1//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the BitVector class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_BITVECTOR_H
14#define LLVM_ADT_BITVECTOR_H
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/iterator_range.h"
18#include "llvm/Support/MathExtras.h"
19#include <algorithm>
20#include <cassert>
21#include <climits>
22#include <cstdint>
23#include <cstdlib>
24#include <cstring>
25#include <utility>
26
27namespace llvm {
28
29/// ForwardIterator for the bits that are set.
30/// Iterators get invalidated when resize / reserve is called.
31template <typename BitVectorT> class const_set_bits_iterator_impl {
32  const BitVectorT &Parent;
33  int Current = 0;
34
35  void advance() {
36    assert(Current != -1 && "Trying to advance past end.");
37    Current = Parent.find_next(Current);
38  }
39
40public:
41  const_set_bits_iterator_impl(const BitVectorT &Parent, int Current)
42      : Parent(Parent), Current(Current) {}
43  explicit const_set_bits_iterator_impl(const BitVectorT &Parent)
44      : const_set_bits_iterator_impl(Parent, Parent.find_first()) {}
45  const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default;
46
47  const_set_bits_iterator_impl operator++(int) {
48    auto Prev = *this;
49    advance();
50    return Prev;
51  }
52
53  const_set_bits_iterator_impl &operator++() {
54    advance();
55    return *this;
56  }
57
58  unsigned operator*() const { return Current; }
59
60  bool operator==(const const_set_bits_iterator_impl &Other) const {
61    assert(&Parent == &Other.Parent &&
62           "Comparing iterators from different BitVectors");
63    return Current == Other.Current;
64  }
65
66  bool operator!=(const const_set_bits_iterator_impl &Other) const {
67    assert(&Parent == &Other.Parent &&
68           "Comparing iterators from different BitVectors");
69    return Current != Other.Current;
70  }
71};
72
73class BitVector {
74  typedef uintptr_t BitWord;
75
76  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
77
78  static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
79                "Unsupported word size");
80
81  MutableArrayRef<BitWord> Bits; // Actual bits.
82  unsigned Size;                 // Size of bitvector in bits.
83
84public:
85  typedef unsigned size_type;
86  // Encapsulation of a single bit.
87  class reference {
88    friend class BitVector;
89
90    BitWord *WordRef;
91    unsigned BitPos;
92
93  public:
94    reference(BitVector &b, unsigned Idx) {
95      WordRef = &b.Bits[Idx / BITWORD_SIZE];
96      BitPos = Idx % BITWORD_SIZE;
97    }
98
99    reference() = delete;
100    reference(const reference&) = default;
101
102    reference &operator=(reference t) {
103      *this = bool(t);
104      return *this;
105    }
106
107    reference& operator=(bool t) {
108      if (t)
109        *WordRef |= BitWord(1) << BitPos;
110      else
111        *WordRef &= ~(BitWord(1) << BitPos);
112      return *this;
113    }
114
115    operator bool() const {
116      return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
117    }
118  };
119
120  typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator;
121  typedef const_set_bits_iterator set_iterator;
122
123  const_set_bits_iterator set_bits_begin() const {
124    return const_set_bits_iterator(*this);
125  }
126  const_set_bits_iterator set_bits_end() const {
127    return const_set_bits_iterator(*this, -1);
128  }
129  iterator_range<const_set_bits_iterator> set_bits() const {
130    return make_range(set_bits_begin(), set_bits_end());
131  }
132
133  /// BitVector default ctor - Creates an empty bitvector.
134  BitVector() : Size(0) {}
135
136  /// BitVector ctor - Creates a bitvector of specified number of bits. All
137  /// bits are initialized to the specified value.
138  explicit BitVector(unsigned s, bool t = false) : Size(s) {
139    size_t Capacity = NumBitWords(s);
140    Bits = allocate(Capacity);
141    init_words(Bits, t);
142    if (t)
143      clear_unused_bits();
144  }
145
146  /// BitVector copy ctor.
