1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
31// Google Mock - a framework for writing C++ mock classes.
32//
33// This file implements Matcher<const string&>, Matcher<string>, and
34// utilities for defining matchers.
35
36#include "gmock/gmock-matchers.h"
37#include "gmock/gmock-generated-matchers.h"
38
39#include <string.h>
40#include <iostream>
41#include <sstream>
42#include <string>
43
44namespace testing {
45
46// Constructs a matcher that matches a const std::string& whose value is
47// equal to s.
48Matcher<const std::string&>::Matcher(const std::string& s) { *this = Eq(s); }
49
50#if GTEST_HAS_GLOBAL_STRING
51// Constructs a matcher that matches a const std::string& whose value is
52// equal to s.
53Matcher<const std::string&>::Matcher(const ::string& s) {
54  *this = Eq(static_cast<std::string>(s));
55}
56#endif  // GTEST_HAS_GLOBAL_STRING
57
58// Constructs a matcher that matches a const std::string& whose value is
59// equal to s.
60Matcher<const std::string&>::Matcher(const char* s) {
61  *this = Eq(std::string(s));
62}
63
64// Constructs a matcher that matches a std::string whose value is equal to
65// s.
66Matcher<std::string>::Matcher(const std::string& s) { *this = Eq(s); }
67
68#if GTEST_HAS_GLOBAL_STRING
69// Constructs a matcher that matches a std::string whose value is equal to
70// s.
71Matcher<std::string>::Matcher(const ::string& s) {
72  *this = Eq(static_cast<std::string>(s));
73}
74#endif  // GTEST_HAS_GLOBAL_STRING
75
76// Constructs a matcher that matches a std::string whose value is equal to
77// s.
78Matcher<std::string>::Matcher(const char* s) { *this = Eq(std::string(s)); }
79
80#if GTEST_HAS_GLOBAL_STRING
81// Constructs a matcher that matches a const ::string& whose value is
82// equal to s.
83Matcher<const ::string&>::Matcher(const std::string& s) {
84  *this = Eq(static_cast<::string>(s));
85}
86
87// Constructs a matcher that matches a const ::string& whose value is
88// equal to s.
89Matcher<const ::string&>::Matcher(const ::string& s) { *this = Eq(s); }
90
91// Constructs a matcher that matches a const ::string& whose value is
92// equal to s.
93Matcher<const ::string&>::Matcher(const char* s) { *this = Eq(::string(s)); }
94
95// Constructs a matcher that matches a ::string whose value is equal to s.
96Matcher<::string>::Matcher(const std::string& s) {
97  *this = Eq(static_cast<::string>(s));
98}
99
100// Constructs a matcher that matches a ::string whose value is equal to s.
101Matcher<::string>::Matcher(const ::string& s) { *this = Eq(s); }
102
103// Constructs a matcher that matches a string whose value is equal to s.
104Matcher<::string>::Matcher(const char* s) { *this = Eq(::string(s)); }
105#endif  // GTEST_HAS_GLOBAL_STRING
106
107#if GTEST_HAS_ABSL
108// Constructs a matcher that matches a const absl::string_view& whose value is
109// equal to s.
110Matcher<const absl::string_view&>::Matcher(const std::string& s) {
111  *this = Eq(s);
112}
113
114#if GTEST_HAS_GLOBAL_STRING
115// Constructs a matcher that matches a const absl::string_view& whose value is
116// equal to s.
117Matcher<const absl::string_view&>::Matcher(const ::string& s) { *this = Eq(s); }
118#endif  // GTEST_HAS_GLOBAL_STRING
119
120// Constructs a matcher that matches a const absl::string_view& whose value is
121// equal to s.
122Matcher<const absl::string_view&>::Matcher(const char* s) {
123  *this = Eq(std::string(s));
124}
125
126// Constructs a matcher that matches a const absl::string_view& whose value is
127// equal to s.
