1//===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the clang::ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/AST/ASTContextAllocate.h"
18#include "clang/AST/ASTTypeTraits.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/ComparisonCategories.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclBase.h"
24#include "clang/AST/DeclarationName.h"
25#include "clang/AST/ExternalASTSource.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/PrettyPrinter.h"
28#include "clang/AST/RawCommentList.h"
29#include "clang/AST/TemplateBase.h"
30#include "clang/AST/TemplateName.h"
31#include "clang/AST/Type.h"
32#include "clang/Basic/AddressSpaces.h"
33#include "clang/Basic/AttrKinds.h"
34#include "clang/Basic/IdentifierTable.h"
35#include "clang/Basic/LLVM.h"
36#include "clang/Basic/LangOptions.h"
37#include "clang/Basic/Linkage.h"
38#include "clang/Basic/OperatorKinds.h"
39#include "clang/Basic/PartialDiagnostic.h"
40#include "clang/Basic/SanitizerBlacklist.h"
41#include "clang/Basic/SourceLocation.h"
42#include "clang/Basic/Specifiers.h"
43#include "clang/Basic/TargetInfo.h"
44#include "clang/Basic/XRayLists.h"
45#include "llvm/ADT/APSInt.h"
46#include "llvm/ADT/ArrayRef.h"
47#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/FoldingSet.h"
49#include "llvm/ADT/IntrusiveRefCntPtr.h"
50#include "llvm/ADT/MapVector.h"
51#include "llvm/ADT/None.h"
52#include "llvm/ADT/Optional.h"
53#include "llvm/ADT/PointerIntPair.h"
54#include "llvm/ADT/PointerUnion.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/StringMap.h"
57#include "llvm/ADT/StringRef.h"
58#include "llvm/ADT/TinyPtrVector.h"
59#include "llvm/ADT/Triple.h"
60#include "llvm/ADT/iterator_range.h"
61#include "llvm/Support/AlignOf.h"
62#include "llvm/Support/Allocator.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/Compiler.h"
65#include <cassert>
66#include <cstddef>
67#include <cstdint>
68#include <iterator>
69#include <memory>
70#include <string>
71#include <type_traits>
72#include <utility>
73#include <vector>
74
75namespace llvm {
76
77struct fltSemantics;
78
79} // namespace llvm
80
81namespace clang {
82
83class APFixedPoint;
84class APValue;
85class ASTMutationListener;
86class ASTRecordLayout;
87class AtomicExpr;
88class BlockExpr;
89class BuiltinTemplateDecl;
90class CharUnits;
91class ConceptDecl;
92class CXXABI;
93class CXXConstructorDecl;
94class CXXMethodDecl;
95class CXXRecordDecl;
96class DiagnosticsEngine;
97class Expr;
98class FixedPointSemantics;
99class GlobalDecl;
100class MangleContext;
101class MangleNumberingContext;
102class MaterializeTemporaryExpr;
103class MemberSpecializationInfo;
104class Module;
105class ObjCCategoryDecl;
106class ObjCCategoryImplDecl;
107class ObjCContainerDecl;
108class ObjCImplDecl;
109class ObjCImplementationDecl;
110class ObjCInterfaceDecl;
111class ObjCIvarDecl;
112class ObjCMethodDecl;
113class ObjCPropertyDecl;
114class ObjCPropertyImplDecl;
115class ObjCProtocolDecl;
116class ObjCTypeParamDecl;
117struct ParsedTargetAttr;
118class Preprocessor;
119class Stmt;
120class StoredDeclsMap;
121class TargetAttr;
122class TemplateDecl;
123class TemplateParameterList;
124class TemplateTemplateParmDecl;
125class TemplateTypeParmDecl;
126class UnresolvedSetIterator;
127class UsingShadowDecl;
128class VarTemplateDecl;
129class VTableContextBase;
130struct BlockVarCopyInit;
131
132namespace Builtin {
133
134class Context;
135
136} // namespace Builtin
137
138enum BuiltinTemplateKind : int;
139
140namespace comments {
141
142class FullComment;
143
144} // namespace comments
145
146namespace interp {
147
148class Context;
149
150} // namespace interp
151
152namespace serialization {
153template <class> class AbstractTypeReader;
154} // namespace serialization
155
156struct TypeInfo {
157  uint64_t Width = 0;
158  unsigned Align = 0;
159  bool AlignIsRequired : 1;
160
161  TypeInfo() : AlignIsRequired(false) {}
162  TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
163      : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
164};
165
166/// Holds long-lived AST nodes (such as types and decls) that can be
167/// referred to throughout the semantic analysis of a file.
168class ASTContext : public RefCountedBase<ASTContext> {
169  friend class NestedNameSpecifier;
170
171  mutable SmallVector<Type *, 0> Types;
172  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
173  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
174  mutable llvm::FoldingSet<PointerType> PointerTypes;
175  mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
176  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
177  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
178  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
179  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
180  mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
181      ConstantArrayTypes;
182  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
183  mutable std::vector<VariableArrayType*> VariableArrayTypes;
184  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
185  mutable llvm::FoldingSet<DependentSizedExtVectorType>
186    DependentSizedExtVectorTypes;
187  mutable llvm::FoldingSet<DependentAddressSpaceType>
188      DependentAddressSpaceTypes;
189  mutable llvm::FoldingSet<VectorType> VectorTypes;
190  mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
191  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
192  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
193    FunctionProtoTypes;
194  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
195  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
196  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
197  mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
198  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
199    SubstTemplateTypeParmTypes;
200  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
201    SubstTemplateTypeParmPackTypes;
202  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
203    TemplateSpecializationTypes;
204  mutable llvm::FoldingSet<ParenType> ParenTypes;
205  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
206  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
207  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
208                                     ASTContext&>
209    DependentTemplateSpecializationTypes;
210  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
211  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
212  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
213  mutable llvm::FoldingSet<DependentUnaryTransformType>
214    DependentUnaryTransformTypes;
215  mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
216  mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
217    DeducedTemplateSpecializationTypes;
218  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
219  llvm::FoldingSet<AttributedType> AttributedTypes;
220  mutable llvm::FoldingSet<PipeType> PipeTypes;
221
222  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
223  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
224  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
225    SubstTemplateTemplateParms;
226  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
227                                     ASTContext&>
228    SubstTemplateTemplateParmPacks;
229
230  /// The set of nested name specifiers.
231  ///
232  /// This set is managed by the NestedNameSpecifier class.
233  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
234  mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
235
236  /// A cache mapping from RecordDecls to ASTRecordLayouts.
237  ///
238  /// This is lazily created.  This is intentionally not serialized.
239  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
240    ASTRecordLayouts;
241  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
242    ObjCLayouts;
243
244  /// A cache from types to size and alignment information.
245  using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
246  mutable TypeInfoMap MemoizedTypeInfo;
247
248  /// A cache from types to unadjusted alignment information. Only ARM and
249  /// AArch64 targets need this information, keeping it separate prevents
250  /// imposing overhead on TypeInfo size.
251  using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
252  mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
253
254  /// A cache mapping from CXXRecordDecls to key functions.
255  llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
256
257  /// Mapping from ObjCContainers to their ObjCImplementations.
258  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
259
260  /// Mapping from ObjCMethod to its duplicate declaration in the same
261  /// interface.
262  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
263
264  /// Mapping from __block VarDecls to BlockVarCopyInit.
265  llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
266
267  /// Used to cleanups APValues stored in the AST.
268  mutable llvm::SmallVector<APValue *, 0> APValueCleanups;
269
270  /// A cache mapping a string value to a StringLiteral object with the same
271  /// value.
272  ///
273  /// This is lazily created.  This is intentionally not serialized.
274  mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
275
276  /// Representation of a "canonical" template template parameter that
277  /// is used in canonical template names.
278  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
279    TemplateTemplateParmDecl *Parm;
280
281  public:
282    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
283        : Parm(Parm) {}
284
285    TemplateTemplateParmDecl *getParam() const { return Parm; }
286
287    void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
288      Profile(ID, C, Parm);
289    }
290
291    static void Profile(llvm::FoldingSetNodeID &ID,
292                        const ASTContext &C,
293                        TemplateTemplateParmDecl *Parm);
294  };
295  mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
296                                     const ASTContext&>
297    CanonTemplateTemplateParms;
298
299  TemplateTemplateParmDecl *
300    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
301
302  /// The typedef for the __int128_t type.
303  mutable TypedefDecl *Int128Decl = nullptr;
304
305  /// The typedef for the __uint128_t type.
306  mutable TypedefDecl *UInt128Decl = nullptr;
307
308  /// The typedef for the target specific predefined
309  /// __builtin_va_list type.
310  mutable TypedefDecl *BuiltinVaListDecl = nullptr;
311
312  /// The typedef for the predefined \c __builtin_ms_va_list type.
313  mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
314
315  /// The typedef for the predefined \c id type.
316  mutable TypedefDecl *ObjCIdDecl = nullptr;
317
318  /// The typedef for the predefined \c SEL type.
319  mutable TypedefDecl *ObjCSelDecl = nullptr;
320
321  /// The typedef for the predefined \c Class type.
322  mutable TypedefDecl *ObjCClassDecl = nullptr;
323
324  /// The typedef for the predefined \c Protocol class in Objective-C.
325  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
326
327  /// The typedef for the predefined 'BOOL' type.
328  mutable TypedefDecl *BOOLDecl = nullptr;
329
330  // Typedefs which may be provided defining the structure of Objective-C
331  // pseudo-builtins
332  QualType ObjCIdRedefinitionType;
333  QualType ObjCClassRedefinitionType;
334  QualType ObjCSelRedefinitionType;
335
336  /// The identifier 'bool'.
337  mutable IdentifierInfo *BoolName = nullptr;
338
339  /// The identifier 'NSObject'.
340  mutable IdentifierInfo *NSObjectName = nullptr;
341
342  /// The identifier 'NSCopying'.
343  IdentifierInfo *NSCopyingName = nullptr;
344
345  /// The identifier '__make_integer_seq'.
346  mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
347
348  /// The identifier '__type_pack_element'.
349  mutable IdentifierInfo *TypePackElementName = nullptr;
350
351  QualType ObjCConstantStringType;
352  mutable RecordDecl *CFConstantStringTagDecl = nullptr;
353  mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
354
355  mutable QualType ObjCSuperType;
356
357  QualType ObjCNSStringType;
358
359  /// The typedef declaration for the Objective-C "instancetype" type.
360  TypedefDecl *ObjCInstanceTypeDecl = nullptr;
361
362  /// The type for the C FILE type.
363  TypeDecl *FILEDecl = nullptr;
364
365  /// The type for the C jmp_buf type.
366  TypeDecl *jmp_bufDecl = nullptr;
367
368  /// The type for the C sigjmp_buf type.
369  TypeDecl *sigjmp_bufDecl = nullptr;
370
371  /// The type for the C ucontext_t type.
372  TypeDecl *ucontext_tDecl = nullptr;
373
374  /// Type for the Block descriptor for Blocks CodeGen.
375  ///
376  /// Since this is only used for generation of debug info, it is not
377  /// serialized.
378  mutable RecordDecl *BlockDescriptorType = nullptr;
379
380  /// Type for the Block descriptor for Blocks CodeGen.
381  ///
382  /// Since this is only used for generation of debug info, it is not
383  /// serialized.
384  mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
385
386  /// Declaration for the CUDA cudaConfigureCall function.
387  FunctionDecl *cudaConfigureCallDecl = nullptr;
388
389  /// Keeps track of all declaration attributes.
390  ///
391  /// Since so few decls have attrs, we keep them in a hash map instead of
392  /// wasting space in the Decl class.
393  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
394
395  /// A mapping from non-redeclarable declarations in modules that were
396  /// merged with other declarations to the canonical declaration that they were
397  /// merged into.
398  llvm::DenseMap<Decl*, Decl*> MergedDecls;
399
400  /// A mapping from a defining declaration to a list of modules (other
401  /// than the owning module of the declaration) that contain merged
402  /// definitions of that entity.
403  llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
404
405  /// Initializers for a module, in order. Each Decl will be either
406  /// something that has a semantic effect on startup (such as a variable with
407  /// a non-constant initializer), or an ImportDecl (which recursively triggers
408  /// initialization of another module).
409  struct PerModuleInitializers {
410    llvm::SmallVector<Decl*, 4> Initializers;
411    llvm::SmallVector<uint32_t, 4> LazyInitializers;
412
413    void resolve(ASTContext &Ctx);
414  };
415  llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
416
417  ASTContext &this_() { return *this; }
418
419public:
420  /// A type synonym for the TemplateOrInstantiation mapping.
421  using TemplateOrSpecializationInfo =
422      llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
423
424private:
425  friend class ASTDeclReader;
426  friend class ASTReader;
427  friend class ASTWriter;
428  template <class> friend class serialization::AbstractTypeReader;
429  friend class CXXRecordDecl;
430
431  /// A mapping to contain the template or declaration that
432  /// a variable declaration describes or was instantiated from,
433  /// respectively.
434  ///
435  /// For non-templates, this value will be NULL. For variable
436  /// declarations that describe a variable template, this will be a
437  /// pointer to a VarTemplateDecl. For static data members
438  /// of class template specializations, this will be the
439  /// MemberSpecializationInfo referring to the member variable that was
440  /// instantiated or specialized. Thus, the mapping will keep track of
441  /// the static data member templates from which static data members of
442  /// class template specializations were instantiated.
443  ///
444  /// Given the following example:
445  ///
446  /// \code
447  /// template<typename T>
448  /// struct X {
449  ///   static T value;
450  /// };
451  ///
452  /// template<typename T>
453  ///   T X<T>::value = T(17);
454  ///
455  /// int *x = &X<int>::value;
456  /// \endcode
457  ///
458  /// This mapping will contain an entry that maps from the VarDecl for
459  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
460  /// class template X) and will be marked TSK_ImplicitInstantiation.