147  BitVector(const BitVector &RHS) : Size(RHS.size()) {
148    if (Size == 0) {
149      Bits = MutableArrayRef<BitWord>();
150      return;
151    }
152
153    size_t Capacity = NumBitWords(RHS.size());
154    Bits = allocate(Capacity);
155    std::memcpy(Bits.data(), RHS.Bits.data(), Capacity * sizeof(BitWord));
156  }
157
158  BitVector(BitVector &&RHS) : Bits(RHS.Bits), Size(RHS.Size) {
159    RHS.Bits = MutableArrayRef<BitWord>();
160    RHS.Size = 0;
161  }
162
163  ~BitVector() { std::free(Bits.data()); }
164
165  /// empty - Tests whether there are no bits in this bitvector.
166  bool empty() const { return Size == 0; }
167
168  /// size - Returns the number of bits in this bitvector.
169  size_type size() const { return Size; }
170
171  /// count - Returns the number of bits which are set.
172  size_type count() const {
173    unsigned NumBits = 0;
174    for (unsigned i = 0; i < NumBitWords(size()); ++i)
175      NumBits += countPopulation(Bits[i]);
176    return NumBits;
177  }
178
179  /// any - Returns true if any bit is set.
180  bool any() const {
181    for (unsigned i = 0; i < NumBitWords(size()); ++i)
182      if (Bits[i] != 0)
183        return true;
184    return false;
185  }
186
187  /// all - Returns true if all bits are set.
188  bool all() const {
189    for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
190      if (Bits[i] != ~BitWord(0))
191        return false;
192
193    // If bits remain check that they are ones. The unused bits are always zero.
194    if (unsigned Remainder = Size % BITWORD_SIZE)
195      return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1;
196
197    return true;
198  }
199
200  /// none - Returns true if none of the bits are set.
201  bool none() const {
202    return !any();
203  }
204
205  /// find_first_in - Returns the index of the first set bit in the range
206  /// [Begin, End).  Returns -1 if all bits in the range are unset.
207  int find_first_in(unsigned Begin, unsigned End) const {
208    assert(Begin <= End && End <= Size);
209    if (Begin == End)
210      return -1;
211
212    unsigned FirstWord = Begin / BITWORD_SIZE;
213    unsigned LastWord = (End - 1) / BITWORD_SIZE;
214
215    // Check subsequent words.
216    for (unsigned i = FirstWord; i <= LastWord; ++i) {
217      BitWord Copy = Bits[i];
218
219      if (i == FirstWord) {
220        unsigned FirstBit = Begin % BITWORD_SIZE;
221        Copy &= maskTrailingZeros<BitWord>(FirstBit);
222      }
223
224      if (i == LastWord) {
225        unsigned LastBit = (End - 1) % BITWORD_SIZE;
226        Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
227      }
228      if (Copy != 0)
229        return i * BITWORD_SIZE + countTrailingZeros(Copy);
230    }
231    return -1;
232  }
233
234  /// find_last_in - Returns the index of the last set bit in the range
235  /// [Begin, End).  Returns -1 if all bits in the range are unset.
236  int find_last_in(unsigned Begin, unsigned End) const {
237    assert(Begin <= End && End <= Size);
238    if (Begin == End)
239      return -1;
240
241    unsigned LastWord = (End - 1) / BITWORD_SIZE;
242    unsigned FirstWord = Begin / BITWORD_SIZE;
243
244    for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
245      unsigned CurrentWord = i - 1;
246
247      BitWord Copy = Bits[CurrentWord];
248      if (CurrentWord == LastWord) {
249        unsigned LastBit = (End - 1) % BITWORD_SIZE;
250        Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
251      }
252
253      if (CurrentWord == FirstWord) {
254        unsigned FirstBit = Begin % BITWORD_SIZE;
255        Copy &= maskTrailingZeros<BitWord>(FirstBit);
256      }
257
258      if (Copy != 0)
259        return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1;
260    }
261
262    return -1;
263  }
264
265  /// find_first_unset_in - Returns the index of the first unset bit in the
266  /// range [Begin, End).  Returns -1 if all bits in the range are set.
