1//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// This file implements classes for searching and analyzing source code clones.
10///
11//===----------------------------------------------------------------------===//
12
13#include "clang/Analysis/CloneDetection.h"
14#include "clang/AST/Attr.h"
15#include "clang/AST/DataCollection.h"
16#include "clang/AST/DeclTemplate.h"
17#include "llvm/Support/MD5.h"
18#include "llvm/Support/Path.h"
19
20using namespace clang;
21
22StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
23                           unsigned StartIndex, unsigned EndIndex)
24    : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
25  assert(Stmt && "Stmt must not be a nullptr");
26  assert(StartIndex < EndIndex && "Given array should not be empty");
27  assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
28}
29
30StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
31    : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
32
33StmtSequence::StmtSequence()
34    : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
35
36bool StmtSequence::contains(const StmtSequence &Other) const {
37  // If both sequences reside in different declarations, they can never contain
38  // each other.
39  if (D != Other.D)
40    return false;
41
42  const SourceManager &SM = getASTContext().getSourceManager();
43
44  // Otherwise check if the start and end locations of the current sequence
45  // surround the other sequence.
46  bool StartIsInBounds =
47      SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
48      getBeginLoc() == Other.getBeginLoc();
49  if (!StartIsInBounds)
50    return false;
51
52  bool EndIsInBounds =
53      SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
54      Other.getEndLoc() == getEndLoc();
55  return EndIsInBounds;
56}
57
58StmtSequence::iterator StmtSequence::begin() const {
59  if (!holdsSequence()) {
60    return &S;
61  }
62  auto CS = cast<CompoundStmt>(S);
63  return CS->body_begin() + StartIndex;
64}
65
66StmtSequence::iterator StmtSequence::end() const {
67  if (!holdsSequence()) {
68    return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
69  }
70  auto CS = cast<CompoundStmt>(S);
71  return CS->body_begin() + EndIndex;
72}
73
74ASTContext &StmtSequence::getASTContext() const {
75  assert(D);
76  return D->getASTContext();
77}
78
79SourceLocation StmtSequence::getBeginLoc() const {
80  return front()->getBeginLoc();
81}
82
83SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }
84
85SourceRange StmtSequence::getSourceRange() const {
86  return SourceRange(getBeginLoc(), getEndLoc());
87}
88
89void CloneDetector::analyzeCodeBody(const Decl *D) {
90  assert(D);
91  assert(D->hasBody());
92
93  Sequences.push_back(StmtSequence(D->getBody(), D));
94}
95
96/// Returns true if and only if \p Stmt contains at least one other
97/// sequence in the \p Group.
98static bool containsAnyInGroup(StmtSequence &Seq,
99                               CloneDetector::CloneGroup &Group) {
100  for (StmtSequence &GroupSeq : Group) {
101    if (Seq.contains(GroupSeq))
102      return true;
103  }
104  return false;
105}
106
107/// Returns true if and only if all sequences in \p OtherGroup are
108/// contained by a sequence in \p Group.
109static bool containsGroup(CloneDetector::CloneGroup &Group,
110                          CloneDetector::CloneGroup &OtherGroup) {
111  // We have less sequences in the current group than we have in the other,
112  // so we will never fulfill the requirement for returning true. This is only
113  // possible because we know that a sequence in Group can contain at most
114  // one sequence in OtherGroup.
115  if (Group.size() < OtherGroup.size())
116    return false;
117
118  for (StmtSequence &Stmt : Group) {
119    if (!containsAnyInGroup(Stmt, OtherGroup))
120      return false;
121  }
122  return true;
123}
124
125void OnlyLargestCloneConstraint::constrain(
126    std::vector<CloneDetector::CloneGroup> &Result) {
127  std::vector<unsigned> IndexesToRemove;
128
129  // Compare every group in the result with the rest. If one groups contains
130  // another group, we only need to return the bigger group.
131  // Note: This doesn't scale well, so if possible avoid calling any heavy
132  // function from this loop to minimize the performance impact.
133  for (unsigned i = 0; i < Result.size(); ++i) {
134    for (unsigned j = 0; j < Result.size(); ++j) {
135      // Don't compare a group with itself.