128Matcher<const absl::string_view&>::Matcher(absl::string_view s) {
129  *this = Eq(std::string(s));
130}
131
132// Constructs a matcher that matches a absl::string_view whose value is equal to
133// s.
134Matcher<absl::string_view>::Matcher(const std::string& s) { *this = Eq(s); }
135
136#if GTEST_HAS_GLOBAL_STRING
137// Constructs a matcher that matches a absl::string_view whose value is equal to
138// s.
139Matcher<absl::string_view>::Matcher(const ::string& s) { *this = Eq(s); }
140#endif  // GTEST_HAS_GLOBAL_STRING
141
142// Constructs a matcher that matches a absl::string_view whose value is equal to
143// s.
144Matcher<absl::string_view>::Matcher(const char* s) {
145  *this = Eq(std::string(s));
146}
147
148// Constructs a matcher that matches a absl::string_view whose value is equal to
149// s.
150Matcher<absl::string_view>::Matcher(absl::string_view s) {
151  *this = Eq(std::string(s));
152}
153#endif  // GTEST_HAS_ABSL
154
155namespace internal {
156
157// Returns the description for a matcher defined using the MATCHER*()
158// macro where the user-supplied description string is "", if
159// 'negation' is false; otherwise returns the description of the
160// negation of the matcher.  'param_values' contains a list of strings
161// that are the print-out of the matcher's parameters.
162GTEST_API_ std::string FormatMatcherDescription(bool negation,
163                                                const char* matcher_name,
164                                                const Strings& param_values) {
165  std::string result = ConvertIdentifierNameToWords(matcher_name);
166  if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values);
167  return negation ? "not (" + result + ")" : result;
168}
169
170// FindMaxBipartiteMatching and its helper class.
171//
172// Uses the well-known Ford-Fulkerson max flow method to find a maximum
173// bipartite matching. Flow is considered to be from left to right.
174// There is an implicit source node that is connected to all of the left
175// nodes, and an implicit sink node that is connected to all of the
176// right nodes. All edges have unit capacity.
177//
178// Neither the flow graph nor the residual flow graph are represented
179// explicitly. Instead, they are implied by the information in 'graph' and
180// a vector<int> called 'left_' whose elements are initialized to the
181// value kUnused. This represents the initial state of the algorithm,
182// where the flow graph is empty, and the residual flow graph has the
183// following edges:
184//   - An edge from source to each left_ node
185//   - An edge from each right_ node to sink
186//   - An edge from each left_ node to each right_ node, if the
187//     corresponding edge exists in 'graph'.
188//
189// When the TryAugment() method adds a flow, it sets left_[l] = r for some
190// nodes l and r. This induces the following changes:
191//   - The edges (source, l), (l, r), and (r, sink) are added to the
192//     flow graph.
193//   - The same three edges are removed from the residual flow graph.
194//   - The reverse edges (l, source), (r, l), and (sink, r) are added
195//     to the residual flow graph, which is a directional graph
196//     representing unused flow capacity.
197//
198// When the method augments a flow (moving left_[l] from some r1 to some
199// other r2), this can be thought of as "undoing" the above steps with
200// respect to r1 and "redoing" them with respect to r2.
201//
202// It bears repeating that the flow graph and residual flow graph are
203// never represented explicitly, but can be derived by looking at the
204// information in 'graph' and in left_.
205//
206// As an optimization, there is a second vector<int> called right_ which
207// does not provide any new information. Instead, it enables more
208// efficient queries about edges entering or leaving the right-side nodes
209// of the flow or residual flow graphs. The following invariants are
210// maintained:
211//
212// left[l] == kUnused or right[left[l]] == l
213// right[r] == kUnused or left[right[r]] == r
214//
215// . [ source ]                                        .
216// .   |||                                             .
217// .   |||                                             .
218// .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
219// .   ||                   |                    |     .
220// .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
221// .   |                                        ||     .
222// .   \----> left[2]=2  ------> right[2]=2  --\||     .