267  int find_first_unset_in(unsigned Begin, unsigned End) const {
268    assert(Begin <= End && End <= Size);
269    if (Begin == End)
270      return -1;
271
272    unsigned FirstWord = Begin / BITWORD_SIZE;
273    unsigned LastWord = (End - 1) / BITWORD_SIZE;
274
275    // Check subsequent words.
276    for (unsigned i = FirstWord; i <= LastWord; ++i) {
277      BitWord Copy = Bits[i];
278
279      if (i == FirstWord) {
280        unsigned FirstBit = Begin % BITWORD_SIZE;
281        Copy |= maskTrailingOnes<BitWord>(FirstBit);
282      }
283
284      if (i == LastWord) {
285        unsigned LastBit = (End - 1) % BITWORD_SIZE;
286        Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
287      }
288      if (Copy != ~BitWord(0)) {
289        unsigned Result = i * BITWORD_SIZE + countTrailingOnes(Copy);
290        return Result < size() ? Result : -1;
291      }
292    }
293    return -1;
294  }
295
296  /// find_last_unset_in - Returns the index of the last unset bit in the
297  /// range [Begin, End).  Returns -1 if all bits in the range are set.
298  int find_last_unset_in(unsigned Begin, unsigned End) const {
299    assert(Begin <= End && End <= Size);
300    if (Begin == End)
301      return -1;
302
303    unsigned LastWord = (End - 1) / BITWORD_SIZE;
304    unsigned FirstWord = Begin / BITWORD_SIZE;
305
306    for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
307      unsigned CurrentWord = i - 1;
308
309      BitWord Copy = Bits[CurrentWord];
310      if (CurrentWord == LastWord) {
311        unsigned LastBit = (End - 1) % BITWORD_SIZE;
312        Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
313      }
314
315      if (CurrentWord == FirstWord) {
316        unsigned FirstBit = Begin % BITWORD_SIZE;
317        Copy |= maskTrailingOnes<BitWord>(FirstBit);
318      }
319
320      if (Copy != ~BitWord(0)) {
321        unsigned Result =
322            (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1;
323        return Result < Size ? Result : -1;
324      }
325    }
326    return -1;
327  }
328
329  /// find_first - Returns the index of the first set bit, -1 if none
330  /// of the bits are set.
331  int find_first() const { return find_first_in(0, Size); }
332
333  /// find_last - Returns the index of the last set bit, -1 if none of the bits
334  /// are set.
335  int find_last() const { return find_last_in(0, Size); }
336
337  /// find_next - Returns the index of the next set bit following the
338  /// "Prev" bit. Returns -1 if the next set bit is not found.
339  int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); }
340
341  /// find_prev - Returns the index of the first set bit that precedes the
342  /// the bit at \p PriorTo.  Returns -1 if all previous bits are unset.
343  int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); }
344
345  /// find_first_unset - Returns the index of the first unset bit, -1 if all
346  /// of the bits are set.
347  int find_first_unset() const { return find_first_unset_in(0, Size); }
348
349  /// find_next_unset - Returns the index of the next unset bit following the
350  /// "Prev" bit.  Returns -1 if all remaining bits are set.
351  int find_next_unset(unsigned Prev) const {
352    return find_first_unset_in(Prev + 1, Size);
353  }
354
355  /// find_last_unset - Returns the index of the last unset bit, -1 if all of
356  /// the bits are set.
357  int find_last_unset() const { return find_last_unset_in(0, Size); }
358
359  /// find_prev_unset - Returns the index of the first unset bit that precedes
360  /// the bit at \p PriorTo.  Returns -1 if all previous bits are set.