136      if (i == j)
137        continue;
138
139      if (containsGroup(Result[j], Result[i])) {
140        IndexesToRemove.push_back(i);
141        break;
142      }
143    }
144  }
145
146  // Erasing a list of indexes from the vector should be done with decreasing
147  // indexes. As IndexesToRemove is constructed with increasing values, we just
148  // reverse iterate over it to get the desired order.
149  for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
150    Result.erase(Result.begin() + *I);
151  }
152}
153
154bool FilenamePatternConstraint::isAutoGenerated(
155    const CloneDetector::CloneGroup &Group) {
156  if (IgnoredFilesPattern.empty() || Group.empty() ||
157      !IgnoredFilesRegex->isValid())
158    return false;
159
160  for (const StmtSequence &S : Group) {
161    const SourceManager &SM = S.getASTContext().getSourceManager();
162    StringRef Filename = llvm::sys::path::filename(
163        SM.getFilename(S.getContainingDecl()->getLocation()));
164    if (IgnoredFilesRegex->match(Filename))
165      return true;
166  }
167
168  return false;
169}
170
171/// This class defines what a type II code clone is: If it collects for two
172/// statements the same data, then those two statements are considered to be
173/// clones of each other.
174///
175/// All collected data is forwarded to the given data consumer of the type T.
176/// The data consumer class needs to provide a member method with the signature:
177///   update(StringRef Str)
178namespace {
179template <class T>
180class CloneTypeIIStmtDataCollector
181    : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
182  ASTContext &Context;
183  /// The data sink to which all data is forwarded.
184  T &DataConsumer;
185
186  template <class Ty> void addData(const Ty &Data) {
187    data_collection::addDataToConsumer(DataConsumer, Data);
188  }
189
190public:
191  CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
192                               T &DataConsumer)
193      : Context(Context), DataConsumer(DataConsumer) {
194    this->Visit(S);
195  }
196
197// Define a visit method for each class to collect data and subsequently visit
198// all parent classes. This uses a template so that custom visit methods by us
199// take precedence.
200#define DEF_ADD_DATA(CLASS, CODE)                                              \
201  template <class = void> void Visit##CLASS(const CLASS *S) {                  \
202    CODE;                                                                      \
203    ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
204  }
205
206#include "clang/AST/StmtDataCollectors.inc"
207
208// Type II clones ignore variable names and literals, so let's skip them.
209#define SKIP(CLASS)                                                            \
210  void Visit##CLASS(const CLASS *S) {                                          \
211    ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
212  }
213  SKIP(DeclRefExpr)
214  SKIP(MemberExpr)
215  SKIP(IntegerLiteral)
216  SKIP(FloatingLiteral)
217  SKIP(StringLiteral)
218  SKIP(CXXBoolLiteralExpr)
219  SKIP(CharacterLiteral)
220#undef SKIP
221};
222} // end anonymous namespace
223
224static size_t createHash(llvm::MD5 &Hash) {
225  size_t HashCode;
226
227  // Create the final hash code for the current Stmt.
228  llvm::MD5::MD5Result HashResult;
229  Hash.final(HashResult);
230
231  // Copy as much as possible of the generated hash code to the Stmt's hash
232  // code.
233  std::memcpy(&HashCode, &HashResult,
234              std::min(sizeof(HashCode), sizeof(HashResult)));
235
236  return HashCode;
237}
238
239/// Generates and saves a hash code for the given Stmt.
240/// \param S The given Stmt.
241/// \param D The Decl containing S.
242/// \param StmtsByHash Output parameter that will contain the hash codes for
243///                    each StmtSequence in the given Stmt.
244/// \return The hash code of the given Stmt.
245///
246/// If the given Stmt is a CompoundStmt, this method will also generate
247/// hashes for all possible StmtSequences in the children of this Stmt.
248static size_t
249saveHash(const Stmt *S, const Decl *D,
250         std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
251  llvm::MD5 Hash;
252  ASTContext &Context = D->getASTContext();
253
254  CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);
255
256  auto CS = dyn_cast<CompoundStmt>(S);
257  SmallVector<size_t, 8> ChildHashes;
258
259  for (const Stmt *Child : S->children()) {
260    if (Child == nullptr) {
261      ChildHashes.push_back(0);
262      continue;
263    }
264    size_t ChildHash = saveHash(Child, D, StmtsByHash);
265    Hash.update(
266        StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
267    ChildHashes.push_back(ChildHash);
268  }
269
270  if (CS) {
271    // If we're in a CompoundStmt, we hash all possible combinations of child
272    // statements to find clones in those subsequences.
