffset =
921      ConstantOffsetPtrs.lookup(I.getOperand(0));
922  // Casts don't change the offset, just wrap it up.
923  if (BaseAndOffset.first)
924    ConstantOffsetPtrs[&I] = BaseAndOffset;
925
926  // Also look for SROA candidates here.
927  if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
928    SROAArgValues[&I] = SROAArg;
929
930  // Bitcasts are always zero cost.
931  return true;
932}
933
934bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
935  // Propagate constants through ptrtoint.
936  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
937        return ConstantExpr::getPtrToInt(COps[0], I.getType());
938      }))
939    return true;
940
941  // Track base/offset pairs when converted to a plain integer provided the
942  // integer is large enough to represent the pointer.
943  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
944  unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
945  if (IntegerSize >= DL.getPointerSizeInBits(AS)) {
946    std::pair<Value *, APInt> BaseAndOffset =
947        ConstantOffsetPtrs.lookup(I.getOperand(0));
948    if (BaseAndOffset.first)
949      ConstantOffsetPtrs[&I] = BaseAndOffset;
950  }
951
952  // This is really weird. Technically, ptrtoint will disable SROA. However,
953  // unless that ptrtoint is *used* somewhere in the live basic blocks after
954  // inlining, it will be nuked, and SROA should proceed. All of the uses which
955  // would block SROA would also block SROA if applied directly to a pointer,
956  // and so we can just add the integer in here. The only places where SROA is
957  // preserved either cannot fire on an integer, or won't in-and-of themselves
958  // disable SROA (ext) w/o some later use that we would see and disable.
959  if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
960    SROAArgValues[&I] = SROAArg;
961
962  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
963}
964
965bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
966  // Propagate constants through ptrtoint.
967  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
968        return ConstantExpr::getIntToPtr(COps[0], I.getType());
969      }))
970    return true;
971
972  // Track base/offset pairs when round-tripped through a pointer without
973  // modifications provided the integer is not too large.
974  Value *Op = I.getOperand(0);
975  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
976  if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
977    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
978    if (BaseAndOffset.first)
979      ConstantOffsetPtrs[&I] = BaseAndOffset;
980  }
981
982  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
983  if (auto *SROAArg = getSROAArgForValueOrNull(Op))
984    SROAArgValues[&I] = SROAArg;
985
986  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
987}
988
989bool CallAnalyzer::visitCastInst(CastInst &I) {
990  // Propagate constants through casts.
991  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
992        return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
993      }))
994    return true;
995
996  // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
997  disableSROA(I.getOperand(0));
998
999  // If this is a floating-point cast, and the target says this operation
1000  // is expensive, this may eventually become a library call. Treat the cost
1001  // as such.
1002  switch (I.getOpcode()) {
1003  case Instruction::FPTrunc:
1004  case Instruction::FPExt:
1005  case Instruction::UIToFP:
1006  case Instruction::SIToFP:
1007  case Instruction::FPToUI:
1008  case Instruction::FPToSI:
1009    if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
1010      onCallPenalty();
1011    break;
1012  default:
1013    break;
1014  }
1015
1016  return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
1017}
1018
1019bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
1020  Value *Operand = I.getOperand(0);
1021  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1022        return ConstantFoldInstOperands(&I, COps[0], DL);
1023      }))
1024    return true;
1025
1026  // Disable any SROA on the argument to arbitrary unary instructions.
1027  disableSROA(Operand);
1028
1029  return false;
1030}
1031
1032bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
1033  return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
1034}
1035
1036bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
1037  // Does the *call site* have the NonNull attribute set on an argument?  We
1038  // use the attribute on the call site to memoize any analysis done in the
1039  // caller. This will also trip if the callee function has a non-null
1040  // parameter attribute, but that's a less interesting case because hopefully
1041  // the callee would already have been simplified based on that.
1042  if (Argument *A = dyn_cast<Argument>(V))
1043    if (paramHasAttr(A, Attribute::NonNull))
1044      return true;
1045
1046  // Is this an alloca in the caller?  This is distinct from the attribute case
1047  // above because attributes aren't updated within the inliner itself and we
1048  // always want to catch the alloca derived case.
1049  if (isAllocaDerivedArg(V))
1050    // We can actually predict the result of comparisons between an
1051    // alloca-derived value and null. Note that this fires regardless of
1052    // SROA firing.
1053    return true;
1054
1055  return false;
1056}
1057
1058bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
1059  // If the normal destination of the invoke or the parent block of the call
1060  // site is unreachable-terminated, there is little point in inlining this
1061  // unless there is literally zero cost.
1062  // FIXME: Note that it is possible that an unreachable-terminated block has a
1063  // hot entry. For example, in below scenario inlining hot_call_X() may be
1064  // beneficial :
1065  // main() {
1066  //   hot_call_1();
1067  //   ...
1068  //   hot_call_N()
1069  //   exit(0);
1070  // }
1071  // For now, we are not handling this corner case here as it is rare in real
1072  // code. In future, we should elaborate this based on BPI and BFI in more
1073  // general threshold adjusting heuristics in updateThreshold().
1074  if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
1075    if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
1076      return false;
1077  } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
1078    return false;
1079
1080  return true;
1081}
1082
1083bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call,
1084                                            BlockFrequencyInfo *CallerBFI) {
1085  // If global profile summary is available, then callsite's coldness is
1086  // determined based on that.
1087  if (PSI && PSI->hasProfileSummary())
1088    return PSI->isColdCallSite(CallSite(&Call), CallerBFI);
1089
1090  // Otherwise we need BFI to be available.
1091  if (!CallerBFI)
1092    return false;
1093
1094  // Determine if the callsite is cold relative to caller's entry. We could
1095  // potentially cache the computation of scaled entry frequency, but the added
1096  // complexity is not worth it unless this scaling shows up high in the
1097  // profiles.
1098  const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
1099  auto CallSiteBB = Call.getParent();
1100  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
1101  auto CallerEntryFreq =
1102      CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
1103  return CallSiteFreq < CallerEntryFreq * ColdProb;
1104}
1105
1106Optional<int>
1107InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
1108                                                BlockFrequencyInfo *CallerBFI) {
1109
1110  // If global profile summary is available, then callsite's hotness is
1111  // determined based on that.