461  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
462  TemplateOrInstantiation;
463
464  /// Keeps track of the declaration from which a using declaration was
465  /// created during instantiation.
466  ///
467  /// The source and target declarations are always a UsingDecl, an
468  /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
469  ///
470  /// For example:
471  /// \code
472  /// template<typename T>
473  /// struct A {
474  ///   void f();
475  /// };
476  ///
477  /// template<typename T>
478  /// struct B : A<T> {
479  ///   using A<T>::f;
480  /// };
481  ///
482  /// template struct B<int>;
483  /// \endcode
484  ///
485  /// This mapping will contain an entry that maps from the UsingDecl in
486  /// B<int> to the UnresolvedUsingDecl in B<T>.
487  llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
488
489  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
490    InstantiatedFromUsingShadowDecl;
491
492  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
493
494  /// Mapping that stores the methods overridden by a given C++
495  /// member function.
496  ///
497  /// Since most C++ member functions aren't virtual and therefore
498  /// don't override anything, we store the overridden functions in
499  /// this map on the side rather than within the CXXMethodDecl structure.
500  using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
501  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
502
503  /// Mapping from each declaration context to its corresponding
504  /// mangling numbering context (used for constructs like lambdas which
505  /// need to be consistently numbered for the mangler).
506  llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
507      MangleNumberingContexts;
508  llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
509      ExtraMangleNumberingContexts;
510
511  /// Side-table of mangling numbers for declarations which rarely
512  /// need them (like static local vars).
513  llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
514  llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
515
516  /// Mapping that stores parameterIndex values for ParmVarDecls when
517  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
518  using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
519  ParameterIndexTable ParamIndices;
520
521  ImportDecl *FirstLocalImport = nullptr;
522  ImportDecl *LastLocalImport = nullptr;
523
524  TranslationUnitDecl *TUDecl;
525  mutable ExternCContextDecl *ExternCContext = nullptr;
526  mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
527  mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
528
529  /// The associated SourceManager object.
530  SourceManager &SourceMgr;
531
532  /// The language options used to create the AST associated with
533  ///  this ASTContext object.
534  LangOptions &LangOpts;
535
536  /// Blacklist object that is used by sanitizers to decide which
537  /// entities should not be instrumented.
538  std::unique_ptr<SanitizerBlacklist> SanitizerBL;
539
540  /// Function filtering mechanism to determine whether a given function
541  /// should be imbued with the XRay "always" or "never" attributes.
542  std::unique_ptr<XRayFunctionFilter> XRayFilter;
543
544  /// The allocator used to create AST objects.
545  ///
546  /// AST objects are never destructed; rather, all memory associated with the
547  /// AST objects will be released when the ASTContext itself is destroyed.
548  mutable llvm::BumpPtrAllocator BumpAlloc;
549
550  /// Allocator for partial diagnostics.
551  PartialDiagnostic::StorageAllocator DiagAllocator;
552
553  /// The current C++ ABI.
554  std::unique_ptr<CXXABI> ABI;
555  CXXABI *createCXXABI(const TargetInfo &T);
556
557  /// The logical -> physical address space map.
558  const LangASMap *AddrSpaceMap = nullptr;
559
560  /// Address space map mangling must be used with language specific
561  /// address spaces (e.g. OpenCL/CUDA)
562  bool AddrSpaceMapMangling;
563
564  const TargetInfo *Target = nullptr;
565  const TargetInfo *AuxTarget = nullptr;
566  clang::PrintingPolicy PrintingPolicy;
567  std::unique_ptr<interp::Context> InterpContext;
568
569  ast_type_traits::TraversalKind Traversal = ast_type_traits::TK_AsIs;
570
571public:
572  ast_type_traits::TraversalKind getTraversalKind() const { return Traversal; }
573  void setTraversalKind(ast_type_traits::TraversalKind TK) { Traversal = TK; }
574
575  const Expr *traverseIgnored(const Expr *E) const;
576  Expr *traverseIgnored(Expr *E) const;
577  ast_type_traits::DynTypedNode
578  traverseIgnored(const ast_type_traits::DynTypedNode &N) const;
579
580  IdentifierTable &Idents;
581  SelectorTable &Selectors;
582  Builtin::Context &BuiltinInfo;
583  mutable DeclarationNameTable DeclarationNames;
584  IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
585  ASTMutationListener *Listener = nullptr;
586
587  /// Returns the clang bytecode interpreter context.
588  interp::Context &getInterpContext();
589
590  /// Container for either a single DynTypedNode or for an ArrayRef to
591  /// DynTypedNode. For use with ParentMap.
592  class DynTypedNodeList {
593    using DynTypedNode = ast_type_traits::DynTypedNode;
594
595    llvm::AlignedCharArrayUnion<ast_type_traits::DynTypedNode,
596                                ArrayRef<DynTypedNode>> Storage;
597    bool IsSingleNode;
598
599  public:
600    DynTypedNodeList(const DynTypedNode &N) : IsSingleNode(true) {
601      new (Storage.buffer) DynTypedNode(N);
602    }
603
604    DynTypedNodeList(ArrayRef<DynTypedNode> A) : IsSingleNode(false) {
605      new (Storage.buffer) ArrayRef<DynTypedNode>(A);
606    }
607
608    const ast_type_traits::DynTypedNode *begin() const {
609      if (!IsSingleNode)
610        return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
611            ->begin();
612      return reinterpret_cast<const DynTypedNode *>(Storage.buffer);
613    }
614
615    const ast_type_traits::DynTypedNode *end() const {
616      if (!IsSingleNode)
617        return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
618            ->end();
619      return reinterpret_cast<const DynTypedNode *>(Storage.buffer) + 1;
620    }
621
622    size_t size() const { return end() - begin(); }
623    bool empty() const { return begin() == end(); }
624
625    const DynTypedNode &operator[](size_t N) const {
626      assert(N < size() && "Out of bounds!");
627      return *(begin() + N);
628    }
629  };
630
631  // A traversal scope limits the parts of the AST visible to certain analyses.
632  // RecursiveASTVisitor::TraverseAST will only visit reachable nodes, and
633  // getParents() will only observe reachable parent edges.
634  //
635  // The scope is defined by a set of "top-level" declarations.
636  // Initially, it is the entire TU: {getTranslationUnitDecl()}.
637  // Changing the scope clears the parent cache, which is expensive to rebuild.
638  std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
639  void setTraversalScope(const std::vector<Decl *> &);
640
641  /// Returns the parents of the given node (within the traversal scope).
642  ///
643  /// Note that this will lazily compute the parents of all nodes
644  /// and store them for later retrieval. Thus, the first call is O(n)
645  /// in the number of AST nodes.
646  ///
647  /// Caveats and FIXMEs:
648  /// Calculating the parent map over all AST nodes will need to load the
649  /// full AST. This can be undesirable in the case where the full AST is
650  /// expensive to create (for example, when using precompiled header
651  /// preambles). Thus, there are good opportunities for optimization here.
652  /// One idea is to walk the given node downwards, looking for references
653  /// to declaration contexts - once a declaration context is found, compute
654  /// the parent map for the declaration context; if that can satisfy the
655  /// request, loading the whole AST can be avoided. Note that this is made
656  /// more complex by statements in templates having multiple parents - those
657  /// problems can be solved by building closure over the templated parts of
658  /// the AST, which also avoids touching large parts of the AST.
659  /// Additionally, we will want to add an interface to already give a hint
660  /// where to search for the parents, for example when looking at a statement
661  /// inside a certain function.
662  ///
663  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
664  /// NestedNameSpecifier or NestedNameSpecifierLoc.
665  template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node) {
666    return getParents(ast_type_traits::DynTypedNode::create(Node));
667  }
668
669  DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node);
670
671  const clang::PrintingPolicy &getPrintingPolicy() const {
672    return PrintingPolicy;
673  }
674
675  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
676    PrintingPolicy = Policy;
677  }
678
679  SourceManager& getSourceManager() { return SourceMgr; }
680  const SourceManager& getSourceManager() const { return SourceMgr; }
681
682  llvm::BumpPtrAllocator &getAllocator() const {
683    return BumpAlloc;
684  }
685
686  void *Allocate(size_t Size, unsigned Align = 8) const {
687    return BumpAlloc.Allocate(Size, Align);
688  }
689  template <typename T> T *Allocate(size_t Num = 1) const {
690    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
691  }
692  void Deallocate(void *Ptr) const {}
693
694  /// Return the total amount of physical memory allocated for representing
695  /// AST nodes and type information.
696  size_t getASTAllocatedMemory() const {
697    return BumpAlloc.getTotalMemory();
698  }
699
700  /// Return the total memory used for various side tables.
701  size_t getSideTableAllocatedMemory() const;
702
703  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
704    return DiagAllocator;
705  }
706
707  const TargetInfo &getTargetInfo() const { return *Target; }
708  const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
709
710  /// getIntTypeForBitwidth -
711  /// sets integer QualTy according to specified details:
712  /// bitwidth, signed/unsigned.
713  /// Returns empty type if there is no appropriate target types.
714  QualType getIntTypeForBitwidth(unsigned DestWidth,
715                                 unsigned Signed) const;
716
717  /// getRealTypeForBitwidth -
718  /// sets floating point QualTy according to specified bitwidth.
719  /// Returns empty type if there is no appropriate target types.
720  QualType getRealTypeForBitwidth(unsigned DestWidth) const;
721
722  bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
723
724  const LangOptions& getLangOpts() const { return LangOpts; }
725
726  const SanitizerBlacklist &getSanitizerBlacklist() const {
727    return *SanitizerBL;
728  }
729
730  const XRayFunctionFilter &getXRayFilter() const {
731    return *XRayFilter;
732  }
733
734  DiagnosticsEngine &getDiagnostics() const;
735
736  FullSourceLoc getFullLoc(SourceLocation Loc) const {
737    return FullSourceLoc(Loc,SourceMgr);
738  }
739
740  /// All comments in this translation unit.
741  RawCommentList Comments;
742
743  /// True if comments are already loaded from ExternalASTSource.
744  mutable bool CommentsLoaded = false;
745
746  /// Mapping from declaration to directly attached comment.
747  ///
748  /// Raw comments are owned by Comments list.  This mapping is populated
749  /// lazily.
750  mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
751
752  /// Mapping from canonical declaration to the first redeclaration in chain
753  /// that has a comment attached.
754  ///
755  /// Raw comments are owned by Comments list.  This mapping is populated
756  /// lazily.
757  mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
758
759  /// Keeps track of redeclaration chains that don't have any comment attached.
760  /// Mapping from canonical declaration to redeclaration chain that has no
761  /// comments attached to any redeclaration. Specifically it's mapping to
762  /// the last redeclaration we've checked.
763  ///
764  /// Shall not contain declarations that have comments attached to any
765  /// redeclaration in their chain.
766  mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
767
768  /// Mapping from declarations to parsed comments attached to any
769  /// redeclaration.
770  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
771
772  /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
773  /// and removes the redeclaration chain from the set of commentless chains.
774  ///
775  /// Don't do anything if a comment has already been attached to \p OriginalD
776  /// or its redeclaration chain.
777  void cacheRawCommentForDecl(const Decl &OriginalD,
778                              const RawComment &Comment) const;
779
780  /// \returns searches \p CommentsInFile for doc comment for \p D.
781  ///
782  /// \p RepresentativeLocForDecl is used as a location for searching doc
783  /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
784  /// same file where \p RepresentativeLocForDecl is.
785  RawComment *getRawCommentForDeclNoCacheImpl(
786      const Decl *D, const SourceLocation RepresentativeLocForDecl,
787      const std::map<unsigned, RawComment *> &CommentsInFile) const;
788
789  /// Return the documentation comment attached to a given declaration,
790  /// without looking into cache.
791  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
792
793public:
794  RawCommentList &getRawCommentList() {
795    return Comments;
796  }
797
798  void addComment(const RawComment &RC) {
799    assert(LangOpts.RetainCommentsFromSystemHeaders ||
800           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
801    Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
802  }
803
804  /// Return the documentation comment attached to a given declaration.
805  /// Returns nullptr if no comment is attached.
806  ///
807  /// \param OriginalDecl if not nullptr, is set to declaration AST node that
808  /// had the comment, if the comment we found comes from a redeclaration.
809  const RawComment *
810  getRawCommentForAnyRedecl(const Decl *D,
811                            const Decl **OriginalDecl = nullptr) const;
812
813  /// Searches existing comments for doc comments that should be attached to \p
814  /// Decls. If any doc comment is found, it is parsed.
815  ///
816  /// Requirement: All \p Decls are in the same file.
817  ///
818  /// If the last comment in the file is already attached we assume
819  /// there are not comments left to be attached to \p Decls.
820  void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
821                                       const Preprocessor *PP);
822
823  /// Return parsed documentation comment attached to a given declaration.
824  /// Returns nullptr if no comment is attached.
825  ///
826  /// \param PP the Preprocessor used with this TU.  Could be nullptr if
827  /// preprocessor is not available.
828  comments::FullComment *getCommentForDecl(const Decl *D,
829                                           const Preprocessor *PP) const;
830
831  /// Return parsed documentation comment attached to a given declaration.
832  /// Returns nullptr if no comment is attached. Does not look at any
833  /// redeclarations of the declaration.
834  comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
835
836  comments::FullComment *cloneFullComment(comments::FullComment *FC,
837                                         const Decl *D) const;
838
839private:
840  mutable comments::CommandTraits CommentCommandTraits;
841
842  /// Iterator that visits import declarations.