361  int find_prev_unset(unsigned PriorTo) {
362    return find_last_unset_in(0, PriorTo);
363  }
364
365  /// clear - Removes all bits from the bitvector. Does not change capacity.
366  void clear() {
367    Size = 0;
368  }
369
370  /// resize - Grow or shrink the bitvector.
371  void resize(unsigned N, bool t = false) {
372    if (N > getBitCapacity()) {
373      unsigned OldCapacity = Bits.size();
374      grow(N);
375      init_words(Bits.drop_front(OldCapacity), t);
376    }
377
378    // Set any old unused bits that are now included in the BitVector. This
379    // may set bits that are not included in the new vector, but we will clear
380    // them back out below.
381    if (N > Size)
382      set_unused_bits(t);
383
384    // Update the size, and clear out any bits that are now unused
385    unsigned OldSize = Size;
386    Size = N;
387    if (t || N < OldSize)
388      clear_unused_bits();
389  }
390
391  void reserve(unsigned N) {
392    if (N > getBitCapacity())
393      grow(N);
394  }
395
396  // Set, reset, flip
397  BitVector &set() {
398    init_words(Bits, true);
399    clear_unused_bits();
400    return *this;
401  }
402
403  BitVector &set(unsigned Idx) {
404    assert(Bits.data() && "Bits never allocated");
405    Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
406    return *this;
407  }
408
409  /// set - Efficiently set a range of bits in [I, E)
410  BitVector &set(unsigned I, unsigned E) {
411    assert(I <= E && "Attempted to set backwards range!");
412    assert(E <= size() && "Attempted to set out-of-bounds range!");
413
414    if (I == E) return *this;
415
416    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
417      BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
418      BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
419      BitWord Mask = EMask - IMask;
420      Bits[I / BITWORD_SIZE] |= Mask;
421      return *this;
422    }
423
424    BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
425    Bits[I / BITWORD_SIZE] |= PrefixMask;
426    I = alignTo(I, BITWORD_SIZE);
427
428    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
429      Bits[I / BITWORD_SIZE] = ~BitWord(0);
430
431    BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
432    if (I < E)
433      Bits[I / BITWORD_SIZE] |= PostfixMask;
434
435    return *this;
436  }
437
438  BitVector &reset() {
439    init_words(Bits, false);
440    return *this;
441  }
442
443  BitVector &reset(unsigned Idx) {
444    Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
445    return *this;
446  }
447
448  /// reset - Efficiently reset a range of bits in [I, E)
449  BitVector &reset(unsigned I, unsigned E) {
450    assert(I <= E && "Attempted to reset backwards range!");
451    assert(E <= size() && "Attempted to reset out-of-bounds range!");
452
453    if (I == E) return *this;
454
455    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
456      BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
457      BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
458      BitWord Mask = EMask - IMask;
459      Bits[I / BITWORD_SIZE] &= ~Mask;
460      return *this;
461    }
462
463    BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
464    Bits[I / BITWORD_SIZE] &= ~PrefixMask;
465    I = alignTo(I, BITWORD_SIZE);
466
467    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
468      Bits[I / BITWORD_SIZE] = BitWord(0);
469
470    BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
471    if (I < E)
472      Bits[I / BITWORD_SIZE] &= ~PostfixMask;
473
474    return *this;
475  }
476
477  BitVector &flip() {
478    for (unsigned i = 0; i < NumBitWords(size()); ++i)
479      Bits[i] = ~Bits[i];
480    clear_unused_bits();
481    return *this;
482  }
483
484  BitVector &flip(unsigned Idx) {
485    Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
486    return *this;
487  }
488
489  // Indexing.
490  reference operator[](unsigned Idx) {
491    assert (Idx < Size && "Out-of-bounds Bit access.");
492    return reference(*this, Idx);
493  }
494
495  bool operator[](unsigned Idx) const {
496    assert (Idx < Size && "Out-of-bounds Bit access.");
497    BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
498    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
499  }
500
501  bool test(unsigned Idx) const {
502    return (*this)[Idx];
503  }
504
505  // Push single bit to end of vector.