1112  if (PSI && PSI->hasProfileSummary() &&
1113      PSI->isHotCallSite(CallSite(&Call), CallerBFI))
1114    return Params.HotCallSiteThreshold;
1115
1116  // Otherwise we need BFI to be available and to have a locally hot callsite
1117  // threshold.
1118  if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
1119    return None;
1120
1121  // Determine if the callsite is hot relative to caller's entry. We could
1122  // potentially cache the computation of scaled entry frequency, but the added
1123  // complexity is not worth it unless this scaling shows up high in the
1124  // profiles.
1125  auto CallSiteBB = Call.getParent();
1126  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
1127  auto CallerEntryFreq = CallerBFI->getEntryFreq();
1128  if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
1129    return Params.LocallyHotCallSiteThreshold;
1130
1131  // Otherwise treat it normally.
1132  return None;
1133}
1134
1135void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
1136  // If no size growth is allowed for this inlining, set Threshold to 0.
1137  if (!allowSizeGrowth(Call)) {
1138    Threshold = 0;
1139    return;
1140  }
1141
1142  Function *Caller = Call.getCaller();
1143
1144  // return min(A, B) if B is valid.
1145  auto MinIfValid = [](int A, Optional<int> B) {
1146    return B ? std::min(A, B.getValue()) : A;
1147  };
1148
1149  // return max(A, B) if B is valid.
1150  auto MaxIfValid = [](int A, Optional<int> B) {
1151    return B ? std::max(A, B.getValue()) : A;
1152  };
1153
1154  // Various bonus percentages. These are multiplied by Threshold to get the
1155  // bonus values.
1156  // SingleBBBonus: This bonus is applied if the callee has a single reachable
1157  // basic block at the given callsite context. This is speculatively applied
1158  // and withdrawn if more than one basic block is seen.
1159  //
1160  // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
1161  // of the last call to a static function as inlining such functions is
1162  // guaranteed to reduce code size.
1163  //
1164  // These bonus percentages may be set to 0 based on properties of the caller
1165  // and the callsite.
1166  int SingleBBBonusPercent = 50;
1167  int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1168  int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
1169
1170  // Lambda to set all the above bonus and bonus percentages to 0.
1171  auto DisallowAllBonuses = [&]() {
1172    SingleBBBonusPercent = 0;
1173    VectorBonusPercent = 0;
1174    LastCallToStaticBonus = 0;
1175  };
1176
1177  // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
1178  // and reduce the threshold if the caller has the necessary attribute.
1179  if (Caller->hasMinSize()) {
1180    Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
1181    // For minsize, we want to disable the single BB bonus and the vector
1182    // bonuses, but not the last-call-to-static bonus. Inlining the last call to
1183    // a static function will, at the minimum, eliminate the parameter setup and
1184    // call/return instructions.
1185    SingleBBBonusPercent = 0;
1186    VectorBonusPercent = 0;
1187  } else if (Caller->hasOptSize())
1188    Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
1189
1190  // Adjust the threshold based on inlinehint attribute and profile based
1191  // hotness information if the caller does not have MinSize attribute.
1192  if (!Caller->hasMinSize()) {
1193    if (Callee.hasFnAttribute(Attribute::InlineHint))
1194      Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1195
1196    // FIXME: After switching to the new passmanager, simplify the logic below
1197    // by checking only the callsite hotness/coldness as we will reliably
1198    // have local profile information.
1199    //
1200    // Callsite hotness and coldness can be determined if sample profile is
1201    // used (which adds hotness metadata to calls) or if caller's
1202    // BlockFrequencyInfo is available.
1203    BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr;
1204    auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
1205    if (!Caller->hasOptSize() && HotCallSiteThreshold) {
1206      LLVM_DEBUG(dbgs() << "Hot callsite.\n");
1207      // FIXME: This should update the threshold only if it exceeds the
1208      // current threshold, but AutoFDO + ThinLTO currently relies on this
1209      // behavior to prevent inlining of hot callsites during ThinLTO
1210      // compile phase.
1211      Threshold = HotCallSiteThreshold.getValue();
1212    } else if (isColdCallSite(Call, CallerBFI)) {
1213      LLVM_DEBUG(dbgs() << "Cold callsite.\n");
1214      // Do not apply bonuses for a cold callsite including the
1215      // LastCallToStatic bonus. While this bonus might result in code size
1216      // reduction, it can cause the size of a non-cold caller to increase
1217      // preventing it from being inlined.
1218      DisallowAllBonuses();
1219      Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
1220    } else if (PSI) {
1221      // Use callee's global profile information only if we have no way of
1222      // determining this via callsite information.
1223      if (PSI->isFunctionEntryHot(&Callee)) {
1224        LLVM_DEBUG(dbgs() << "Hot callee.\n");
1225        // If callsite hotness can not be determined, we may still know
1226        // that the callee is hot and treat it as a weaker hint for threshold
1227        // increase.
1228        Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1229      } else if (PSI->isFunctionEntryCold(&Callee)) {
1230        LLVM_DEBUG(dbgs() << "Cold callee.\n");
1231        // Do not apply bonuses for a cold callee including the
1232        // LastCallToStatic bonus. While this bonus might result in code size
1233        // reduction, it can cause the size of a non-cold caller to increase
1234        // preventing it from being inlined.
1235        DisallowAllBonuses();
1236        Threshold = MinIfValid(Threshold, Params.ColdThreshold);
1237      }
1238    }
1239  }
1240
1241  // Finally, take the target-specific inlining threshold multiplier into
1242  // account.
1243  Threshold *= TTI.getInliningThresholdMultiplier();
1244
1245  SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
1246  VectorBonus = Threshold * VectorBonusPercent / 100;
1247
1248  bool OnlyOneCallAndLocalLinkage =
1249      F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
1250  // If there is only one call of the function, and it has internal linkage,
1251  // the cost of inlining it drops dramatically. It may seem odd to update
1252  // Cost in updateThreshold, but the bonus depends on the logic in this method.
1253  if (OnlyOneCallAndLocalLinkage)
1254    Cost -= LastCallToStaticBonus;
1255}
1256
1257bool CallAnalyzer::visitCmpInst(CmpInst &I) {
1258  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1259  // First try to handle simplified comparisons.
1260  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1261        return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
1262      }))
1263    return true;
1264
1265  if (I.getOpcode() == Instruction::FCmp)
1266    return false;
1267
1268  // Otherwise look for a comparison between constant offset pointers with
1269  // a common base.