843  class import_iterator {
844    ImportDecl *Import = nullptr;
845
846  public:
847    using value_type = ImportDecl *;
848    using reference = ImportDecl *;
849    using pointer = ImportDecl *;
850    using difference_type = int;
851    using iterator_category = std::forward_iterator_tag;
852
853    import_iterator() = default;
854    explicit import_iterator(ImportDecl *Import) : Import(Import) {}
855
856    reference operator*() const { return Import; }
857    pointer operator->() const { return Import; }
858
859    import_iterator &operator++() {
860      Import = ASTContext::getNextLocalImport(Import);
861      return *this;
862    }
863
864    import_iterator operator++(int) {
865      import_iterator Other(*this);
866      ++(*this);
867      return Other;
868    }
869
870    friend bool operator==(import_iterator X, import_iterator Y) {
871      return X.Import == Y.Import;
872    }
873
874    friend bool operator!=(import_iterator X, import_iterator Y) {
875      return X.Import != Y.Import;
876    }
877  };
878
879public:
880  comments::CommandTraits &getCommentCommandTraits() const {
881    return CommentCommandTraits;
882  }
883
884  /// Retrieve the attributes for the given declaration.
885  AttrVec& getDeclAttrs(const Decl *D);
886
887  /// Erase the attributes corresponding to the given declaration.
888  void eraseDeclAttrs(const Decl *D);
889
890  /// If this variable is an instantiated static data member of a
891  /// class template specialization, returns the templated static data member
892  /// from which it was instantiated.
893  // FIXME: Remove ?
894  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
895                                                           const VarDecl *Var);
896
897  TemplateOrSpecializationInfo
898  getTemplateOrSpecializationInfo(const VarDecl *Var);
899
900  /// Note that the static data member \p Inst is an instantiation of
901  /// the static data member template \p Tmpl of a class template.
902  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
903                                           TemplateSpecializationKind TSK,
904                        SourceLocation PointOfInstantiation = SourceLocation());
905
906  void setTemplateOrSpecializationInfo(VarDecl *Inst,
907                                       TemplateOrSpecializationInfo TSI);
908
909  /// If the given using decl \p Inst is an instantiation of a
910  /// (possibly unresolved) using decl from a template instantiation,
911  /// return it.
912  NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
913
914  /// Remember that the using decl \p Inst is an instantiation
915  /// of the using decl \p Pattern of a class template.
916  void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
917
918  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
919                                          UsingShadowDecl *Pattern);
920  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
921
922  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
923
924  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
925
926  // Access to the set of methods overridden by the given C++ method.
927  using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
928  overridden_cxx_method_iterator
929  overridden_methods_begin(const CXXMethodDecl *Method) const;
930
931  overridden_cxx_method_iterator
932  overridden_methods_end(const CXXMethodDecl *Method) const;
933
934  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
935
936  using overridden_method_range =
937      llvm::iterator_range<overridden_cxx_method_iterator>;
938
939  overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
940
941  /// Note that the given C++ \p Method overrides the given \p
942  /// Overridden method.
943  void addOverriddenMethod(const CXXMethodDecl *Method,
944                           const CXXMethodDecl *Overridden);
945
946  /// Return C++ or ObjC overridden methods for the given \p Method.
947  ///
948  /// An ObjC method is considered to override any method in the class's
949  /// base classes, its protocols, or its categories' protocols, that has
950  /// the same selector and is of the same kind (class or instance).
951  /// A method in an implementation is not considered as overriding the same
952  /// method in the interface or its categories.
953  void getOverriddenMethods(
954                        const NamedDecl *Method,
955                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
956
957  /// Notify the AST context that a new import declaration has been
958  /// parsed or implicitly created within this translation unit.
959  void addedLocalImportDecl(ImportDecl *Import);
960
961  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
962    return Import->NextLocalImport;
963  }
964
965  using import_range = llvm::iterator_range<import_iterator>;
966
967  import_range local_imports() const {
968    return import_range(import_iterator(FirstLocalImport), import_iterator());
969  }
970
971  Decl *getPrimaryMergedDecl(Decl *D) {
972    Decl *Result = MergedDecls.lookup(D);
973    return Result ? Result : D;
974  }
975  void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
976    MergedDecls[D] = Primary;
977  }
978
979  /// Note that the definition \p ND has been merged into module \p M,
980  /// and should be visible whenever \p M is visible.
981  void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
982                                 bool NotifyListeners = true);
983
984  /// Clean up the merged definition list. Call this if you might have
985  /// added duplicates into the list.
986  void deduplicateMergedDefinitonsFor(NamedDecl *ND);
987
988  /// Get the additional modules in which the definition \p Def has
989  /// been merged.
990  ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def) {
991    auto MergedIt =
992        MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
993    if (MergedIt == MergedDefModules.end())
994      return None;
995    return MergedIt->second;
996  }
997
998  /// Add a declaration to the list of declarations that are initialized
999  /// for a module. This will typically be a global variable (with internal
1000  /// linkage) that runs module initializers, such as the iostream initializer,
1001  /// or an ImportDecl nominating another module that has initializers.
1002  void addModuleInitializer(Module *M, Decl *Init);
1003
1004  void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
1005
1006  /// Get the initializations to perform when importing a module, if any.
1007  ArrayRef<Decl*> getModuleInitializers(Module *M);
1008
1009  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
1010
1011  ExternCContextDecl *getExternCContextDecl() const;
1012  BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
1013  BuiltinTemplateDecl *getTypePackElementDecl() const;
1014
1015  // Builtin Types.
1016  CanQualType VoidTy;
1017  CanQualType BoolTy;
1018  CanQualType CharTy;
1019  CanQualType WCharTy;  // [C++ 3.9.1p5].
1020  CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1021  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
1022  CanQualType Char8Ty;  // [C++20 proposal]
1023  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1024  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1025  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1026  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1027  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1028  CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
1029  CanQualType ShortAccumTy, AccumTy,
1030      LongAccumTy;  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1031  CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1032  CanQualType ShortFractTy, FractTy, LongFractTy;
1033  CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1034  CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1035  CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1036      SatUnsignedLongAccumTy;
1037  CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1038  CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1039      SatUnsignedLongFractTy;
1040  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1041  CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1042  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
1043  CanQualType Float128ComplexTy;
1044  CanQualType VoidPtrTy, NullPtrTy;
1045  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1046  CanQualType BuiltinFnTy;
1047  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1048  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1049  CanQualType ObjCBuiltinBoolTy;
1050#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1051  CanQualType SingletonId;
1052#include "clang/Basic/OpenCLImageTypes.def"
1053  CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1054  CanQualType OCLQueueTy, OCLReserveIDTy;
1055  CanQualType OMPArraySectionTy;
1056#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1057  CanQualType Id##Ty;
1058#include "clang/Basic/OpenCLExtensionTypes.def"
1059#define SVE_TYPE(Name, Id, SingletonId) \
1060  CanQualType SingletonId;
1061#include "clang/Basic/AArch64SVEACLETypes.def"
1062
1063  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1064  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
1065  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1066
1067  // Decl used to help define __builtin_va_list for some targets.
1068  // The decl is built when constructing 'BuiltinVaListDecl'.
1069  mutable Decl *VaListTagDecl;
1070
1071  ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1072             SelectorTable &sels, Builtin::Context &builtins);
1073  ASTContext(const ASTContext &) = delete;
1074  ASTContext &operator=(const ASTContext &) = delete;
1075  ~ASTContext();
1076
1077  /// Attach an external AST source to the AST context.
1078  ///
1079  /// The external AST source provides the ability to load parts of
1080  /// the abstract syntax tree as needed from some external storage,
1081  /// e.g., a precompiled header.
1082  void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1083
1084  /// Retrieve a pointer to the external AST source associated
1085  /// with this AST context, if any.
1086  ExternalASTSource *getExternalSource() const {
1087    return ExternalSource.get();
1088  }
1089
1090  /// Attach an AST mutation listener to the AST context.
1091  ///
1092  /// The AST mutation listener provides the ability to track modifications to
1093  /// the abstract syntax tree entities committed after they were initially
1094  /// created.
1095  void setASTMutationListener(ASTMutationListener *Listener) {
1096    this->Listener = Listener;
1097  }
1098
1099  /// Retrieve a pointer to the AST mutation listener associated
1100  /// with this AST context, if any.
1101  ASTMutationListener *getASTMutationListener() const { return Listener; }
1102
1103  void PrintStats() const;
1104  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1105
1106  BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1107                                                const IdentifierInfo *II) const;
1108
1109  /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1110  /// declaration.
1111  RecordDecl *buildImplicitRecord(StringRef Name,
1112                                  RecordDecl::TagKind TK = TTK_Struct) const;
1113
1114  /// Create a new implicit TU-level typedef declaration.
1115  TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1116
1117  /// Retrieve the declaration for the 128-bit signed integer type.
1118  TypedefDecl *getInt128Decl() const;
1119
1120  /// Retrieve the declaration for the 128-bit unsigned integer type.
1121  TypedefDecl *getUInt128Decl() const;
1122
1123  //===--------------------------------------------------------------------===//
1124  //                           Type Constructors
1125  //===--------------------------------------------------------------------===//
1126
1127private:
1128  /// Return a type with extended qualifiers.
1129  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1130
1131  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1132
1133  QualType getPipeType(QualType T, bool ReadOnly) const;
1134
1135public:
1136  /// Return the uniqued reference to the type for an address space
1137  /// qualified type with the specified type and address space.
1138  ///
1139  /// The resulting type has a union of the qualifiers from T and the address
1140  /// space. If T already has an address space specifier, it is silently
1141  /// replaced.
1142  QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1143
1144  /// Remove any existing address space on the type and returns the type
1145  /// with qualifiers intact (or that's the idea anyway)
1146  ///
1147  /// The return type should be T with all prior qualifiers minus the address
1148  /// space.
1149  QualType removeAddrSpaceQualType(QualType T) const;
1150
1151  /// Apply Objective-C protocol qualifiers to the given type.
1152  /// \param allowOnPointerType specifies if we can apply protocol
1153  /// qualifiers on ObjCObjectPointerType. It can be set to true when
1154  /// constructing the canonical type of a Objective-C type parameter.
1155  QualType applyObjCProtocolQualifiers(QualType type,
1156      ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1157      bool allowOnPointerType = false) const;
1158
1159  /// Return the uniqued reference to the type for an Objective-C
1160  /// gc-qualified type.
1161  ///
1162  /// The resulting type has a union of the qualifiers from T and the gc
1163  /// attribute.
1164  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1165
1166  /// Remove the existing address space on the type if it is a pointer size
1167  /// address space and return the type with qualifiers intact.
1168  QualType removePtrSizeAddrSpace(QualType T) const;
1169
1170  /// Return the uniqued reference to the type for a \c restrict
1171  /// qualified type.
1172  ///
1173  /// The resulting type has a union of the qualifiers from \p T and
1174  /// \c restrict.
1175  QualType getRestrictType(QualType T) const {
1176    return T.withFastQualifiers(Qualifiers::Restrict);
1177  }
1178
1179  /// Return the uniqued reference to the type for a \c volatile
1180  /// qualified type.
1181  ///
1182  /// The resulting type has a union of the qualifiers from \p T and
1183  /// \c volatile.
1184  QualType getVolatileType(QualType T) const {
1185    return T.withFastQualifiers(Qualifiers::Volatile);
1186  }
1187
1188  /// Return the uniqued reference to the type for a \c const
1189  /// qualified type.
1190  ///
1191  /// The resulting type has a union of the qualifiers from \p T and \c const.
1192  ///
1193  /// It can be reasonably expected that this will always be equivalent to
1194  /// calling T.withConst().
1195  QualType getConstType(QualType T) const { return T.withConst(); }
1196
1197  /// Change the ExtInfo on a function type.
1198  const FunctionType *adjustFunctionType(const FunctionType *Fn,
1199                                         FunctionType::ExtInfo EInfo);
1200
1201  /// Adjust the given function result type.
1202  CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1203
1204  /// Change the result type of a function type once it is deduced.
1205  void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1206
1207  /// Get a function type and produce the equivalent function type with the
1208  /// specified exception specification. Type sugar that can be present on a
1209  /// declaration of a function with an exception specification is permitted
1210  /// and preserved. Other type sugar (for instance, typedefs) is not.
1211  QualType getFunctionTypeWithExceptionSpec(
1212      QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI);
1213
1214  /// Determine whether two function types are the same, ignoring
1215  /// exception specifications in cases where they're part of the type.
1216  bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U);
1217
1218  /// Change the exception specification on a function once it is
1219  /// delay-parsed, instantiated, or computed.
1220  void adjustExceptionSpec(FunctionDecl *FD,
1221                           const FunctionProtoType::ExceptionSpecInfo &ESI,
1222                           bool AsWritten = false);
1223
1224  /// Get a function type and produce the equivalent function type where
1225  /// pointer size address spaces in the return type and parameter tyeps are
1226  /// replaced with the default address space.
1227  QualType getFunctionTypeWithoutPtrSizes(QualType T);
1228
1229  /// Determine whether two function types are the same, ignoring pointer sizes
1230  /// in the return type and parameter types.
1231  bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1232
1233  /// Return the uniqued reference to the type for a complex
1234  /// number with the specified element type.
1235  QualType getComplexType(QualType T) const;
1236  CanQualType getComplexType(CanQualType T) const {
1237    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1238  }
1239
1240  /// Return the uniqued reference to the type for a pointer to
1241  /// the specified type.
1242  QualType getPointerType(QualType T) const;
1243  CanQualType getPointerType(CanQualType T) const {
1244    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1245  }
1246
1247  /// Return the uniqued reference to a type adjusted from the original
1248  /// type to a new type.
1249  QualType getAdjustedType(QualType Orig, QualType New) const;
1250  CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1251    return CanQualType::CreateUnsafe(
1252        getAdjustedType((QualType)Orig, (QualType)New));
1253  }
1254
1255  /// Return the uniqued reference to the decayed version of the given
1256  /// type.  Can only be called on array and function types which decay to
1257  /// pointer types.
