1/* MIPS-specific support for ELF
2   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3   2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5   Most of the information added by Ian Lance Taylor, Cygnus Support,
6   <ian@cygnus.com>.
7   N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8   <mark@codesourcery.com>
9   Traditional MIPS targets support added by Koundinya.K, Dansk Data
10   Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12   This file is part of BFD, the Binary File Descriptor library.
13
14   This program is free software; you can redistribute it and/or modify
15   it under the terms of the GNU General Public License as published by
16   the Free Software Foundation; either version 2 of the License, or
17   (at your option) any later version.
18
19   This program is distributed in the hope that it will be useful,
20   but WITHOUT ANY WARRANTY; without even the implied warranty of
21   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22   GNU General Public License for more details.
23
24   You should have received a copy of the GNU General Public License
25   along with this program; if not, write to the Free Software
26   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
27
28/* This file handles functionality common to the different MIPS ABI's.  */
29
30#include "sysdep.h"
31#include "bfd.h"
32#include "libbfd.h"
33#include "libiberty.h"
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37#include "elf-vxworks.h"
38
39/* Get the ECOFF swapping routines.  */
40#include "coff/sym.h"
41#include "coff/symconst.h"
42#include "coff/ecoff.h"
43#include "coff/mips.h"
44
45#include "hashtab.h"
46
47/* This structure is used to hold information about one GOT entry.
48   There are three types of entry:
49
50      (1) absolute addresses
51	    (abfd == NULL)
52      (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53	    (abfd != NULL, symndx >= 0)
54      (3) global and forced-local symbols
55	    (abfd != NULL, symndx == -1)
56
57   Type (3) entries are treated differently for different types of GOT.
58   In the "master" GOT -- i.e.  the one that describes every GOT
59   reference needed in the link -- the mips_got_entry is keyed on both
60   the symbol and the input bfd that references it.  If it turns out
61   that we need multiple GOTs, we can then use this information to
62   create separate GOTs for each input bfd.
63
64   However, we want each of these separate GOTs to have at most one
65   entry for a given symbol, so their type (3) entries are keyed only
66   on the symbol.  The input bfd given by the "abfd" field is somewhat
67   arbitrary in this case.
68
69   This means that when there are multiple GOTs, each GOT has a unique
70   mips_got_entry for every symbol within it.  We can therefore use the
71   mips_got_entry fields (tls_type and gotidx) to track the symbol's
72   GOT index.
73
74   However, if it turns out that we need only a single GOT, we continue
75   to use the master GOT to describe it.  There may therefore be several
76   mips_got_entries for the same symbol, each with a different input bfd.
77   We want to make sure that each symbol gets a unique GOT entry, so when
78   there's a single GOT, we use the symbol's hash entry, not the
79   mips_got_entry fields, to track a symbol's GOT index.  */
80struct mips_got_entry
81{
82  /* The input bfd in which the symbol is defined.  */
83  bfd *abfd;
84  /* The index of the symbol, as stored in the relocation r_info, if
85     we have a local symbol; -1 otherwise.  */
86  long symndx;
87  union
88  {
89    /* If abfd == NULL, an address that must be stored in the got.  */
90    bfd_vma address;
91    /* If abfd != NULL && symndx != -1, the addend of the relocation
92       that should be added to the symbol value.  */
93    bfd_vma addend;
94    /* If abfd != NULL && symndx == -1, the hash table entry
95       corresponding to a global symbol in the got (or, local, if
96       h->forced_local).  */
97    struct mips_elf_link_hash_entry *h;
98  } d;
99
100  /* The TLS types included in this GOT entry (specifically, GD and
101     IE).  The GD and IE flags can be added as we encounter new
102     relocations.  LDM can also be set; it will always be alone, not
103     combined with any GD or IE flags.  An LDM GOT entry will be
104     a local symbol entry with r_symndx == 0.  */
105  unsigned char tls_type;
106
107  /* The offset from the beginning of the .got section to the entry
108     corresponding to this symbol+addend.  If it's a global symbol
109     whose offset is yet to be decided, it's going to be -1.  */
110  long gotidx;
111};
112
113/* This structure is used to hold .got information when linking.  */
114
115struct mips_got_info
116{
117  /* The global symbol in the GOT with the lowest index in the dynamic
118     symbol table.  */
119  struct elf_link_hash_entry *global_gotsym;
120  /* The number of global .got entries.  */
121  unsigned int global_gotno;
122  /* The number of .got slots used for TLS.  */
123  unsigned int tls_gotno;
124  /* The first unused TLS .got entry.  Used only during
125     mips_elf_initialize_tls_index.  */
126  unsigned int tls_assigned_gotno;
127  /* The number of local .got entries.  */
128  unsigned int local_gotno;
129  /* The number of local .got entries we have used.  */
130  unsigned int assigned_gotno;
131  /* A hash table holding members of the got.  */
132  struct htab *got_entries;
133  /* A hash table mapping input bfds to other mips_got_info.  NULL
134     unless multi-got was necessary.  */
135  struct htab *bfd2got;
136  /* In multi-got links, a pointer to the next got (err, rather, most
137     of the time, it points to the previous got).  */
138  struct mips_got_info *next;
139  /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140     for none, or MINUS_TWO for not yet assigned.  This is needed
141     because a single-GOT link may have multiple hash table entries
142     for the LDM.  It does not get initialized in multi-GOT mode.  */
143  bfd_vma tls_ldm_offset;
144};
145
146/* Map an input bfd to a got in a multi-got link.  */
147
148struct mips_elf_bfd2got_hash {
149  bfd *bfd;
150  struct mips_got_info *g;
151};
152
153/* Structure passed when traversing the bfd2got hash table, used to
154   create and merge bfd's gots.  */
155
156struct mips_elf_got_per_bfd_arg
157{
158  /* A hashtable that maps bfds to gots.  */
159  htab_t bfd2got;
160  /* The output bfd.  */
161  bfd *obfd;
162  /* The link information.  */
163  struct bfd_link_info *info;
164  /* A pointer to the primary got, i.e., the one that's going to get
165     the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166     DT_MIPS_GOTSYM.  */
167  struct mips_got_info *primary;
168  /* A non-primary got we're trying to merge with other input bfd's
169     gots.  */
170  struct mips_got_info *current;
171  /* The maximum number of got entries that can be addressed with a
172     16-bit offset.  */
173  unsigned int max_count;
174  /* The number of local and global entries in the primary got.  */
175  unsigned int primary_count;
176  /* The number of local and global entries in the current got.  */
177  unsigned int current_count;
178  /* The total number of global entries which will live in the
179     primary got and be automatically relocated.  This includes
180     those not referenced by the primary GOT but included in
181     the "master" GOT.  */
182  unsigned int global_count;
183};
184
185/* Another structure used to pass arguments for got entries traversal.  */
186
187struct mips_elf_set_global_got_offset_arg
188{
189  struct mips_got_info *g;
190  int value;
191  unsigned int needed_relocs;
192  struct bfd_link_info *info;
193};
194
195/* A structure used to count TLS relocations or GOT entries, for GOT
196   entry or ELF symbol table traversal.  */
197
198struct mips_elf_count_tls_arg
199{
200  struct bfd_link_info *info;
201  unsigned int needed;
202};
203
204struct _mips_elf_section_data
205{
206  struct bfd_elf_section_data elf;
207  union
208  {
209    struct mips_got_info *got_info;
210    bfd_byte *tdata;
211  } u;
212};
213
214#define mips_elf_section_data(sec) \
215  ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217/* This structure is passed to mips_elf_sort_hash_table_f when sorting
218   the dynamic symbols.  */
219
220struct mips_elf_hash_sort_data
221{
222  /* The symbol in the global GOT with the lowest dynamic symbol table
223     index.  */
224  struct elf_link_hash_entry *low;
225  /* The least dynamic symbol table index corresponding to a non-TLS
226     symbol with a GOT entry.  */
227  long min_got_dynindx;
228  /* The greatest dynamic symbol table index corresponding to a symbol
229     with a GOT entry that is not referenced (e.g., a dynamic symbol
230     with dynamic relocations pointing to it from non-primary GOTs).  */
231  long max_unref_got_dynindx;
232  /* The greatest dynamic symbol table index not corresponding to a
233     symbol without a GOT entry.  */
234  long max_non_got_dynindx;