1270  Value *LHSBase, *RHSBase;
1271  APInt LHSOffset, RHSOffset;
1272  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1273  if (LHSBase) {
1274    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1275    if (RHSBase && LHSBase == RHSBase) {
1276      // We have common bases, fold the icmp to a constant based on the
1277      // offsets.
1278      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1279      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1280      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
1281        SimplifiedValues[&I] = C;
1282        ++NumConstantPtrCmps;
1283        return true;
1284      }
1285    }
1286  }
1287
1288  // If the comparison is an equality comparison with null, we can simplify it
1289  // if we know the value (argument) can't be null
1290  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
1291      isKnownNonNullInCallee(I.getOperand(0))) {
1292    bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
1293    SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
1294                                      : ConstantInt::getFalse(I.getType());
1295    return true;
1296  }
1297  return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1)));
1298}
1299
1300bool CallAnalyzer::visitSub(BinaryOperator &I) {
1301  // Try to handle a special case: we can fold computing the difference of two
1302  // constant-related pointers.
1303  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1304  Value *LHSBase, *RHSBase;
1305  APInt LHSOffset, RHSOffset;
1306  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1307  if (LHSBase) {
1308    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1309    if (RHSBase && LHSBase == RHSBase) {
1310      // We have common bases, fold the subtract to a constant based on the
1311      // offsets.
1312      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1313      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1314      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
1315        SimplifiedValues[&I] = C;
1316        ++NumConstantPtrDiffs;
1317        return true;
1318      }
1319    }
1320  }
1321
1322  // Otherwise, fall back to the generic logic for simplifying and handling
1323  // instructions.
1324  return Base::visitSub(I);
1325}
1326
1327bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
1328  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1329  Constant *CLHS = dyn_cast<Constant>(LHS);
1330  if (!CLHS)
1331    CLHS = SimplifiedValues.lookup(LHS);
1332  Constant *CRHS = dyn_cast<Constant>(RHS);
1333  if (!CRHS)
1334    CRHS = SimplifiedValues.lookup(RHS);
1335
1336  Value *SimpleV = nullptr;
1337  if (auto FI = dyn_cast<FPMathOperator>(&I))
1338    SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS,
1339                            FI->getFastMathFlags(), DL);
1340  else
1341    SimpleV =
1342        SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
1343
1344  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1345    SimplifiedValues[&I] = C;
1346
1347  if (SimpleV)
1348    return true;
1349
1350  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
1351  disableSROA(LHS);
1352  disableSROA(RHS);
1353
1354  // If the instruction is floating point, and the target says this operation
1355  // is expensive, this may eventually become a library call. Treat the cost
1356  // as such. Unless it's fneg which can be implemented with an xor.
1357  using namespace llvm::PatternMatch;
1358  if (I.getType()->isFloatingPointTy() &&
1359      TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
1360      !match(&I, m_FNeg(m_Value())))
1361    onCallPenalty();
1362
1363  return false;
1364}
1365
1366bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
1367  Value *Op = I.getOperand(0);
1368  Constant *COp = dyn_cast<Constant>(Op);
1369  if (!COp)
1370    COp = SimplifiedValues.lookup(Op);
1371
1372  Value *SimpleV = SimplifyFNegInst(
1373      COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL);
1374
1375  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1376    SimplifiedValues[&I] = C;
1377
1378  if (SimpleV)
1379    return true;
1380
1381  // Disable any SROA on arguments to arbitrary, unsimplified fneg.
1382  disableSROA(Op);
1383
1384  return false;
1385}
1386
1387bool CallAnalyzer::visitLoad(LoadInst &I) {
1388  if (handleSROA(I.getPointerOperand(), I.isSimple()))
1389    return true;
1390
1391  // If the data is already loaded from this address and hasn't been clobbered
1392  // by any stores or calls, this load is likely to be redundant and can be
1393  // eliminated.
1394  if (EnableLoadElimination &&
1395      !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
1396    onLoadEliminationOpportunity();
1397    return true;
1398  }
1399
1400  return false;
1401}
1402
1403bool CallAnalyzer::visitStore(StoreInst &I) {
1404  if (handleSROA(I.getPointerOperand(), I.isSimple()))
1405    return true;
1406
1407  // The store can potentially clobber loads and prevent repeated loads from
1408  // being eliminated.
1409  // FIXME:
1410  // 1. We can probably keep an initial set of eliminatable loads substracted
1411  // from the cost even when we finally see a store. We just need to disable
1412  // *further* accumulation of elimination savings.
1413  // 2. We should probably at some point thread MemorySSA for the callee into
1414  // this and then use that to actually compute *really* precise savings.
1415  disableLoadElimination();
1416  return false;
1417}
1418
1419bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
1420  // Constant folding for extract value is trivial.
1421  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1422        return ConstantExpr::getExtractValue(COps[0], I.getIndices());
1423      }))
1424    return true;
1425
1426  // SROA can look through these but give them a cost.
1427  return false;
1428}
1429
1430bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
1431  // Constant folding for insert value is trivial.
1432  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1433        return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
1434                                            /*InsertedValueOperand*/ COps[1],
1435                                            I.getIndices());
1436      }))
1437    return true;
1438
1439  // SROA can look through these but give them a cost.
1440  return false;
1441}
1442
1443/// Try to simplify a call site.
1444///
1445/// Takes a concrete function and callsite and tries to actually simplify it by
1446/// analyzing the arguments and call itself with instsimplify. Returns true if
1447/// it has simplified the callsite to some other entity (a constant), making it
1448/// free.
1449bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
1450  // FIXME: Using the instsimplify logic directly for this is inefficient
1451  // because we have to continually rebuild the argument list even when no
1452  // simplifications can be performed. Until that is fixed with remapping
1453  // inside of instsimplify, directly constant fold calls here.
1454  if (!canConstantFoldCallTo(&Call, F))
1455    return false;
1456
1457  // Try to re-map the arguments to constants.
1458  SmallVector<Constant *, 4> ConstantArgs;
1459  ConstantArgs.reserve(Call.arg_size());
1460  for (Value *I : Call.args()) {
1461    Constant *C = dyn_cast<Constant>(I);
1462    if (!C)
1463      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
1464    if (!C)
1465      return false; // This argument doesn't map to a constant.