1258  QualType getDecayedType(QualType T) const;
1259  CanQualType getDecayedType(CanQualType T) const {
1260    return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1261  }
1262
1263  /// Return the uniqued reference to the atomic type for the specified
1264  /// type.
1265  QualType getAtomicType(QualType T) const;
1266
1267  /// Return the uniqued reference to the type for a block of the
1268  /// specified type.
1269  QualType getBlockPointerType(QualType T) const;
1270
1271  /// Gets the struct used to keep track of the descriptor for pointer to
1272  /// blocks.
1273  QualType getBlockDescriptorType() const;
1274
1275  /// Return a read_only pipe type for the specified type.
1276  QualType getReadPipeType(QualType T) const;
1277
1278  /// Return a write_only pipe type for the specified type.
1279  QualType getWritePipeType(QualType T) const;
1280
1281  /// Gets the struct used to keep track of the extended descriptor for
1282  /// pointer to blocks.
1283  QualType getBlockDescriptorExtendedType() const;
1284
1285  /// Map an AST Type to an OpenCLTypeKind enum value.
1286  TargetInfo::OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1287
1288  /// Get address space for OpenCL type.
1289  LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1290
1291  void setcudaConfigureCallDecl(FunctionDecl *FD) {
1292    cudaConfigureCallDecl = FD;
1293  }
1294
1295  FunctionDecl *getcudaConfigureCallDecl() {
1296    return cudaConfigureCallDecl;
1297  }
1298
1299  /// Returns true iff we need copy/dispose helpers for the given type.
1300  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1301
1302  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1303  /// is set to false in this case. If HasByrefExtendedLayout returns true,
1304  /// byref variable has extended lifetime.
1305  bool getByrefLifetime(QualType Ty,
1306                        Qualifiers::ObjCLifetime &Lifetime,
1307                        bool &HasByrefExtendedLayout) const;
1308
1309  /// Return the uniqued reference to the type for an lvalue reference
1310  /// to the specified type.
1311  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1312    const;
1313
1314  /// Return the uniqued reference to the type for an rvalue reference
1315  /// to the specified type.
1316  QualType getRValueReferenceType(QualType T) const;
1317
1318  /// Return the uniqued reference to the type for a member pointer to
1319  /// the specified type in the specified class.
1320  ///
1321  /// The class \p Cls is a \c Type because it could be a dependent name.
1322  QualType getMemberPointerType(QualType T, const Type *Cls) const;
1323
1324  /// Return a non-unique reference to the type for a variable array of
1325  /// the specified element type.
1326  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1327                                ArrayType::ArraySizeModifier ASM,
1328                                unsigned IndexTypeQuals,
1329                                SourceRange Brackets) const;
1330
1331  /// Return a non-unique reference to the type for a dependently-sized
1332  /// array of the specified element type.
1333  ///
1334  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1335  /// point.
1336  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1337                                      ArrayType::ArraySizeModifier ASM,
1338                                      unsigned IndexTypeQuals,
1339                                      SourceRange Brackets) const;
1340
1341  /// Return a unique reference to the type for an incomplete array of
1342  /// the specified element type.
1343  QualType getIncompleteArrayType(QualType EltTy,
1344                                  ArrayType::ArraySizeModifier ASM,
1345                                  unsigned IndexTypeQuals) const;
1346
1347  /// Return the unique reference to the type for a constant array of
1348  /// the specified element type.
1349  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1350                                const Expr *SizeExpr,
1351                                ArrayType::ArraySizeModifier ASM,
1352                                unsigned IndexTypeQuals) const;
1353
1354  /// Return a type for a constant array for a string literal of the
1355  /// specified element type and length.
1356  QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1357
1358  /// Returns a vla type where known sizes are replaced with [*].
1359  QualType getVariableArrayDecayedType(QualType Ty) const;
1360
1361  /// Return the unique reference to a vector type of the specified
1362  /// element type and size.
1363  ///
1364  /// \pre \p VectorType must be a built-in type.
1365  QualType getVectorType(QualType VectorType, unsigned NumElts,
1366                         VectorType::VectorKind VecKind) const;
1367  /// Return the unique reference to the type for a dependently sized vector of
1368  /// the specified element type.
1369  QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1370                                  SourceLocation AttrLoc,
1371                                  VectorType::VectorKind VecKind) const;
1372
1373  /// Return the unique reference to an extended vector type
1374  /// of the specified element type and size.
1375  ///
1376  /// \pre \p VectorType must be a built-in type.
1377  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1378
1379  /// \pre Return a non-unique reference to the type for a dependently-sized
1380  /// vector of the specified element type.
1381  ///
1382  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1383  /// point.
1384  QualType getDependentSizedExtVectorType(QualType VectorType,
1385                                          Expr *SizeExpr,
1386                                          SourceLocation AttrLoc) const;
1387
1388  QualType getDependentAddressSpaceType(QualType PointeeType,
1389                                        Expr *AddrSpaceExpr,
1390                                        SourceLocation AttrLoc) const;
1391
1392  /// Return a K&R style C function type like 'int()'.
1393  QualType getFunctionNoProtoType(QualType ResultTy,
1394                                  const FunctionType::ExtInfo &Info) const;
1395
1396  QualType getFunctionNoProtoType(QualType ResultTy) const {
1397    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1398  }
1399
1400  /// Return a normal function type with a typed argument list.
1401  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1402                           const FunctionProtoType::ExtProtoInfo &EPI) const {
1403    return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1404  }
1405
1406  QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1407
1408private:
1409  /// Return a normal function type with a typed argument list.
1410  QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1411                                   const FunctionProtoType::ExtProtoInfo &EPI,
1412                                   bool OnlyWantCanonical) const;
1413
1414public:
1415  /// Return the unique reference to the type for the specified type
1416  /// declaration.
1417  QualType getTypeDeclType(const TypeDecl *Decl,
1418                           const TypeDecl *PrevDecl = nullptr) const {
1419    assert(Decl && "Passed null for Decl param");
1420    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1421
1422    if (PrevDecl) {
1423      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1424      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1425      return QualType(PrevDecl->TypeForDecl, 0);
1426    }
1427
1428    return getTypeDeclTypeSlow(Decl);
1429  }
1430
1431  /// Return the unique reference to the type for the specified
1432  /// typedef-name decl.
1433  QualType getTypedefType(const TypedefNameDecl *Decl,
1434                          QualType Canon = QualType()) const;
1435
1436  QualType getRecordType(const RecordDecl *Decl) const;
1437
1438  QualType getEnumType(const EnumDecl *Decl) const;
1439
1440  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1441
1442  QualType getAttributedType(attr::Kind attrKind,
1443                             QualType modifiedType,
1444                             QualType equivalentType);
1445
1446  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1447                                        QualType Replacement) const;
1448  QualType getSubstTemplateTypeParmPackType(
1449                                          const TemplateTypeParmType *Replaced,
1450                                            const TemplateArgument &ArgPack);
1451
1452  QualType
1453  getTemplateTypeParmType(unsigned Depth, unsigned Index,
1454                          bool ParameterPack,
1455                          TemplateTypeParmDecl *ParmDecl = nullptr) const;
1456
1457  QualType getTemplateSpecializationType(TemplateName T,
1458                                         ArrayRef<TemplateArgument> Args,
1459                                         QualType Canon = QualType()) const;
1460
1461  QualType
1462  getCanonicalTemplateSpecializationType(TemplateName T,
1463                                         ArrayRef<TemplateArgument> Args) const;
1464
1465  QualType getTemplateSpecializationType(TemplateName T,
1466                                         const TemplateArgumentListInfo &Args,
1467                                         QualType Canon = QualType()) const;
1468
1469  TypeSourceInfo *
1470  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1471                                    const TemplateArgumentListInfo &Args,
1472                                    QualType Canon = QualType()) const;
1473
1474  QualType getParenType(QualType NamedType) const;
1475
1476  QualType getMacroQualifiedType(QualType UnderlyingTy,
1477                                 const IdentifierInfo *MacroII) const;
1478
1479  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1480                             NestedNameSpecifier *NNS, QualType NamedType,
1481                             TagDecl *OwnedTagDecl = nullptr) const;
1482  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1483                                NestedNameSpecifier *NNS,
1484                                const IdentifierInfo *Name,
1485                                QualType Canon = QualType()) const;
1486
1487  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1488                                                  NestedNameSpecifier *NNS,
1489                                                  const IdentifierInfo *Name,
1490                                    const TemplateArgumentListInfo &Args) const;
1491  QualType getDependentTemplateSpecializationType(
1492      ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1493      const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1494
1495  TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1496
1497  /// Get a template argument list with one argument per template parameter
1498  /// in a template parameter list, such as for the injected class name of
1499  /// a class template.
1500  void getInjectedTemplateArgs(const TemplateParameterList *Params,
1501                               SmallVectorImpl<TemplateArgument> &Args);
1502
1503  QualType getPackExpansionType(QualType Pattern,
1504                                Optional<unsigned> NumExpansions);
1505
1506  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1507                                ObjCInterfaceDecl *PrevDecl = nullptr) const;
1508
1509  /// Legacy interface: cannot provide type arguments or __kindof.
1510  QualType getObjCObjectType(QualType Base,
1511                             ObjCProtocolDecl * const *Protocols,
1512                             unsigned NumProtocols) const;
1513
1514  QualType getObjCObjectType(QualType Base,
1515                             ArrayRef<QualType> typeArgs,
1516                             ArrayRef<ObjCProtocolDecl *> protocols,
1517                             bool isKindOf) const;
1518
1519  QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1520                                ArrayRef<ObjCProtocolDecl *> protocols) const;
1521
1522  bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1523
1524  /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1525  /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1526  /// of protocols.
1527  bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1528                                            ObjCInterfaceDecl *IDecl);
1529
1530  /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1531  QualType getObjCObjectPointerType(QualType OIT) const;
1532
1533  /// GCC extension.
1534  QualType getTypeOfExprType(Expr *e) const;
1535  QualType getTypeOfType(QualType t) const;
1536
1537  /// C++11 decltype.
1538  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1539
1540  /// Unary type transforms
1541  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1542                                 UnaryTransformType::UTTKind UKind) const;
1543
1544  /// C++11 deduced auto type.
1545  QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1546                       bool IsDependent, bool IsPack = false,
1547                       ConceptDecl *TypeConstraintConcept = nullptr,
1548                       ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1549
1550  /// C++11 deduction pattern for 'auto' type.
1551  QualType getAutoDeductType() const;
1552
1553  /// C++11 deduction pattern for 'auto &&' type.
1554  QualType getAutoRRefDeductType() const;
1555
1556  /// C++17 deduced class template specialization type.
1557  QualType getDeducedTemplateSpecializationType(TemplateName Template,
1558                                                QualType DeducedType,
1559                                                bool IsDependent) const;
1560
1561  /// Return the unique reference to the type for the specified TagDecl
1562  /// (struct/union/class/enum) decl.
1563  QualType getTagDeclType(const TagDecl *Decl) const;
1564
1565  /// Return the unique type for "size_t" (C99 7.17), defined in
1566  /// <stddef.h>.
1567  ///
1568  /// The sizeof operator requires this (C99 6.5.3.4p4).
1569  CanQualType getSizeType() const;
1570
1571  /// Return the unique signed counterpart of
1572  /// the integer type corresponding to size_t.
1573  CanQualType getSignedSizeType() const;
1574
1575  /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1576  /// <stdint.h>.
1577  CanQualType getIntMaxType() const;
1578
1579  /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1580  /// <stdint.h>.
1581  CanQualType getUIntMaxType() const;
1582
1583  /// Return the unique wchar_t type available in C++ (and available as
1584  /// __wchar_t as a Microsoft extension).
1585  QualType getWCharType() const { return WCharTy; }
1586
1587  /// Return the type of wide characters. In C++, this returns the
1588  /// unique wchar_t type. In C99, this returns a type compatible with the type
1589  /// defined in <stddef.h> as defined by the target.
1590  QualType getWideCharType() const { return WideCharTy; }
1591
1592  /// Return the type of "signed wchar_t".
1593  ///
1594  /// Used when in C++, as a GCC extension.
1595  QualType getSignedWCharType() const;
1596
1597  /// Return the type of "unsigned wchar_t".
1598  ///
1599  /// Used when in C++, as a GCC extension.
1600  QualType getUnsignedWCharType() const;
1601
1602  /// In C99, this returns a type compatible with the type
1603  /// defined in <stddef.h> as defined by the target.
1604  QualType getWIntType() const { return WIntTy; }
1605
1606  /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1607  /// as defined by the target.
1608  QualType getIntPtrType() const;
1609
1610  /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1611  /// as defined by the target.
1612  QualType getUIntPtrType() const;
1613
1614  /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1615  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1616  QualType getPointerDiffType() const;
1617
1618  /// Return the unique unsigned counterpart of "ptrdiff_t"
1619  /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1620  /// in the definition of %tu format specifier.
1621  QualType getUnsignedPointerDiffType() const;
1622
1623  /// Return the unique type for "pid_t" defined in
1624  /// <sys/types.h>. We need this to compute the correct type for vfork().
1625  QualType getProcessIDType() const;
1626
1627  /// Return the C structure type used to represent constant CFStrings.
1628  QualType getCFConstantStringType() const;
1629
1630  /// Returns the C struct type for objc_super
1631  QualType getObjCSuperType() const;
1632  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1633
1634  /// Get the structure type used to representation CFStrings, or NULL
1635  /// if it hasn't yet been built.