506  void push_back(bool Val) {
507    unsigned OldSize = Size;
508    unsigned NewSize = Size + 1;
509
510    // Resize, which will insert zeros.
511    // If we already fit then the unused bits will be already zero.
512    if (NewSize > getBitCapacity())
513      resize(NewSize, false);
514    else
515      Size = NewSize;
516
517    // If true, set single bit.
518    if (Val)
519      set(OldSize);
520  }
521
522  /// Test if any common bits are set.
523  bool anyCommon(const BitVector &RHS) const {
524    unsigned ThisWords = NumBitWords(size());
525    unsigned RHSWords  = NumBitWords(RHS.size());
526    for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
527      if (Bits[i] & RHS.Bits[i])
528        return true;
529    return false;
530  }
531
532  // Comparison operators.
533  bool operator==(const BitVector &RHS) const {
534    unsigned ThisWords = NumBitWords(size());
535    unsigned RHSWords  = NumBitWords(RHS.size());
536    unsigned i;
537    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
538      if (Bits[i] != RHS.Bits[i])
539        return false;
540
541    // Verify that any extra words are all zeros.
542    if (i != ThisWords) {
543      for (; i != ThisWords; ++i)
544        if (Bits[i])
545          return false;
546    } else if (i != RHSWords) {
547      for (; i != RHSWords; ++i)
548        if (RHS.Bits[i])
549          return false;
550    }
551    return true;
552  }
553
554  bool operator!=(const BitVector &RHS) const {
555    return !(*this == RHS);
556  }
557
558  /// Intersection, union, disjoint union.
559  BitVector &operator&=(const BitVector &RHS) {
560    unsigned ThisWords = NumBitWords(size());
561    unsigned RHSWords  = NumBitWords(RHS.size());
562    unsigned i;
563    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
564      Bits[i] &= RHS.Bits[i];
565
566    // Any bits that are just in this bitvector become zero, because they aren't
567    // in the RHS bit vector.  Any words only in RHS are ignored because they
568    // are already zero in the LHS.
569    for (; i != ThisWords; ++i)
570      Bits[i] = 0;
571
572    return *this;
573  }
574
575  /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
576  BitVector &reset(const BitVector &RHS) {
577    unsigned ThisWords = NumBitWords(size());
578    unsigned RHSWords  = NumBitWords(RHS.size());
579    unsigned i;
580    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
581      Bits[i] &= ~RHS.Bits[i];
582    return *this;
583  }
584
585  /// test - Check if (This - RHS) is zero.
586  /// This is the same as reset(RHS) and any().
587  bool test(const BitVector &RHS) const {
588    unsigned ThisWords = NumBitWords(size());
589    unsigned RHSWords  = NumBitWords(RHS.size());
590    unsigned i;
591    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
592      if ((Bits[i] & ~RHS.Bits[i]) != 0)
593        return true;
594
595    for (; i != ThisWords ; ++i)
596      if (Bits[i] != 0)
597        return true;
598
599    return false;
600  }
601
602  BitVector &operator|=(const BitVector &RHS) {
603    if (size() < RHS.size())
604      resize(RHS.size());
605    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
606      Bits[i] |= RHS.Bits[i];
607    return *this;
608  }
609
610  BitVector &operator^=(const BitVector &RHS) {
611    if (size() < RHS.size())
612      resize(RHS.size());
613    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
614      Bits[i] ^= RHS.Bits[i];
615    return *this;
616  }
617
618  BitVector &operator>>=(unsigned N) {
619    assert(N <= Size);
620    if (LLVM_UNLIKELY(empty() || N == 0))
621      return *this;
622
623    unsigned NumWords = NumBitWords(Size);
624    assert(NumWords >= 1);
625
626    wordShr(N / BITWORD_SIZE);
627
628    unsigned BitDistance = N % BITWORD_SIZE;
629    if (BitDistance == 0)
630      return *this;
631
632    // When the shift size is not a multiple of the word size, then we have
633    // a tricky situation where each word in succession needs to extract some
634    // of the bits from the next word and or them into this word while
635    // shifting this word to make room for the new bits.  This has to be done
636    // for every word in the array.