1466
1467    ConstantArgs.push_back(C);
1468  }
1469  if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
1470    SimplifiedValues[&Call] = C;
1471    return true;
1472  }
1473
1474  return false;
1475}
1476
1477bool CallAnalyzer::visitCallBase(CallBase &Call) {
1478  if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
1479      !F.hasFnAttribute(Attribute::ReturnsTwice)) {
1480    // This aborts the entire analysis.
1481    ExposesReturnsTwice = true;
1482    return false;
1483  }
1484  if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
1485    ContainsNoDuplicateCall = true;
1486
1487  Value *Callee = Call.getCalledOperand();
1488  Function *F = dyn_cast_or_null<Function>(Callee);
1489  bool IsIndirectCall = !F;
1490  if (IsIndirectCall) {
1491    // Check if this happens to be an indirect function call to a known function
1492    // in this inline context. If not, we've done all we can.
1493    F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
1494    if (!F) {
1495      onCallArgumentSetup(Call);
1496
1497      if (!Call.onlyReadsMemory())
1498        disableLoadElimination();
1499      return Base::visitCallBase(Call);
1500    }
1501  }
1502
1503  assert(F && "Expected a call to a known function");
1504
1505  // When we have a concrete function, first try to simplify it directly.
1506  if (simplifyCallSite(F, Call))
1507    return true;
1508
1509  // Next check if it is an intrinsic we know about.
1510  // FIXME: Lift this into part of the InstVisitor.
1511  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
1512    switch (II->getIntrinsicID()) {
1513    default:
1514      if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
1515        disableLoadElimination();
1516      return Base::visitCallBase(Call);
1517
1518    case Intrinsic::load_relative:
1519      onLoadRelativeIntrinsic();
1520      return false;
1521
1522    case Intrinsic::memset:
1523    case Intrinsic::memcpy:
1524    case Intrinsic::memmove:
1525      disableLoadElimination();
1526      // SROA can usually chew through these intrinsics, but they aren't free.
1527      return false;
1528    case Intrinsic::icall_branch_funnel:
1529    case Intrinsic::localescape:
1530      HasUninlineableIntrinsic = true;
1531      return false;
1532    case Intrinsic::vastart:
1533      InitsVargArgs = true;
1534      return false;
1535    }
1536  }
1537
1538  if (F == Call.getFunction()) {
1539    // This flag will fully abort the analysis, so don't bother with anything
1540    // else.
1541    IsRecursiveCall = true;
1542    return false;
1543  }
1544
1545  if (TTI.isLoweredToCall(F)) {
1546    onLoweredCall(F, Call, IsIndirectCall);
1547  }
1548
1549  if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory())))
1550    disableLoadElimination();
1551  return Base::visitCallBase(Call);
1552}
1553
1554bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
1555  // At least one return instruction will be free after inlining.
1556  bool Free = !HasReturn;
1557  HasReturn = true;
1558  return Free;
1559}
1560
1561bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
1562  // We model unconditional branches as essentially free -- they really
1563  // shouldn't exist at all, but handling them makes the behavior of the
1564  // inliner more regular and predictable. Interestingly, conditional branches
1565  // which will fold away are also free.
1566  return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
1567         dyn_cast_or_null<ConstantInt>(
1568             SimplifiedValues.lookup(BI.getCondition()));
1569}
1570
1571bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
1572  bool CheckSROA = SI.getType()->isPointerTy();
1573  Value *TrueVal = SI.getTrueValue();
1574  Value *FalseVal = SI.getFalseValue();
1575
1576  Constant *TrueC = dyn_cast<Constant>(TrueVal);
1577  if (!TrueC)
1578    TrueC = SimplifiedValues.lookup(TrueVal);
1579  Constant *FalseC = dyn_cast<Constant>(FalseVal);
1580  if (!FalseC)
1581    FalseC = SimplifiedValues.lookup(FalseVal);
1582  Constant *CondC =
1583      dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
1584
1585  if (!CondC) {
1586    // Select C, X, X => X
1587    if (TrueC == FalseC && TrueC) {
1588      SimplifiedValues[&SI] = TrueC;
1589      return true;
1590    }
1591
1592    if (!CheckSROA)
1593      return Base::visitSelectInst(SI);
1594
1595    std::pair<Value *, APInt> TrueBaseAndOffset =
1596        ConstantOffsetPtrs.lookup(TrueVal);
1597    std::pair<Value *, APInt> FalseBaseAndOffset =
1598        ConstantOffsetPtrs.lookup(FalseVal);
1599    if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
1600      ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
1601
1602      if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal))
1603        SROAArgValues[&SI] = SROAArg;
1604      return true;
1605    }
1606
1607    return Base::visitSelectInst(SI);
1608  }
1609
1610  // Select condition is a constant.
1611  Value *SelectedV = CondC->isAllOnesValue()
1612                         ? TrueVal
1613                         : (CondC->isNullValue()) ? FalseVal : nullptr;
1614  if (!SelectedV) {
1615    // Condition is a vector constant that is not all 1s or all 0s.  If all
1616    // operands are constants, ConstantExpr::getSelect() can handle the cases
1617    // such as select vectors.
1618    if (TrueC && FalseC) {
1619      if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
1620        SimplifiedValues[&SI] = C;
1621        return true;
1622      }
1623    }
1624    return Base::visitSelectInst(SI);
1625  }
1626
1627  // Condition is either all 1s or all 0s. SI can be simplified.
1628  if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
1629    SimplifiedValues[&SI] = SelectedC;
1630    return true;
1631  }
1632
1633  if (!CheckSROA)
1634    return true;
1635
1636  std::pair<Value *, APInt> BaseAndOffset =
1637      ConstantOffsetPtrs.lookup(SelectedV);
1638  if (BaseAndOffset.first) {
1639    ConstantOffsetPtrs[&SI] = BaseAndOffset;
1640
1641    if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV))
1642      SROAArgValues[&SI] = SROAArg;
1643  }
1644
1645  return true;
1646}
1647
1648bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
1649  // We model unconditional switches as free, see the comments on handling
1650  // branches.
1651  if (isa<ConstantInt>(SI.getCondition()))
1652    return true;
1653  if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
1654    if (isa<ConstantInt>(V))
1655      return true;
1656
1657  // Assume the most general case where the switch is lowered into
1658  // either a jump table, bit test, or a balanced binary tree consisting of
1659  // case clusters without merging adjacent clusters with the same
1660  // destination. We do not consider the switches that are lowered with a mix
1661  // of jump table/bit test/binary search tree. The cost of the switch is
1662  // proportional to the size of the tree or the size of jump table range.
