1//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the SmallVector class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_SMALLVECTOR_H
14#define LLVM_ADT_SMALLVECTOR_H
15
16#include "llvm/ADT/iterator_range.h"
17#include "llvm/Support/AlignOf.h"
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Support/MemAlloc.h"
21#include "llvm/Support/type_traits.h"
22#include "llvm/Support/ErrorHandling.h"
23#include <algorithm>
24#include <cassert>
25#include <cstddef>
26#include <cstdlib>
27#include <cstring>
28#include <initializer_list>
29#include <iterator>
30#include <memory>
31#include <new>
32#include <type_traits>
33#include <utility>
34
35namespace llvm {
36
37/// This is all the non-templated stuff common to all SmallVectors.
38class SmallVectorBase {
39protected:
40  void *BeginX;
41  unsigned Size = 0, Capacity;
42
43  SmallVectorBase() = delete;
44  SmallVectorBase(void *FirstEl, size_t TotalCapacity)
45      : BeginX(FirstEl), Capacity(TotalCapacity) {}
46
47  /// This is an implementation of the grow() method which only works
48  /// on POD-like data types and is out of line to reduce code duplication.
49  void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize);
50
51public:
52  size_t size() const { return Size; }
53  size_t capacity() const { return Capacity; }
54
55  LLVM_NODISCARD bool empty() const { return !Size; }
56
57  /// Set the array size to \p N, which the current array must have enough
58  /// capacity for.
59  ///
60  /// This does not construct or destroy any elements in the vector.
61  ///
62  /// Clients can use this in conjunction with capacity() to write past the end
63  /// of the buffer when they know that more elements are available, and only
64  /// update the size later. This avoids the cost of value initializing elements
65  /// which will only be overwritten.
66  void set_size(size_t N) {
67    assert(N <= capacity());
68    Size = N;
69  }
70};
71
72/// Figure out the offset of the first element.
73template <class T, typename = void> struct SmallVectorAlignmentAndSize {
74  AlignedCharArrayUnion<SmallVectorBase> Base;
75  AlignedCharArrayUnion<T> FirstEl;
76};
77
78/// This is the part of SmallVectorTemplateBase which does not depend on whether
79/// the type T is a POD. The extra dummy template argument is used by ArrayRef
80/// to avoid unnecessarily requiring T to be complete.
81template <typename T, typename = void>
82class SmallVectorTemplateCommon : public SmallVectorBase {
83  /// Find the address of the first element.  For this pointer math to be valid
84  /// with small-size of 0 for T with lots of alignment, it's important that
85  /// SmallVectorStorage is properly-aligned even for small-size of 0.
86  void *getFirstEl() const {
87    return const_cast<void *>(reinterpret_cast<const void *>(
88        reinterpret_cast<const char *>(this) +
89        offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
90  }
91  // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
92
93protected:
94  SmallVectorTemplateCommon(size_t Size)
95      : SmallVectorBase(getFirstEl(), Size) {}
96
97  void grow_pod(size_t MinCapacity, size_t TSize) {
98    SmallVectorBase::grow_pod(getFirstEl(), MinCapacity, TSize);
99  }
100
101  /// Return true if this is a smallvector which has not had dynamic
102  /// memory allocated for it.
103  bool isSmall() const { return BeginX == getFirstEl(); }
104
105  /// Put this vector in a state of being small.
106  void resetToSmall() {
107    BeginX = getFirstEl();
108    Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
109  }
110
111public:
112  using size_type = size_t;
113  using difference_type = ptrdiff_t;
114  using value_type = T;
115  using iterator = T *;
116  using const_iterator = const T *;
117
118  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
119  using reverse_iterator = std::reverse_iterator<iterator>;
120
121  using reference = T &;
122  using const_reference = const T &;
123  using pointer = T *;
124  using const_pointer = const T *;
125
126  // forward iterator creation methods.
127  iterator begin() { return (iterator)this->BeginX; }
128  const_iterator begin() const { return (const_iterator)this->BeginX; }
129  iterator end() { return begin() + size(); }
130  const_iterator end() const { return begin() + size(); }
131
132  // reverse iterator creation methods.