637
638    // Since we're shifting each word right, some bits will fall off the end
639    // of each word to the right, and empty space will be created on the left.
640    // The final word in the array will lose bits permanently, so starting at
641    // the beginning, work forwards shifting each word to the right, and
642    // OR'ing in the bits from the end of the next word to the beginning of
643    // the current word.
644
645    // Example:
646    //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right
647    //   by 4 bits.
648    // Step 1: Word[0] >>= 4           ; 0x0ABBCCDD
649    // Step 2: Word[0] |= 0x10000000   ; 0x1ABBCCDD
650    // Step 3: Word[1] >>= 4           ; 0x0EEFF001
651    // Step 4: Word[1] |= 0x50000000   ; 0x5EEFF001
652    // Step 5: Word[2] >>= 4           ; 0x02334455
653    // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 }
654    const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance);
655    const unsigned LSH = BITWORD_SIZE - BitDistance;
656
657    for (unsigned I = 0; I < NumWords - 1; ++I) {
658      Bits[I] >>= BitDistance;
659      Bits[I] |= (Bits[I + 1] & Mask) << LSH;
660    }
661
662    Bits[NumWords - 1] >>= BitDistance;
663
664    return *this;
665  }
666
667  BitVector &operator<<=(unsigned N) {
668    assert(N <= Size);
669    if (LLVM_UNLIKELY(empty() || N == 0))
670      return *this;
671
672    unsigned NumWords = NumBitWords(Size);
673    assert(NumWords >= 1);
674
675    wordShl(N / BITWORD_SIZE);
676
677    unsigned BitDistance = N % BITWORD_SIZE;
678    if (BitDistance == 0)
679      return *this;
680
681    // When the shift size is not a multiple of the word size, then we have
682    // a tricky situation where each word in succession needs to extract some
683    // of the bits from the previous word and or them into this word while
684    // shifting this word to make room for the new bits.  This has to be done
685    // for every word in the array.  This is similar to the algorithm outlined
686    // in operator>>=, but backwards.
687
688    // Since we're shifting each word left, some bits will fall off the end
689    // of each word to the left, and empty space will be created on the right.
690    // The first word in the array will lose bits permanently, so starting at
691    // the end, work backwards shifting each word to the left, and OR'ing
692    // in the bits from the end of the next word to the beginning of the
693    // current word.
694
695    // Example:
696    //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left
697    //   by 4 bits.
698    // Step 1: Word[2] <<= 4           ; 0x23344550
699    // Step 2: Word[2] |= 0x0000000E   ; 0x2334455E
700    // Step 3: Word[1] <<= 4           ; 0xEFF00110
701    // Step 4: Word[1] |= 0x0000000A   ; 0xEFF0011A
702    // Step 5: Word[0] <<= 4           ; 0xABBCCDD0
703    // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E }
704    const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance);
705    const unsigned RSH = BITWORD_SIZE - BitDistance;
706
707    for (int I = NumWords - 1; I > 0; --I) {
708      Bits[I] <<= BitDistance;
709      Bits[I] |= (Bits[I - 1] & Mask) >> RSH;
710    }
711    Bits[0] <<= BitDistance;
712    clear_unused_bits();
713
714    return *this;
715  }
716
717  // Assignment operator.