1636  QualType getRawCFConstantStringType() const {
1637    if (CFConstantStringTypeDecl)
1638      return getTypedefType(CFConstantStringTypeDecl);
1639    return QualType();
1640  }
1641  void setCFConstantStringType(QualType T);
1642  TypedefDecl *getCFConstantStringDecl() const;
1643  RecordDecl *getCFConstantStringTagDecl() const;
1644
1645  // This setter/getter represents the ObjC type for an NSConstantString.
1646  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1647  QualType getObjCConstantStringInterface() const {
1648    return ObjCConstantStringType;
1649  }
1650
1651  QualType getObjCNSStringType() const {
1652    return ObjCNSStringType;
1653  }
1654
1655  void setObjCNSStringType(QualType T) {
1656    ObjCNSStringType = T;
1657  }
1658
1659  /// Retrieve the type that \c id has been defined to, which may be
1660  /// different from the built-in \c id if \c id has been typedef'd.
1661  QualType getObjCIdRedefinitionType() const {
1662    if (ObjCIdRedefinitionType.isNull())
1663      return getObjCIdType();
1664    return ObjCIdRedefinitionType;
1665  }
1666
1667  /// Set the user-written type that redefines \c id.
1668  void setObjCIdRedefinitionType(QualType RedefType) {
1669    ObjCIdRedefinitionType = RedefType;
1670  }
1671
1672  /// Retrieve the type that \c Class has been defined to, which may be
1673  /// different from the built-in \c Class if \c Class has been typedef'd.
1674  QualType getObjCClassRedefinitionType() const {
1675    if (ObjCClassRedefinitionType.isNull())
1676      return getObjCClassType();
1677    return ObjCClassRedefinitionType;
1678  }
1679
1680  /// Set the user-written type that redefines 'SEL'.
1681  void setObjCClassRedefinitionType(QualType RedefType) {
1682    ObjCClassRedefinitionType = RedefType;
1683  }
1684
1685  /// Retrieve the type that 'SEL' has been defined to, which may be
1686  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1687  QualType getObjCSelRedefinitionType() const {
1688    if (ObjCSelRedefinitionType.isNull())
1689      return getObjCSelType();
1690    return ObjCSelRedefinitionType;
1691  }
1692
1693  /// Set the user-written type that redefines 'SEL'.
1694  void setObjCSelRedefinitionType(QualType RedefType) {
1695    ObjCSelRedefinitionType = RedefType;
1696  }
1697
1698  /// Retrieve the identifier 'NSObject'.
1699  IdentifierInfo *getNSObjectName() const {
1700    if (!NSObjectName) {
1701      NSObjectName = &Idents.get("NSObject");
1702    }
1703
1704    return NSObjectName;
1705  }
1706
1707  /// Retrieve the identifier 'NSCopying'.
1708  IdentifierInfo *getNSCopyingName() {
1709    if (!NSCopyingName) {
1710      NSCopyingName = &Idents.get("NSCopying");
1711    }
1712
1713    return NSCopyingName;
1714  }
1715
1716  CanQualType getNSUIntegerType() const {
1717    assert(Target && "Expected target to be initialized");
1718    const llvm::Triple &T = Target->getTriple();
1719    // Windows is LLP64 rather than LP64
1720    if (T.isOSWindows() && T.isArch64Bit())
1721      return UnsignedLongLongTy;
1722    return UnsignedLongTy;
1723  }
1724
1725  CanQualType getNSIntegerType() const {
1726    assert(Target && "Expected target to be initialized");
1727    const llvm::Triple &T = Target->getTriple();
1728    // Windows is LLP64 rather than LP64
1729    if (T.isOSWindows() && T.isArch64Bit())
1730      return LongLongTy;
1731    return LongTy;
1732  }
1733
1734  /// Retrieve the identifier 'bool'.
1735  IdentifierInfo *getBoolName() const {
1736    if (!BoolName)
1737      BoolName = &Idents.get("bool");
1738    return BoolName;
1739  }
1740
1741  IdentifierInfo *getMakeIntegerSeqName() const {
1742    if (!MakeIntegerSeqName)
1743      MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1744    return MakeIntegerSeqName;
1745  }
1746
1747  IdentifierInfo *getTypePackElementName() const {
1748    if (!TypePackElementName)
1749      TypePackElementName = &Idents.get("__type_pack_element");
1750    return TypePackElementName;
1751  }
1752
1753  /// Retrieve the Objective-C "instancetype" type, if already known;
1754  /// otherwise, returns a NULL type;
1755  QualType getObjCInstanceType() {
1756    return getTypeDeclType(getObjCInstanceTypeDecl());
1757  }
1758
1759  /// Retrieve the typedef declaration corresponding to the Objective-C
1760  /// "instancetype" type.
1761  TypedefDecl *getObjCInstanceTypeDecl();
1762
1763  /// Set the type for the C FILE type.
1764  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1765
1766  /// Retrieve the C FILE type.
1767  QualType getFILEType() const {
1768    if (FILEDecl)
1769      return getTypeDeclType(FILEDecl);
1770    return QualType();
1771  }
1772
1773  /// Set the type for the C jmp_buf type.
1774  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1775    this->jmp_bufDecl = jmp_bufDecl;
1776  }
1777
1778  /// Retrieve the C jmp_buf type.
1779  QualType getjmp_bufType() const {
1780    if (jmp_bufDecl)
1781      return getTypeDeclType(jmp_bufDecl);
1782    return QualType();
1783  }
1784
1785  /// Set the type for the C sigjmp_buf type.
1786  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1787    this->sigjmp_bufDecl = sigjmp_bufDecl;
1788  }
1789
1790  /// Retrieve the C sigjmp_buf type.
1791  QualType getsigjmp_bufType() const {
1792    if (sigjmp_bufDecl)
1793      return getTypeDeclType(sigjmp_bufDecl);
1794    return QualType();
1795  }
1796
1797  /// Set the type for the C ucontext_t type.
1798  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1799    this->ucontext_tDecl = ucontext_tDecl;
1800  }
1801
1802  /// Retrieve the C ucontext_t type.
1803  QualType getucontext_tType() const {
1804    if (ucontext_tDecl)
1805      return getTypeDeclType(ucontext_tDecl);
1806    return QualType();
1807  }
1808
1809  /// The result type of logical operations, '<', '>', '!=', etc.
1810  QualType getLogicalOperationType() const {
1811    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1812  }
1813
1814  /// Emit the Objective-CC type encoding for the given type \p T into
1815  /// \p S.
1816  ///
1817  /// If \p Field is specified then record field names are also encoded.
1818  void getObjCEncodingForType(QualType T, std::string &S,
1819                              const FieldDecl *Field=nullptr,
1820                              QualType *NotEncodedT=nullptr) const;
1821
1822  /// Emit the Objective-C property type encoding for the given
1823  /// type \p T into \p S.
1824  void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1825
1826  void getLegacyIntegralTypeEncoding(QualType &t) const;
1827
1828  /// Put the string version of the type qualifiers \p QT into \p S.
1829  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1830                                       std::string &S) const;
1831
1832  /// Emit the encoded type for the function \p Decl into \p S.
1833  ///
1834  /// This is in the same format as Objective-C method encodings.
1835  ///
1836  /// \returns true if an error occurred (e.g., because one of the parameter
1837  /// types is incomplete), false otherwise.
1838  std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1839
1840  /// Emit the encoded type for the method declaration \p Decl into
1841  /// \p S.
1842  std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1843                                           bool Extended = false) const;
1844
1845  /// Return the encoded type for this block declaration.
1846  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1847
1848  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1849  /// this method declaration. If non-NULL, Container must be either
1850  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1851  /// only be NULL when getting encodings for protocol properties.
1852  std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1853                                             const Decl *Container) const;
1854
1855  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1856                                      ObjCProtocolDecl *rProto) const;
1857
1858  ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1859                                                  const ObjCPropertyDecl *PD,
1860                                                  const Decl *Container) const;
1861
1862  /// Return the size of type \p T for Objective-C encoding purpose,
1863  /// in characters.
1864  CharUnits getObjCEncodingTypeSize(QualType T) const;
1865
1866  /// Retrieve the typedef corresponding to the predefined \c id type
1867  /// in Objective-C.
1868  TypedefDecl *getObjCIdDecl() const;
1869
1870  /// Represents the Objective-CC \c id type.
1871  ///
1872  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1873  /// pointer type, a pointer to a struct.
1874  QualType getObjCIdType() const {
1875    return getTypeDeclType(getObjCIdDecl());
1876  }
1877
1878  /// Retrieve the typedef corresponding to the predefined 'SEL' type
1879  /// in Objective-C.
1880  TypedefDecl *getObjCSelDecl() const;
1881
1882  /// Retrieve the type that corresponds to the predefined Objective-C
1883  /// 'SEL' type.
1884  QualType getObjCSelType() const {
1885    return getTypeDeclType(getObjCSelDecl());
1886  }
1887
1888  /// Retrieve the typedef declaration corresponding to the predefined
1889  /// Objective-C 'Class' type.
1890  TypedefDecl *getObjCClassDecl() const;
1891
1892  /// Represents the Objective-C \c Class type.
1893  ///
1894  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1895  /// pointer type, a pointer to a struct.
1896  QualType getObjCClassType() const {
1897    return getTypeDeclType(getObjCClassDecl());
1898  }
1899
1900  /// Retrieve the Objective-C class declaration corresponding to
1901  /// the predefined \c Protocol class.
1902  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1903
1904  /// Retrieve declaration of 'BOOL' typedef
1905  TypedefDecl *getBOOLDecl() const {
1906    return BOOLDecl;
1907  }
1908
1909  /// Save declaration of 'BOOL' typedef
1910  void setBOOLDecl(TypedefDecl *TD) {
1911    BOOLDecl = TD;
1912  }
1913
1914  /// type of 'BOOL' type.
1915  QualType getBOOLType() const {
1916    return getTypeDeclType(getBOOLDecl());
1917  }
1918
1919  /// Retrieve the type of the Objective-C \c Protocol class.
1920  QualType getObjCProtoType() const {
1921    return getObjCInterfaceType(getObjCProtocolDecl());
1922  }
1923
1924  /// Retrieve the C type declaration corresponding to the predefined
1925  /// \c __builtin_va_list type.
1926  TypedefDecl *getBuiltinVaListDecl() const;
1927
1928  /// Retrieve the type of the \c __builtin_va_list type.
1929  QualType getBuiltinVaListType() const {
1930    return getTypeDeclType(getBuiltinVaListDecl());
1931  }
1932
1933  /// Retrieve the C type declaration corresponding to the predefined
1934  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1935  /// for some targets.
1936  Decl *getVaListTagDecl() const;
1937
1938  /// Retrieve the C type declaration corresponding to the predefined
1939  /// \c __builtin_ms_va_list type.
1940  TypedefDecl *getBuiltinMSVaListDecl() const;
1941
1942  /// Retrieve the type of the \c __builtin_ms_va_list type.
1943  QualType getBuiltinMSVaListType() const {
1944    return getTypeDeclType(getBuiltinMSVaListDecl());
1945  }
1946
1947  /// Return whether a declaration to a builtin is allowed to be
1948  /// overloaded/redeclared.
1949  bool canBuiltinBeRedeclared(const FunctionDecl *) const;
1950
1951  /// Return a type with additional \c const, \c volatile, or
1952  /// \c restrict qualifiers.
1953  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1954    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1955  }
1956
1957  /// Un-split a SplitQualType.
1958  QualType getQualifiedType(SplitQualType split) const {
1959    return getQualifiedType(split.Ty, split.Quals);
1960  }
1961
1962  /// Return a type with additional qualifiers.
1963  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1964    if (!Qs.hasNonFastQualifiers())
1965      return T.withFastQualifiers(Qs.getFastQualifiers());
1966    QualifierCollector Qc(Qs);
1967    const Type *Ptr = Qc.strip(T);
1968    return getExtQualType(Ptr, Qc);
1969  }
1970
1971  /// Return a type with additional qualifiers.
1972  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1973    if (!Qs.hasNonFastQualifiers())
1974      return QualType(T, Qs.getFastQualifiers());
1975    return getExtQualType(T, Qs);
1976  }
1977
1978  /// Return a type with the given lifetime qualifier.
1979  ///
1980  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1981  QualType getLifetimeQualifiedType(QualType type,
1982                                    Qualifiers::ObjCLifetime lifetime) {
1983    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1984    assert(lifetime != Qualifiers::OCL_None);
1985
1986    Qualifiers qs;
1987    qs.addObjCLifetime(lifetime);
1988    return getQualifiedType(type, qs);
1989  }
1990
1991  /// getUnqualifiedObjCPointerType - Returns version of
1992  /// Objective-C pointer type with lifetime qualifier removed.
1993  QualType getUnqualifiedObjCPointerType(QualType type) const {
1994    if (!type.getTypePtr()->isObjCObjectPointerType() ||
1995        !type.getQualifiers().hasObjCLifetime())
1996      return type;
1997    Qualifiers Qs = type.getQualifiers();
1998    Qs.removeObjCLifetime();
1999    return getQualifiedType(type.getUnqualifiedType(), Qs);
2000  }
2001
2002  unsigned char getFixedPointScale(QualType Ty) const;
2003  unsigned char getFixedPointIBits(QualType Ty) const;
2004  FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2005  APFixedPoint getFixedPointMax(QualType Ty) const;
2006  APFixedPoint getFixedPointMin(QualType Ty) const;
2007
2008  DeclarationNameInfo getNameForTemplate(TemplateName Name,
2009                                         SourceLocation NameLoc) const;
2010
2011  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2012                                         UnresolvedSetIterator End) const;
2013  TemplateName getAssumedTemplateName(DeclarationName Name) const;
2014
2015  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2016                                        bool TemplateKeyword,
2017                                        TemplateDecl *Template) const;
2018
2019  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2020                                        const IdentifierInfo *Name) const;
2021  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2022                                        OverloadedOperatorKind Operator) const;
2023  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
2024                                            TemplateName replacement) const;
2025  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
2026                                        const TemplateArgument &ArgPack) const;
2027
2028  enum GetBuiltinTypeError {
2029    /// No error
2030    GE_None,
2031
2032    /// Missing a type
2033    GE_Missing_type,
2034
2035    /// Missing a type from <stdio.h>
2036    GE_Missing_stdio,
2037
2038    /// Missing a type from <setjmp.h>
2039    GE_Missing_setjmp,
2040
2041    /// Missing a type from <ucontext.h>
2042    GE_Missing_ucontext
2043  };
2044
2045  /// Return the type for the specified builtin.
