1//===- LinkerScript.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the parser/evaluator of the linker script.
10//
11//===----------------------------------------------------------------------===//
12
13#include "LinkerScript.h"
14#include "Config.h"
15#include "InputSection.h"
16#include "OutputSections.h"
17#include "SymbolTable.h"
18#include "Symbols.h"
19#include "SyntheticSections.h"
20#include "Target.h"
21#include "Writer.h"
22#include "lld/Common/Memory.h"
23#include "lld/Common/Strings.h"
24#include "lld/Common/Threads.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/BinaryFormat/ELF.h"
28#include "llvm/Support/Casting.h"
29#include "llvm/Support/Endian.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/FileSystem.h"
32#include "llvm/Support/Path.h"
33#include <algorithm>
34#include <cassert>
35#include <cstddef>
36#include <cstdint>
37#include <iterator>
38#include <limits>
39#include <string>
40#include <vector>
41
42using namespace llvm;
43using namespace llvm::ELF;
44using namespace llvm::object;
45using namespace llvm::support::endian;
46
47namespace lld {
48namespace elf {
49LinkerScript *script;
50
51static uint64_t getOutputSectionVA(SectionBase *sec) {
52  OutputSection *os = sec->getOutputSection();
53  assert(os && "input section has no output section assigned");
54  return os ? os->addr : 0;
55}
56
57uint64_t ExprValue::getValue() const {
58  if (sec)
59    return alignTo(sec->getOffset(val) + getOutputSectionVA(sec),
60                   alignment);
61  return alignTo(val, alignment);
62}
63
64uint64_t ExprValue::getSecAddr() const {
65  if (sec)
66    return sec->getOffset(0) + getOutputSectionVA(sec);
67  return 0;
68}
69
70uint64_t ExprValue::getSectionOffset() const {
71  // If the alignment is trivial, we don't have to compute the full
72  // value to know the offset. This allows this function to succeed in
73  // cases where the output section is not yet known.
74  if (alignment == 1 && !sec)
75    return val;
76  return getValue() - getSecAddr();
77}
78
79OutputSection *LinkerScript::createOutputSection(StringRef name,
80                                                 StringRef location) {
81  OutputSection *&secRef = nameToOutputSection[name];
82  OutputSection *sec;
83  if (secRef && secRef->location.empty()) {
84    // There was a forward reference.
85    sec = secRef;
86  } else {
87    sec = make<OutputSection>(name, SHT_PROGBITS, 0);
88    if (!secRef)
89      secRef = sec;
90  }
91  sec->location = location;
92  return sec;
93}
94
95OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
96  OutputSection *&cmdRef = nameToOutputSection[name];
97  if (!cmdRef)
98    cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
99  return cmdRef;
100}
101
102// Expands the memory region by the specified size.
103static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
104                               StringRef regionName, StringRef secName) {
105  memRegion->curPos += size;
106  uint64_t newSize = memRegion->curPos - memRegion->origin;
107  if (newSize > memRegion->length)
108    error("section '" + secName + "' will not fit in region '" + regionName +
109          "': overflowed by " + Twine(newSize - memRegion->length) + " bytes");
110}
111
112void LinkerScript::expandMemoryRegions(uint64_t size) {
113  if (ctx->memRegion)
114    expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
115                       ctx->outSec->name);
116  // Only expand the LMARegion if it is different from memRegion.
117  if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
118    expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
119                       ctx->outSec->name);
120}
121
122void LinkerScript::expandOutputSection(uint64_t size) {
123  ctx->outSec->size += size;
124  expandMemoryRegions(size);
125}
126
127void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
128  uint64_t val = e().getValue();
129  if (val < dot && inSec)
130    error(loc + ": unable to move location counter backward for: " +
131          ctx->outSec->name);
132
133  // Update to location counter means update to section size.
134  if (inSec)
135    expandOutputSection(val - dot);
136
137  dot = val;
138}
139
140// Used for handling linker symbol assignments, for both finalizing
141// their values and doing early declarations. Returns true if symbol
142// should be defined from linker script.
143static bool shouldDefineSym(SymbolAssignment *cmd) {
144  if (cmd->name == ".")
145    return false;
146
147  if (!cmd->provide)
148    return true;
149
150  // If a symbol was in PROVIDE(), we need to define it only
151  // when it is a referenced undefined symbol.
152  Symbol *b = symtab->find(cmd->name);
153  if (b && !b->isDefined())
154    return true;
155  return false;
156}
157
158// Called by processSymbolAssignments() to assign definitions to
159// linker-script-defined symbols.
160void LinkerScript::addSymbol(SymbolAssignment *cmd) {
161  if (!shouldDefineSym(cmd))
162    return;
163
164  // Define a symbol.
165  ExprValue value = cmd->expression();
166  SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
167  uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
168
169  // When this function is called, section addresses have not been
170  // fixed yet. So, we may or may not know the value of the RHS
171  // expression.
172  //
173  // For example, if an expression is `x = 42`, we know x is always 42.
174  // However, if an expression is `x = .`, there's no way to know its
175  // value at the moment.