718  const BitVector &operator=(const BitVector &RHS) {
719    if (this == &RHS) return *this;
720
721    Size = RHS.size();
722    unsigned RHSWords = NumBitWords(Size);
723    if (Size <= getBitCapacity()) {
724      if (Size)
725        std::memcpy(Bits.data(), RHS.Bits.data(), RHSWords * sizeof(BitWord));
726      clear_unused_bits();
727      return *this;
728    }
729
730    // Grow the bitvector to have enough elements.
731    unsigned NewCapacity = RHSWords;
732    assert(NewCapacity > 0 && "negative capacity?");
733    auto NewBits = allocate(NewCapacity);
734    std::memcpy(NewBits.data(), RHS.Bits.data(), NewCapacity * sizeof(BitWord));
735
736    // Destroy the old bits.
737    std::free(Bits.data());
738    Bits = NewBits;
739
740    return *this;
741  }
742
743  const BitVector &operator=(BitVector &&RHS) {
744    if (this == &RHS) return *this;
745
746    std::free(Bits.data());
747    Bits = RHS.Bits;
748    Size = RHS.Size;
749
750    RHS.Bits = MutableArrayRef<BitWord>();
751    RHS.Size = 0;
752
753    return *this;
754  }
755
756  void swap(BitVector &RHS) {
757    std::swap(Bits, RHS.Bits);
758    std::swap(Size, RHS.Size);
759  }
760
761  //===--------------------------------------------------------------------===//
762  // Portable bit mask operations.
763  //===--------------------------------------------------------------------===//
764  //
765  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
766  // fixed word size makes it easier to work with literal bit vector constants
767  // in portable code.
768  //
769  // The LSB in each word is the lowest numbered bit.  The size of a portable
770  // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
771  // given, the bit mask is assumed to cover the entire BitVector.
772
773  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
774  /// This computes "*this |= Mask".
775  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
776    applyMask<true, false>(Mask, MaskWords);
777  }
778
779  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
780  /// Don't resize. This computes "*this &= ~Mask".
781  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
782    applyMask<false, false>(Mask, MaskWords);
783  }
784
785  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
786  /// Don't resize.  This computes "*this |= ~Mask".
787  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
788    applyMask<true, true>(Mask, MaskWords);
789  }
790
791  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
792  /// Don't resize.  This computes "*this &= Mask".
793  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
794    applyMask<false, true>(Mask, MaskWords);
795  }
796
797private:
798  /// Perform a logical left shift of \p Count words by moving everything
799  /// \p Count words to the right in memory.
800  ///
801  /// While confusing, words are stored from least significant at Bits[0] to
802  /// most significant at Bits[NumWords-1].  A logical shift left, however,
803  /// moves the current least significant bit to a higher logical index, and
804  /// fills the previous least significant bits with 0.  Thus, we actually
805  /// need to move the bytes of the memory to the right, not to the left.
806  /// Example:
807  ///   Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000]
808  /// represents a BitVector where 0xBBBBAAAA contain the least significant
809  /// bits.  So if we want to shift the BitVector left by 2 words, we need to
810  /// turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a
811  /// memmove which moves right, not left.
812  void wordShl(uint32_t Count) {
813    if (Count == 0)
814      return;
815
816    uint32_t NumWords = NumBitWords(Size);
817
818    auto Src = Bits.take_front(NumWords).drop_back(Count);
819    auto Dest = Bits.take_front(NumWords).drop_front(Count);
820
821    // Since we always move Word-sized chunks of data with src and dest both
822    // aligned to a word-boundary, we don't need to worry about endianness
823    // here.
824    std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
825    std::memset(Bits.data(), 0, Count * sizeof(BitWord));
826    clear_unused_bits();
827  }
828
829  /// Perform a logical right shift of \p Count words by moving those
830  /// words to the left in memory.  See wordShl for more information.