2046  ///
2047  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2048  /// arguments to the builtin that are required to be integer constant
2049  /// expressions.
2050  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2051                          unsigned *IntegerConstantArgs = nullptr) const;
2052
2053  /// Types and expressions required to build C++2a three-way comparisons
2054  /// using operator<=>, including the values return by builtin <=> operators.
2055  ComparisonCategories CompCategories;
2056
2057private:
2058  CanQualType getFromTargetType(unsigned Type) const;
2059  TypeInfo getTypeInfoImpl(const Type *T) const;
2060
2061  //===--------------------------------------------------------------------===//
2062  //                         Type Predicates.
2063  //===--------------------------------------------------------------------===//
2064
2065public:
2066  /// Return one of the GCNone, Weak or Strong Objective-C garbage
2067  /// collection attributes.
2068  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2069
2070  /// Return true if the given vector types are of the same unqualified
2071  /// type or if they are equivalent to the same GCC vector type.
2072  ///
2073  /// \note This ignores whether they are target-specific (AltiVec or Neon)
2074  /// types.
2075  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2076
2077  /// Return true if the type has been explicitly qualified with ObjC ownership.
2078  /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2079  /// some cases the compiler treats these differently.
2080  bool hasDirectOwnershipQualifier(QualType Ty) const;
2081
2082  /// Return true if this is an \c NSObject object with its \c NSObject
2083  /// attribute set.
2084  static bool isObjCNSObjectType(QualType Ty) {
2085    return Ty->isObjCNSObjectType();
2086  }
2087
2088  //===--------------------------------------------------------------------===//
2089  //                         Type Sizing and Analysis
2090  //===--------------------------------------------------------------------===//
2091
2092  /// Return the APFloat 'semantics' for the specified scalar floating
2093  /// point type.
2094  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2095
2096  /// Get the size and alignment of the specified complete type in bits.
2097  TypeInfo getTypeInfo(const Type *T) const;
2098  TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2099
2100  /// Get default simd alignment of the specified complete type in bits.
2101  unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2102
2103  /// Return the size of the specified (complete) type \p T, in bits.
2104  uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
2105  uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2106
2107  /// Return the size of the character type, in bits.
2108  uint64_t getCharWidth() const {
2109    return getTypeSize(CharTy);
2110  }
2111
2112  /// Convert a size in bits to a size in characters.
2113  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2114
2115  /// Convert a size in characters to a size in bits.
2116  int64_t toBits(CharUnits CharSize) const;
2117
2118  /// Return the size of the specified (complete) type \p T, in
2119  /// characters.
2120  CharUnits getTypeSizeInChars(QualType T) const;
2121  CharUnits getTypeSizeInChars(const Type *T) const;
2122
2123  Optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2124    if (Ty->isIncompleteType() || Ty->isDependentType())
2125      return None;
2126    return getTypeSizeInChars(Ty);
2127  }
2128
2129  Optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2130    return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2131  }
2132
2133  /// Return the ABI-specified alignment of a (complete) type \p T, in
2134  /// bits.
2135  unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
2136  unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2137
2138  /// Return the ABI-specified natural alignment of a (complete) type \p T,
2139  /// before alignment adjustments, in bits.
2140  ///
2141  /// This alignment is curently used only by ARM and AArch64 when passing
2142  /// arguments of a composite type.
2143  unsigned getTypeUnadjustedAlign(QualType T) const {
2144    return getTypeUnadjustedAlign(T.getTypePtr());
2145  }
2146  unsigned getTypeUnadjustedAlign(const Type *T) const;
2147
2148  /// Return the ABI-specified alignment of a type, in bits, or 0 if
2149  /// the type is incomplete and we cannot determine the alignment (for
2150  /// example, from alignment attributes).
2151  unsigned getTypeAlignIfKnown(QualType T) const;
2152
2153  /// Return the ABI-specified alignment of a (complete) type \p T, in
2154  /// characters.
2155  CharUnits getTypeAlignInChars(QualType T) const;
2156  CharUnits getTypeAlignInChars(const Type *T) const;
2157
2158  /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2159  /// in characters, before alignment adjustments. This method does not work on
2160  /// incomplete types.
2161  CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2162  CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2163
2164  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2165  // type is a record, its data size is returned.
2166  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
2167
2168  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
2169  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
2170
2171  /// Determine if the alignment the type has was required using an
2172  /// alignment attribute.
2173  bool isAlignmentRequired(const Type *T) const;
2174  bool isAlignmentRequired(QualType T) const;
2175
2176  /// Return the "preferred" alignment of the specified type \p T for
2177  /// the current target, in bits.
2178  ///
2179  /// This can be different than the ABI alignment in cases where it is
2180  /// beneficial for performance to overalign a data type.
2181  unsigned getPreferredTypeAlign(const Type *T) const;
2182
2183  /// Return the default alignment for __attribute__((aligned)) on
2184  /// this target, to be used if no alignment value is specified.
2185  unsigned getTargetDefaultAlignForAttributeAligned() const;
2186
2187  /// Return the alignment in bits that should be given to a
2188  /// global variable with type \p T.
2189  unsigned getAlignOfGlobalVar(QualType T) const;
2190
2191  /// Return the alignment in characters that should be given to a
2192  /// global variable with type \p T.
2193  CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2194
2195  /// Return a conservative estimate of the alignment of the specified
2196  /// decl \p D.
2197  ///
2198  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2199  /// alignment.
2200  ///
2201  /// If \p ForAlignof, references are treated like their underlying type
2202  /// and  large arrays don't get any special treatment. If not \p ForAlignof
2203  /// it computes the value expected by CodeGen: references are treated like
2204  /// pointers and large arrays get extra alignment.
2205  CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2206
2207  /// Return the alignment (in bytes) of the thrown exception object. This is
2208  /// only meaningful for targets that allocate C++ exceptions in a system
2209  /// runtime, such as those using the Itanium C++ ABI.
2210  CharUnits getExnObjectAlignment() const {
2211    return toCharUnitsFromBits(Target->getExnObjectAlignment());
2212  }
2213
2214  /// Get or compute information about the layout of the specified
2215  /// record (struct/union/class) \p D, which indicates its size and field
2216  /// position information.
2217  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2218
2219  /// Get or compute information about the layout of the specified
2220  /// Objective-C interface.
2221  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2222    const;
2223
2224  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2225                        bool Simple = false) const;
2226
2227  /// Get or compute information about the layout of the specified
2228  /// Objective-C implementation.
2229  ///
2230  /// This may differ from the interface if synthesized ivars are present.
2231  const ASTRecordLayout &
2232  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2233
2234  /// Get our current best idea for the key function of the
2235  /// given record decl, or nullptr if there isn't one.
2236  ///
2237  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2238  ///   ...the first non-pure virtual function that is not inline at the
2239  ///   point of class definition.
2240  ///
2241  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
2242  /// virtual functions that are defined 'inline', which means that
2243  /// the result of this computation can change.
2244  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2245
2246  /// Observe that the given method cannot be a key function.
2247  /// Checks the key-function cache for the method's class and clears it
2248  /// if matches the given declaration.
2249  ///
2250  /// This is used in ABIs where out-of-line definitions marked
2251  /// inline are not considered to be key functions.
2252  ///
2253  /// \param method should be the declaration from the class definition
2254  void setNonKeyFunction(const CXXMethodDecl *method);
2255
2256  /// Loading virtual member pointers using the virtual inheritance model
2257  /// always results in an adjustment using the vbtable even if the index is
2258  /// zero.
2259  ///
2260  /// This is usually OK because the first slot in the vbtable points
2261  /// backwards to the top of the MDC.  However, the MDC might be reusing a
2262  /// vbptr from an nv-base.  In this case, the first slot in the vbtable
2263  /// points to the start of the nv-base which introduced the vbptr and *not*
2264  /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
2265  CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2266
2267  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2268  uint64_t getFieldOffset(const ValueDecl *FD) const;
2269
2270  /// Get the offset of an ObjCIvarDecl in bits.
2271  uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2272                                const ObjCImplementationDecl *ID,
2273                                const ObjCIvarDecl *Ivar) const;
2274
2275  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2276
2277  VTableContextBase *getVTableContext();
2278
2279  /// If \p T is null pointer, assume the target in ASTContext.
2280  MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2281
2282  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2283                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2284
2285  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2286  void CollectInheritedProtocols(const Decl *CDecl,
2287                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2288
2289  /// Return true if the specified type has unique object representations
2290  /// according to (C++17 [meta.unary.prop]p9)
2291  bool hasUniqueObjectRepresentations(QualType Ty) const;
2292
2293  //===--------------------------------------------------------------------===//
2294  //                            Type Operators
2295  //===--------------------------------------------------------------------===//
2296
2297  /// Return the canonical (structural) type corresponding to the
2298  /// specified potentially non-canonical type \p T.
2299  ///
2300  /// The non-canonical version of a type may have many "decorated" versions of
2301  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
2302  /// returned type is guaranteed to be free of any of these, allowing two
2303  /// canonical types to be compared for exact equality with a simple pointer
2304  /// comparison.
2305  CanQualType getCanonicalType(QualType T) const {
2306    return CanQualType::CreateUnsafe(T.getCanonicalType());
2307  }
2308
2309  const Type *getCanonicalType(const Type *T) const {
2310    return T->getCanonicalTypeInternal().getTypePtr();
2311  }
2312
2313  /// Return the canonical parameter type corresponding to the specific
2314  /// potentially non-canonical one.
2315  ///
2316  /// Qualifiers are stripped off, functions are turned into function
2317  /// pointers, and arrays decay one level into pointers.
2318  CanQualType getCanonicalParamType(QualType T) const;
2319
2320  /// Determine whether the given types \p T1 and \p T2 are equivalent.
2321  bool hasSameType(QualType T1, QualType T2) const {
2322    return getCanonicalType(T1) == getCanonicalType(T2);
2323  }
2324  bool hasSameType(const Type *T1, const Type *T2) const {
2325    return getCanonicalType(T1) == getCanonicalType(T2);
2326  }
2327
2328  /// Return this type as a completely-unqualified array type,
2329  /// capturing the qualifiers in \p Quals.
2330  ///
2331  /// This will remove the minimal amount of sugaring from the types, similar
2332  /// to the behavior of QualType::getUnqualifiedType().
2333  ///
2334  /// \param T is the qualified type, which may be an ArrayType
2335  ///
2336  /// \param Quals will receive the full set of qualifiers that were
2337  /// applied to the array.
2338  ///
2339  /// \returns if this is an array type, the completely unqualified array type
2340  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2341  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2342
2343  /// Determine whether the given types are equivalent after
2344  /// cvr-qualifiers have been removed.
2345  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2346    return getCanonicalType(T1).getTypePtr() ==
2347           getCanonicalType(T2).getTypePtr();
2348  }
2349
2350  bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2351                                       bool IsParam) const {
2352    auto SubTnullability = SubT->getNullability(*this);
2353    auto SuperTnullability = SuperT->getNullability(*this);
2354    if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
2355      // Neither has nullability; return true
2356      if (!SubTnullability)
2357        return true;
2358      // Both have nullability qualifier.
2359      if (*SubTnullability == *SuperTnullability ||
2360          *SubTnullability == NullabilityKind::Unspecified ||
2361          *SuperTnullability == NullabilityKind::Unspecified)
2362        return true;
2363
2364      if (IsParam) {
2365        // Ok for the superclass method parameter to be "nonnull" and the subclass
2366        // method parameter to be "nullable"
2367        return (*SuperTnullability == NullabilityKind::NonNull &&
2368                *SubTnullability == NullabilityKind::Nullable);
2369      }
2370      else {
2371        // For the return type, it's okay for the superclass method to specify
2372        // "nullable" and the subclass method specify "nonnull"
2373        return (*SuperTnullability == NullabilityKind::Nullable &&
2374                *SubTnullability == NullabilityKind::NonNull);
2375      }
2376    }
2377    return true;
2378  }
2379
2380  bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2381                           const ObjCMethodDecl *MethodImp);
2382
2383  bool UnwrapSimilarTypes(QualType &T1, QualType &T2);
2384  bool UnwrapSimilarArrayTypes(QualType &T1, QualType &T2);
2385
2386  /// Determine if two types are similar, according to the C++ rules. That is,
2387  /// determine if they are the same other than qualifiers on the initial
2388  /// sequence of pointer / pointer-to-member / array (and in Clang, object
2389  /// pointer) types and their element types.
2390  ///
2391  /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2392  /// those qualifiers are also ignored in the 'similarity' check.
2393  bool hasSimilarType(QualType T1, QualType T2);
2394
2395  /// Determine if two types are similar, ignoring only CVR qualifiers.
2396  bool hasCvrSimilarType(QualType T1, QualType T2);
2397
2398  /// Retrieves the "canonical" nested name specifier for a
2399  /// given nested name specifier.