133  reverse_iterator rbegin()            { return reverse_iterator(end()); }
134  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
135  reverse_iterator rend()              { return reverse_iterator(begin()); }
136  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
137
138  size_type size_in_bytes() const { return size() * sizeof(T); }
139  size_type max_size() const { return size_type(-1) / sizeof(T); }
140
141  size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
142
143  /// Return a pointer to the vector's buffer, even if empty().
144  pointer data() { return pointer(begin()); }
145  /// Return a pointer to the vector's buffer, even if empty().
146  const_pointer data() const { return const_pointer(begin()); }
147
148  reference operator[](size_type idx) {
149    assert(idx < size());
150    return begin()[idx];
151  }
152  const_reference operator[](size_type idx) const {
153    assert(idx < size());
154    return begin()[idx];
155  }
156
157  reference front() {
158    assert(!empty());
159    return begin()[0];
160  }
161  const_reference front() const {
162    assert(!empty());
163    return begin()[0];
164  }
165
166  reference back() {
167    assert(!empty());
168    return end()[-1];
169  }
170  const_reference back() const {
171    assert(!empty());
172    return end()[-1];
173  }
174};
175
176/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put method
177/// implementations that are designed to work with non-POD-like T's.
178template <typename T, bool = is_trivially_copyable<T>::value>
179class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
180protected:
181  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
182
183  static void destroy_range(T *S, T *E) {
184    while (S != E) {
185      --E;
186      E->~T();
187    }
188  }
189
190  /// Move the range [I, E) into the uninitialized memory starting with "Dest",
191  /// constructing elements as needed.
192  template<typename It1, typename It2>
193  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
194    std::uninitialized_copy(std::make_move_iterator(I),
195                            std::make_move_iterator(E), Dest);
196  }
197
198  /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
199  /// constructing elements as needed.
200  template<typename It1, typename It2>
201  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
202    std::uninitialized_copy(I, E, Dest);
203  }
204
205  /// Grow the allocated memory (without initializing new elements), doubling
206  /// the size of the allocated memory. Guarantees space for at least one more
207  /// element, or MinSize more elements if specified.
208  void grow(size_t MinSize = 0);
209
210public:
211  void push_back(const T &Elt) {
212    if (LLVM_UNLIKELY(this->size() >= this->capacity()))
213      this->grow();
214    ::new ((void*) this->end()) T(Elt);
215    this->set_size(this->size() + 1);
216  }
217
218  void push_back(T &&Elt) {
219    if (LLVM_UNLIKELY(this->size() >= this->capacity()))
220      this->grow();
221    ::new ((void*) this->end()) T(::std::move(Elt));
222    this->set_size(this->size() + 1);
223  }
224
225  void pop_back() {
226    this->set_size(this->size() - 1);
227    this->end()->~T();
228  }
229};
230
231// Define this out-of-line to dissuade the C++ compiler from inlining it.
232template <typename T, bool TriviallyCopyable>
233void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
234  if (MinSize > UINT32_MAX)
235    report_bad_alloc_error("SmallVector capacity overflow during allocation");
236
237  // Always grow, even from zero.
238  size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2));
239  NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX));
240  T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T)));
241
242  // Move the elements over.
243  this->uninitialized_move(this->begin(), this->end(), NewElts);
244
245  // Destroy the original elements.
246  destroy_range(this->begin(), this->end());
247
248  // If this wasn't grown from the inline copy, deallocate the old space.
249  if (!this->isSmall())
250    free(this->begin());
251
252  this->BeginX = NewElts;
253  this->Capacity = NewCapacity;
254}
255
256/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
257/// method implementations that are designed to work with POD-like T's.
258template <typename T>
259class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
260protected:
261  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
262
263  // No need to do a destroy loop for POD's.
264  static void destroy_range(T *, T *) {}
265
266  /// Move the range [I, E) onto the uninitialized memory
267  /// starting with "Dest", constructing elements into it as needed.
268  template<typename It1, typename It2>
269  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
270    // Just do a copy.
271    uninitialized_copy(I, E, Dest);
272  }
273
274  /// Copy the range [I, E) onto the uninitialized memory
275  /// starting with "Dest", constructing elements into it as needed.
276  template<typename It1, typename It2>
277  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
278    // Arbitrary iterator types; just use the basic implementation.
279    std::uninitialized_copy(I, E, Dest);
280  }
281
282  /// Copy the range [I, E) onto the uninitialized memory
283  /// starting with "Dest", constructing elements into it as needed.