223// .                                           |||     .
224// .         elements           matchers       vvv     .
225// .                                         [ sink ]  .
226//
227// See Also:
228//   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
229//       "Introduction to Algorithms (Second ed.)", pp. 651-664.
230//   [2] "Ford-Fulkerson algorithm", Wikipedia,
231//       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
232class MaxBipartiteMatchState {
233 public:
234  explicit MaxBipartiteMatchState(const MatchMatrix& graph)
235      : graph_(&graph),
236        left_(graph_->LhsSize(), kUnused),
237        right_(graph_->RhsSize(), kUnused) {}
238
239  // Returns the edges of a maximal match, each in the form {left, right}.
240  ElementMatcherPairs Compute() {
241    // 'seen' is used for path finding { 0: unseen, 1: seen }.
242    ::std::vector<char> seen;
243    // Searches the residual flow graph for a path from each left node to
244    // the sink in the residual flow graph, and if one is found, add flow
245    // to the graph. It's okay to search through the left nodes once. The
246    // edge from the implicit source node to each previously-visited left
247    // node will have flow if that left node has any path to the sink
248    // whatsoever. Subsequent augmentations can only add flow to the
249    // network, and cannot take away that previous flow unit from the source.
250    // Since the source-to-left edge can only carry one flow unit (or,
251    // each element can be matched to only one matcher), there is no need
252    // to visit the left nodes more than once looking for augmented paths.
253    // The flow is known to be possible or impossible by looking at the
254    // node once.
255    for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
256      // Reset the path-marking vector and try to find a path from
257      // source to sink starting at the left_[ilhs] node.
258      GTEST_CHECK_(left_[ilhs] == kUnused)
259          << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
260      // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
261      seen.assign(graph_->RhsSize(), 0);
262      TryAugment(ilhs, &seen);
263    }
264    ElementMatcherPairs result;
265    for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
266      size_t irhs = left_[ilhs];
267      if (irhs == kUnused) continue;
268      result.push_back(ElementMatcherPair(ilhs, irhs));
269    }
270    return result;
271  }
272
273 private:
274  static const size_t kUnused = static_cast<size_t>(-1);
275
276  // Perform a depth-first search from left node ilhs to the sink.  If a
277  // path is found, flow is added to the network by linking the left and
278  // right vector elements corresponding each segment of the path.
279  // Returns true if a path to sink was found, which means that a unit of
280  // flow was added to the network. The 'seen' vector elements correspond
281  // to right nodes and are marked to eliminate cycles from the search.
282  //
283  // Left nodes will only be explored at most once because they
284  // are accessible from at most one right node in the residual flow
285  // graph.
286  //
287  // Note that left_[ilhs] is the only element of left_ that TryAugment will
288  // potentially transition from kUnused to another value. Any other
289  // left_ element holding kUnused before TryAugment will be holding it
290  // when TryAugment returns.
291  //
292  bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
293    for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
294      if ((*seen)[irhs]) continue;
295      if (!graph_->HasEdge(ilhs, irhs)) continue;
296      // There's an available edge from ilhs to irhs.
297      (*seen)[irhs] = 1;
298      // Next a search is performed to determine whether
299      // this edge is a dead end or leads to the sink.
300      //
301      // right_[irhs] == kUnused means that there is residual flow from
302      // right node irhs to the sink, so we can use that to finish this
303      // flow path and return success.
304      //
305      // Otherwise there is residual flow to some ilhs. We push flow
306      // along that path and call ourselves recursively to see if this
307      // ultimately leads to sink.
308      if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
309        // Add flow from left_[ilhs] to right_[irhs].