2400  ///
2401  /// The canonical nested name specifier is a nested name specifier
2402  /// that uniquely identifies a type or namespace within the type
2403  /// system. For example, given:
2404  ///
2405  /// \code
2406  /// namespace N {
2407  ///   struct S {
2408  ///     template<typename T> struct X { typename T* type; };
2409  ///   };
2410  /// }
2411  ///
2412  /// template<typename T> struct Y {
2413  ///   typename N::S::X<T>::type member;
2414  /// };
2415  /// \endcode
2416  ///
2417  /// Here, the nested-name-specifier for N::S::X<T>:: will be
2418  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2419  /// by declarations in the type system and the canonical type for
2420  /// the template type parameter 'T' is template-param-0-0.
2421  NestedNameSpecifier *
2422  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2423
2424  /// Retrieves the default calling convention for the current target.
2425  CallingConv getDefaultCallingConvention(bool IsVariadic,
2426                                          bool IsCXXMethod,
2427                                          bool IsBuiltin = false) const;
2428
2429  /// Retrieves the "canonical" template name that refers to a
2430  /// given template.
2431  ///
2432  /// The canonical template name is the simplest expression that can
2433  /// be used to refer to a given template. For most templates, this
2434  /// expression is just the template declaration itself. For example,
2435  /// the template std::vector can be referred to via a variety of
2436  /// names---std::vector, \::std::vector, vector (if vector is in
2437  /// scope), etc.---but all of these names map down to the same
2438  /// TemplateDecl, which is used to form the canonical template name.
2439  ///
2440  /// Dependent template names are more interesting. Here, the
2441  /// template name could be something like T::template apply or
2442  /// std::allocator<T>::template rebind, where the nested name
2443  /// specifier itself is dependent. In this case, the canonical
2444  /// template name uses the shortest form of the dependent
2445  /// nested-name-specifier, which itself contains all canonical
2446  /// types, values, and templates.
2447  TemplateName getCanonicalTemplateName(TemplateName Name) const;
2448
2449  /// Determine whether the given template names refer to the same
2450  /// template.
2451  bool hasSameTemplateName(TemplateName X, TemplateName Y);
2452
2453  /// Retrieve the "canonical" template argument.
2454  ///
2455  /// The canonical template argument is the simplest template argument
2456  /// (which may be a type, value, expression, or declaration) that
2457  /// expresses the value of the argument.
2458  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2459    const;
2460
2461  /// Type Query functions.  If the type is an instance of the specified class,
2462  /// return the Type pointer for the underlying maximally pretty type.  This
2463  /// is a member of ASTContext because this may need to do some amount of
2464  /// canonicalization, e.g. to move type qualifiers into the element type.
2465  const ArrayType *getAsArrayType(QualType T) const;
2466  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2467    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2468  }
2469  const VariableArrayType *getAsVariableArrayType(QualType T) const {
2470    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2471  }
2472  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2473    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2474  }
2475  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2476    const {
2477    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2478  }
2479
2480  /// Return the innermost element type of an array type.
2481  ///
2482  /// For example, will return "int" for int[m][n]
2483  QualType getBaseElementType(const ArrayType *VAT) const;
2484
2485  /// Return the innermost element type of a type (which needn't
2486  /// actually be an array type).
2487  QualType getBaseElementType(QualType QT) const;
2488
2489  /// Return number of constant array elements.
2490  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2491
2492  /// Perform adjustment on the parameter type of a function.
2493  ///
2494  /// This routine adjusts the given parameter type @p T to the actual
2495  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2496  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2497  QualType getAdjustedParameterType(QualType T) const;
2498
2499  /// Retrieve the parameter type as adjusted for use in the signature
2500  /// of a function, decaying array and function types and removing top-level
2501  /// cv-qualifiers.
2502  QualType getSignatureParameterType(QualType T) const;
2503
2504  QualType getExceptionObjectType(QualType T) const;
2505
2506  /// Return the properly qualified result of decaying the specified
2507  /// array type to a pointer.
2508  ///
2509  /// This operation is non-trivial when handling typedefs etc.  The canonical
2510  /// type of \p T must be an array type, this returns a pointer to a properly
2511  /// qualified element of the array.
2512  ///
2513  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2514  QualType getArrayDecayedType(QualType T) const;
2515
2516  /// Return the type that \p PromotableType will promote to: C99
2517  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2518  QualType getPromotedIntegerType(QualType PromotableType) const;
2519
2520  /// Recurses in pointer/array types until it finds an Objective-C
2521  /// retainable type and returns its ownership.
2522  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2523
2524  /// Whether this is a promotable bitfield reference according
2525  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2526  ///
2527  /// \returns the type this bit-field will promote to, or NULL if no
2528  /// promotion occurs.
2529  QualType isPromotableBitField(Expr *E) const;
2530
2531  /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2532  ///
2533  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2534  /// \p LHS < \p RHS, return -1.
2535  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2536
2537  /// Compare the rank of the two specified floating point types,
2538  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2539  ///
2540  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2541  /// \p LHS < \p RHS, return -1.
2542  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2543
2544  /// Compare the rank of two floating point types as above, but compare equal
2545  /// if both types have the same floating-point semantics on the target (i.e.
2546  /// long double and double on AArch64 will return 0).
2547  int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2548
2549  /// Return a real floating point or a complex type (based on
2550  /// \p typeDomain/\p typeSize).
2551  ///
2552  /// \param typeDomain a real floating point or complex type.
2553  /// \param typeSize a real floating point or complex type.
2554  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
2555                                             QualType typeDomain) const;
2556
2557  unsigned getTargetAddressSpace(QualType T) const {
2558    return getTargetAddressSpace(T.getQualifiers());
2559  }
2560
2561  unsigned getTargetAddressSpace(Qualifiers Q) const {
2562    return getTargetAddressSpace(Q.getAddressSpace());
2563  }
2564
2565  unsigned getTargetAddressSpace(LangAS AS) const;
2566
2567  LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2568
2569  /// Get target-dependent integer value for null pointer which is used for
2570  /// constant folding.
2571  uint64_t getTargetNullPointerValue(QualType QT) const;
2572
2573  bool addressSpaceMapManglingFor(LangAS AS) const {
2574    return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2575  }
2576
2577private:
2578  // Helper for integer ordering
2579  unsigned getIntegerRank(const Type *T) const;
2580
2581public:
2582  //===--------------------------------------------------------------------===//
2583  //                    Type Compatibility Predicates
2584  //===--------------------------------------------------------------------===//
2585
2586  /// Compatibility predicates used to check assignment expressions.
2587  bool typesAreCompatible(QualType T1, QualType T2,
2588                          bool CompareUnqualified = false); // C99 6.2.7p1
2589
2590  bool propertyTypesAreCompatible(QualType, QualType);
2591  bool typesAreBlockPointerCompatible(QualType, QualType);
2592
2593  bool isObjCIdType(QualType T) const {
2594    return T == getObjCIdType();
2595  }
2596
2597  bool isObjCClassType(QualType T) const {
2598    return T == getObjCClassType();
2599  }
2600
2601  bool isObjCSelType(QualType T) const {
2602    return T == getObjCSelType();
2603  }
2604
2605  bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2606                                         const ObjCObjectPointerType *RHS,
2607                                         bool ForCompare);
2608
2609  bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2610                                            const ObjCObjectPointerType *RHS);
2611
2612  // Check the safety of assignment from LHS to RHS
2613  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2614                               const ObjCObjectPointerType *RHSOPT);
2615  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2616                               const ObjCObjectType *RHS);
2617  bool canAssignObjCInterfacesInBlockPointer(
2618                                          const ObjCObjectPointerType *LHSOPT,
2619                                          const ObjCObjectPointerType *RHSOPT,
2620                                          bool BlockReturnType);
2621  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2622  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2623                                   const ObjCObjectPointerType *RHSOPT);
2624  bool canBindObjCObjectType(QualType To, QualType From);
2625
2626  // Functions for calculating composite types
2627  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2628                      bool Unqualified = false, bool BlockReturnType = false);
2629  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2630                              bool Unqualified = false);
2631  QualType mergeFunctionParameterTypes(QualType, QualType,
2632                                       bool OfBlockPointer = false,
2633                                       bool Unqualified = false);
2634  QualType mergeTransparentUnionType(QualType, QualType,
2635                                     bool OfBlockPointer=false,
2636                                     bool Unqualified = false);
2637
2638  QualType mergeObjCGCQualifiers(QualType, QualType);
2639
2640  /// This function merges the ExtParameterInfo lists of two functions. It
2641  /// returns true if the lists are compatible. The merged list is returned in
2642  /// NewParamInfos.
2643  ///
2644  /// \param FirstFnType The type of the first function.
2645  ///
2646  /// \param SecondFnType The type of the second function.
2647  ///
2648  /// \param CanUseFirst This flag is set to true if the first function's
2649  /// ExtParameterInfo list can be used as the composite list of
2650  /// ExtParameterInfo.
2651  ///
2652  /// \param CanUseSecond This flag is set to true if the second function's
2653  /// ExtParameterInfo list can be used as the composite list of
2654  /// ExtParameterInfo.
2655  ///
2656  /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2657  /// empty if none of the flags are set.
2658  ///
2659  bool mergeExtParameterInfo(
2660      const FunctionProtoType *FirstFnType,
2661      const FunctionProtoType *SecondFnType,
2662      bool &CanUseFirst, bool &CanUseSecond,
2663      SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2664
2665  void ResetObjCLayout(const ObjCContainerDecl *CD);
2666
2667  //===--------------------------------------------------------------------===//
2668  //                    Integer Predicates
2669  //===--------------------------------------------------------------------===//
2670
2671  // The width of an integer, as defined in C99 6.2.6.2. This is the number
2672  // of bits in an integer type excluding any padding bits.
2673  unsigned getIntWidth(QualType T) const;
2674
2675  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2676  // unsigned integer type.  This method takes a signed type, and returns the
2677  // corresponding unsigned integer type.
2678  // With the introduction of fixed point types in ISO N1169, this method also
2679  // accepts fixed point types and returns the corresponding unsigned type for
2680  // a given fixed point type.
2681  QualType getCorrespondingUnsignedType(QualType T) const;
2682
2683  // Per ISO N1169, this method accepts fixed point types and returns the
2684  // corresponding saturated type for a given fixed point type.
2685  QualType getCorrespondingSaturatedType(QualType Ty) const;
2686
2687  // This method accepts fixed point types and returns the corresponding signed
2688  // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2689  // fixed point types because there are unsigned integer types like bool and
2690  // char8_t that don't have signed equivalents.
2691  QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2692
2693  //===--------------------------------------------------------------------===//
2694  //                    Integer Values
2695  //===--------------------------------------------------------------------===//
2696
2697  /// Make an APSInt of the appropriate width and signedness for the
2698  /// given \p Value and integer \p Type.
2699  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2700    // If Type is a signed integer type larger than 64 bits, we need to be sure
2701    // to sign extend Res appropriately.
2702    llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2703    Res = Value;
2704    unsigned Width = getIntWidth(Type);
2705    if (Width != Res.getBitWidth())
2706      return Res.extOrTrunc(Width);
2707    return Res;
2708  }
2709
2710  bool isSentinelNullExpr(const Expr *E);
2711
2712  /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2713  /// none exists.
2714  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2715
2716  /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2717  /// none exists.
2718  ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2719
2720  /// Return true if there is at least one \@implementation in the TU.
2721  bool AnyObjCImplementation() {
2722    return !ObjCImpls.empty();
2723  }
2724
2725  /// Set the implementation of ObjCInterfaceDecl.
2726  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2727                             ObjCImplementationDecl *ImplD);
2728
2729  /// Set the implementation of ObjCCategoryDecl.
2730  void setObjCImplementation(ObjCCategoryDecl *CatD,
2731                             ObjCCategoryImplDecl *ImplD);
2732
2733  /// Get the duplicate declaration of a ObjCMethod in the same
2734  /// interface, or null if none exists.
2735  const ObjCMethodDecl *
2736  getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2737
2738  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2739                                  const ObjCMethodDecl *Redecl);
2740
2741  /// Returns the Objective-C interface that \p ND belongs to if it is
2742  /// an Objective-C method/property/ivar etc. that is part of an interface,
2743  /// otherwise returns null.
2744  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2745
2746  /// Set the copy initialization expression of a block var decl. \p CanThrow
2747  /// indicates whether the copy expression can throw or not.
2748  void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
2749
2750  /// Get the copy initialization expression of the VarDecl \p VD, or
2751  /// nullptr if none exists.
2752  BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
2753
2754  /// Allocate an uninitialized TypeSourceInfo.
2755  ///
2756  /// The caller should initialize the memory held by TypeSourceInfo using
2757  /// the TypeLoc wrappers.
2758  ///
2759  /// \param T the type that will be the basis for type source info. This type
2760  /// should refer to how the declarator was written in source code, not to
2761  /// what type semantic analysis resolved the declarator to.
2762  ///
2763  /// \param Size the size of the type info to create, or 0 if the size
2764  /// should be calculated based on the type.
2765  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2766
2767  /// Allocate a TypeSourceInfo where all locations have been
2768  /// initialized to a given location, which defaults to the empty
2769  /// location.
2770  TypeSourceInfo *
2771  getTrivialTypeSourceInfo(QualType T,
2772                           SourceLocation Loc = SourceLocation()) const;
2773
2774  /// Add a deallocation callback that will be invoked when the
2775  /// ASTContext is destroyed.
2776  ///
2777  /// \param Callback A callback function that will be invoked on destruction.
2778  ///
2779  /// \param Data Pointer data that will be provided to the callback function
2780  /// when it is called.
2781  void AddDeallocation(void (*Callback)(void *), void *Data) const;
2782
2783  /// If T isn't trivially destructible, calls AddDeallocation to register it
2784  /// for destruction.
2785  template <typename T> void addDestruction(T *Ptr) const {
2786    if (!std::is_trivially_destructible<T>::value) {
2787      auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2788      AddDeallocation(DestroyPtr, Ptr);
2789    }
2790  }
2791
2792  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2793  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2794
2795  /// Determines if the decl can be CodeGen'ed or deserialized from PCH
2796  /// lazily, only when used; this is only relevant for function or file scoped
2797  /// var definitions.