176  //
177  // We want to set symbol values early if we can. This allows us to
178  // use symbols as variables in linker scripts. Doing so allows us to
179  // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
180  uint64_t symValue = value.sec ? 0 : value.getValue();
181
182  Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE,
183                 symValue, 0, sec);
184
185  Symbol *sym = symtab->insert(cmd->name);
186  sym->mergeProperties(newSym);
187  sym->replace(newSym);
188  cmd->sym = cast<Defined>(sym);
189}
190
191// This function is called from LinkerScript::declareSymbols.
192// It creates a placeholder symbol if needed.
193static void declareSymbol(SymbolAssignment *cmd) {
194  if (!shouldDefineSym(cmd))
195    return;
196
197  uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
198  Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
199                 nullptr);
200
201  // We can't calculate final value right now.
202  Symbol *sym = symtab->insert(cmd->name);
203  sym->mergeProperties(newSym);
204  sym->replace(newSym);
205
206  cmd->sym = cast<Defined>(sym);
207  cmd->provide = false;
208  sym->scriptDefined = true;
209}
210
211using SymbolAssignmentMap =
212    DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
213
214// Collect section/value pairs of linker-script-defined symbols. This is used to
215// check whether symbol values converge.
216static SymbolAssignmentMap
217getSymbolAssignmentValues(const std::vector<BaseCommand *> &sectionCommands) {
218  SymbolAssignmentMap ret;
219  for (BaseCommand *base : sectionCommands) {
220    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
221      if (cmd->sym) // sym is nullptr for dot.
222        ret.try_emplace(cmd->sym,
223                        std::make_pair(cmd->sym->section, cmd->sym->value));
224      continue;
225    }
226    for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
227      if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
228        if (cmd->sym)
229          ret.try_emplace(cmd->sym,
230                          std::make_pair(cmd->sym->section, cmd->sym->value));
231  }
232  return ret;
233}
234
235// Returns the lexicographical smallest (for determinism) Defined whose
236// section/value has changed.
237static const Defined *
238getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
239  const Defined *changed = nullptr;
240  for (auto &it : oldValues) {
241    const Defined *sym = it.first;
242    if (std::make_pair(sym->section, sym->value) != it.second &&
243        (!changed || sym->getName() < changed->getName()))
244      changed = sym;
245  }
246  return changed;
247}
248
249// This method is used to handle INSERT AFTER statement. Here we rebuild
250// the list of script commands to mix sections inserted into.
251void LinkerScript::processInsertCommands() {
252  std::vector<BaseCommand *> v;
253  auto insert = [&](std::vector<BaseCommand *> &from) {
254    v.insert(v.end(), from.begin(), from.end());
255    from.clear();
256  };
257
258  for (BaseCommand *base : sectionCommands) {
259    if (auto *os = dyn_cast<OutputSection>(base)) {
260      insert(insertBeforeCommands[os->name]);
261      v.push_back(base);
262      insert(insertAfterCommands[os->name]);
263      continue;
264    }
265    v.push_back(base);
266  }
267
268  for (auto &cmds : {insertBeforeCommands, insertAfterCommands})
269    for (const std::pair<StringRef, std::vector<BaseCommand *>> &p : cmds)
270      if (!p.second.empty())
271        error("unable to INSERT AFTER/BEFORE " + p.first +
272              ": section not defined");
273
274  sectionCommands = std::move(v);
275}
276
277// Symbols defined in script should not be inlined by LTO. At the same time
278// we don't know their final values until late stages of link. Here we scan
279// over symbol assignment commands and create placeholder symbols if needed.
280void LinkerScript::declareSymbols() {
281  assert(!ctx);
282  for (BaseCommand *base : sectionCommands) {
283    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
284      declareSymbol(cmd);
285      continue;
286    }
287
288    // If the output section directive has constraints,
289    // we can't say for sure if it is going to be included or not.
290    // Skip such sections for now. Improve the checks if we ever
291    // need symbols from that sections to be declared early.
292    auto *sec = cast<OutputSection>(base);
293    if (sec->constraint != ConstraintKind::NoConstraint)
294      continue;
295    for (BaseCommand *base2 : sec->sectionCommands)
296      if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
297        declareSymbol(cmd);
298  }
299}
300
301// This function is called from assignAddresses, while we are
302// fixing the output section addresses. This function is supposed
303// to set the final value for a given symbol assignment.
304void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
305  if (cmd->name == ".") {
306    setDot(cmd->expression, cmd->location, inSec);
307    return;
308  }
309
310  if (!cmd->sym)
311    return;
312
313  ExprValue v = cmd->expression();
314  if (v.isAbsolute()) {
315    cmd->sym->section = nullptr;
316    cmd->sym->value = v.getValue();
317  } else {
318    cmd->sym->section = v.sec;
319    cmd->sym->value = v.getSectionOffset();
320  }
321}
322
323static std::string getFilename(InputFile *file) {
324  if (!file)
325    return "";
326  if (file->archiveName.empty())
327    return file->getName();
328  return (file->archiveName + "(" + file->getName() + ")").str();
329}
330
331bool LinkerScript::shouldKeep(InputSectionBase *s) {
332  if (keptSections.empty())
333    return false;
334  std::string filename = getFilename(s->file);
335  for (InputSectionDescription *id : keptSections)
336    if (id->filePat.match(filename))
337      for (SectionPattern &p : id->sectionPatterns)
338        if (p.sectionPat.match(s->name))
339          return true;
340  return false;
341}
342
343// A helper function for the SORT() command.