235};
236
237/* The MIPS ELF linker needs additional information for each symbol in
238   the global hash table.  */
239
240struct mips_elf_link_hash_entry
241{
242  struct elf_link_hash_entry root;
243
244  /* External symbol information.  */
245  EXTR esym;
246
247  /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248     this symbol.  */
249  unsigned int possibly_dynamic_relocs;
250
251  /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252     a readonly section.  */
253  bfd_boolean readonly_reloc;
254
255  /* We must not create a stub for a symbol that has relocations
256     related to taking the function's address, i.e. any but
257     R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258     p. 4-20.  */
259  bfd_boolean no_fn_stub;
260
261  /* If there is a stub that 32 bit functions should use to call this
262     16 bit function, this points to the section containing the stub.  */
263  asection *fn_stub;
264
265  /* Whether we need the fn_stub; this is set if this symbol appears
266     in any relocs other than a 16 bit call.  */
267  bfd_boolean need_fn_stub;
268
269  /* If there is a stub that 16 bit functions should use to call this
270     32 bit function, this points to the section containing the stub.  */
271  asection *call_stub;
272
273  /* This is like the call_stub field, but it is used if the function
274     being called returns a floating point value.  */
275  asection *call_fp_stub;
276
277  /* Are we forced local?  This will only be set if we have converted
278     the initial global GOT entry to a local GOT entry.  */
279  bfd_boolean forced_local;
280
281  /* Are we referenced by some kind of relocation?  */
282  bfd_boolean is_relocation_target;
283
284  /* Are we referenced by branch relocations?  */
285  bfd_boolean is_branch_target;
286
287#define GOT_NORMAL	0
288#define GOT_TLS_GD	1
289#define GOT_TLS_LDM	2
290#define GOT_TLS_IE	4
291#define GOT_TLS_OFFSET_DONE    0x40
292#define GOT_TLS_DONE    0x80
293  unsigned char tls_type;
294  /* This is only used in single-GOT mode; in multi-GOT mode there
295     is one mips_got_entry per GOT entry, so the offset is stored
296     there.  In single-GOT mode there may be many mips_got_entry
297     structures all referring to the same GOT slot.  It might be
298     possible to use root.got.offset instead, but that field is
299     overloaded already.  */
300  bfd_vma tls_got_offset;
301};
302
303/* MIPS ELF linker hash table.  */
304
305struct mips_elf_link_hash_table
306{
307  struct elf_link_hash_table root;
308#if 0
309  /* We no longer use this.  */
310  /* String section indices for the dynamic section symbols.  */
311  bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312#endif
313  /* The number of .rtproc entries.  */
314  bfd_size_type procedure_count;
315  /* The size of the .compact_rel section (if SGI_COMPAT).  */
316  bfd_size_type compact_rel_size;
317  /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318     entry is set to the address of __rld_obj_head as in IRIX5.  */
319  bfd_boolean use_rld_obj_head;
320  /* This is the value of the __rld_map or __rld_obj_head symbol.  */
321  bfd_vma rld_value;
322  /* This is set if we see any mips16 stub sections.  */
323  bfd_boolean mips16_stubs_seen;
324  /* True if we're generating code for VxWorks.  */
325  bfd_boolean is_vxworks;
326  /* Shortcuts to some dynamic sections, or NULL if they are not
327     being used.  */
328  asection *srelbss;
329  asection *sdynbss;
330  asection *srelplt;
331  asection *srelplt2;
332  asection *sgotplt;
333  asection *splt;
334  /* The size of the PLT header in bytes (VxWorks only).  */
335  bfd_vma plt_header_size;
336  /* The size of a PLT entry in bytes (VxWorks only).  */
337  bfd_vma plt_entry_size;
338  /* The size of a function stub entry in bytes.  */
339  bfd_vma function_stub_size;
340};
341
342#define TLS_RELOC_P(r_type) \
343  (r_type == R_MIPS_TLS_DTPMOD32		\
344   || r_type == R_MIPS_TLS_DTPMOD64		\
345   || r_type == R_MIPS_TLS_DTPREL32		\
346   || r_type == R_MIPS_TLS_DTPREL64		\
347   || r_type == R_MIPS_TLS_GD			\
348   || r_type == R_MIPS_TLS_LDM			\
349   || r_type == R_MIPS_TLS_DTPREL_HI16		\
350   || r_type == R_MIPS_TLS_DTPREL_LO16		\
351   || r_type == R_MIPS_TLS_GOTTPREL		\
352   || r_type == R_MIPS_TLS_TPREL32		\
353   || r_type == R_MIPS_TLS_TPREL64		\
354   || r_type == R_MIPS_TLS_TPREL_HI16		\
355   || r_type == R_MIPS_TLS_TPREL_LO16)
356
357/* Structure used to pass information to mips_elf_output_extsym.  */
358
359struct extsym_info
360{
361  bfd *abfd;
362  struct bfd_link_info *info;
363  struct ecoff_debug_info *debug;
364  const struct ecoff_debug_swap *swap;
365  bfd_boolean failed;
366};
367
368/* The names of the runtime procedure table symbols used on IRIX5.  */
369
370static const char * const mips_elf_dynsym_rtproc_names[] =
371{
372  "_procedure_table",
373  "_procedure_string_table",
374  "_procedure_table_size",
375  NULL
376};
377
378/* These structures are used to generate the .compact_rel section on
379   IRIX5.  */
380
381typedef struct
382{
383  unsigned long id1;		/* Always one?  */
384  unsigned long num;		/* Number of compact relocation entries.  */
385  unsigned long id2;		/* Always two?  */
386  unsigned long offset;		/* The file offset of the first relocation.  */
387  unsigned long reserved0;	/* Zero?  */
388  unsigned long reserved1;	/* Zero?  */
389} Elf32_compact_rel;
390
391typedef struct
392{
393  bfd_byte id1[4];
394  bfd_byte num[4];
395  bfd_byte id2[4];
396  bfd_byte offset[4];
397  bfd_byte reserved0[4];
398  bfd_byte reserved1[4];
399} Elf32_External_compact_rel;
400
401typedef struct
402{
403  unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
404  unsigned int rtype : 4;	/* Relocation types. See below.  */
405  unsigned int dist2to : 8;
406  unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
407  unsigned long konst;		/* KONST field. See below.  */
408  unsigned long vaddr;		/* VADDR to be relocated.  */
409} Elf32_crinfo;
410
411typedef struct
412{
413  unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
414  unsigned int rtype : 4;	/* Relocation types. See below.  */
415  unsigned int dist2to : 8;
416  unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
417  unsigned long konst;		/* KONST field. See below.  */
418} Elf32_crinfo2;
419
420typedef struct
421{
422  bfd_byte info[4];
423  bfd_byte konst[4];
424  bfd_byte vaddr[4];
425} Elf32_External_crinfo;
426
427typedef struct
428{
429  bfd_byte info[4];
430  bfd_byte konst[4];
431} Elf32_External_crinfo2;
432
433/* These are the constants used to swap the bitfields in a crinfo.  */
434
435#define CRINFO_CTYPE (0x1)
436#define CRINFO_CTYPE_SH (31)
437#define CRINFO_RTYPE (0xf)
438#define CRINFO_RTYPE_SH (27)
439#define CRINFO_DIST2TO (0xff)
440#define CRINFO_DIST2TO_SH (19)
441#define CRINFO_RELVADDR (0x7ffff)
442#define CRINFO_RELVADDR_SH (0)
443
444/* A compact relocation info has long (3 words) or short (2 words)
445   formats.  A short format doesn't have VADDR field and relvaddr
446   fields contains ((VADDR - vaddr of the previous entry) >> 2).  */
447#define CRF_MIPS_LONG			1
448#define CRF_MIPS_SHORT			0
449
450/* There are 4 types of compact relocation at least. The value KONST
451   has different meaning for each type:
452
453   (type)		(konst)
454   CT_MIPS_REL32	Address in data
455   CT_MIPS_WORD		Address in word (XXX)
456   CT_MIPS_GPHI_LO	GP - vaddr
457   CT_MIPS_JMPAD	Address to jump
458   */
459
460#define CRT_MIPS_REL32			0xa
461#define CRT_MIPS_WORD			0xb
462#define CRT_MIPS_GPHI_LO		0xc
463#define CRT_MIPS_JMPAD			0xd
464
465#define mips_elf_set_cr_format(x,format)	((x).ctype = (format))
466#define mips_elf_set_cr_type(x,type)		((x).rtype = (type))
467#define mips_elf_set_cr_dist2to(x,v)		((x).dist2to = (v))
468#define mips_elf_set_cr_relvaddr(x,d)		((x).relvaddr = (d)<<2)
469
470/* The structure of the runtime procedure descriptor created by the
471   loader for use by the static exception system.  */
472
473typedef struct runtime_pdr {
474	bfd_vma	adr;		/* Memory address of start of procedure.  */
475	long	regmask;	/* Save register mask.  */
476	long	regoffset;	/* Save register offset.  */
477	long	fregmask;	/* Save floating point register mask.  */
478	long	fregoffset;	/* Save floating point register offset.  */
479	long	frameoffset;	/* Frame size.  */
480	short	framereg;	/* Frame pointer register.  */
481	short	pcreg;		/* Offset or reg of return pc.  */
482	long	irpss;		/* Index into the runtime string table.  */
483	long	reserved;
484	struct exception_info *exception_info;/* Pointer to exception array.  */
485} RPDR, *pRPDR;
486#define cbRPDR sizeof (RPDR)
487#define rpdNil ((pRPDR) 0)
488
489static struct mips_got_entry *mips_elf_create_local_got_entry
490  (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491   bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492static bfd_boolean mips_elf_sort_hash_table_f
493  (struct mips_elf_link_hash_entry *, void *);
494static bfd_vma mips_elf_high