284  template <typename T1, typename T2>
285  static void uninitialized_copy(
286      T1 *I, T1 *E, T2 *Dest,
287      typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
288                                           T2>::value>::type * = nullptr) {
289    // Use memcpy for PODs iterated by pointers (which includes SmallVector
290    // iterators): std::uninitialized_copy optimizes to memmove, but we can
291    // use memcpy here. Note that I and E are iterators and thus might be
292    // invalid for memcpy if they are equal.
293    if (I != E)
294      memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
295  }
296
297  /// Double the size of the allocated memory, guaranteeing space for at
298  /// least one more element or MinSize if specified.
299  void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
300
301public:
302  void push_back(const T &Elt) {
303    if (LLVM_UNLIKELY(this->size() >= this->capacity()))
304      this->grow();
305    memcpy(reinterpret_cast<void *>(this->end()), &Elt, sizeof(T));
306    this->set_size(this->size() + 1);
307  }
308
309  void pop_back() { this->set_size(this->size() - 1); }
310};
311
312/// This class consists of common code factored out of the SmallVector class to
313/// reduce code duplication based on the SmallVector 'N' template parameter.
314template <typename T>
315class SmallVectorImpl : public SmallVectorTemplateBase<T> {
316  using SuperClass = SmallVectorTemplateBase<T>;
317
318public:
319  using iterator = typename SuperClass::iterator;
320  using const_iterator = typename SuperClass::const_iterator;
321  using reference = typename SuperClass::reference;
322  using size_type = typename SuperClass::size_type;
323
324protected:
325  // Default ctor - Initialize to empty.
326  explicit SmallVectorImpl(unsigned N)
327      : SmallVectorTemplateBase<T>(N) {}
328
329public:
330  SmallVectorImpl(const SmallVectorImpl &) = delete;
331
332  ~SmallVectorImpl() {
333    // Subclass has already destructed this vector's elements.
334    // If this wasn't grown from the inline copy, deallocate the old space.
335    if (!this->isSmall())
336      free(this->begin());
337  }
338
339  void clear() {
340    this->destroy_range(this->begin(), this->end());
341    this->Size = 0;
342  }
343
344  void resize(size_type N) {
345    if (N < this->size()) {
346      this->destroy_range(this->begin()+N, this->end());
347      this->set_size(N);
348    } else if (N > this->size()) {
349      if (this->capacity() < N)
350        this->grow(N);
351      for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
352        new (&*I) T();
353      this->set_size(N);
354    }
355  }
356
357  void resize(size_type N, const T &NV) {
358    if (N < this->size()) {
359      this->destroy_range(this->begin()+N, this->end());
360      this->set_size(N);
361    } else if (N > this->size()) {
362      if (this->capacity() < N)
363        this->grow(N);
364      std::uninitialized_fill(this->end(), this->begin()+N, NV);
365      this->set_size(N);
366    }
367  }
368
369  void reserve(size_type N) {
370    if (this->capacity() < N)
371      this->grow(N);
372  }
373
374  LLVM_NODISCARD T pop_back_val() {
375    T Result = ::std::move(this->back());
376    this->pop_back();
377    return Result;
378  }
379
380  void swap(SmallVectorImpl &RHS);
381
382  /// Add the specified range to the end of the SmallVector.
383  template <typename in_iter,
384            typename = typename std::enable_if<std::is_convertible<
385                typename std::iterator_traits<in_iter>::iterator_category,
386                std::input_iterator_tag>::value>::type>
387  void append(in_iter in_start, in_iter in_end) {
388    size_type NumInputs = std::distance(in_start, in_end);
389    if (NumInputs > this->capacity() - this->size())
390      this->grow(this->size()+NumInputs);
391
392    this->uninitialized_copy(in_start, in_end, this->end());
393    this->set_size(this->size() + NumInputs);
394  }
395
396  /// Append \p NumInputs copies of \p Elt to the end.
397  void append(size_type NumInputs, const T &Elt) {
398    if (NumInputs > this->capacity() - this->size())
399      this->grow(this->size()+NumInputs);
400
401    std::uninitialized_fill_n(this->end(), NumInputs, Elt);
402    this->set_size(this->size() + NumInputs);
403  }
404
405  void append(std::initializer_list<T> IL) {
406    append(IL.begin(), IL.end());
407  }
408
409  // FIXME: Consider assigning over existing elements, rather than clearing &
410  // re-initializing them - for all assign(...) variants.