1663  //
1664  // NB: We convert large switches which are just used to initialize large phi
1665  // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
1666  // inlining those. It will prevent inlining in cases where the optimization
1667  // does not (yet) fire.
1668
1669  unsigned JumpTableSize = 0;
1670  BlockFrequencyInfo *BFI = GetBFI ? &((*GetBFI)(F)) : nullptr;
1671  unsigned NumCaseCluster =
1672      TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI);
1673
1674  onFinalizeSwitch(JumpTableSize, NumCaseCluster);
1675  return false;
1676}
1677
1678bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
1679  // We never want to inline functions that contain an indirectbr.  This is
1680  // incorrect because all the blockaddress's (in static global initializers
1681  // for example) would be referring to the original function, and this
1682  // indirect jump would jump from the inlined copy of the function into the
1683  // original function which is extremely undefined behavior.
1684  // FIXME: This logic isn't really right; we can safely inline functions with
1685  // indirectbr's as long as no other function or global references the
1686  // blockaddress of a block within the current function.
1687  HasIndirectBr = true;
1688  return false;
1689}
1690
1691bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
1692  // FIXME: It's not clear that a single instruction is an accurate model for
1693  // the inline cost of a resume instruction.
1694  return false;
1695}
1696
1697bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
1698  // FIXME: It's not clear that a single instruction is an accurate model for
1699  // the inline cost of a cleanupret instruction.
1700  return false;
1701}
1702
1703bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
1704  // FIXME: It's not clear that a single instruction is an accurate model for
1705  // the inline cost of a catchret instruction.
1706  return false;
1707}
1708
1709bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
1710  // FIXME: It might be reasonably to discount the cost of instructions leading
1711  // to unreachable as they have the lowest possible impact on both runtime and
1712  // code size.
1713  return true; // No actual code is needed for unreachable.
1714}
1715
1716bool CallAnalyzer::visitInstruction(Instruction &I) {
1717  // Some instructions are free. All of the free intrinsics can also be
1718  // handled by SROA, etc.
1719  if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
1720    return true;
1721
1722  // We found something we don't understand or can't handle. Mark any SROA-able
1723  // values in the operand list as no longer viable.
1724  for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
1725    disableSROA(*OI);
1726
1727  return false;
1728}
1729
1730/// Analyze a basic block for its contribution to the inline cost.
1731///
1732/// This method walks the analyzer over every instruction in the given basic
1733/// block and accounts for their cost during inlining at this callsite. It
1734/// aborts early if the threshold has been exceeded or an impossible to inline
1735/// construct has been detected. It returns false if inlining is no longer
1736/// viable, and true if inlining remains viable.
1737InlineResult
1738CallAnalyzer::analyzeBlock(BasicBlock *BB,
1739                           SmallPtrSetImpl<const Value *> &EphValues) {
1740  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1741    // FIXME: Currently, the number of instructions in a function regardless of
1742    // our ability to simplify them during inline to constants or dead code,
1743    // are actually used by the vector bonus heuristic. As long as that's true,
1744    // we have to special case debug intrinsics here to prevent differences in
1745    // inlining due to debug symbols. Eventually, the number of unsimplified
1746    // instructions shouldn't factor into the cost computation, but until then,
1747    // hack around it here.
1748    if (isa<DbgInfoIntrinsic>(I))
1749      continue;
1750
1751    // Skip ephemeral values.
1752    if (EphValues.count(&*I))
1753      continue;
1754
1755    ++NumInstructions;
1756    if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
1757      ++NumVectorInstructions;
1758
1759    // If the instruction simplified to a constant, there is no cost to this
1760    // instruction. Visit the instructions using our InstVisitor to account for
1761    // all of the per-instruction logic. The visit tree returns true if we
1762    // consumed the instruction in any way, and false if the instruction's base
1763    // cost should count against inlining.
1764    if (Base::visit(&*I))
1765      ++NumInstructionsSimplified;
1766    else
1767      onCommonInstructionSimplification();
1768
1769    using namespace ore;
1770    // If the visit this instruction detected an uninlinable pattern, abort.
1771    InlineResult IR;
1772    if (IsRecursiveCall)
1773      IR = "recursive";
1774    else if (ExposesReturnsTwice)
1775      IR = "exposes returns twice";
1776    else if (HasDynamicAlloca)
1777      IR = "dynamic alloca";
1778    else if (HasIndirectBr)
1779      IR = "indirect branch";
1780    else if (HasUninlineableIntrinsic)
1781      IR = "uninlinable intrinsic";
1782    else if (InitsVargArgs)
1783      IR = "varargs";
1784    if (!IR) {
1785      if (ORE)
1786        ORE->emit([&]() {
1787          return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
1788                                          &CandidateCall)
1789                 << NV("Callee", &F) << " has uninlinable pattern ("
1790                 << NV("InlineResult", IR.message)
1791                 << ") and cost is not fully computed";
1792        });
1793      return IR;
1794    }
1795
1796    // If the caller is a recursive function then we don't want to inline
1797    // functions which allocate a lot of stack space because it would increase
1798    // the caller stack usage dramatically.
1799    if (IsCallerRecursive &&
1800        AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
1801      InlineResult IR = "recursive and allocates too much stack space";
1802      if (ORE)
1803        ORE->emit([&]() {
1804          return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
1805                                          &CandidateCall)
1806                 << NV("Callee", &F) << " is " << NV("InlineResult", IR.message)
1807                 << ". Cost is not fully computed";
1808        });
1809      return IR;
1810    }
1811
1812    if (shouldStop())
1813      return false;
1814  }
1815
1816  return true;
1817}
1818
1819/// Compute the base pointer and cumulative constant offsets for V.
1820///
1821/// This strips all constant offsets off of V, leaving it the base pointer, and
1822/// accumulates the total constant offset applied in the returned constant. It
1823/// returns 0 if V is not a pointer, and returns the constant '0' if there are
1824/// no constant offsets applied.
1825ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
1826  if (!V->getType()->isPointerTy())
1827    return nullptr;
1828
1829  unsigned AS = V->getType()->getPointerAddressSpace();
1830  unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
1831  APInt Offset = APInt::getNullValue(IntPtrWidth);
1832
1833  // Even though we don't look through PHI nodes, we could be called on an
1834  // instruction in an unreachable block, which may be on a cycle.