344static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
345                             ConstraintKind kind) {
346  if (kind == ConstraintKind::NoConstraint)
347    return true;
348
349  bool isRW = llvm::any_of(
350      sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
351
352  return (isRW && kind == ConstraintKind::ReadWrite) ||
353         (!isRW && kind == ConstraintKind::ReadOnly);
354}
355
356static void sortSections(MutableArrayRef<InputSectionBase *> vec,
357                         SortSectionPolicy k) {
358  auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
359    // ">" is not a mistake. Sections with larger alignments are placed
360    // before sections with smaller alignments in order to reduce the
361    // amount of padding necessary. This is compatible with GNU.
362    return a->alignment > b->alignment;
363  };
364  auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
365    return a->name < b->name;
366  };
367  auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
368    return getPriority(a->name) < getPriority(b->name);
369  };
370
371  switch (k) {
372  case SortSectionPolicy::Default:
373  case SortSectionPolicy::None:
374    return;
375  case SortSectionPolicy::Alignment:
376    return llvm::stable_sort(vec, alignmentComparator);
377  case SortSectionPolicy::Name:
378    return llvm::stable_sort(vec, nameComparator);
379  case SortSectionPolicy::Priority:
380    return llvm::stable_sort(vec, priorityComparator);
381  }
382}
383
384// Sort sections as instructed by SORT-family commands and --sort-section
385// option. Because SORT-family commands can be nested at most two depth
386// (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
387// line option is respected even if a SORT command is given, the exact
388// behavior we have here is a bit complicated. Here are the rules.
389//
390// 1. If two SORT commands are given, --sort-section is ignored.
391// 2. If one SORT command is given, and if it is not SORT_NONE,
392//    --sort-section is handled as an inner SORT command.
393// 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
394// 4. If no SORT command is given, sort according to --sort-section.
395static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
396                              const SectionPattern &pat) {
397  if (pat.sortOuter == SortSectionPolicy::None)
398    return;
399
400  if (pat.sortInner == SortSectionPolicy::Default)
401    sortSections(vec, config->sortSection);
402  else
403    sortSections(vec, pat.sortInner);
404  sortSections(vec, pat.sortOuter);
405}
406
407// Compute and remember which sections the InputSectionDescription matches.
408std::vector<InputSectionBase *>
409LinkerScript::computeInputSections(const InputSectionDescription *cmd) {
410  std::vector<InputSectionBase *> ret;
411
412  // Collects all sections that satisfy constraints of Cmd.
413  for (const SectionPattern &pat : cmd->sectionPatterns) {
414    size_t sizeBefore = ret.size();
415
416    for (InputSectionBase *sec : inputSections) {
417      if (!sec->isLive() || sec->parent)
418        continue;
419
420      // For -emit-relocs we have to ignore entries like
421      //   .rela.dyn : { *(.rela.data) }
422      // which are common because they are in the default bfd script.
423      // We do not ignore SHT_REL[A] linker-synthesized sections here because
424      // want to support scripts that do custom layout for them.
425      if (isa<InputSection>(sec) &&
426          cast<InputSection>(sec)->getRelocatedSection())
427        continue;
428
429      std::string filename = getFilename(sec->file);
430      if (!cmd->filePat.match(filename) ||
431          pat.excludedFilePat.match(filename) ||
432          !pat.sectionPat.match(sec->name))
433        continue;
434
435      ret.push_back(sec);
436    }
437
438    sortInputSections(
439        MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat);
440  }
441  return ret;
442}
443
444void LinkerScript::discard(InputSectionBase *s) {
445  if (s == in.shStrTab || s == mainPart->relrDyn)
446    error("discarding " + s->name + " section is not allowed");
447
448  // You can discard .hash and .gnu.hash sections by linker scripts. Since
449  // they are synthesized sections, we need to handle them differently than
450  // other regular sections.
451  if (s == mainPart->gnuHashTab)
452    mainPart->gnuHashTab = nullptr;
453  if (s == mainPart->hashTab)
454    mainPart->hashTab = nullptr;
455
456  s->markDead();
457  s->parent = nullptr;
458  for (InputSection *ds : s->dependentSections)
459    discard(ds);
460}
461
462std::vector<InputSectionBase *>
463LinkerScript::createInputSectionList(OutputSection &outCmd) {
464  std::vector<InputSectionBase *> ret;
465
466  for (BaseCommand *base : outCmd.sectionCommands) {
467    if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
468      cmd->sectionBases = computeInputSections(cmd);
469      for (InputSectionBase *s : cmd->sectionBases)
470        s->parent = &outCmd;
471      ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end());
472    }
473  }
474  return ret;
475}
476
477// Create output sections described by SECTIONS commands.