831  ///
832  void wordShr(uint32_t Count) {
833    if (Count == 0)
834      return;
835
836    uint32_t NumWords = NumBitWords(Size);
837
838    auto Src = Bits.take_front(NumWords).drop_front(Count);
839    auto Dest = Bits.take_front(NumWords).drop_back(Count);
840    assert(Dest.size() == Src.size());
841
842    std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
843    std::memset(Dest.end(), 0, Count * sizeof(BitWord));
844  }
845
846  MutableArrayRef<BitWord> allocate(size_t NumWords) {
847    BitWord *RawBits = static_cast<BitWord *>(
848        safe_malloc(NumWords * sizeof(BitWord)));
849    return MutableArrayRef<BitWord>(RawBits, NumWords);
850  }
851
852  int next_unset_in_word(int WordIndex, BitWord Word) const {
853    unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word);
854    return Result < size() ? Result : -1;
855  }
856
857  unsigned NumBitWords(unsigned S) const {
858    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
859  }
860
861  // Set the unused bits in the high words.
862  void set_unused_bits(bool t = true) {
863    //  Set high words first.
864    unsigned UsedWords = NumBitWords(Size);
865    if (Bits.size() > UsedWords)
866      init_words(Bits.drop_front(UsedWords), t);
867
868    //  Then set any stray high bits of the last used word.
869    unsigned ExtraBits = Size % BITWORD_SIZE;
870    if (ExtraBits) {
871      BitWord ExtraBitMask = ~BitWord(0) << ExtraBits;
872      if (t)
873        Bits[UsedWords-1] |= ExtraBitMask;
874      else
875        Bits[UsedWords-1] &= ~ExtraBitMask;
876    }
877  }
878
879  // Clear the unused bits in the high words.
880  void clear_unused_bits() {
881    set_unused_bits(false);
882  }
883
884  void grow(unsigned NewSize) {
885    size_t NewCapacity = std::max<size_t>(NumBitWords(NewSize), Bits.size() * 2);
886    assert(NewCapacity > 0 && "realloc-ing zero space");
887    BitWord *NewBits = static_cast<BitWord *>(
888        safe_realloc(Bits.data(), NewCapacity * sizeof(BitWord)));
889    Bits = MutableArrayRef<BitWord>(NewBits, NewCapacity);
890    clear_unused_bits();
891  }
892
893  void init_words(MutableArrayRef<BitWord> B, bool t) {
894    if (B.size() > 0)
895      memset(B.data(), 0 - (int)t, B.size() * sizeof(BitWord));
896  }
897
898  template<bool AddBits, bool InvertMask>
899  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
900    static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
901    MaskWords = std::min(MaskWords, (size() + 31) / 32);
902    const unsigned Scale = BITWORD_SIZE / 32;
903    unsigned i;
904    for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
905      BitWord BW = Bits[i];
906      // This inner loop should unroll completely when BITWORD_SIZE > 32.
907      for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
908        uint32_t M = *Mask++;
909        if (InvertMask) M = ~M;
910        if (AddBits) BW |=   BitWord(M) << b;
911        else         BW &= ~(BitWord(M) << b);
912      }
913      Bits[i] = BW;
914    }
915    for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
916      uint32_t M = *Mask++;
917      if (InvertMask) M = ~M;
918      if (AddBits) Bits[i] |=   BitWord(M) << b;
919      else         Bits[i] &= ~(BitWord(M) << b);
920    }
921    if (AddBits)
922      clear_unused_bits();
923  }
924
925public:
926  /// Return the size (in bytes) of the bit vector.
927  size_t getMemorySize() const { return Bits.size() * sizeof(BitWord); }
928  size_t getBitCapacity() const { return Bits.size() * BITWORD_SIZE; }
929};
930
931inline size_t capacity_in_bytes(const BitVector &X) {
932  return X.getMemorySize();
933}
934
935} // end namespace llvm
936
937namespace std {
938  /// Implement std::swap in terms of BitVector swap.
939  inline void
940  swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
941    LHS.swap(RHS);
942  }
943} // end namespace std
944
945#endif // LLVM_ADT_BITVECTOR_H
946