1835  SmallPtrSet<Value *, 4> Visited;
1836  Visited.insert(V);
1837  do {
1838    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1839      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
1840        return nullptr;
1841      V = GEP->getPointerOperand();
1842    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1843      V = cast<Operator>(V)->getOperand(0);
1844    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1845      if (GA->isInterposable())
1846        break;
1847      V = GA->getAliasee();
1848    } else {
1849      break;
1850    }
1851    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1852  } while (Visited.insert(V).second);
1853
1854  Type *IdxPtrTy = DL.getIndexType(V->getType());
1855  return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
1856}
1857
1858/// Find dead blocks due to deleted CFG edges during inlining.
1859///
1860/// If we know the successor of the current block, \p CurrBB, has to be \p
1861/// NextBB, the other successors of \p CurrBB are dead if these successors have
1862/// no live incoming CFG edges.  If one block is found to be dead, we can
1863/// continue growing the dead block list by checking the successors of the dead
1864/// blocks to see if all their incoming edges are dead or not.
1865void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
1866  auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
1867    // A CFG edge is dead if the predecessor is dead or the predecessor has a
1868    // known successor which is not the one under exam.
1869    return (DeadBlocks.count(Pred) ||
1870            (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
1871  };
1872
1873  auto IsNewlyDead = [&](BasicBlock *BB) {
1874    // If all the edges to a block are dead, the block is also dead.
1875    return (!DeadBlocks.count(BB) &&
1876            llvm::all_of(predecessors(BB),
1877                         [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
1878  };
1879
1880  for (BasicBlock *Succ : successors(CurrBB)) {
1881    if (Succ == NextBB || !IsNewlyDead(Succ))
1882      continue;
1883    SmallVector<BasicBlock *, 4> NewDead;
1884    NewDead.push_back(Succ);
1885    while (!NewDead.empty()) {
1886      BasicBlock *Dead = NewDead.pop_back_val();
1887      if (DeadBlocks.insert(Dead))
1888        // Continue growing the dead block lists.
1889        for (BasicBlock *S : successors(Dead))
1890          if (IsNewlyDead(S))
1891            NewDead.push_back(S);
1892    }
1893  }
1894}
1895
1896/// Analyze a call site for potential inlining.
1897///
1898/// Returns true if inlining this call is viable, and false if it is not
1899/// viable. It computes the cost and adjusts the threshold based on numerous
1900/// factors and heuristics. If this method returns false but the computed cost
1901/// is below the computed threshold, then inlining was forcibly disabled by
1902/// some artifact of the routine.
1903InlineResult CallAnalyzer::analyze() {
1904  ++NumCallsAnalyzed;
1905
1906  auto Result = onAnalysisStart();
1907  if (!Result)
1908    return Result;
1909
1910  if (F.empty())
1911    return true;
1912
1913  Function *Caller = CandidateCall.getFunction();
1914  // Check if the caller function is recursive itself.
1915  for (User *U : Caller->users()) {
1916    CallBase *Call = dyn_cast<CallBase>(U);
1917    if (Call && Call->getFunction() == Caller) {
1918      IsCallerRecursive = true;
1919      break;
1920    }
1921  }
1922
1923  // Populate our simplified values by mapping from function arguments to call
1924  // arguments with known important simplifications.
1925  auto CAI = CandidateCall.arg_begin();
1926  for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
1927       FAI != FAE; ++FAI, ++CAI) {
1928    assert(CAI != CandidateCall.arg_end());
1929    if (Constant *C = dyn_cast<Constant>(CAI))
1930      SimplifiedValues[&*FAI] = C;
1931
1932    Value *PtrArg = *CAI;
1933    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
1934      ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue());
1935
1936      // We can SROA any pointer arguments derived from alloca instructions.
1937      if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) {
1938        SROAArgValues[&*FAI] = SROAArg;
1939        onInitializeSROAArg(SROAArg);
1940      }
1941    }
1942  }
1943  NumConstantArgs = SimplifiedValues.size();
1944  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
1945  NumAllocaArgs = SROAArgValues.size();
1946
1947  // FIXME: If a caller has multiple calls to a callee, we end up recomputing
1948  // the ephemeral values multiple times (and they're completely determined by
1949  // the callee, so this is purely duplicate work).
1950  SmallPtrSet<const Value *, 32> EphValues;
1951  CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
1952
1953  // The worklist of live basic blocks in the callee *after* inlining. We avoid
1954  // adding basic blocks of the callee which can be proven to be dead for this
1955  // particular call site in order to get more accurate cost estimates. This
1956  // requires a somewhat heavyweight iteration pattern: we need to walk the
1957  // basic blocks in a breadth-first order as we insert live successors. To
1958  // accomplish this, prioritizing for small iterations because we exit after
1959  // crossing our threshold, we use a small-size optimized SetVector.
1960  typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
1961                    SmallPtrSet<BasicBlock *, 16>>
1962      BBSetVector;
1963  BBSetVector BBWorklist;
1964  BBWorklist.insert(&F.getEntryBlock());
1965
1966  // Note that we *must not* cache the size, this loop grows the worklist.
1967  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
1968    if (shouldStop())
1969      break;
1970
1971    BasicBlock *BB = BBWorklist[Idx];
1972    if (BB->empty())
1973      continue;
1974
1975    // Disallow inlining a blockaddress with uses other than strictly callbr.
1976    // A blockaddress only has defined behavior for an indirect branch in the
1977    // same function, and we do not currently support inlining indirect
1978    // branches.  But, the inliner may not see an indirect branch that ends up
1979    // being dead code at a particular call site. If the blockaddress escapes
1980    // the function, e.g., via a global variable, inlining may lead to an
1981    // invalid cross-function reference.
1982    // FIXME: pr/39560: continue relaxing this overt restriction.
1983    if (BB->hasAddressTaken())
1984      for (User *U : BlockAddress::get(&*BB)->users())
1985        if (!isa<CallBrInst>(*U))
1986          return "blockaddress used outside of callbr";
1987
1988    // Analyze the cost of this block. If we blow through the threshold, this
1989    // returns false, and we can bail on out.