2798  ///
2799  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2800  /// it is not used.
2801  bool DeclMustBeEmitted(const Decl *D);
2802
2803  /// Visits all versions of a multiversioned function with the passed
2804  /// predicate.
2805  void forEachMultiversionedFunctionVersion(
2806      const FunctionDecl *FD,
2807      llvm::function_ref<void(FunctionDecl *)> Pred) const;
2808
2809  const CXXConstructorDecl *
2810  getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
2811
2812  void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
2813                                            CXXConstructorDecl *CD);
2814
2815  void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
2816
2817  TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
2818
2819  void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
2820
2821  DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
2822
2823  void setManglingNumber(const NamedDecl *ND, unsigned Number);
2824  unsigned getManglingNumber(const NamedDecl *ND) const;
2825
2826  void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2827  unsigned getStaticLocalNumber(const VarDecl *VD) const;
2828
2829  /// Retrieve the context for computing mangling numbers in the given
2830  /// DeclContext.
2831  MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2832  enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
2833  MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
2834                                                   const Decl *D);
2835
2836  std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
2837
2838  /// Used by ParmVarDecl to store on the side the
2839  /// index of the parameter when it exceeds the size of the normal bitfield.
2840  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2841
2842  /// Used by ParmVarDecl to retrieve on the side the
2843  /// index of the parameter when it exceeds the size of the normal bitfield.
2844  unsigned getParameterIndex(const ParmVarDecl *D) const;
2845
2846  /// Return a string representing the human readable name for the specified
2847  /// function declaration or file name. Used by SourceLocExpr and
2848  /// PredefinedExpr to cache evaluated results.
2849  StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
2850
2851  /// Parses the target attributes passed in, and returns only the ones that are
2852  /// valid feature names.
2853  ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
2854
2855  void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2856                             const FunctionDecl *) const;
2857  void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2858                             GlobalDecl GD) const;
2859
2860  //===--------------------------------------------------------------------===//
2861  //                    Statistics
2862  //===--------------------------------------------------------------------===//
2863
2864  /// The number of implicitly-declared default constructors.
2865  unsigned NumImplicitDefaultConstructors = 0;
2866
2867  /// The number of implicitly-declared default constructors for
2868  /// which declarations were built.
2869  unsigned NumImplicitDefaultConstructorsDeclared = 0;
2870
2871  /// The number of implicitly-declared copy constructors.
2872  unsigned NumImplicitCopyConstructors = 0;
2873
2874  /// The number of implicitly-declared copy constructors for
2875  /// which declarations were built.
2876  unsigned NumImplicitCopyConstructorsDeclared = 0;
2877
2878  /// The number of implicitly-declared move constructors.
2879  unsigned NumImplicitMoveConstructors = 0;
2880
2881  /// The number of implicitly-declared move constructors for
2882  /// which declarations were built.
2883  unsigned NumImplicitMoveConstructorsDeclared = 0;
2884
2885  /// The number of implicitly-declared copy assignment operators.
2886  unsigned NumImplicitCopyAssignmentOperators = 0;
2887
2888  /// The number of implicitly-declared copy assignment operators for
2889  /// which declarations were built.
2890  unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
2891
2892  /// The number of implicitly-declared move assignment operators.
2893  unsigned NumImplicitMoveAssignmentOperators = 0;
2894
2895  /// The number of implicitly-declared move assignment operators for
2896  /// which declarations were built.
2897  unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
2898
2899  /// The number of implicitly-declared destructors.
2900  unsigned NumImplicitDestructors = 0;
2901
2902  /// The number of implicitly-declared destructors for which
2903  /// declarations were built.
2904  unsigned NumImplicitDestructorsDeclared = 0;
2905
2906public:
2907  /// Initialize built-in types.
2908  ///
2909  /// This routine may only be invoked once for a given ASTContext object.
2910  /// It is normally invoked after ASTContext construction.
2911  ///
2912  /// \param Target The target
2913  void InitBuiltinTypes(const TargetInfo &Target,
2914                        const TargetInfo *AuxTarget = nullptr);
2915
2916private:
2917  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2918
2919  class ObjCEncOptions {
2920    unsigned Bits;
2921
2922    ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
2923
2924  public:
2925    ObjCEncOptions() : Bits(0) {}
2926    ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
2927
2928#define OPT_LIST(V)                                                            \
2929  V(ExpandPointedToStructures, 0)                                              \
2930  V(ExpandStructures, 1)                                                       \
2931  V(IsOutermostType, 2)                                                        \
2932  V(EncodingProperty, 3)                                                       \
2933  V(IsStructField, 4)                                                          \
2934  V(EncodeBlockParameters, 5)                                                  \
2935  V(EncodeClassNames, 6)                                                       \
2936
2937#define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
2938OPT_LIST(V)
2939#undef V
2940
2941#define V(N,I) bool N() const { return Bits & 1 << I; }
2942OPT_LIST(V)
2943#undef V
2944
2945#undef OPT_LIST
2946
2947    LLVM_NODISCARD ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
2948      return Bits & Mask.Bits;
2949    }
2950
2951    LLVM_NODISCARD ObjCEncOptions forComponentType() const {
2952      ObjCEncOptions Mask = ObjCEncOptions()
2953                                .setIsOutermostType()
2954                                .setIsStructField();
2955      return Bits & ~Mask.Bits;
2956    }
2957  };
2958
2959  // Return the Objective-C type encoding for a given type.
2960  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2961                                  ObjCEncOptions Options,
2962                                  const FieldDecl *Field,
2963                                  QualType *NotEncodedT = nullptr) const;
2964
2965  // Adds the encoding of the structure's members.
2966  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2967                                       const FieldDecl *Field,
2968                                       bool includeVBases = true,
2969                                       QualType *NotEncodedT=nullptr) const;
2970
2971public:
2972  // Adds the encoding of a method parameter or return type.
2973  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2974                                         QualType T, std::string& S,
2975                                         bool Extended) const;
2976
2977  /// Returns true if this is an inline-initialized static data member
2978  /// which is treated as a definition for MSVC compatibility.
2979  bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
2980
2981  enum class InlineVariableDefinitionKind {
2982    /// Not an inline variable.
2983    None,
2984
2985    /// Weak definition of inline variable.
2986    Weak,
2987
2988    /// Weak for now, might become strong later in this TU.
2989    WeakUnknown,
2990
2991    /// Strong definition.
2992    Strong
2993  };
2994
2995  /// Determine whether a definition of this inline variable should
2996  /// be treated as a weak or strong definition. For compatibility with
2997  /// C++14 and before, for a constexpr static data member, if there is an
2998  /// out-of-line declaration of the member, we may promote it from weak to
2999  /// strong.
3000  InlineVariableDefinitionKind
3001  getInlineVariableDefinitionKind(const VarDecl *VD) const;
3002
3003private:
3004  friend class DeclarationNameTable;
3005  friend class DeclContext;
3006
3007  const ASTRecordLayout &
3008  getObjCLayout(const ObjCInterfaceDecl *D,
3009                const ObjCImplementationDecl *Impl) const;
3010
3011  /// A set of deallocations that should be performed when the
3012  /// ASTContext is destroyed.
3013  // FIXME: We really should have a better mechanism in the ASTContext to
3014  // manage running destructors for types which do variable sized allocation
3015  // within the AST. In some places we thread the AST bump pointer allocator
3016  // into the datastructures which avoids this mess during deallocation but is
3017  // wasteful of memory, and here we require a lot of error prone book keeping
3018  // in order to track and run destructors while we're tearing things down.
3019  using DeallocationFunctionsAndArguments =
3020      llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3021  mutable DeallocationFunctionsAndArguments Deallocations;
3022
3023  // FIXME: This currently contains the set of StoredDeclMaps used
3024  // by DeclContext objects.  This probably should not be in ASTContext,
3025  // but we include it here so that ASTContext can quickly deallocate them.
3026  llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3027
3028  std::vector<Decl *> TraversalScope;
3029  class ParentMap;
3030  std::map<ast_type_traits::TraversalKind, std::unique_ptr<ParentMap>> Parents;
3031
3032  std::unique_ptr<VTableContextBase> VTContext;
3033
3034  void ReleaseDeclContextMaps();
3035
3036public:
3037  enum PragmaSectionFlag : unsigned {
3038    PSF_None = 0,
3039    PSF_Read = 0x1,
3040    PSF_Write = 0x2,
3041    PSF_Execute = 0x4,
3042    PSF_Implicit = 0x8,
3043    PSF_Invalid = 0x80000000U,
3044  };
3045
3046  struct SectionInfo {
3047    DeclaratorDecl *Decl;
3048    SourceLocation PragmaSectionLocation;
3049    int SectionFlags;
3050
3051    SectionInfo() = default;
3052    SectionInfo(DeclaratorDecl *Decl,
3053                SourceLocation PragmaSectionLocation,
3054                int SectionFlags)
3055        : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3056          SectionFlags(SectionFlags) {}
3057  };
3058
3059  llvm::StringMap<SectionInfo> SectionInfos;
3060};
3061
3062/// Utility function for constructing a nullary selector.
3063inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3064  IdentifierInfo* II = &Ctx.Idents.get(name);
3065  return Ctx.Selectors.getSelector(0, &II);
3066}
3067
3068/// Utility function for constructing an unary selector.
3069inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3070  IdentifierInfo* II = &Ctx.Idents.get(name);
3071  return Ctx.Selectors.getSelector(1, &II);
3072}
3073
3074class TraversalKindScope {
3075  ASTContext &Ctx;
3076  ast_type_traits::TraversalKind TK = ast_type_traits::TK_AsIs;
3077
3078public:
3079  TraversalKindScope(ASTContext &Ctx,
3080                     llvm::Optional<ast_type_traits::TraversalKind> ScopeTK)
3081      : Ctx(Ctx) {
3082    TK = Ctx.getTraversalKind();
3083    if (ScopeTK)
3084      Ctx.setTraversalKind(*ScopeTK);
3085  }
3086
3087  ~TraversalKindScope() { Ctx.setTraversalKind(TK); }
3088};
3089
3090} // namespace clang
3091
3092// operator new and delete aren't allowed inside namespaces.
3093
3094/// Placement new for using the ASTContext's allocator.
3095///
3096/// This placement form of operator new uses the ASTContext's allocator for
3097/// obtaining memory.
3098///
3099/// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3100/// Any changes here need to also be made there.
3101///
3102/// We intentionally avoid using a nothrow specification here so that the calls
3103/// to this operator will not perform a null check on the result -- the
3104/// underlying allocator never returns null pointers.
3105///
3106/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3107/// @code
3108/// // Default alignment (8)
3109/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3110/// // Specific alignment
3111/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3112/// @endcode
3113/// Memory allocated through this placement new operator does not need to be
3114/// explicitly freed, as ASTContext will free all of this memory when it gets
3115/// destroyed. Please note that you cannot use delete on the pointer.
3116///
3117/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3118/// @param C The ASTContext that provides the allocator.
3119/// @param Alignment The alignment of the allocated memory (if the underlying
3120///                  allocator supports it).
3121/// @return The allocated memory. Could be nullptr.
3122inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3123                          size_t Alignment /* = 8 */) {
3124  return C.Allocate(Bytes, Alignment);
3125}
3126
3127/// Placement delete companion to the new above.
3128///
3129/// This operator is just a companion to the new above. There is no way of
3130/// invoking it directly; see the new operator for more details. This operator
3131/// is called implicitly by the compiler if a placement new expression using
3132/// the ASTContext throws in the object constructor.
3133inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3134  C.Deallocate(Ptr);
3135}
3136
3137/// This placement form of operator new[] uses the ASTContext's allocator for
3138/// obtaining memory.
3139///
3140/// We intentionally avoid using a nothrow specification here so that the calls
3141/// to this operator will not perform a null check on the result -- the
3142/// underlying allocator never returns null pointers.
3143///
3144/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3145/// @code
3146/// // Default alignment (8)
3147/// char *data = new (Context) char[10];
3148/// // Specific alignment
3149/// char *data = new (Context, 4) char[10];
3150/// @endcode
3151/// Memory allocated through this placement new[] operator does not need to be
3152/// explicitly freed, as ASTContext will free all of this memory when it gets
3153/// destroyed. Please note that you cannot use delete on the pointer.
3154///
3155/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3156/// @param C The ASTContext that provides the allocator.
3157/// @param Alignment The alignment of the allocated memory (if the underlying
3158///                  allocator supports it).
3159/// @return The allocated memory. Could be nullptr.
3160inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3161                            size_t Alignment /* = 8 */) {
3162  return C.Allocate(Bytes, Alignment);
3163}
3164
3165/// Placement delete[] companion to the new[] above.
3166///
3167/// This operator is just a companion to the new[] above. There is no way of
3168/// invoking it directly; see the new[] operator for more details. This operator
3169/// is called implicitly by the compiler if a placement new[] expression using
3170/// the ASTContext throws in the object constructor.
3171inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3172  C.Deallocate(Ptr);
3173}
3174
3175/// Create the representation of a LazyGenerationalUpdatePtr.
3176template <typename Owner, typename T,
3177          void (clang::ExternalASTSource::*Update)(Owner)>
3178typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
3179    clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3180        const clang::ASTContext &Ctx, T Value) {
3181  // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3182  // include ASTContext.h. We explicitly instantiate it for all relevant types
3183  // in ASTContext.cpp.
3184  if (auto *Source = Ctx.getExternalSource())
3185    return new (Ctx) LazyData(Source, Value);
3186  return Value;
3187}
3188
3189#endif // LLVM_CLANG_AST_ASTCONTEXT_H
3190