273    // We first go through every possible starting position of a subsequence.
274    for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
275      // Then we try all possible lengths this subsequence could have and
276      // reuse the same hash object to make sure we only hash every child
277      // hash exactly once.
278      llvm::MD5 Hash;
279      for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
280        // Grab the current child hash and put it into our hash. We do
281        // -1 on the index because we start counting the length at 1.
282        size_t ChildHash = ChildHashes[Pos + Length - 1];
283        Hash.update(
284            StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
285        // If we have at least two elements in our subsequence, we can start
286        // saving it.
287        if (Length > 1) {
288          llvm::MD5 SubHash = Hash;
289          StmtsByHash.push_back(std::make_pair(
290              createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
291        }
292      }
293    }
294  }
295
296  size_t HashCode = createHash(Hash);
297  StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
298  return HashCode;
299}
300
301namespace {
302/// Wrapper around FoldingSetNodeID that it can be used as the template
303/// argument of the StmtDataCollector.
304class FoldingSetNodeIDWrapper {
305
306  llvm::FoldingSetNodeID &FS;
307
308public:
309  FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
310
311  void update(StringRef Str) { FS.AddString(Str); }
312};
313} // end anonymous namespace
314
315/// Writes the relevant data from all statements and child statements
316/// in the given StmtSequence into the given FoldingSetNodeID.
317static void CollectStmtSequenceData(const StmtSequence &Sequence,
318                                    FoldingSetNodeIDWrapper &OutputData) {
319  for (const Stmt *S : Sequence) {
320    CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
321        S, Sequence.getASTContext(), OutputData);
322
323    for (const Stmt *Child : S->children()) {
324      if (!Child)
325        continue;
326
327      CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
328                              OutputData);
329    }
330  }
331}
332
333/// Returns true if both sequences are clones of each other.
334static bool areSequencesClones(const StmtSequence &LHS,
335                               const StmtSequence &RHS) {
336  // We collect the data from all statements in the sequence as we did before
337  // when generating a hash value for each sequence. But this time we don't
338  // hash the collected data and compare the whole data set instead. This
339  // prevents any false-positives due to hash code collisions.
340  llvm::FoldingSetNodeID DataLHS, DataRHS;
341  FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
342  FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
343
344  CollectStmtSequenceData(LHS, LHSWrapper);
345  CollectStmtSequenceData(RHS, RHSWrapper);
346
347  return DataLHS == DataRHS;
348}
349
350void RecursiveCloneTypeIIHashConstraint::constrain(
351    std::vector<CloneDetector::CloneGroup> &Sequences) {
352  // FIXME: Maybe we can do this in-place and don't need this additional vector.
353  std::vector<CloneDetector::CloneGroup> Result;
354
355  for (CloneDetector::CloneGroup &Group : Sequences) {
356    // We assume in the following code that the Group is non-empty, so we
357    // skip all empty groups.
358    if (Group.empty())
359      continue;
360
361    std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
362
363    // Generate hash codes for all children of S and save them in StmtsByHash.
364    for (const StmtSequence &S : Group) {
365      saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
366    }
367
368    // Sort hash_codes in StmtsByHash.
369    llvm::stable_sort(StmtsByHash, llvm::less_first());
370
371    // Check for each StmtSequence if its successor has the same hash value.
372    // We don't check the last StmtSequence as it has no successor.
373    // Note: The 'size - 1 ' in the condition is safe because we check for an
374    // empty Group vector at the beginning of this function.
375    for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
376      const auto Current = StmtsByHash[i];
377
378      // It's likely that we just found a sequence of StmtSequences that
379      // represent a CloneGroup, so we create a new group and start checking and
380      // adding the StmtSequences in this sequence.
381      CloneDetector::CloneGroup NewGroup;
382
383      size_t PrototypeHash = Current.first;
384
385      for (; i < StmtsByHash.size(); ++i) {
386        // A different hash value means we have reached the end of the sequence.