1990    InlineResult IR = analyzeBlock(BB, EphValues);
1991    if (!IR)
1992      return IR;
1993
1994    Instruction *TI = BB->getTerminator();
1995
1996    // Add in the live successors by first checking whether we have terminator
1997    // that may be simplified based on the values simplified by this call.
1998    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1999      if (BI->isConditional()) {
2000        Value *Cond = BI->getCondition();
2001        if (ConstantInt *SimpleCond =
2002                dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2003          BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
2004          BBWorklist.insert(NextBB);
2005          KnownSuccessors[BB] = NextBB;
2006          findDeadBlocks(BB, NextBB);
2007          continue;
2008        }
2009      }
2010    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2011      Value *Cond = SI->getCondition();
2012      if (ConstantInt *SimpleCond =
2013              dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2014        BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
2015        BBWorklist.insert(NextBB);
2016        KnownSuccessors[BB] = NextBB;
2017        findDeadBlocks(BB, NextBB);
2018        continue;
2019      }
2020    }
2021
2022    // If we're unable to select a particular successor, just count all of
2023    // them.
2024    for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
2025         ++TIdx)
2026      BBWorklist.insert(TI->getSuccessor(TIdx));
2027
2028    onBlockAnalyzed(BB);
2029  }
2030
2031  bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
2032                                    &F == CandidateCall.getCalledFunction();
2033  // If this is a noduplicate call, we can still inline as long as
2034  // inlining this would cause the removal of the caller (so the instruction
2035  // is not actually duplicated, just moved).
2036  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
2037    return "noduplicate";
2038
2039  return finalizeAnalysis();
2040}
2041
2042#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2043/// Dump stats about this call's analysis.
2044LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() {
2045#define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n"
2046  DEBUG_PRINT_STAT(NumConstantArgs);
2047  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
2048  DEBUG_PRINT_STAT(NumAllocaArgs);
2049  DEBUG_PRINT_STAT(NumConstantPtrCmps);
2050  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
2051  DEBUG_PRINT_STAT(NumInstructionsSimplified);
2052  DEBUG_PRINT_STAT(NumInstructions);
2053  DEBUG_PRINT_STAT(SROACostSavings);
2054  DEBUG_PRINT_STAT(SROACostSavingsLost);
2055  DEBUG_PRINT_STAT(LoadEliminationCost);
2056  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
2057  DEBUG_PRINT_STAT(Cost);
2058  DEBUG_PRINT_STAT(Threshold);
2059#undef DEBUG_PRINT_STAT
2060}
2061#endif
2062
2063/// Test that there are no attribute conflicts between Caller and Callee
2064///        that prevent inlining.
2065static bool functionsHaveCompatibleAttributes(Function *Caller,
2066                                              Function *Callee,
2067                                              TargetTransformInfo &TTI) {
2068  return TTI.areInlineCompatible(Caller, Callee) &&
2069         AttributeFuncs::areInlineCompatible(*Caller, *Callee);
2070}
2071
2072int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) {
2073  int Cost = 0;
2074  for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
2075    if (Call.isByValArgument(I)) {
2076      // We approximate the number of loads and stores needed by dividing the
2077      // size of the byval type by the target's pointer size.
2078      PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2079      unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
2080      unsigned AS = PTy->getAddressSpace();
2081      unsigned PointerSize = DL.getPointerSizeInBits(AS);
2082      // Ceiling division.
2083      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
2084
2085      // If it generates more than 8 stores it is likely to be expanded as an
2086      // inline memcpy so we take that as an upper bound. Otherwise we assume
2087      // one load and one store per word copied.
2088      // FIXME: The maxStoresPerMemcpy setting from the target should be used
2089      // here instead of a magic number of 8, but it's not available via
2090      // DataLayout.
2091      NumStores = std::min(NumStores, 8U);
2092
2093      Cost += 2 * NumStores * InlineConstants::InstrCost;
2094    } else {
2095      // For non-byval arguments subtract off one instruction per call
2096      // argument.
2097      Cost += InlineConstants::InstrCost;
2098    }
2099  }
2100  // The call instruction also disappears after inlining.
2101  Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
2102  return Cost;
2103}
2104
2105InlineCost llvm::getInlineCost(
2106    CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
2107    std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
2108    Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
2109    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2110  return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
2111                       GetAssumptionCache, GetBFI, PSI, ORE);
2112}
2113
2114InlineCost llvm::getInlineCost(
2115    CallBase &Call, Function *Callee, const InlineParams &Params,
2116    TargetTransformInfo &CalleeTTI,
2117    std::function<AssumptionCache &(Function &)> &GetAssumptionCache,
2118    Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI,
2119    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2120
2121  // Cannot inline indirect calls.
2122  if (!Callee)
2123    return llvm::InlineCost::getNever("indirect call");
2124
2125  // Never inline calls with byval arguments that does not have the alloca
2126  // address space. Since byval arguments can be replaced with a copy to an
2127  // alloca, the inlined code would need to be adjusted to handle that the
2128  // argument is in the alloca address space (so it is a little bit complicated
2129  // to solve).
2130  unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
2131  for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
2132    if (Call.isByValArgument(I)) {
2133      PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2134      if (PTy->getAddressSpace() != AllocaAS)
2135        return llvm::InlineCost::getNever("byval arguments without alloca"
2136                                          " address space");
2137    }
2138
2139  // Calls to functions with always-inline attributes should be inlined
2140  // whenever possible.
2141  if (Call.hasFnAttr(Attribute::AlwaysInline)) {
2142    auto IsViable = isInlineViable(*Callee);
2143    if (IsViable)
2144      return llvm::InlineCost::getAlways("always inline attribute");
2145    return llvm::InlineCost::getNever(IsViable.message);
2146  }
2147
2148  // Never inline functions with conflicting attributes (unless callee has
2149  // always-inline attribute).
2150  Function *Caller = Call.getCaller();
2151  if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI))
2152    return llvm::InlineCost::getNever("conflicting attributes");
2153
2154  // Don't inline this call if the caller has the optnone attribute.
2155  if (Caller->hasOptNone())
2156    return llvm::InlineCost::getNever("optnone attribute");
2157
2158  // Don't inline a function that treats null pointer as valid into a caller
2159  // that does not have this attribute.
2160  if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
2161    return llvm::InlineCost::getNever("nullptr definitions incompatible");
2162
2163  // Don't inline functions which can be interposed at link-time.