478void LinkerScript::processSectionCommands() {
479  size_t i = 0;
480  for (BaseCommand *base : sectionCommands) {
481    if (auto *sec = dyn_cast<OutputSection>(base)) {
482      std::vector<InputSectionBase *> v = createInputSectionList(*sec);
483
484      // The output section name `/DISCARD/' is special.
485      // Any input section assigned to it is discarded.
486      if (sec->name == "/DISCARD/") {
487        for (InputSectionBase *s : v)
488          discard(s);
489        sec->sectionCommands.clear();
490        continue;
491      }
492
493      // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
494      // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
495      // sections satisfy a given constraint. If not, a directive is handled
496      // as if it wasn't present from the beginning.
497      //
498      // Because we'll iterate over SectionCommands many more times, the easy
499      // way to "make it as if it wasn't present" is to make it empty.
500      if (!matchConstraints(v, sec->constraint)) {
501        for (InputSectionBase *s : v)
502          s->parent = nullptr;
503        sec->sectionCommands.clear();
504        continue;
505      }
506
507      // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
508      // is given, input sections are aligned to that value, whether the
509      // given value is larger or smaller than the original section alignment.
510      if (sec->subalignExpr) {
511        uint32_t subalign = sec->subalignExpr().getValue();
512        for (InputSectionBase *s : v)
513          s->alignment = subalign;
514      }
515
516      // Set the partition field the same way OutputSection::recordSection()
517      // does. Partitions cannot be used with the SECTIONS command, so this is
518      // always 1.
519      sec->partition = 1;
520
521      sec->sectionIndex = i++;
522    }
523  }
524}
525
526void LinkerScript::processSymbolAssignments() {
527  // Dot outside an output section still represents a relative address, whose
528  // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
529  // that fills the void outside a section. It has an index of one, which is
530  // indistinguishable from any other regular section index.
531  aether = make<OutputSection>("", 0, SHF_ALLOC);
532  aether->sectionIndex = 1;
533
534  // ctx captures the local AddressState and makes it accessible deliberately.
535  // This is needed as there are some cases where we cannot just thread the
536  // current state through to a lambda function created by the script parser.
537  AddressState state;
538  ctx = &state;
539  ctx->outSec = aether;
540
541  for (BaseCommand *base : sectionCommands) {
542    if (auto *cmd = dyn_cast<SymbolAssignment>(base))
543      addSymbol(cmd);
544    else
545      for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
546        if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
547          addSymbol(cmd);
548  }
549
550  ctx = nullptr;
551}
552
553static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
554                                 StringRef name) {
555  for (BaseCommand *base : vec)
556    if (auto *sec = dyn_cast<OutputSection>(base))
557      if (sec->name == name)
558        return sec;
559  return nullptr;
560}
561
562static OutputSection *createSection(InputSectionBase *isec,
563                                    StringRef outsecName) {
564  OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
565  sec->recordSection(isec);
566  return sec;
567}
568
569static OutputSection *
570addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
571            InputSectionBase *isec, StringRef outsecName) {
572  // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
573  // option is given. A section with SHT_GROUP defines a "section group", and
574  // its members have SHF_GROUP attribute. Usually these flags have already been
575  // stripped by InputFiles.cpp as section groups are processed and uniquified.
576  // However, for the -r option, we want to pass through all section groups
577  // as-is because adding/removing members or merging them with other groups
578  // change their semantics.
579  if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
580    return createSection(isec, outsecName);
581
582  // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
583  // relocation sections .rela.foo and .rela.bar for example. Most tools do
584  // not allow multiple REL[A] sections for output section. Hence we
585  // should combine these relocation sections into single output.
586  // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
587  // other REL[A] sections created by linker itself.
588  if (!isa<SyntheticSection>(isec) &&
589      (isec->type == SHT_REL || isec->type == SHT_RELA)) {
590    auto *sec = cast<InputSection>(isec);
591    OutputSection *out = sec->getRelocatedSection()->getOutputSection();
592
593    if (out->relocationSection) {
594      out->relocationSection->recordSection(sec);
595      return nullptr;
596    }
597
598    out->relocationSection = createSection(isec, outsecName);
599    return out->relocationSection;
600  }
601
602  //  The ELF spec just says
603  // ----------------------------------------------------------------
604  // In the first phase, input sections that match in name, type and
605  // attribute flags should be concatenated into single sections.
606  // ----------------------------------------------------------------
607  //
608  // However, it is clear that at least some flags have to be ignored for
609  // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
610  // ignored. We should not have two output .text sections just because one was
611  // in a group and another was not for example.
612  //
613  // It also seems that wording was a late addition and didn't get the
614  // necessary scrutiny.
615  //
616  // Merging sections with different flags is expected by some users. One
617  // reason is that if one file has
618  //
619  // int *const bar __attribute__((section(".foo"))) = (int *)0;
620  //
621  // gcc with -fPIC will produce a read only .foo section. But if another
622  // file has
623  //
624  // int zed;
625  // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
626  //
627  // gcc with -fPIC will produce a read write section.