495  (bfd_vma);
496static bfd_boolean mips16_stub_section_p
497  (bfd *, asection *);
498static bfd_boolean mips_elf_create_dynamic_relocation
499  (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500   struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501   bfd_vma *, asection *);
502static hashval_t mips_elf_got_entry_hash
503  (const void *);
504static bfd_vma mips_elf_adjust_gp
505  (bfd *, struct mips_got_info *, bfd *);
506static struct mips_got_info *mips_elf_got_for_ibfd
507  (struct mips_got_info *, bfd *);
508
509/* This will be used when we sort the dynamic relocation records.  */
510static bfd *reldyn_sorting_bfd;
511
512/* Nonzero if ABFD is using the N32 ABI.  */
513#define ABI_N32_P(abfd) \
514  ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516/* Nonzero if ABFD is using the N64 ABI.  */
517#define ABI_64_P(abfd) \
518  (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520/* Nonzero if ABFD is using NewABI conventions.  */
521#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523/* The IRIX compatibility level we are striving for.  */
524#define IRIX_COMPAT(abfd) \
525  (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527/* Whether we are trying to be compatible with IRIX at all.  */
528#define SGI_COMPAT(abfd) \
529  (IRIX_COMPAT (abfd) != ict_none)
530
531/* The name of the options section.  */
532#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533  (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536   Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME.  */
537#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538  (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540/* Whether the section is readonly.  */
541#define MIPS_ELF_READONLY_SECTION(sec) \
542  ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))		\
543   == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545/* The name of the stub section.  */
546#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548/* The size of an external REL relocation.  */
549#define MIPS_ELF_REL_SIZE(abfd) \
550  (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552/* The size of an external RELA relocation.  */
553#define MIPS_ELF_RELA_SIZE(abfd) \
554  (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556/* The size of an external dynamic table entry.  */
557#define MIPS_ELF_DYN_SIZE(abfd) \
558  (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560/* The size of the rld_map pointer.  */
561#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
562  (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564/* The size of a GOT entry.  */
565#define MIPS_ELF_GOT_SIZE(abfd) \
566  (get_elf_backend_data (abfd)->s->arch_size / 8)
567
568/* The size of a symbol-table entry.  */
569#define MIPS_ELF_SYM_SIZE(abfd) \
570  (get_elf_backend_data (abfd)->s->sizeof_sym)
571
572/* The default alignment for sections, as a power of two.  */
573#define MIPS_ELF_LOG_FILE_ALIGN(abfd)				\
574  (get_elf_backend_data (abfd)->s->log_file_align)
575
576/* Get word-sized data.  */
577#define MIPS_ELF_GET_WORD(abfd, ptr) \
578  (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
579
580/* Put out word-sized data.  */
581#define MIPS_ELF_PUT_WORD(abfd, val, ptr)	\
582  (ABI_64_P (abfd) 				\
583   ? bfd_put_64 (abfd, val, ptr) 		\
584   : bfd_put_32 (abfd, val, ptr))
585
586/* Add a dynamic symbol table-entry.  */
587#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)	\
588  _bfd_elf_add_dynamic_entry (info, tag, val)
589
590#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)			\
591  (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
592
593/* Determine whether the internal relocation of index REL_IDX is REL
594   (zero) or RELA (non-zero).  The assumption is that, if there are
595   two relocation sections for this section, one of them is REL and
596   the other is RELA.  If the index of the relocation we're testing is
597   in range for the first relocation section, check that the external
598   relocation size is that for RELA.  It is also assumed that, if
599   rel_idx is not in range for the first section, and this first
600   section contains REL relocs, then the relocation is in the second
601   section, that is RELA.  */
602#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx)				\
603  ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr)			\
604    * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel		\
605    > (bfd_vma)(rel_idx))						\
606   == (elf_section_data (sec)->rel_hdr.sh_entsize			\
607       == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela)		\
608	   : sizeof (Elf32_External_Rela))))
609
610/* The name of the dynamic relocation section.  */
611#define MIPS_ELF_REL_DYN_NAME(INFO) \
612  (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
613
614/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
615   from smaller values.  Start with zero, widen, *then* decrement.  */
616#define MINUS_ONE	(((bfd_vma)0) - 1)
617#define MINUS_TWO	(((bfd_vma)0) - 2)
618
619/* The number of local .got entries we reserve.  */
620#define MIPS_RESERVED_GOTNO(INFO) \
621  (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
622
623/* The offset of $gp from the beginning of the .got section.  */
624#define ELF_MIPS_GP_OFFSET(INFO) \
625  (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
626
627/* The maximum size of the GOT for it to be addressable using 16-bit
628   offsets from $gp.  */
629#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
630
631/* Instructions which appear in a stub.  */
632#define STUB_LW(abfd)							\
633  ((ABI_64_P (abfd)							\
634    ? 0xdf998010				/* ld t9,0x8010(gp) */	\
635    : 0x8f998010))              		/* lw t9,0x8010(gp) */
636#define STUB_MOVE(abfd)							\
637   ((ABI_64_P (abfd)							\
638     ? 0x03e0782d				/* daddu t7,ra */	\
639     : 0x03e07821))				/* addu t7,ra */
640#define STUB_LUI(VAL) (0x3c180000 + (VAL))	/* lui t8,VAL */
641#define STUB_JALR 0x0320f809			/* jalr t9,ra */
642#define STUB_ORI(VAL) (0x37180000 + (VAL))	/* ori t8,t8,VAL */
643#define STUB_LI16U(VAL) (0x34180000 + (VAL))	/* ori t8,zero,VAL unsigned */
644#define STUB_LI16S(abfd, VAL)						\
645   ((ABI_64_P (abfd)							\
646    ? (0x64180000 + (VAL))	/* daddiu t8,zero,VAL sign extended */	\
647    : (0x24180000 + (VAL))))	/* addiu t8,zero,VAL sign extended */
648
649#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
650#define MIPS_FUNCTION_STUB_BIG_SIZE 20
651
652/* The name of the dynamic interpreter.  This is put in the .interp
653   section.  */
654
655#define ELF_DYNAMIC_INTERPRETER(abfd) 		\
656   (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" 	\
657    : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" 	\
658    : "/usr/lib/libc.so.1")
659
660#ifdef BFD64
661#define MNAME(bfd,pre,pos) \
662  (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
663#define ELF_R_SYM(bfd, i)					\
664  (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
665#define ELF_R_TYPE(bfd, i)					\
666  (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
667#define ELF_R_INFO(bfd, s, t)					\
668  (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
669#else
670#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
671#define ELF_R_SYM(bfd, i)					\
672  (ELF32_R_SYM (i))
673#define ELF_R_TYPE(bfd, i)					\
674  (ELF32_R_TYPE (i))
675#define ELF_R_INFO(bfd, s, t)					\
676  (ELF32_R_INFO (s, t))
677#endif
678
679  /* The mips16 compiler uses a couple of special sections to handle
680     floating point arguments.
681
682     Section names that look like .mips16.fn.FNNAME contain stubs that
683     copy floating point arguments from the fp regs to the gp regs and
684     then jump to FNNAME.  If any 32 bit function calls FNNAME, the
685     call should be redirected to the stub instead.  If no 32 bit
686     function calls FNNAME, the stub should be discarded.  We need to
687     consider any reference to the function, not just a call, because
688     if the address of the function is taken we will need the stub,
689     since the address might be passed to a 32 bit function.
690
691     Section names that look like .mips16.call.FNNAME contain stubs
692     that copy floating point arguments from the gp regs to the fp
693     regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
694     then any 16 bit function that calls FNNAME should be redirected
695     to the stub instead.  If FNNAME is not a 32 bit function, the
696     stub should be discarded.
697
698     .mips16.call.fp.FNNAME sections are similar, but contain stubs
699     which call FNNAME and then copy the return value from the fp regs
700     to the gp regs.  These stubs store the return value in $18 while
701     calling FNNAME; any function which might call one of these stubs
702     must arrange to save $18 around the call.  (This case is not
703     needed for 32 bit functions that call 16 bit functions, because
704     16 bit functions always return floating point values in both
705     $f0/$f1 and $2/$3.)