387        if (PrototypeHash != StmtsByHash[i].first) {
388          // The current sequence could be the start of a new CloneGroup. So we
389          // decrement i so that we visit it again in the outer loop.
390          // Note: i can never be 0 at this point because we are just comparing
391          // the hash of the Current StmtSequence with itself in the 'if' above.
392          assert(i != 0);
393          --i;
394          break;
395        }
396        // Same hash value means we should add the StmtSequence to the current
397        // group.
398        NewGroup.push_back(StmtsByHash[i].second);
399      }
400
401      // We created a new clone group with matching hash codes and move it to
402      // the result vector.
403      Result.push_back(NewGroup);
404    }
405  }
406  // Sequences is the output parameter, so we copy our result into it.
407  Sequences = Result;
408}
409
410void RecursiveCloneTypeIIVerifyConstraint::constrain(
411    std::vector<CloneDetector::CloneGroup> &Sequences) {
412  CloneConstraint::splitCloneGroups(
413      Sequences, [](const StmtSequence &A, const StmtSequence &B) {
414        return areSequencesClones(A, B);
415      });
416}
417
418size_t MinComplexityConstraint::calculateStmtComplexity(
419    const StmtSequence &Seq, std::size_t Limit,
420    const std::string &ParentMacroStack) {
421  if (Seq.empty())
422    return 0;
423
424  size_t Complexity = 1;
425
426  ASTContext &Context = Seq.getASTContext();
427
428  // Look up what macros expanded into the current statement.
429  std::string MacroStack =
430      data_collection::getMacroStack(Seq.getBeginLoc(), Context);
431
432  // First, check if ParentMacroStack is not empty which means we are currently
433  // dealing with a parent statement which was expanded from a macro.
434  // If this parent statement was expanded from the same macros as this
435  // statement, we reduce the initial complexity of this statement to zero.
436  // This causes that a group of statements that were generated by a single
437  // macro expansion will only increase the total complexity by one.
438  // Note: This is not the final complexity of this statement as we still
439  // add the complexity of the child statements to the complexity value.
440  if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
441    Complexity = 0;
442  }
443
444  // Iterate over the Stmts in the StmtSequence and add their complexity values
445  // to the current complexity value.
446  if (Seq.holdsSequence()) {
447    for (const Stmt *S : Seq) {
448      Complexity += calculateStmtComplexity(
449          StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
450      if (Complexity >= Limit)
451        return Limit;
452    }
453  } else {
454    for (const Stmt *S : Seq.front()->children()) {
455      Complexity += calculateStmtComplexity(
456          StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
457      if (Complexity >= Limit)
458        return Limit;
459    }
460  }
461  return Complexity;
462}
463
464void MatchingVariablePatternConstraint::constrain(
465    std::vector<CloneDetector::CloneGroup> &CloneGroups) {
466  CloneConstraint::splitCloneGroups(
467      CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
468        VariablePattern PatternA(A);
469        VariablePattern PatternB(B);
470        return PatternA.countPatternDifferences(PatternB) == 0;
471      });
472}
473
474void CloneConstraint::splitCloneGroups(
475    std::vector<CloneDetector::CloneGroup> &CloneGroups,
476    llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
477        Compare) {
478  std::vector<CloneDetector::CloneGroup> Result;
479  for (auto &HashGroup : CloneGroups) {
480    // Contains all indexes in HashGroup that were already added to a
481    // CloneGroup.
482    std::vector<char> Indexes;
483    Indexes.resize(HashGroup.size());
484
485    for (unsigned i = 0; i < HashGroup.size(); ++i) {
486      // Skip indexes that are already part of a CloneGroup.
487      if (Indexes[i])
488        continue;
489
490      // Pick the first unhandled StmtSequence and consider it as the
491      // beginning
492      // of a new CloneGroup for now.
493      // We don't add i to Indexes because we never iterate back.
494      StmtSequence Prototype = HashGroup[i];
495      CloneDetector::CloneGroup PotentialGroup = {Prototype};
496      ++Indexes[i];
497
498      // Check all following StmtSequences for clones.
499      for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
500        // Skip indexes that are already part of a CloneGroup.