310        left_[ilhs] = irhs;
311        right_[irhs] = ilhs;
312        return true;
313      }
314    }
315    return false;
316  }
317
318  const MatchMatrix* graph_;  // not owned
319  // Each element of the left_ vector represents a left hand side node
320  // (i.e. an element) and each element of right_ is a right hand side
321  // node (i.e. a matcher). The values in the left_ vector indicate
322  // outflow from that node to a node on the right_ side. The values
323  // in the right_ indicate inflow, and specify which left_ node is
324  // feeding that right_ node, if any. For example, left_[3] == 1 means
325  // there's a flow from element #3 to matcher #1. Such a flow would also
326  // be redundantly represented in the right_ vector as right_[1] == 3.
327  // Elements of left_ and right_ are either kUnused or mutually
328  // referent. Mutually referent means that left_[right_[i]] = i and
329  // right_[left_[i]] = i.
330  ::std::vector<size_t> left_;
331  ::std::vector<size_t> right_;
332
333  GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
334};
335
336const size_t MaxBipartiteMatchState::kUnused;
337
338GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
339  return MaxBipartiteMatchState(g).Compute();
340}
341
342static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
343                                     ::std::ostream* stream) {
344  typedef ElementMatcherPairs::const_iterator Iter;
345  ::std::ostream& os = *stream;
346  os << "{";
347  const char* sep = "";
348  for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
349    os << sep << "\n  ("
350       << "element #" << it->first << ", "
351       << "matcher #" << it->second << ")";
352    sep = ",";
353  }
354  os << "\n}";
355}
356
357bool MatchMatrix::NextGraph() {
358  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
359    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
360      char& b = matched_[SpaceIndex(ilhs, irhs)];
361      if (!b) {
362        b = 1;
363        return true;
364      }
365      b = 0;
366    }
367  }
368  return false;
369}
370
371void MatchMatrix::Randomize() {
372  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
373    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
374      char& b = matched_[SpaceIndex(ilhs, irhs)];
375      b = static_cast<char>(rand() & 1);  // NOLINT
376    }
377  }
378}
379
380std::string MatchMatrix::DebugString() const {
381  ::std::stringstream ss;
382  const char* sep = "";
383  for (size_t i = 0; i < LhsSize(); ++i) {
384    ss << sep;
385    for (size_t j = 0; j < RhsSize(); ++j) {
386      ss << HasEdge(i, j);
387    }
388    sep = ";";
389  }
390  return ss.str();
391}
392
393void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
394    ::std::ostream* os) const {
395  switch (match_flags()) {
396    case UnorderedMatcherRequire::ExactMatch:
397      if (matcher_describers_.empty()) {
398        *os << "is empty";
399        return;
400      }
401      if (matcher_describers_.size() == 1) {
402        *os << "has " << Elements(1) << " and that element ";
403        matcher_describers_[0]->DescribeTo(os);
404        return;
405      }
406      *os << "has " << Elements(matcher_describers_.size())
407          << " and there exists some permutation of elements such that:\n";
408      break;
409    case UnorderedMatcherRequire::Superset:
410      *os << "a surjection from elements to requirements exists such that:\n";
411      break;
412    case UnorderedMatcherRequire::Subset:
413      *os << "an injection from elements to requirements exists such that:\n";
414      break;
415  }
416
417  const char* sep = "";
418  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
419    *os << sep;
420    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
421      *os << " - element #" << i << " ";
422    } else {
423      *os << " - an element ";
424    }
425    matcher_describers_[i]->DescribeTo(os);
426    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
427      sep = ", and\n";
428    } else {
429      sep = "\n";
430    }
431  }
432}
433
434void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
435    ::std::ostream* os) const {
436  switch (match_flags()) {
437    case UnorderedMatcherRequire::ExactMatch:
438      if (matcher_describers_.empty()) {
439        *os << "isn't empty";
440        return;
441      }
442      if (matcher_describers_.size() == 1) {
443        *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
444            << " that ";
445        matcher_describers_[0]->DescribeNegationTo(os);
446        return;
447      }
448      *os << "doesn't have " << Elements(matcher_describers_.size())
449          << ", or there exists no permutation of elements such that:\n";
450      break;
451    case UnorderedMatcherRequire::Superset:
452      *os << "no surjection from elements to requirements exists such that:\n";
453      break;
454    case UnorderedMatcherRequire::Subset:
455      *os << "no injection from elements to requirements exists such that:\n";
456      break;
457  }
458  const char* sep = "";
459  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
460    *os << sep;
461    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
462      *os << " - element #" << i << " ";
463    } else {
464      *os << " - an element ";
465    }
466    matcher_describers_[i]->DescribeTo(os);
467    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
468      sep = ", and\n";
469    } else {
470      sep = "\n";
471    }
472  }
473}
474
475// Checks that all matchers match at least one element, and that all
476// elements match at least one matcher. This enables faster matching
477// and better error reporting.