628  //
629  // Last but not least, when using linker script the merge rules are forced by
630  // the script. Unfortunately, linker scripts are name based. This means that
631  // expressions like *(.foo*) can refer to multiple input sections with
632  // different flags. We cannot put them in different output sections or we
633  // would produce wrong results for
634  //
635  // start = .; *(.foo.*) end = .; *(.bar)
636  //
637  // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
638  // another. The problem is that there is no way to layout those output
639  // sections such that the .foo sections are the only thing between the start
640  // and end symbols.
641  //
642  // Given the above issues, we instead merge sections by name and error on
643  // incompatible types and flags.
644  TinyPtrVector<OutputSection *> &v = map[outsecName];
645  for (OutputSection *sec : v) {
646    if (sec->partition != isec->partition)
647      continue;
648
649    if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
650      // Merging two SHF_LINK_ORDER sections with different sh_link fields will
651      // change their semantics, so we only merge them in -r links if they will
652      // end up being linked to the same output section. The casts are fine
653      // because everything in the map was created by the orphan placement code.
654      auto *firstIsec = cast<InputSectionBase>(
655          cast<InputSectionDescription>(sec->sectionCommands[0])
656              ->sectionBases[0]);
657      if (firstIsec->getLinkOrderDep()->getOutputSection() !=
658          isec->getLinkOrderDep()->getOutputSection())
659        continue;
660    }
661
662    sec->recordSection(isec);
663    return nullptr;
664  }
665
666  OutputSection *sec = createSection(isec, outsecName);
667  v.push_back(sec);
668  return sec;
669}
670
671// Add sections that didn't match any sections command.
672void LinkerScript::addOrphanSections() {
673  StringMap<TinyPtrVector<OutputSection *>> map;
674  std::vector<OutputSection *> v;
675
676  std::function<void(InputSectionBase *)> add;
677  add = [&](InputSectionBase *s) {
678    if (s->isLive() && !s->parent) {
679      StringRef name = getOutputSectionName(s);
680
681      if (config->orphanHandling == OrphanHandlingPolicy::Error)
682        error(toString(s) + " is being placed in '" + name + "'");
683      else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
684        warn(toString(s) + " is being placed in '" + name + "'");
685
686      if (OutputSection *sec = findByName(sectionCommands, name)) {
687        sec->recordSection(s);
688      } else {
689        if (OutputSection *os = addInputSec(map, s, name))
690          v.push_back(os);
691        assert(isa<MergeInputSection>(s) ||
692               s->getOutputSection()->sectionIndex == UINT32_MAX);
693      }
694    }
695
696    if (config->relocatable)
697      for (InputSectionBase *depSec : s->dependentSections)
698        if (depSec->flags & SHF_LINK_ORDER)
699          add(depSec);
700  };
701
702  // For futher --emit-reloc handling code we need target output section
703  // to be created before we create relocation output section, so we want
704  // to create target sections first. We do not want priority handling
705  // for synthetic sections because them are special.
706  for (InputSectionBase *isec : inputSections) {
707    // In -r links, SHF_LINK_ORDER sections are added while adding their parent
708    // sections because we need to know the parent's output section before we
709    // can select an output section for the SHF_LINK_ORDER section.
710    if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
711      continue;
712
713    if (auto *sec = dyn_cast<InputSection>(isec))
714      if (InputSectionBase *rel = sec->getRelocatedSection())
715        if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
716          add(relIS);
717    add(isec);
718  }
719
720  // If no SECTIONS command was given, we should insert sections commands
721  // before others, so that we can handle scripts which refers them,
722  // for example: "foo = ABSOLUTE(ADDR(.text)));".
723  // When SECTIONS command is present we just add all orphans to the end.
724  if (hasSectionsCommand)
725    sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
726  else
727    sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
728}
729
730uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
731  bool isTbss =
732      (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
733  uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
734  start = alignTo(start, alignment);
735  uint64_t end = start + size;
736
737  if (isTbss)
738    ctx->threadBssOffset = end - dot;
739  else
740    dot = end;
741  return end;
742}
743
744void LinkerScript::output(InputSection *s) {
745  assert(ctx->outSec == s->getParent());
746  uint64_t before = advance(0, 1);
747  uint64_t pos = advance(s->getSize(), s->alignment);
748  s->outSecOff = pos - s->getSize() - ctx->outSec->addr;
749
750  // Update output section size after adding each section. This is so that
751  // SIZEOF works correctly in the case below:
752  // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
753  expandOutputSection(pos - before);
754}
755
756void LinkerScript::switchTo(OutputSection *sec) {
757  ctx->outSec = sec;
758
759  uint64_t before = advance(0, 1);
760  ctx->outSec->addr = advance(0, ctx->outSec->alignment);
761  expandMemoryRegions(ctx->outSec->addr - before);
762}
763
764// This function searches for a memory region to place the given output
765// section in. If found, a pointer to the appropriate memory region is
766// returned. Otherwise, a nullptr is returned.
767MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
768  // If a memory region name was specified in the output section command,
769  // then try to find that region first.
770  if (!sec->memoryRegionName.empty()) {
771    if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
772      return m;
773    error("memory region '" + sec->memoryRegionName + "' not declared");
774    return nullptr;
775  }
776
777  // If at least one memory region is defined, all sections must
778  // belong to some memory region. Otherwise, we don't need to do
779  // anything for memory regions.