706
707     Note that in all cases FNNAME might be defined statically.
708     Therefore, FNNAME is not used literally.  Instead, the relocation
709     information will indicate which symbol the section is for.
710
711     We record any stubs that we find in the symbol table.  */
712
713#define FN_STUB ".mips16.fn."
714#define CALL_STUB ".mips16.call."
715#define CALL_FP_STUB ".mips16.call.fp."
716
717#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
718#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
719#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
720
721/* The format of the first PLT entry in a VxWorks executable.  */
722static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
723  0x3c190000,	/* lui t9, %hi(_GLOBAL_OFFSET_TABLE_)		*/
724  0x27390000,	/* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_)	*/
725  0x8f390008,	/* lw t9, 8(t9)					*/
726  0x00000000,	/* nop						*/
727  0x03200008,	/* jr t9					*/
728  0x00000000	/* nop						*/
729};
730
731/* The format of subsequent PLT entries.  */
732static const bfd_vma mips_vxworks_exec_plt_entry[] = {
733  0x10000000,	/* b .PLT_resolver			*/
734  0x24180000,	/* li t8, <pltindex>			*/
735  0x3c190000,	/* lui t9, %hi(<.got.plt slot>)		*/
736  0x27390000,	/* addiu t9, t9, %lo(<.got.plt slot>)	*/
737  0x8f390000,	/* lw t9, 0(t9)				*/
738  0x00000000,	/* nop					*/
739  0x03200008,	/* jr t9				*/
740  0x00000000	/* nop					*/
741};
742
743/* The format of the first PLT entry in a VxWorks shared object.  */
744static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
745  0x8f990008,	/* lw t9, 8(gp)		*/
746  0x00000000,	/* nop			*/
747  0x03200008,	/* jr t9		*/
748  0x00000000,	/* nop			*/
749  0x00000000,	/* nop			*/
750  0x00000000	/* nop			*/
751};
752
753/* The format of subsequent PLT entries.  */
754static const bfd_vma mips_vxworks_shared_plt_entry[] = {
755  0x10000000,	/* b .PLT_resolver	*/
756  0x24180000	/* li t8, <pltindex>	*/
757};
758
759/* Look up an entry in a MIPS ELF linker hash table.  */
760
761#define mips_elf_link_hash_lookup(table, string, create, copy, follow)	\
762  ((struct mips_elf_link_hash_entry *)					\
763   elf_link_hash_lookup (&(table)->root, (string), (create),		\
764			 (copy), (follow)))
765
766/* Traverse a MIPS ELF linker hash table.  */
767
768#define mips_elf_link_hash_traverse(table, func, info)			\
769  (elf_link_hash_traverse						\
770   (&(table)->root,							\
771    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),	\
772    (info)))
773
774/* Get the MIPS ELF linker hash table from a link_info structure.  */
775
776#define mips_elf_hash_table(p) \
777  ((struct mips_elf_link_hash_table *) ((p)->hash))
778
779/* Find the base offsets for thread-local storage in this object,
780   for GD/LD and IE/LE respectively.  */
781
782#define TP_OFFSET 0x7000
783#define DTP_OFFSET 0x8000
784
785static bfd_vma
786dtprel_base (struct bfd_link_info *info)
787{
788  /* If tls_sec is NULL, we should have signalled an error already.  */
789  if (elf_hash_table (info)->tls_sec == NULL)
790    return 0;
791  return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
792}
793
794static bfd_vma
795tprel_base (struct bfd_link_info *info)
796{
797  /* If tls_sec is NULL, we should have signalled an error already.  */
798  if (elf_hash_table (info)->tls_sec == NULL)
799    return 0;
800  return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
801}
802
803/* Create an entry in a MIPS ELF linker hash table.  */
804
805static struct bfd_hash_entry *
806mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
807			    struct bfd_hash_table *table, const char *string)
808{
809  struct mips_elf_link_hash_entry *ret =
810    (struct mips_elf_link_hash_entry *) entry;
811
812  /* Allocate the structure if it has not already been allocated by a
813     subclass.  */
814  if (ret == NULL)
815    ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
816  if (ret == NULL)
817    return (struct bfd_hash_entry *) ret;
818
819  /* Call the allocation method of the superclass.  */
820  ret = ((struct mips_elf_link_hash_entry *)
821	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
822				     table, string));
823  if (ret != NULL)
824    {
825      /* Set local fields.  */
826      memset (&ret->esym, 0, sizeof (EXTR));
827      /* We use -2 as a marker to indicate that the information has
828	 not been set.  -1 means there is no associated ifd.  */
829      ret->esym.ifd = -2;
830      ret->possibly_dynamic_relocs = 0;
831      ret->readonly_reloc = FALSE;
832      ret->no_fn_stub = FALSE;
833      ret->fn_stub = NULL;
834      ret->need_fn_stub = FALSE;
835      ret->call_stub = NULL;
836      ret->call_fp_stub = NULL;
837      ret->forced_local = FALSE;
838      ret->is_branch_target = FALSE;
839      ret->is_relocation_target = FALSE;
840      ret->tls_type = GOT_NORMAL;
841    }
842
843  return (struct bfd_hash_entry *) ret;
844}
845
846bfd_boolean
847_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
848{
849  if (!sec->used_by_bfd)
850    {
851      struct _mips_elf_section_data *sdata;
852      bfd_size_type amt = sizeof (*sdata);
853
854      sdata = bfd_zalloc (abfd, amt);
855      if (sdata == NULL)
856	return FALSE;
857      sec->used_by_bfd = sdata;
858    }
859
860  return _bfd_elf_new_section_hook (abfd, sec);
861}
862
863/* Read ECOFF debugging information from a .mdebug section into a
864   ecoff_debug_info structure.  */
865
866bfd_boolean
867_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
868			       struct ecoff_debug_info *debug)
869{
870  HDRR *symhdr;
871  const struct ecoff_debug_swap *swap;
872  char *ext_hdr;
873
874  swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
875  memset (debug, 0, sizeof (*debug));
876
877  ext_hdr = bfd_malloc (swap->external_hdr_size);
878  if (ext_hdr == NULL && swap->external_hdr_size != 0)
879    goto error_return;
880
881  if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
882				  swap->external_hdr_size))
883    goto error_return;
884
885  symhdr = &debug->symbolic_header;
886  (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
887
888  /* The symbolic header contains absolute file offsets and sizes to
889     read.  */
890#define READ(ptr, offset, count, size, type)				\
891  if (symhdr->count == 0)						\
892    debug->ptr = NULL;							\
893  else									\
894    {									\
895      bfd_size_type amt = (bfd_size_type) size * symhdr->count;		\
896      debug->ptr = bfd_malloc (amt);					\
897      if (debug->ptr == NULL)						\
898	goto error_return;						\
899      if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0		\
900	  || bfd_bread (debug->ptr, amt, abfd) != amt)			\
901	goto error_return;						\
902    }
903
904  READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
905  READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
906  READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
907  READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
908  READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
909  READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
910	union aux_ext *);
911  READ (ss, cbSsOffset, issMax, sizeof (char), char *);
912  READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
913  READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
914  READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
915  READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
916#undef READ
917
918  debug->fdr = NULL;
919
920  return TRUE;
921
922 error_return:
923  if (ext_hdr != NULL)
924    free (ext_hdr);
925  if (debug->line != NULL)
926    free (debug->line);
927  if (debug->external_dnr != NULL)
928    free (debug->external_dnr);
929  if (debug->external_pdr != NULL)
930    free (debug->external_pdr);
931  if (debug->external_sym != NULL)
932    free (debug->external_sym);
933  if (debug->external_opt != NULL)
934    free (debug->external_opt);
935  if (debug->external_aux != NULL)
936    free (debug->external_aux);
937  if (debug->ss != NULL)
938    free (debug->ss);
939  if (debug->ssext != NULL)
940    free (debug->ssext);
941  if (debug->external_fdr != NULL)
942    free (debug->external_fdr);
943  if (debug->external_rfd != NULL)
944    free (debug->external_rfd);
945  if (debug->external_ext != NULL)
946    free (debug->external_ext);
947  return FALSE;
948}
949
950/* Swap RPDR (runtime procedure table entry) for output.  */
951
952static void
953ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
954{
955  H_PUT_S32 (abfd, in->adr, ex->p_adr);
956  H_PUT_32 (abfd, in->regmask, ex->p_regmask);
957  H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
958  H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
959  H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
960  H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
961
962  H_PUT_16 (abfd, in->framereg, ex->p_framereg);
963  H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
964
965  H_PUT_32 (abfd, in->irpss, ex->p_irpss);
966}
967