2164  if (Callee->isInterposable())
2165    return llvm::InlineCost::getNever("interposable");
2166
2167  // Don't inline functions marked noinline.
2168  if (Callee->hasFnAttribute(Attribute::NoInline))
2169    return llvm::InlineCost::getNever("noinline function attribute");
2170
2171  // Don't inline call sites marked noinline.
2172  if (Call.isNoInline())
2173    return llvm::InlineCost::getNever("noinline call site attribute");
2174
2175  LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
2176                          << "... (caller:" << Caller->getName() << ")\n");
2177
2178  InlineCostCallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE,
2179                            *Callee, Call, Params);
2180  InlineResult ShouldInline = CA.analyze();
2181
2182  LLVM_DEBUG(CA.dump());
2183
2184  // Check if there was a reason to force inlining or no inlining.
2185  if (!ShouldInline && CA.getCost() < CA.getThreshold())
2186    return InlineCost::getNever(ShouldInline.message);
2187  if (ShouldInline && CA.getCost() >= CA.getThreshold())
2188    return InlineCost::getAlways("empty function");
2189
2190  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
2191}
2192
2193InlineResult llvm::isInlineViable(Function &F) {
2194  bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
2195  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2196    // Disallow inlining of functions which contain indirect branches.
2197    if (isa<IndirectBrInst>(BI->getTerminator()))
2198      return "contains indirect branches";
2199
2200    // Disallow inlining of blockaddresses which are used by non-callbr
2201    // instructions.
2202    if (BI->hasAddressTaken())
2203      for (User *U : BlockAddress::get(&*BI)->users())
2204        if (!isa<CallBrInst>(*U))
2205          return "blockaddress used outside of callbr";
2206
2207    for (auto &II : *BI) {
2208      CallBase *Call = dyn_cast<CallBase>(&II);
2209      if (!Call)
2210        continue;
2211
2212      // Disallow recursive calls.
2213      if (&F == Call->getCalledFunction())
2214        return "recursive call";
2215
2216      // Disallow calls which expose returns-twice to a function not previously
2217      // attributed as such.
2218      if (!ReturnsTwice && isa<CallInst>(Call) &&
2219          cast<CallInst>(Call)->canReturnTwice())
2220        return "exposes returns-twice attribute";
2221
2222      if (Call->getCalledFunction())
2223        switch (Call->getCalledFunction()->getIntrinsicID()) {
2224        default:
2225          break;
2226        case llvm::Intrinsic::icall_branch_funnel:
2227          // Disallow inlining of @llvm.icall.branch.funnel because current
2228          // backend can't separate call targets from call arguments.
2229          return "disallowed inlining of @llvm.icall.branch.funnel";
2230        case llvm::Intrinsic::localescape:
2231          // Disallow inlining functions that call @llvm.localescape. Doing this
2232          // correctly would require major changes to the inliner.
2233          return "disallowed inlining of @llvm.localescape";
2234        case llvm::Intrinsic::vastart:
2235          // Disallow inlining of functions that initialize VarArgs with
2236          // va_start.
2237          return "contains VarArgs initialized with va_start";
2238        }
2239    }
2240  }
2241
2242  return true;
2243}
2244
2245// APIs to create InlineParams based on command line flags and/or other
2246// parameters.
2247
2248InlineParams llvm::getInlineParams(int Threshold) {
2249  InlineParams Params;
2250
2251  // This field is the threshold to use for a callee by default. This is
2252  // derived from one or more of:
2253  //  * optimization or size-optimization levels,
2254  //  * a value passed to createFunctionInliningPass function, or
2255  //  * the -inline-threshold flag.
2256  //  If the -inline-threshold flag is explicitly specified, that is used
2257  //  irrespective of anything else.
2258  if (InlineThreshold.getNumOccurrences() > 0)
2259    Params.DefaultThreshold = InlineThreshold;
2260  else
2261    Params.DefaultThreshold = Threshold;
2262
2263  // Set the HintThreshold knob from the -inlinehint-threshold.
2264  Params.HintThreshold = HintThreshold;
2265
2266  // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
2267  Params.HotCallSiteThreshold = HotCallSiteThreshold;
2268
2269  // If the -locally-hot-callsite-threshold is explicitly specified, use it to
2270  // populate LocallyHotCallSiteThreshold. Later, we populate
2271  // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
2272  // we know that optimization level is O3 (in the getInlineParams variant that
2273  // takes the opt and size levels).
2274  // FIXME: Remove this check (and make the assignment unconditional) after
2275  // addressing size regression issues at O2.
2276  if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
2277    Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2278
2279  // Set the ColdCallSiteThreshold knob from the
2280  // -inline-cold-callsite-threshold.
2281  Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
2282
2283  // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
2284  // -inlinehint-threshold commandline option is not explicitly given. If that
2285  // option is present, then its value applies even for callees with size and
2286  // minsize attributes.
2287  // If the -inline-threshold is not specified, set the ColdThreshold from the
2288  // -inlinecold-threshold even if it is not explicitly passed. If
2289  // -inline-threshold is specified, then -inlinecold-threshold needs to be
2290  // explicitly specified to set the ColdThreshold knob
2291  if (InlineThreshold.getNumOccurrences() == 0) {
2292    Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
2293    Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
2294    Params.ColdThreshold = ColdThreshold;
2295  } else if (ColdThreshold.getNumOccurrences() > 0) {
2296    Params.ColdThreshold = ColdThreshold;
2297  }
2298  return Params;
2299}
2300
2301InlineParams llvm::getInlineParams() {
2302  return getInlineParams(InlineThreshold);
2303}
2304
2305// Compute the default threshold for inlining based on the opt level and the
2306// size opt level.
2307static int computeThresholdFromOptLevels(unsigned OptLevel,
2308                                         unsigned SizeOptLevel) {
2309  if (OptLevel > 2)
2310    return InlineConstants::OptAggressiveThreshold;
2311  if (SizeOptLevel == 1) // -Os
2312    return InlineConstants::OptSizeThreshold;
2313  if (SizeOptLevel == 2) // -Oz
2314    return InlineConstants::OptMinSizeThreshold;
2315  return InlineThreshold;
2316}
2317
2318InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
2319  auto Params =
2320      getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
2321  // At O3, use the value of -locally-hot-callsite-threshold option to populate
2322  // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
2323  // when it is specified explicitly.
2324  if (OptLevel > 2)
2325    Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2326  return Params;
2327}
2328