780  if (memoryRegions.empty())
781    return nullptr;
782
783  // See if a region can be found by matching section flags.
784  for (auto &pair : memoryRegions) {
785    MemoryRegion *m = pair.second;
786    if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
787      return m;
788  }
789
790  // Otherwise, no suitable region was found.
791  if (sec->flags & SHF_ALLOC)
792    error("no memory region specified for section '" + sec->name + "'");
793  return nullptr;
794}
795
796static OutputSection *findFirstSection(PhdrEntry *load) {
797  for (OutputSection *sec : outputSections)
798    if (sec->ptLoad == load)
799      return sec;
800  return nullptr;
801}
802
803// This function assigns offsets to input sections and an output section
804// for a single sections command (e.g. ".text { *(.text); }").
805void LinkerScript::assignOffsets(OutputSection *sec) {
806  if (!(sec->flags & SHF_ALLOC))
807    dot = 0;
808
809  ctx->memRegion = sec->memRegion;
810  ctx->lmaRegion = sec->lmaRegion;
811  if (ctx->memRegion)
812    dot = ctx->memRegion->curPos;
813
814  if ((sec->flags & SHF_ALLOC) && sec->addrExpr)
815    setDot(sec->addrExpr, sec->location, false);
816
817  // If the address of the section has been moved forward by an explicit
818  // expression so that it now starts past the current curPos of the enclosing
819  // region, we need to expand the current region to account for the space
820  // between the previous section, if any, and the start of this section.
821  if (ctx->memRegion && ctx->memRegion->curPos < dot)
822    expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
823                       ctx->memRegion->name, sec->name);
824
825  switchTo(sec);
826
827  if (sec->lmaExpr)
828    ctx->lmaOffset = sec->lmaExpr().getValue() - dot;
829
830  if (MemoryRegion *mr = sec->lmaRegion)
831    ctx->lmaOffset = mr->curPos - dot;
832
833  // If neither AT nor AT> is specified for an allocatable section, the linker
834  // will set the LMA such that the difference between VMA and LMA for the
835  // section is the same as the preceding output section in the same region
836  // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
837  // This, however, should only be done by the first "non-header" section
838  // in the segment.
839  if (PhdrEntry *l = ctx->outSec->ptLoad)
840    if (sec == findFirstSection(l))
841      l->lmaOffset = ctx->lmaOffset;
842
843  // We can call this method multiple times during the creation of
844  // thunks and want to start over calculation each time.
845  sec->size = 0;
846
847  // We visited SectionsCommands from processSectionCommands to
848  // layout sections. Now, we visit SectionsCommands again to fix
849  // section offsets.
850  for (BaseCommand *base : sec->sectionCommands) {
851    // This handles the assignments to symbol or to the dot.
852    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
853      cmd->addr = dot;
854      assignSymbol(cmd, true);
855      cmd->size = dot - cmd->addr;
856      continue;
857    }
858
859    // Handle BYTE(), SHORT(), LONG(), or QUAD().
860    if (auto *cmd = dyn_cast<ByteCommand>(base)) {
861      cmd->offset = dot - ctx->outSec->addr;
862      dot += cmd->size;
863      expandOutputSection(cmd->size);
864      continue;
865    }
866
867    // Handle a single input section description command.
868    // It calculates and assigns the offsets for each section and also
869    // updates the output section size.
870    for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
871      output(sec);
872  }
873}
874
875static bool isDiscardable(OutputSection &sec) {
876  if (sec.name == "/DISCARD/")
877    return true;
878
879  // We do not remove empty sections that are explicitly
880  // assigned to any segment.
881  if (!sec.phdrs.empty())
882    return false;
883
884  // We do not want to remove OutputSections with expressions that reference
885  // symbols even if the OutputSection is empty. We want to ensure that the
886  // expressions can be evaluated and report an error if they cannot.
887  if (sec.expressionsUseSymbols)
888    return false;
889
890  // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
891  // as an empty Section can has a valid VMA and LMA we keep the OutputSection
892  // to maintain the integrity of the other Expression.
893  if (sec.usedInExpression)
894    return false;
895
896  for (BaseCommand *base : sec.sectionCommands) {
897    if (auto cmd = dyn_cast<SymbolAssignment>(base))
898      // Don't create empty output sections just for unreferenced PROVIDE
899      // symbols.
900      if (cmd->name != "." && !cmd->sym)
901        continue;
902
903    if (!isa<InputSectionDescription>(*base))
904      return false;
905  }
906  return true;
907}
908
909void LinkerScript::adjustSectionsBeforeSorting() {
910  // If the output section contains only symbol assignments, create a
911  // corresponding output section. The issue is what to do with linker script
912  // like ".foo : { symbol = 42; }". One option would be to convert it to
913  // "symbol = 42;". That is, move the symbol out of the empty section
914  // description. That seems to be what bfd does for this simple case. The
915  // problem is that this is not completely general. bfd will give up and
916  // create a dummy section too if there is a ". = . + 1" inside the section
917  // for example.