968/* Create a runtime procedure table from the .mdebug section.  */
969
970static bfd_boolean
971mips_elf_create_procedure_table (void *handle, bfd *abfd,
972				 struct bfd_link_info *info, asection *s,
973				 struct ecoff_debug_info *debug)
974{
975  const struct ecoff_debug_swap *swap;
976  HDRR *hdr = &debug->symbolic_header;
977  RPDR *rpdr, *rp;
978  struct rpdr_ext *erp;
979  void *rtproc;
980  struct pdr_ext *epdr;
981  struct sym_ext *esym;
982  char *ss, **sv;
983  char *str;
984  bfd_size_type size;
985  bfd_size_type count;
986  unsigned long sindex;
987  unsigned long i;
988  PDR pdr;
989  SYMR sym;
990  const char *no_name_func = _("static procedure (no name)");
991
992  epdr = NULL;
993  rpdr = NULL;
994  esym = NULL;
995  ss = NULL;
996  sv = NULL;
997
998  swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
999
1000  sindex = strlen (no_name_func) + 1;
1001  count = hdr->ipdMax;
1002  if (count > 0)
1003    {
1004      size = swap->external_pdr_size;
1005
1006      epdr = bfd_malloc (size * count);
1007      if (epdr == NULL)
1008	goto error_return;
1009
1010      if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1011	goto error_return;
1012
1013      size = sizeof (RPDR);
1014      rp = rpdr = bfd_malloc (size * count);
1015      if (rpdr == NULL)
1016	goto error_return;
1017
1018      size = sizeof (char *);
1019      sv = bfd_malloc (size * count);
1020      if (sv == NULL)
1021	goto error_return;
1022
1023      count = hdr->isymMax;
1024      size = swap->external_sym_size;
1025      esym = bfd_malloc (size * count);
1026      if (esym == NULL)
1027	goto error_return;
1028
1029      if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1030	goto error_return;
1031
1032      count = hdr->issMax;
1033      ss = bfd_malloc (count);
1034      if (ss == NULL)
1035	goto error_return;
1036      if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1037	goto error_return;
1038
1039      count = hdr->ipdMax;
1040      for (i = 0; i < (unsigned long) count; i++, rp++)
1041	{
1042	  (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1043	  (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1044	  rp->adr = sym.value;
1045	  rp->regmask = pdr.regmask;
1046	  rp->regoffset = pdr.regoffset;
1047	  rp->fregmask = pdr.fregmask;
1048	  rp->fregoffset = pdr.fregoffset;
1049	  rp->frameoffset = pdr.frameoffset;
1050	  rp->framereg = pdr.framereg;
1051	  rp->pcreg = pdr.pcreg;
1052	  rp->irpss = sindex;
1053	  sv[i] = ss + sym.iss;
1054	  sindex += strlen (sv[i]) + 1;
1055	}
1056    }
1057
1058  size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1059  size = BFD_ALIGN (size, 16);
1060  rtproc = bfd_alloc (abfd, size);
1061  if (rtproc == NULL)
1062    {
1063      mips_elf_hash_table (info)->procedure_count = 0;
1064      goto error_return;
1065    }
1066
1067  mips_elf_hash_table (info)->procedure_count = count + 2;
1068
1069  erp = rtproc;
1070  memset (erp, 0, sizeof (struct rpdr_ext));
1071  erp++;
1072  str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1073  strcpy (str, no_name_func);
1074  str += strlen (no_name_func) + 1;
1075  for (i = 0; i < count; i++)
1076    {
1077      ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1078      strcpy (str, sv[i]);
1079      str += strlen (sv[i]) + 1;
1080    }
1081  H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1082
1083  /* Set the size and contents of .rtproc section.  */
1084  s->size = size;
1085  s->contents = rtproc;
1086
1087  /* Skip this section later on (I don't think this currently
1088     matters, but someday it might).  */
1089  s->map_head.link_order = NULL;
1090
1091  if (epdr != NULL)
1092    free (epdr);
1093  if (rpdr != NULL)
1094    free (rpdr);
1095  if (esym != NULL)
1096    free (esym);
1097  if (ss != NULL)
1098    free (ss);
1099  if (sv != NULL)
1100    free (sv);
1101
1102  return TRUE;
1103
1104 error_return:
1105  if (epdr != NULL)
1106    free (epdr);
1107  if (rpdr != NULL)
1108    free (rpdr);
1109  if (esym != NULL)
1110    free (esym);
1111  if (ss != NULL)
1112    free (ss);
1113  if (sv != NULL)
1114    free (sv);
1115  return FALSE;
1116}
1117
1118/* Check the mips16 stubs for a particular symbol, and see if we can
1119   discard them.  */
1120
1121static bfd_boolean
1122mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1123			     void *data ATTRIBUTE_UNUSED)
1124{
1125  if (h->root.root.type == bfd_link_hash_warning)
1126    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1127
1128  if (h->fn_stub != NULL
1129      && ! h->need_fn_stub)
1130    {
1131      /* We don't need the fn_stub; the only references to this symbol
1132         are 16 bit calls.  Clobber the size to 0 to prevent it from
1133         being included in the link.  */
1134      h->fn_stub->size = 0;
1135      h->fn_stub->flags &= ~SEC_RELOC;
1136      h->fn_stub->reloc_count = 0;
1137      h->fn_stub->flags |= SEC_EXCLUDE;
1138    }
1139
1140  if (h->call_stub != NULL
1141      && h->root.other == STO_MIPS16)
1142    {
1143      /* We don't need the call_stub; this is a 16 bit function, so
1144         calls from other 16 bit functions are OK.  Clobber the size
1145         to 0 to prevent it from being included in the link.  */
1146      h->call_stub->size = 0;
1147      h->call_stub->flags &= ~SEC_RELOC;
1148      h->call_stub->reloc_count = 0;
1149      h->call_stub->flags |= SEC_EXCLUDE;
1150    }
1151
1152  if (h->call_fp_stub != NULL
1153      && h->root.other == STO_MIPS16)
1154    {
1155      /* We don't need the call_stub; this is a 16 bit function, so
1156         calls from other 16 bit functions are OK.  Clobber the size
1157         to 0 to prevent it from being included in the link.  */
1158      h->call_fp_stub->size = 0;
1159      h->call_fp_stub->flags &= ~SEC_RELOC;
1160      h->call_fp_stub->reloc_count = 0;
1161      h->call_fp_stub->flags |= SEC_EXCLUDE;
1162    }
1163
1164  return TRUE;
1165}
1166
1167/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1168   Most mips16 instructions are 16 bits, but these instructions
1169   are 32 bits.
1170
1171   The format of these instructions is:
1172
1173   +--------------+--------------------------------+
1174   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
1175   +--------------+--------------------------------+
1176   |                Immediate  15:0                |
1177   +-----------------------------------------------+
1178
1179   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
1180   Note that the immediate value in the first word is swapped.
1181
1182   When producing a relocatable object file, R_MIPS16_26 is
1183   handled mostly like R_MIPS_26.  In particular, the addend is
1184   stored as a straight 26-bit value in a 32-bit instruction.
1185   (gas makes life simpler for itself by never adjusting a
1186   R_MIPS16_26 reloc to be against a section, so the addend is
1187   always zero).  However, the 32 bit instruction is stored as 2
1188   16-bit values, rather than a single 32-bit value.  In a
1189   big-endian file, the result is the same; in a little-endian
1190   file, the two 16-bit halves of the 32 bit value are swapped.
1191   This is so that a disassembler can recognize the jal
1192   instruction.
1193
1194   When doing a final link, R_MIPS16_26 is treated as a 32 bit
1195   instruction stored as two 16-bit values.  The addend A is the
1196   contents of the targ26 field.  The calculation is the same as
1197   R_MIPS_26.  When storing the calculated value, reorder the
1198   immediate value as shown above, and don't forget to store the
1199   value as two 16-bit values.
1200
1201   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1202   defined as
1203
1204   big-endian:
1205   +--------+----------------------+
1206   |        |                      |
1207   |        |    targ26-16         |
1208   |31    26|25                   0|
1209   +--------+----------------------+
1210
1211   little-endian:
1212   +----------+------+-------------+
1213   |          |      |             |
1214   |  sub1    |      |     sub2    |
1215   |0        9|10  15|16         31|
1216   +----------+--------------------+
1217   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1218   ((sub1 << 16) | sub2)).
1219
1220   When producing a relocatable object file, the calculation is
1221   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1222   When producing a fully linked file, the calculation is
1223   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1224   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1225
1226   R_MIPS16_GPREL is used for GP-relative addressing in mips16
1227   mode.  A typical instruction will have a format like this:
1228
1229   +--------------+--------------------------------+
1230   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
1231   +--------------+--------------------------------+
1232   |    Major     |   rx   |   ry   |   Imm  4:0   |
1233   +--------------+--------------------------------+
1234
1235   EXTEND is the five bit value 11110.  Major is the instruction
1236   opcode.