501        if (Indexes[j])
502          continue;
503
504        // If a following StmtSequence belongs to our CloneGroup, we add it.
505        const StmtSequence &Candidate = HashGroup[j];
506
507        if (!Compare(Prototype, Candidate))
508          continue;
509
510        PotentialGroup.push_back(Candidate);
511        // Make sure we never visit this StmtSequence again.
512        ++Indexes[j];
513      }
514
515      // Otherwise, add it to the result and continue searching for more
516      // groups.
517      Result.push_back(PotentialGroup);
518    }
519
520    assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
521  }
522  CloneGroups = Result;
523}
524
525void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
526                                           const Stmt *Mention) {
527  // First check if we already reference this variable
528  for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
529    if (Variables[KindIndex] == VarDecl) {
530      // If yes, add a new occurrence that points to the existing entry in
531      // the Variables vector.
532      Occurences.emplace_back(KindIndex, Mention);
533      return;
534    }
535  }
536  // If this variable wasn't already referenced, add it to the list of
537  // referenced variables and add a occurrence that points to this new entry.
538  Occurences.emplace_back(Variables.size(), Mention);
539  Variables.push_back(VarDecl);
540}
541
542void VariablePattern::addVariables(const Stmt *S) {
543  // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
544  // children). We skip such statements as they don't reference any
545  // variables.
546  if (!S)
547    return;
548
549  // Check if S is a reference to a variable. If yes, add it to the pattern.
550  if (auto D = dyn_cast<DeclRefExpr>(S)) {
551    if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
552      addVariableOccurence(VD, D);
553  }
554
555  // Recursively check all children of the given statement.
556  for (const Stmt *Child : S->children()) {
557    addVariables(Child);
558  }
559}
560
561unsigned VariablePattern::countPatternDifferences(
562    const VariablePattern &Other,
563    VariablePattern::SuspiciousClonePair *FirstMismatch) {
564  unsigned NumberOfDifferences = 0;
565
566  assert(Other.Occurences.size() == Occurences.size());
567  for (unsigned i = 0; i < Occurences.size(); ++i) {
568    auto ThisOccurence = Occurences[i];
569    auto OtherOccurence = Other.Occurences[i];
570    if (ThisOccurence.KindID == OtherOccurence.KindID)
571      continue;
572
573    ++NumberOfDifferences;
574
575    // If FirstMismatch is not a nullptr, we need to store information about
576    // the first difference between the two patterns.
577    if (FirstMismatch == nullptr)
578      continue;
579
580    // Only proceed if we just found the first difference as we only store
581    // information about the first difference.
582    if (NumberOfDifferences != 1)
583      continue;
584
585    const VarDecl *FirstSuggestion = nullptr;
586    // If there is a variable available in the list of referenced variables
587    // which wouldn't break the pattern if it is used in place of the
588    // current variable, we provide this variable as the suggested fix.
589    if (OtherOccurence.KindID < Variables.size())
590      FirstSuggestion = Variables[OtherOccurence.KindID];
591
592    // Store information about the first clone.
593    FirstMismatch->FirstCloneInfo =
594        VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
595            Variables[ThisOccurence.KindID], ThisOccurence.Mention,
596            FirstSuggestion);
597
598    // Same as above but with the other clone. We do this for both clones as
599    // we don't know which clone is the one containing the unintended
600    // pattern error.
601    const VarDecl *SecondSuggestion = nullptr;
602    if (ThisOccurence.KindID < Other.Variables.size())
603      SecondSuggestion = Other.Variables[ThisOccurence.KindID];
604
605    // Store information about the second clone.
606    FirstMismatch->SecondCloneInfo =
607        VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
608            Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
609            SecondSuggestion);
610
611    // SuspiciousClonePair guarantees that the first clone always has a
612    // suggested variable associated with it. As we know that one of the two
613    // clones in the pair always has suggestion, we swap the two clones
614    // in case the first clone has no suggested variable which means that
615    // the second clone has a suggested variable and should be first.
616    if (!FirstMismatch->FirstCloneInfo.Suggestion)
617      std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
618
619    // This ensures that we always have at least one suggestion in a pair.
620    assert(FirstMismatch->FirstCloneInfo.Suggestion);
621  }
622
623  return NumberOfDifferences;
624}
625