918  // Given that we want to create the section, we have to worry what impact
919  // it will have on the link. For example, if we just create a section with
920  // 0 for flags, it would change which PT_LOADs are created.
921  // We could remember that particular section is dummy and ignore it in
922  // other parts of the linker, but unfortunately there are quite a few places
923  // that would need to change:
924  //   * The program header creation.
925  //   * The orphan section placement.
926  //   * The address assignment.
927  // The other option is to pick flags that minimize the impact the section
928  // will have on the rest of the linker. That is why we copy the flags from
929  // the previous sections. Only a few flags are needed to keep the impact low.
930  uint64_t flags = SHF_ALLOC;
931
932  for (BaseCommand *&cmd : sectionCommands) {
933    auto *sec = dyn_cast<OutputSection>(cmd);
934    if (!sec)
935      continue;
936
937    // Handle align (e.g. ".foo : ALIGN(16) { ... }").
938    if (sec->alignExpr)
939      sec->alignment =
940          std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());
941
942    // The input section might have been removed (if it was an empty synthetic
943    // section), but we at least know the flags.
944    if (sec->hasInputSections)
945      flags = sec->flags;
946
947    // We do not want to keep any special flags for output section
948    // in case it is empty.
949    bool isEmpty = getInputSections(sec).empty();
950    if (isEmpty)
951      sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
952                            SHF_WRITE | SHF_EXECINSTR);
953
954    if (isEmpty && isDiscardable(*sec)) {
955      sec->markDead();
956      cmd = nullptr;
957    }
958  }
959
960  // It is common practice to use very generic linker scripts. So for any
961  // given run some of the output sections in the script will be empty.
962  // We could create corresponding empty output sections, but that would
963  // clutter the output.
964  // We instead remove trivially empty sections. The bfd linker seems even
965  // more aggressive at removing them.
966  llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
967}
968
969void LinkerScript::adjustSectionsAfterSorting() {
970  // Try and find an appropriate memory region to assign offsets in.
971  for (BaseCommand *base : sectionCommands) {
972    if (auto *sec = dyn_cast<OutputSection>(base)) {
973      if (!sec->lmaRegionName.empty()) {
974        if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
975          sec->lmaRegion = m;
976        else
977          error("memory region '" + sec->lmaRegionName + "' not declared");
978      }
979      sec->memRegion = findMemoryRegion(sec);
980    }
981  }
982
983  // If output section command doesn't specify any segments,
984  // and we haven't previously assigned any section to segment,
985  // then we simply assign section to the very first load segment.
986  // Below is an example of such linker script:
987  // PHDRS { seg PT_LOAD; }
988  // SECTIONS { .aaa : { *(.aaa) } }
989  std::vector<StringRef> defPhdrs;
990  auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
991    return cmd.type == PT_LOAD;
992  });
993  if (firstPtLoad != phdrsCommands.end())
994    defPhdrs.push_back(firstPtLoad->name);
995
996  // Walk the commands and propagate the program headers to commands that don't
997  // explicitly specify them.
998  for (BaseCommand *base : sectionCommands) {
999    auto *sec = dyn_cast<OutputSection>(base);
1000    if (!sec)
1001      continue;
1002
1003    if (sec->phdrs.empty()) {
1004      // To match the bfd linker script behaviour, only propagate program
1005      // headers to sections that are allocated.
1006      if (sec->flags & SHF_ALLOC)
1007        sec->phdrs = defPhdrs;
1008    } else {
1009      defPhdrs = sec->phdrs;
1010    }
1011  }
1012}
1013
1014static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1015  // If there is no SECTIONS or if the linkerscript is explicit about program
1016  // headers, do our best to allocate them.
1017  if (!script->hasSectionsCommand || allocateHeaders)
1018    return 0;
1019  // Otherwise only allocate program headers if that would not add a page.
1020  return alignDown(min, config->maxPageSize);
1021}
1022
1023// When the SECTIONS command is used, try to find an address for the file and
1024// program headers output sections, which can be added to the first PT_LOAD
1025// segment when program headers are created.
1026//
1027// We check if the headers fit below the first allocated section. If there isn't
1028// enough space for these sections, we'll remove them from the PT_LOAD segment,
1029// and we'll also remove the PT_PHDR segment.
1030void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
1031  uint64_t min = std::numeric_limits<uint64_t>::max();
1032  for (OutputSection *sec : outputSections)
1033    if (sec->flags & SHF_ALLOC)
1034      min = std::min<uint64_t>(min, sec->addr);
1035
1036  auto it = llvm::find_if(
1037      phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1038  if (it == phdrs.end())
1039    return;
1040  PhdrEntry *firstPTLoad = *it;
1041
1042  bool hasExplicitHeaders =
1043      llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1044        return cmd.hasPhdrs || cmd.hasFilehdr;
1045      });
1046  bool paged = !config->omagic && !config->nmagic;
1047  uint64_t headerSize = getHeaderSize();
1048  if ((paged || hasExplicitHeaders) &&
1049      headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1050    min = alignDown(min - headerSize, config->maxPageSize);
1051    Out::elfHeader->addr = min;
1052    Out::programHeaders->addr = min + Out::elfHeader->size;
1053    return;
1054  }
1055
1056  // Error if we were explicitly asked to allocate headers.