1237
1238   This is handled exactly like R_MIPS_GPREL16, except that the
1239   addend is retrieved and stored as shown in this diagram; that
1240   is, the Imm fields above replace the V-rel16 field.
1241
1242   All we need to do here is shuffle the bits appropriately.  As
1243   above, the two 16-bit halves must be swapped on a
1244   little-endian system.
1245
1246   R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1247   access data when neither GP-relative nor PC-relative addressing
1248   can be used.  They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1249   except that the addend is retrieved and stored as shown above
1250   for R_MIPS16_GPREL.
1251  */
1252void
1253_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1254				 bfd_boolean jal_shuffle, bfd_byte *data)
1255{
1256  bfd_vma extend, insn, val;
1257
1258  if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1259      && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1260    return;
1261
1262  /* Pick up the mips16 extend instruction and the real instruction.  */
1263  extend = bfd_get_16 (abfd, data);
1264  insn = bfd_get_16 (abfd, data + 2);
1265  if (r_type == R_MIPS16_26)
1266    {
1267      if (jal_shuffle)
1268	val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1269	      | ((extend & 0x1f) << 21) | insn;
1270      else
1271	val = extend << 16 | insn;
1272    }
1273  else
1274    val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1275	  | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1276  bfd_put_32 (abfd, val, data);
1277}
1278
1279void
1280_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1281			       bfd_boolean jal_shuffle, bfd_byte *data)
1282{
1283  bfd_vma extend, insn, val;
1284
1285  if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1286      && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1287    return;
1288
1289  val = bfd_get_32 (abfd, data);
1290  if (r_type == R_MIPS16_26)
1291    {
1292      if (jal_shuffle)
1293	{
1294	  insn = val & 0xffff;
1295	  extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1296		   | ((val >> 21) & 0x1f);
1297	}
1298      else
1299	{
1300	  insn = val & 0xffff;
1301	  extend = val >> 16;
1302	}
1303    }
1304  else
1305    {
1306      insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1307      extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1308    }
1309  bfd_put_16 (abfd, insn, data + 2);
1310  bfd_put_16 (abfd, extend, data);
1311}
1312
1313bfd_reloc_status_type
1314_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1315			       arelent *reloc_entry, asection *input_section,
1316			       bfd_boolean relocatable, void *data, bfd_vma gp)
1317{
1318  bfd_vma relocation;
1319  bfd_signed_vma val;
1320  bfd_reloc_status_type status;
1321
1322  if (bfd_is_com_section (symbol->section))
1323    relocation = 0;
1324  else
1325    relocation = symbol->value;
1326
1327  relocation += symbol->section->output_section->vma;
1328  relocation += symbol->section->output_offset;
1329
1330  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1331    return bfd_reloc_outofrange;
1332
1333  /* Set val to the offset into the section or symbol.  */
1334  val = reloc_entry->addend;
1335
1336  _bfd_mips_elf_sign_extend (val, 16);
1337
1338  /* Adjust val for the final section location and GP value.  If we
1339     are producing relocatable output, we don't want to do this for
1340     an external symbol.  */
1341  if (! relocatable
1342      || (symbol->flags & BSF_SECTION_SYM) != 0)
1343    val += relocation - gp;
1344
1345  if (reloc_entry->howto->partial_inplace)
1346    {
1347      status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1348				       (bfd_byte *) data
1349				       + reloc_entry->address);
1350      if (status != bfd_reloc_ok)
1351	return status;
1352    }
1353  else
1354    reloc_entry->addend = val;
1355
1356  if (relocatable)
1357    reloc_entry->address += input_section->output_offset;
1358
1359  return bfd_reloc_ok;
1360}
1361
1362/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1363   R_MIPS_GOT16.  REL is the relocation, INPUT_SECTION is the section
1364   that contains the relocation field and DATA points to the start of
1365   INPUT_SECTION.  */
1366
1367struct mips_hi16
1368{
1369  struct mips_hi16 *next;
1370  bfd_byte *data;
1371  asection *input_section;
1372  arelent rel;
1373};
1374
1375/* FIXME: This should not be a static variable.  */
1376
1377static struct mips_hi16 *mips_hi16_list;
1378
1379/* A howto special_function for REL *HI16 relocations.  We can only
1380   calculate the correct value once we've seen the partnering
1381   *LO16 relocation, so just save the information for later.
1382
1383   The ABI requires that the *LO16 immediately follow the *HI16.
1384   However, as a GNU extension, we permit an arbitrary number of
1385   *HI16s to be associated with a single *LO16.  This significantly
1386   simplies the relocation handling in gcc.  */
1387
1388bfd_reloc_status_type
1389_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1390			  asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1391			  asection *input_section, bfd *output_bfd,
1392			  char **error_message ATTRIBUTE_UNUSED)
1393{
1394  struct mips_hi16 *n;
1395
1396  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1397    return bfd_reloc_outofrange;
1398
1399  n = bfd_malloc (sizeof *n);
1400  if (n == NULL)
1401    return bfd_reloc_outofrange;
1402
1403  n->next = mips_hi16_list;
1404  n->data = data;
1405  n->input_section = input_section;
1406  n->rel = *reloc_entry;
1407  mips_hi16_list = n;
1408
1409  if (output_bfd != NULL)
1410    reloc_entry->address += input_section->output_offset;
1411
1412  return bfd_reloc_ok;
1413}
1414
1415/* A howto special_function for REL R_MIPS_GOT16 relocations.  This is just
1416   like any other 16-bit relocation when applied to global symbols, but is
1417   treated in the same as R_MIPS_HI16 when applied to local symbols.  */
1418
1419bfd_reloc_status_type
1420_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1421			   void *data, asection *input_section,
1422			   bfd *output_bfd, char **error_message)
1423{
1424  if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1425      || bfd_is_und_section (bfd_get_section (symbol))
1426      || bfd_is_com_section (bfd_get_section (symbol)))
1427    /* The relocation is against a global symbol.  */
1428    return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1429					input_section, output_bfd,
1430					error_message);
1431
1432  return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1433				   input_section, output_bfd, error_message);
1434}
1435
1436/* A howto special_function for REL *LO16 relocations.  The *LO16 itself
1437   is a straightforward 16 bit inplace relocation, but we must deal with
1438   any partnering high-part relocations as well.  */
1439
1440bfd_reloc_status_type
1441_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1442			  void *data, asection *input_section,
1443			  bfd *output_bfd, char **error_message)
1444{
1445  bfd_vma vallo;
1446  bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1447
1448  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1449    return bfd_reloc_outofrange;
1450
1451  _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1452				   location);
1453  vallo = bfd_get_32 (abfd, location);
1454  _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1455				 location);
1456
1457  while (mips_hi16_list != NULL)
1458    {
1459      bfd_reloc_status_type ret;
1460      struct mips_hi16 *hi;
1461
1462      hi = mips_hi16_list;
1463
1464      /* R_MIPS_GOT16 relocations are something of a special case.  We
1465	 want to install the addend in the same way as for a R_MIPS_HI16
1466	 relocation (with a rightshift of 16).  However, since GOT16
1467	 relocations can also be used with global symbols, their howto
1468	 has a rightshift of 0.  */
1469      if (hi->rel.howto->type == R_MIPS_GOT16)
1470	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1471
1472      /* VALLO is a signed 16-bit number.  Bias it by 0x8000 so that any
1473	 carry or borrow will induce a change of +1 or -1 in the high part.  */
1474      hi->rel.addend += (vallo + 0x8000) & 0xffff;
1475
1476      ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1477					 hi->input_section, output_bfd,
1478					 error_message);
1479      if (ret != bfd_reloc_ok)
1480	return ret;
1481
1482      mips_hi16_list = hi->next;
1483      free (hi);
1484    }
1485
1486  return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1487				      input_section, output_bfd,
1488				      error_message);
1489}
1490
1491/* A generic howto special_function.  This calculates and installs the
1492   relocation itself, thus avoiding the oft-discussed problems in
1493   bfd_perform_relocation and bfd_install_relocation.  */
1494
1495bfd_reloc_status_type
1496_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1497			     asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1498			     asection *input_section, bfd *output_bfd,
1499			     char **error_message ATTRIBUTE_UNUSED)
1500{
1501  bfd_signed_vma val;
1502  bfd_reloc_status_type status;
1503  bfd_boolean relocatable;
1504
1505  relocatable = (output_bfd != NULL);