478// Returns false, writing an explanation to 'listener', if and only
479// if the success criteria are not met.
480bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
481    const ::std::vector<std::string>& element_printouts,
482    const MatchMatrix& matrix, MatchResultListener* listener) const {
483  bool result = true;
484  ::std::vector<char> element_matched(matrix.LhsSize(), 0);
485  ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
486
487  for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
488    for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
489      char matched = matrix.HasEdge(ilhs, irhs);
490      element_matched[ilhs] |= matched;
491      matcher_matched[irhs] |= matched;
492    }
493  }
494
495  if (match_flags() & UnorderedMatcherRequire::Superset) {
496    const char* sep =
497        "where the following matchers don't match any elements:\n";
498    for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
499      if (matcher_matched[mi]) continue;
500      result = false;
501      if (listener->IsInterested()) {
502        *listener << sep << "matcher #" << mi << ": ";
503        matcher_describers_[mi]->DescribeTo(listener->stream());
504        sep = ",\n";
505      }
506    }
507  }
508
509  if (match_flags() & UnorderedMatcherRequire::Subset) {
510    const char* sep =
511        "where the following elements don't match any matchers:\n";
512    const char* outer_sep = "";
513    if (!result) {
514      outer_sep = "\nand ";
515    }
516    for (size_t ei = 0; ei < element_matched.size(); ++ei) {
517      if (element_matched[ei]) continue;
518      result = false;
519      if (listener->IsInterested()) {
520        *listener << outer_sep << sep << "element #" << ei << ": "
521                  << element_printouts[ei];
522        sep = ",\n";
523        outer_sep = "";
524      }
525    }
526  }
527  return result;
528}
529
530bool UnorderedElementsAreMatcherImplBase::FindPairing(
531    const MatchMatrix& matrix, MatchResultListener* listener) const {
532  ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
533
534  size_t max_flow = matches.size();
535  if ((match_flags() & UnorderedMatcherRequire::Superset) &&
536      max_flow < matrix.RhsSize()) {
537    if (listener->IsInterested()) {
538      *listener << "where no permutation of the elements can satisfy all "
539                   "matchers, and the closest match is "
540                << max_flow << " of " << matrix.RhsSize()
541                << " matchers with the pairings:\n";
542      LogElementMatcherPairVec(matches, listener->stream());
543    }
544    return false;
545  }
546  if ((match_flags() & UnorderedMatcherRequire::Subset) &&
547      max_flow < matrix.LhsSize()) {
548    if (listener->IsInterested()) {
549      *listener
550          << "where not all elements can be matched, and the closest match is "
551          << max_flow << " of " << matrix.RhsSize()
552          << " matchers with the pairings:\n";
553      LogElementMatcherPairVec(matches, listener->stream());
554    }
555    return false;
556  }
557
558  if (matches.size() > 1) {
559    if (listener->IsInterested()) {
560      const char* sep = "where:\n";
561      for (size_t mi = 0; mi < matches.size(); ++mi) {
562        *listener << sep << " - element #" << matches[mi].first
563                  << " is matched by matcher #" << matches[mi].second;
564        sep = ",\n";
565      }
566    }
567  }
568  return true;
569}
570
571}  // namespace internal
572}  // namespace testing
573