1057  if (hasExplicitHeaders)
1058    error("could not allocate headers");
1059
1060  Out::elfHeader->ptLoad = nullptr;
1061  Out::programHeaders->ptLoad = nullptr;
1062  firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1063
1064  llvm::erase_if(phdrs,
1065                 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1066}
1067
1068LinkerScript::AddressState::AddressState() {
1069  for (auto &mri : script->memoryRegions) {
1070    MemoryRegion *mr = mri.second;
1071    mr->curPos = mr->origin;
1072  }
1073}
1074
1075// Here we assign addresses as instructed by linker script SECTIONS
1076// sub-commands. Doing that allows us to use final VA values, so here
1077// we also handle rest commands like symbol assignments and ASSERTs.
1078// Returns a symbol that has changed its section or value, or nullptr if no
1079// symbol has changed.
1080const Defined *LinkerScript::assignAddresses() {
1081  if (script->hasSectionsCommand) {
1082    // With a linker script, assignment of addresses to headers is covered by
1083    // allocateHeaders().
1084    dot = config->imageBase.getValueOr(0);
1085  } else {
1086    // Assign addresses to headers right now.
1087    dot = target->getImageBase();
1088    Out::elfHeader->addr = dot;
1089    Out::programHeaders->addr = dot + Out::elfHeader->size;
1090    dot += getHeaderSize();
1091  }
1092
1093  auto deleter = std::make_unique<AddressState>();
1094  ctx = deleter.get();
1095  errorOnMissingSection = true;
1096  switchTo(aether);
1097
1098  SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1099  for (BaseCommand *base : sectionCommands) {
1100    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
1101      cmd->addr = dot;
1102      assignSymbol(cmd, false);
1103      cmd->size = dot - cmd->addr;
1104      continue;
1105    }
1106    assignOffsets(cast<OutputSection>(base));
1107  }
1108
1109  ctx = nullptr;
1110  return getChangedSymbolAssignment(oldValues);
1111}
1112
1113// Creates program headers as instructed by PHDRS linker script command.
1114std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
1115  std::vector<PhdrEntry *> ret;
1116
1117  // Process PHDRS and FILEHDR keywords because they are not
1118  // real output sections and cannot be added in the following loop.
1119  for (const PhdrsCommand &cmd : phdrsCommands) {
1120    PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);
1121
1122    if (cmd.hasFilehdr)
1123      phdr->add(Out::elfHeader);
1124    if (cmd.hasPhdrs)
1125      phdr->add(Out::programHeaders);
1126
1127    if (cmd.lmaExpr) {
1128      phdr->p_paddr = cmd.lmaExpr().getValue();
1129      phdr->hasLMA = true;
1130    }
1131    ret.push_back(phdr);
1132  }
1133
1134  // Add output sections to program headers.
1135  for (OutputSection *sec : outputSections) {
1136    // Assign headers specified by linker script
1137    for (size_t id : getPhdrIndices(sec)) {
1138      ret[id]->add(sec);
1139      if (!phdrsCommands[id].flags.hasValue())
1140        ret[id]->p_flags |= sec->getPhdrFlags();
1141    }
1142  }
1143  return ret;
1144}
1145
1146// Returns true if we should emit an .interp section.
1147//
1148// We usually do. But if PHDRS commands are given, and
1149// no PT_INTERP is there, there's no place to emit an
1150// .interp, so we don't do that in that case.
1151bool LinkerScript::needsInterpSection() {
1152  if (phdrsCommands.empty())
1153    return true;
1154  for (PhdrsCommand &cmd : phdrsCommands)
1155    if (cmd.type == PT_INTERP)
1156      return true;
1157  return false;
1158}
1159
1160ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1161  if (name == ".") {
1162    if (ctx)
1163      return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
1164    error(loc + ": unable to get location counter value");
1165    return 0;
1166  }
1167
1168  if (Symbol *sym = symtab->find(name)) {
1169    if (auto *ds = dyn_cast<Defined>(sym))
1170      return {ds->section, false, ds->value, loc};
1171    if (isa<SharedSymbol>(sym))
1172      if (!errorOnMissingSection)
1173        return {nullptr, false, 0, loc};
1174  }
1175
1176  error(loc + ": symbol not found: " + name);
1177  return 0;
1178}
1179
1180// Returns the index of the segment named Name.
1181static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1182                                     StringRef name) {
1183  for (size_t i = 0; i < vec.size(); ++i)
1184    if (vec[i].name == name)
1185      return i;
1186  return None;
1187}
1188
1189// Returns indices of ELF headers containing specific section. Each index is a
1190// zero based number of ELF header listed within PHDRS {} script block.
1191std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1192  std::vector<size_t> ret;
1193
1194  for (StringRef s : cmd->phdrs) {
1195    if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1196      ret.push_back(*idx);
1197    else if (s != "NONE")
1198      error(cmd->location + ": section header '" + s +
1199            "' is not listed in PHDRS");
1200  }
1201  return ret;
1202}
1203
1204} // namespace elf
1205} // namespace lld
1206