411
412  void assign(size_type NumElts, const T &Elt) {
413    clear();
414    if (this->capacity() < NumElts)
415      this->grow(NumElts);
416    this->set_size(NumElts);
417    std::uninitialized_fill(this->begin(), this->end(), Elt);
418  }
419
420  template <typename in_iter,
421            typename = typename std::enable_if<std::is_convertible<
422                typename std::iterator_traits<in_iter>::iterator_category,
423                std::input_iterator_tag>::value>::type>
424  void assign(in_iter in_start, in_iter in_end) {
425    clear();
426    append(in_start, in_end);
427  }
428
429  void assign(std::initializer_list<T> IL) {
430    clear();
431    append(IL);
432  }
433
434  iterator erase(const_iterator CI) {
435    // Just cast away constness because this is a non-const member function.
436    iterator I = const_cast<iterator>(CI);
437
438    assert(I >= this->begin() && "Iterator to erase is out of bounds.");
439    assert(I < this->end() && "Erasing at past-the-end iterator.");
440
441    iterator N = I;
442    // Shift all elts down one.
443    std::move(I+1, this->end(), I);
444    // Drop the last elt.
445    this->pop_back();
446    return(N);
447  }
448
449  iterator erase(const_iterator CS, const_iterator CE) {
450    // Just cast away constness because this is a non-const member function.
451    iterator S = const_cast<iterator>(CS);
452    iterator E = const_cast<iterator>(CE);
453
454    assert(S >= this->begin() && "Range to erase is out of bounds.");
455    assert(S <= E && "Trying to erase invalid range.");
456    assert(E <= this->end() && "Trying to erase past the end.");
457
458    iterator N = S;
459    // Shift all elts down.
460    iterator I = std::move(E, this->end(), S);
461    // Drop the last elts.
462    this->destroy_range(I, this->end());
463    this->set_size(I - this->begin());
464    return(N);
465  }
466
467  iterator insert(iterator I, T &&Elt) {
468    if (I == this->end()) {  // Important special case for empty vector.
469      this->push_back(::std::move(Elt));
470      return this->end()-1;
471    }
472
473    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
474    assert(I <= this->end() && "Inserting past the end of the vector.");
475
476    if (this->size() >= this->capacity()) {
477      size_t EltNo = I-this->begin();
478      this->grow();
479      I = this->begin()+EltNo;
480    }
481
482    ::new ((void*) this->end()) T(::std::move(this->back()));
483    // Push everything else over.
484    std::move_backward(I, this->end()-1, this->end());
485    this->set_size(this->size() + 1);
486
487    // If we just moved the element we're inserting, be sure to update
488    // the reference.
489    T *EltPtr = &Elt;
490    if (I <= EltPtr && EltPtr < this->end())
491      ++EltPtr;
492
493    *I = ::std::move(*EltPtr);
494    return I;
495  }
496
497  iterator insert(iterator I, const T &Elt) {
498    if (I == this->end()) {  // Important special case for empty vector.
499      this->push_back(Elt);
500      return this->end()-1;
501    }
502
503    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
504    assert(I <= this->end() && "Inserting past the end of the vector.");
505
506    if (this->size() >= this->capacity()) {
507      size_t EltNo = I-this->begin();
508      this->grow();
509      I = this->begin()+EltNo;
510    }
511    ::new ((void*) this->end()) T(std::move(this->back()));
512    // Push everything else over.
513    std::move_backward(I, this->end()-1, this->end());
514    this->set_size(this->size() + 1);
515
516    // If we just moved the element we're inserting, be sure to update
517    // the reference.
518    const T *EltPtr = &Elt;
519    if (I <= EltPtr && EltPtr < this->end())
520      ++EltPtr;
521
522    *I = *EltPtr;
523    return I;
524  }
525
526  iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
527    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
528    size_t InsertElt = I - this->begin();
529
530    if (I == this->end()) {  // Important special case for empty vector.
531      append(NumToInsert, Elt);
532      return this->begin()+InsertElt;
533    }
534
535    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
536    assert(I <= this->end() && "Inserting past the end of the vector.");
537
538    // Ensure there is enough space.