1506
1507  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1508    return bfd_reloc_outofrange;
1509
1510  /* Build up the field adjustment in VAL.  */
1511  val = 0;
1512  if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1513    {
1514      /* Either we're calculating the final field value or we have a
1515	 relocation against a section symbol.  Add in the section's
1516	 offset or address.  */
1517      val += symbol->section->output_section->vma;
1518      val += symbol->section->output_offset;
1519    }
1520
1521  if (!relocatable)
1522    {
1523      /* We're calculating the final field value.  Add in the symbol's value
1524	 and, if pc-relative, subtract the address of the field itself.  */
1525      val += symbol->value;
1526      if (reloc_entry->howto->pc_relative)
1527	{
1528	  val -= input_section->output_section->vma;
1529	  val -= input_section->output_offset;
1530	  val -= reloc_entry->address;
1531	}
1532    }
1533
1534  /* VAL is now the final adjustment.  If we're keeping this relocation
1535     in the output file, and if the relocation uses a separate addend,
1536     we just need to add VAL to that addend.  Otherwise we need to add
1537     VAL to the relocation field itself.  */
1538  if (relocatable && !reloc_entry->howto->partial_inplace)
1539    reloc_entry->addend += val;
1540  else
1541    {
1542      bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1543
1544      /* Add in the separate addend, if any.  */
1545      val += reloc_entry->addend;
1546
1547      /* Add VAL to the relocation field.  */
1548      _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1549				       location);
1550      status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1551				       location);
1552      _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1553				     location);
1554
1555      if (status != bfd_reloc_ok)
1556	return status;
1557    }
1558
1559  if (relocatable)
1560    reloc_entry->address += input_section->output_offset;
1561
1562  return bfd_reloc_ok;
1563}
1564
1565/* Swap an entry in a .gptab section.  Note that these routines rely
1566   on the equivalence of the two elements of the union.  */
1567
1568static void
1569bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1570			      Elf32_gptab *in)
1571{
1572  in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1573  in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1574}
1575
1576static void
1577bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1578			       Elf32_External_gptab *ex)
1579{
1580  H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1581  H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1582}
1583
1584static void
1585bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1586				Elf32_External_compact_rel *ex)
1587{
1588  H_PUT_32 (abfd, in->id1, ex->id1);
1589  H_PUT_32 (abfd, in->num, ex->num);
1590  H_PUT_32 (abfd, in->id2, ex->id2);
1591  H_PUT_32 (abfd, in->offset, ex->offset);
1592  H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1593  H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1594}
1595
1596static void
1597bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1598			   Elf32_External_crinfo *ex)
1599{
1600  unsigned long l;
1601
1602  l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1603       | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1604       | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1605       | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1606  H_PUT_32 (abfd, l, ex->info);
1607  H_PUT_32 (abfd, in->konst, ex->konst);
1608  H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1609}
1610
1611/* A .reginfo section holds a single Elf32_RegInfo structure.  These
1612   routines swap this structure in and out.  They are used outside of
1613   BFD, so they are globally visible.  */
1614
1615void
1616bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1617				Elf32_RegInfo *in)
1618{
1619  in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1620  in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1621  in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1622  in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1623  in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1624  in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1625}
1626
1627void
1628bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1629				 Elf32_External_RegInfo *ex)
1630{
1631  H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1632  H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1633  H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1634  H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1635  H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1636  H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1637}
1638
1639/* In the 64 bit ABI, the .MIPS.options section holds register
1640   information in an Elf64_Reginfo structure.  These routines swap
1641   them in and out.  They are globally visible because they are used
1642   outside of BFD.  These routines are here so that gas can call them
1643   without worrying about whether the 64 bit ABI has been included.  */
1644
1645void
1646bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1647				Elf64_Internal_RegInfo *in)
1648{
1649  in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1650  in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1651  in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1652  in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1653  in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1654  in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1655  in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1656}
1657
1658void
1659bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1660				 Elf64_External_RegInfo *ex)
1661{
1662  H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1663  H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1664  H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1665  H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1666  H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1667  H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1668  H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1669}
1670
1671/* Swap in an options header.  */
1672
1673void
1674bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1675			      Elf_Internal_Options *in)
1676{
1677  in->kind = H_GET_8 (abfd, ex->kind);
1678  in->size = H_GET_8 (abfd, ex->size);
1679  in->section = H_GET_16 (abfd, ex->section);
1680  in->info = H_GET_32 (abfd, ex->info);
1681}
1682
1683/* Swap out an options header.  */
1684
1685void
1686bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1687			       Elf_External_Options *ex)
1688{
1689  H_PUT_8 (abfd, in->kind, ex->kind);
1690  H_PUT_8 (abfd, in->size, ex->size);
1691  H_PUT_16 (abfd, in->section, ex->section);
1692  H_PUT_32 (abfd, in->info, ex->info);
1693}
1694
1695/* This function is called via qsort() to sort the dynamic relocation
1696   entries by increasing r_symndx value.  */
1697
1698static int
1699sort_dynamic_relocs (const void *arg1, const void *arg2)
1700{
1701  Elf_Internal_Rela int_reloc1;
1702  Elf_Internal_Rela int_reloc2;
1703  int diff;
1704
1705  bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1706  bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1707
1708  diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1709  if (diff != 0)
1710    return diff;
1711
1712  if (int_reloc1.r_offset < int_reloc2.r_offset)
1713    return -1;
1714  if (int_reloc1.r_offset > int_reloc2.r_offset)
1715    return 1;
1716  return 0;
1717}
1718
1719/* Like sort_dynamic_relocs, but used for elf64 relocations.  */
1720
1721static int
1722sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1723			const void *arg2 ATTRIBUTE_UNUSED)
1724{
1725#ifdef BFD64
1726  Elf_Internal_Rela int_reloc1[3];
1727  Elf_Internal_Rela int_reloc2[3];
1728
1729  (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1730    (reldyn_sorting_bfd, arg1, int_reloc1);
1731  (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1732    (reldyn_sorting_bfd, arg2, int_reloc2);
1733
1734  if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1735    return -1;
1736  if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1737    return 1;
1738
1739  if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1740    return -1;
1741  if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1742    return 1;
1743  return 0;
1744#else
1745  abort ();
1746#endif
1747}
1748
1749
1750/* This routine is used to write out ECOFF debugging external symbol
1751   information.  It is called via mips_elf_link_hash_traverse.  The
1752   ECOFF external symbol information must match the ELF external
1753   symbol information.  Unfortunately, at this point we don't know
1754   whether a symbol is required by reloc information, so the two
1755   tables may wind up being different.  We must sort out the external
1756   symbol information before we can set the final size of the .mdebug
1757   section, and we must set the size of the .mdebug section before we
1758   can relocate any sections, and we can't know which symbols are
1759   required by relocation until we relocate the sections.