539    reserve(this->size() + NumToInsert);
540
541    // Uninvalidate the iterator.
542    I = this->begin()+InsertElt;
543
544    // If there are more elements between the insertion point and the end of the
545    // range than there are being inserted, we can use a simple approach to
546    // insertion.  Since we already reserved space, we know that this won't
547    // reallocate the vector.
548    if (size_t(this->end()-I) >= NumToInsert) {
549      T *OldEnd = this->end();
550      append(std::move_iterator<iterator>(this->end() - NumToInsert),
551             std::move_iterator<iterator>(this->end()));
552
553      // Copy the existing elements that get replaced.
554      std::move_backward(I, OldEnd-NumToInsert, OldEnd);
555
556      std::fill_n(I, NumToInsert, Elt);
557      return I;
558    }
559
560    // Otherwise, we're inserting more elements than exist already, and we're
561    // not inserting at the end.
562
563    // Move over the elements that we're about to overwrite.
564    T *OldEnd = this->end();
565    this->set_size(this->size() + NumToInsert);
566    size_t NumOverwritten = OldEnd-I;
567    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
568
569    // Replace the overwritten part.
570    std::fill_n(I, NumOverwritten, Elt);
571
572    // Insert the non-overwritten middle part.
573    std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
574    return I;
575  }
576
577  template <typename ItTy,
578            typename = typename std::enable_if<std::is_convertible<
579                typename std::iterator_traits<ItTy>::iterator_category,
580                std::input_iterator_tag>::value>::type>
581  iterator insert(iterator I, ItTy From, ItTy To) {
582    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
583    size_t InsertElt = I - this->begin();
584
585    if (I == this->end()) {  // Important special case for empty vector.
586      append(From, To);
587      return this->begin()+InsertElt;
588    }
589
590    assert(I >= this->begin() && "Insertion iterator is out of bounds.");
591    assert(I <= this->end() && "Inserting past the end of the vector.");
592
593    size_t NumToInsert = std::distance(From, To);
594
595    // Ensure there is enough space.
596    reserve(this->size() + NumToInsert);
597
598    // Uninvalidate the iterator.
599    I = this->begin()+InsertElt;
600
601    // If there are more elements between the insertion point and the end of the
602    // range than there are being inserted, we can use a simple approach to
603    // insertion.  Since we already reserved space, we know that this won't
604    // reallocate the vector.
605    if (size_t(this->end()-I) >= NumToInsert) {
606      T *OldEnd = this->end();
607      append(std::move_iterator<iterator>(this->end() - NumToInsert),
608             std::move_iterator<iterator>(this->end()));
609
610      // Copy the existing elements that get replaced.
611      std::move_backward(I, OldEnd-NumToInsert, OldEnd);
612
613      std::copy(From, To, I);
614      return I;
615    }
616
617    // Otherwise, we're inserting more elements than exist already, and we're
618    // not inserting at the end.
619
620    // Move over the elements that we're about to overwrite.
621    T *OldEnd = this->end();
622    this->set_size(this->size() + NumToInsert);
623    size_t NumOverwritten = OldEnd-I;
624    this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
625
626    // Replace the overwritten part.
627    for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
628      *J = *From;
629      ++J; ++From;
630    }
631
632    // Insert the non-overwritten middle part.
633    this->uninitialized_copy(From, To, OldEnd);
634    return I;
635  }
636
637  void insert(iterator I, std::initializer_list<T> IL) {
638    insert(I, IL.begin(), IL.end());
639  }
640
641  template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
642    if (LLVM_UNLIKELY(this->size() >= this->capacity()))
643      this->grow();
644    ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
645    this->set_size(this->size() + 1);
646    return this->back();
647  }
648
649  SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
650
651  SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
652
653  bool operator==(const SmallVectorImpl &RHS) const {
654    if (this->size() != RHS.size()) return false;
655    return std::equal(this->begin(), this->end(), RHS.begin());
656  }
657  bool operator!=(const SmallVectorImpl &RHS) const {
658    return !(*this == RHS);
659  }
660
661  bool operator<(const SmallVectorImpl &RHS) const {
662    return std::lexicographical_compare(this->begin(), this->end(),
663                                        RHS.begin(), RHS.end());
664  }
665};
666
667template <typename T>
668void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
669  if (this == &RHS) return;
670
671  // We can only avoid copying elements if neither vector is small.
672  if (!this->isSmall() && !RHS.isSmall()) {
673    std::swap(this->BeginX, RHS.BeginX);
674    std::swap(this->Size, RHS.Size);
675    std::swap(this->Capacity, RHS.Capacity);
676    return;
677  }
678  if (RHS.size() > this->capacity())
679    this->grow(RHS.size());
680  if (this->size() > RHS.capacity())
681    RHS.grow(this->size());
682
683  // Swap the shared elements.
684  size_t NumShared = this->size();
685  if (NumShared > RHS.size()) NumShared = RHS.size();
686  for (size_type i = 0; i != NumShared; ++i)
687    std::swap((*this)[i], RHS[i]);
688
689  // Copy over the extra elts.
690  if (this->size() > RHS.size()) {
691    size_t EltDiff = this->size() - RHS.size();
692    this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
693    RHS.set_size(RHS.size() + EltDiff);
694    this->destroy_range(this->begin()+NumShared, this->end());
695    this->set_size(NumShared);
696  } else if (RHS.size() > this->size()) {
697    size_t EltDiff = RHS.size() - this->size();
698    this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
699    this->set_size(this->size() + EltDiff);
700    this->destroy_range(RHS.begin()+NumShared, RHS.end());
701    RHS.set_size(NumShared);
702  }
703}
704
705template <typename T>
706SmallVectorImpl<T> &SmallVectorImpl<T>::
707  operator=(const SmallVectorImpl<T> &RHS) {
708  // Avoid self-assignment.
709  if (this == &RHS) return *this;
710
711  // If we already have sufficient space, assign the common elements, then
712  // destroy any excess.
713  size_t RHSSize = RHS.size();
714  size_t CurSize = this->size();
715  if (CurSize >= RHSSize) {
716    // Assign common elements.
717    iterator NewEnd;
718    if (RHSSize)
719      NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
720    else
721      NewEnd = this->begin();
722
723    // Destroy excess elements.
724    this->destroy_range(NewEnd, this->end());
725
726    // Trim.
727    this->set_size(RHSSize);
728    return *this;
729  }
730
731  // If we have to grow to have enough elements, destroy the current elements.
732  // This allows us to avoid copying them during the grow.
733  // FIXME: don't do this if they're efficiently moveable.
734  if (this->capacity() < RHSSize) {
735    // Destroy current elements.
736    this->destroy_range(this->begin(), this->end());
737    this->set_size(0);
738    CurSize = 0;
739    this->grow(RHSSize);
740  } else if (CurSize) {
741    // Otherwise, use assignment for the already-constructed elements.
742    std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
743  }
744
745  // Copy construct the new elements in place.
746  this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
747                           this->begin()+CurSize);
748
749  // Set end.
750  this->set_size(RHSSize);
751  return *this;
752}
753
754template <typename T>
755SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
756  // Avoid self-assignment.
757  if (this == &RHS) return *this;
758
759  // If the RHS isn't small, clear this vector and then steal its buffer.
760  if (!RHS.isSmall()) {
761    this->destroy_range(this->begin(), this->end());
762    if (!this->isSmall()) free(this->begin());
763    this->BeginX = RHS.BeginX;
764    this->Size = RHS.Size;
765    this->Capacity = RHS.Capacity;
766    RHS.resetToSmall();
767    return *this;
768  }
769
770  // If we already have sufficient space, assign the common elements, then
771  // destroy any excess.
772  size_t RHSSize = RHS.size();
773  size_t CurSize = this->size();
774  if (CurSize >= RHSSize) {
775    // Assign common elements.
776    iterator NewEnd = this->begin();
777    if (RHSSize)
778      NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
779
780    // Destroy excess elements and trim the bounds.
781    this->destroy_range(NewEnd, this->end());
782    this->set_size(RHSSize);
783
784    // Clear the RHS.
785    RHS.clear();
786
787    return *this;
788  }
789
790  // If we have to grow to have enough elements, destroy the current elements.
791  // This allows us to avoid copying them during the grow.
792  // FIXME: this may not actually make any sense if we can efficiently move
793  // elements.
794  if (this->capacity() < RHSSize) {
795    // Destroy current elements.
796    this->destroy_range(this->begin(), this->end());
797    this->set_size(0);
798    CurSize = 0;
799    this->grow(RHSSize);
800  } else if (CurSize) {
801    // Otherwise, use assignment for the already-constructed elements.
802    std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
803  }
804
805  // Move-construct the new elements in place.
806  this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
807                           this->begin()+CurSize);
808
809  // Set end.
810  this->set_size(RHSSize);
811
812  RHS.clear();
813  return *this;
814}
815
816/// Storage for the SmallVector elements.  This is specialized for the N=0 case
817/// to avoid allocating unnecessary storage.
818template <typename T, unsigned N>
819struct SmallVectorStorage {
820  AlignedCharArrayUnion<T> InlineElts[N];
821};
822
823/// We need the storage to be properly aligned even for small-size of 0 so that
824/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
825/// well-defined.
826template <typename T> struct alignas(alignof(T)) SmallVectorStorage<T, 0> {};
827
828/// This is a 'vector' (really, a variable-sized array), optimized
829/// for the case when the array is small.  It contains some number of elements
830/// in-place, which allows it to avoid heap allocation when the actual number of
831/// elements is below that threshold.  This allows normal "small" cases to be
832/// fast without losing generality for large inputs.
833///
834/// Note that this does not attempt to be exception safe.
835///
836template <typename T, unsigned N>
837class SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> {
838public:
839  SmallVector() : SmallVectorImpl<T>(N) {}
840
841  ~SmallVector() {
842    // Destroy the constructed elements in the vector.
843    this->destroy_range(this->begin(), this->end());
844  }
845
846  explicit SmallVector(size_t Size, const T &Value = T())
847    : SmallVectorImpl<T>(N) {
848    this->assign(Size, Value);
849  }
850
851  template <typename ItTy,
852            typename = typename std::enable_if<std::is_convertible<
853                typename std::iterator_traits<ItTy>::iterator_category,
854                std::input_iterator_tag>::value>::type>
855  SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
856    this->append(S, E);
857  }
858
859  template <typename RangeTy>
860  explicit SmallVector(const iterator_range<RangeTy> &R)
861      : SmallVectorImpl<T>(N) {
862    this->append(R.begin(), R.end());
863  }
864
865  SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
866    this->assign(IL);
867  }
868
869  SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
870    if (!RHS.empty())
871      SmallVectorImpl<T>::operator=(RHS);
872  }
873
874  const SmallVector &operator=(const SmallVector &RHS) {
875    SmallVectorImpl<T>::operator=(RHS);
876    return *this;
877  }
878
879  SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
880    if (!RHS.empty())
881      SmallVectorImpl<T>::operator=(::std::move(RHS));
882  }
883
884  SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
885    if (!RHS.empty())
886      SmallVectorImpl<T>::operator=(::std::move(RHS));
887  }
888
889  const SmallVector &operator=(SmallVector &&RHS) {
890    SmallVectorImpl<T>::operator=(::std::move(RHS));
891    return *this;
892  }
893
894  const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
895    SmallVectorImpl<T>::operator=(::std::move(RHS));
896    return *this;
897  }
898
899  const SmallVector &operator=(std::initializer_list<T> IL) {
900    this->assign(IL);
901    return *this;
902  }
903};
904
905template <typename T, unsigned N>
906inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
907  return X.capacity_in_bytes();
908}
909
910/// Given a range of type R, iterate the entire range and return a
911/// SmallVector with elements of the vector.  This is useful, for example,
912/// when you want to iterate a range and then sort the results.
913template <unsigned Size, typename R>
914SmallVector<typename std::remove_const<typename std::remove_reference<
915                decltype(*std::begin(std::declval<R &>()))>::type>::type,
916            Size>
917to_vector(R &&Range) {
918  return {std::begin(Range), std::end(Range)};
919}
920
921} // end namespace llvm
922
923namespace std {
924
925  /// Implement std::swap in terms of SmallVector swap.
926  template<typename T>
927  inline void
928  swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
929    LHS.swap(RHS);
930  }
931
932  /// Implement std::swap in terms of SmallVector swap.
933  template<typename T, unsigned N>
934  inline void
935  swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
936    LHS.swap(RHS);
937  }
938
939} // end namespace std
940
941#endif // LLVM_ADT_SMALLVECTOR_H
942