1760   Fortunately, it is relatively unlikely that any symbol will be
1761   stripped but required by a reloc.  In particular, it can not happen
1762   when generating a final executable.  */
1763
1764static bfd_boolean
1765mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1766{
1767  struct extsym_info *einfo = data;
1768  bfd_boolean strip;
1769  asection *sec, *output_section;
1770
1771  if (h->root.root.type == bfd_link_hash_warning)
1772    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1773
1774  if (h->root.indx == -2)
1775    strip = FALSE;
1776  else if ((h->root.def_dynamic
1777	    || h->root.ref_dynamic
1778	    || h->root.type == bfd_link_hash_new)
1779	   && !h->root.def_regular
1780	   && !h->root.ref_regular)
1781    strip = TRUE;
1782  else if (einfo->info->strip == strip_all
1783	   || (einfo->info->strip == strip_some
1784	       && bfd_hash_lookup (einfo->info->keep_hash,
1785				   h->root.root.root.string,
1786				   FALSE, FALSE) == NULL))
1787    strip = TRUE;
1788  else
1789    strip = FALSE;
1790
1791  if (strip)
1792    return TRUE;
1793
1794  if (h->esym.ifd == -2)
1795    {
1796      h->esym.jmptbl = 0;
1797      h->esym.cobol_main = 0;
1798      h->esym.weakext = 0;
1799      h->esym.reserved = 0;
1800      h->esym.ifd = ifdNil;
1801      h->esym.asym.value = 0;
1802      h->esym.asym.st = stGlobal;
1803
1804      if (h->root.root.type == bfd_link_hash_undefined
1805	  || h->root.root.type == bfd_link_hash_undefweak)
1806	{
1807	  const char *name;
1808
1809	  /* Use undefined class.  Also, set class and type for some
1810             special symbols.  */
1811	  name = h->root.root.root.string;
1812	  if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1813	      || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1814	    {
1815	      h->esym.asym.sc = scData;
1816	      h->esym.asym.st = stLabel;
1817	      h->esym.asym.value = 0;
1818	    }
1819	  else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1820	    {
1821	      h->esym.asym.sc = scAbs;
1822	      h->esym.asym.st = stLabel;
1823	      h->esym.asym.value =
1824		mips_elf_hash_table (einfo->info)->procedure_count;
1825	    }
1826	  else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1827	    {
1828	      h->esym.asym.sc = scAbs;
1829	      h->esym.asym.st = stLabel;
1830	      h->esym.asym.value = elf_gp (einfo->abfd);
1831	    }
1832	  else
1833	    h->esym.asym.sc = scUndefined;
1834	}
1835      else if (h->root.root.type != bfd_link_hash_defined
1836	  && h->root.root.type != bfd_link_hash_defweak)
1837	h->esym.asym.sc = scAbs;
1838      else
1839	{
1840	  const char *name;
1841
1842	  sec = h->root.root.u.def.section;
1843	  output_section = sec->output_section;
1844
1845	  /* When making a shared library and symbol h is the one from
1846	     the another shared library, OUTPUT_SECTION may be null.  */
1847	  if (output_section == NULL)
1848	    h->esym.asym.sc = scUndefined;
1849	  else
1850	    {
1851	      name = bfd_section_name (output_section->owner, output_section);
1852
1853	      if (strcmp (name, ".text") == 0)
1854		h->esym.asym.sc = scText;
1855	      else if (strcmp (name, ".data") == 0)
1856		h->esym.asym.sc = scData;
1857	      else if (strcmp (name, ".sdata") == 0)
1858		h->esym.asym.sc = scSData;
1859	      else if (strcmp (name, ".rodata") == 0
1860		       || strcmp (name, ".rdata") == 0)
1861		h->esym.asym.sc = scRData;
1862	      else if (strcmp (name, ".bss") == 0)
1863		h->esym.asym.sc = scBss;
1864	      else if (strcmp (name, ".sbss") == 0)
1865		h->esym.asym.sc = scSBss;
1866	      else if (strcmp (name, ".init") == 0)
1867		h->esym.asym.sc = scInit;
1868	      else if (strcmp (name, ".fini") == 0)
1869		h->esym.asym.sc = scFini;
1870	      else
1871		h->esym.asym.sc = scAbs;
1872	    }
1873	}
1874
1875      h->esym.asym.reserved = 0;
1876      h->esym.asym.index = indexNil;
1877    }
1878
1879  if (h->root.root.type == bfd_link_hash_common)
1880    h->esym.asym.value = h->root.root.u.c.size;
1881  else if (h->root.root.type == bfd_link_hash_defined
1882	   || h->root.root.type == bfd_link_hash_defweak)
1883    {
1884      if (h->esym.asym.sc == scCommon)
1885	h->esym.asym.sc = scBss;
1886      else if (h->esym.asym.sc == scSCommon)
1887	h->esym.asym.sc = scSBss;
1888
1889      sec = h->root.root.u.def.section;
1890      output_section = sec->output_section;
1891      if (output_section != NULL)
1892	h->esym.asym.value = (h->root.root.u.def.value
1893			      + sec->output_offset
1894			      + output_section->vma);
1895      else
1896	h->esym.asym.value = 0;
1897    }
1898  else if (h->root.needs_plt)
1899    {
1900      struct mips_elf_link_hash_entry *hd = h;
1901      bfd_boolean no_fn_stub = h->no_fn_stub;
1902
1903      while (hd->root.root.type == bfd_link_hash_indirect)
1904	{
1905	  hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1906	  no_fn_stub = no_fn_stub || hd->no_fn_stub;
1907	}
1908
1909      if (!no_fn_stub)
1910	{
1911	  /* Set type and value for a symbol with a function stub.  */
1912	  h->esym.asym.st = stProc;
1913	  sec = hd->root.root.u.def.section;
1914	  if (sec == NULL)
1915	    h->esym.asym.value = 0;
1916	  else
1917	    {
1918	      output_section = sec->output_section;
1919	      if (output_section != NULL)
1920		h->esym.asym.value = (hd->root.plt.offset
1921				      + sec->output_offset
1922				      + output_section->vma);
1923	      else
1924		h->esym.asym.value = 0;
1925	    }
1926	}
1927    }
1928
1929  if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1930				      h->root.root.root.string,
1931				      &h->esym))
1932    {
1933      einfo->failed = TRUE;
1934      return FALSE;
1935    }
1936
1937  return TRUE;
1938}
1939
1940/* A comparison routine used to sort .gptab entries.  */
1941
1942static int
1943gptab_compare (const void *p1, const void *p2)
1944{
1945  const Elf32_gptab *a1 = p1;
1946  const Elf32_gptab *a2 = p2;
1947
1948  return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1949}
1950
1951/* Functions to manage the got entry hash table.  */
1952
1953/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1954   hash number.  */
1955
1956static INLINE hashval_t
1957mips_elf_hash_bfd_vma (bfd_vma addr)
1958{
1959#ifdef BFD64
1960  return addr + (addr >> 32);
1961#else
1962  return addr;
1963#endif
1964}
1965
1966/* got_entries only match if they're identical, except for gotidx, so
1967   use all fields to compute the hash, and compare the appropriate
1968   union members.  */
1969
1970static hashval_t
1971mips_elf_got_entry_hash (const void *entry_)
1972{
1973  const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1974
1975  return entry->symndx
1976    + ((entry->tls_type & GOT_TLS_LDM) << 17)
1977    + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1978       : entry->abfd->id
1979         + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1980	    : entry->d.h->root.root.root.hash));
1981}
1982
1983static int
1984mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1985{
1986  const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1987  const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1988
1989  /* An LDM entry can only match another LDM entry.  */
1990  if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1991    return 0;
1992
1993  return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1994    && (! e1->abfd ? e1->d.address == e2->d.address
1995	: e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1996	: e1->d.h == e2->d.h);
1997}
1998
1999/* multi_got_entries are still a match in the case of global objects,
2000   even if the input bfd in which they're referenced differs, so the
2001   hash computation and compare functions are adjusted
2002   accordingly.  */
2003
2004static hashval_t
2005mips_elf_multi_got_entry_hash (const void *entry_)
2006{
2007  const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2008
2009  return entry->symndx
2010    + (! entry->abfd
2011       ? mips_elf_hash_bfd_vma (entry->d.address)
2012       : entry->symndx >= 0
2013       ? ((entry->tls_type & GOT_TLS_LDM)
2014	  ? (GOT_TLS_LDM << 17)
2015	  : (entry->abfd->id
2016	     + mips_elf_hash_bfd_vma (entry->d.addend)))
2017       : entry->d.h->root.root.root.hash);
2018}
2019
2020static int
2021mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2022{
2023  const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2024  const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2025
2026  /* Any two LDM entries match.  */
2027  if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2028    return 1;
2029
2030  /* Nothing else matches an LDM entry.  */
2031  if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2032    return 0;
2033
2034  return e1->symndx == e2->symndx
2035    && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2036	: e1->abfd == NULL || e2->abfd == NULL
2037	? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2038	: e1->d.h == e2->d.h);
2039}
2040
2041/* Return the dynamic relocation section.  If it doesn't exist, try to
2042   create a new it if CREATE_P, otherwise return NULL.  Also return NULL
2043   if creation fails.  */
2044
2045static asection *
2046mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2047{
2048  const char *dname;
2049  asection *sreloc;
2050  bfd *dynobj;
2051
2052  dname = MIPS_ELF_REL_DYN_NAME (info);
2053  dynobj = elf_hash_table (info)->dynobj;
2054  sreloc = bfd_get_section_by_name (dynobj, dname);
2055  if (sreloc == NULL && create_p)
2056    {
2057      sreloc = bfd_make_section_with_flags (dynobj, dname,
2058					    (SEC_ALLOC
2059					     | SEC_LOAD
2060					     | SEC_HAS_CONTENTS
2061					     | SEC_IN_MEMORY
2062					     | SEC_LINKER_CREATED
2063					     | SEC_READONLY));
2064      if (sreloc == NULL
2065	  || ! bfd_set_section_alignment (dynobj, sreloc,
2066					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2067	return NULL;
2068    }
2069  return sreloc;
2070}
2071
2072/* Returns the GOT section for ABFD.  */
2073
2074static asection *
2075mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2076{
2077  asection *sgot = bfd_get_section_by_name (abfd, ".got");
2078  if (sgot == NULL
2079      || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2080    return NULL;
2081  return sgot;
2082}
2083
2084/* Returns the GOT information associated with the link indicated by
2085   INFO.  If SGOTP is non-NULL, it is filled in with the GOT
2086   section.  */
2087
2088static struct mips_got_info *
2089mips_elf_got_info (bfd *abfd, asection **sgotp)
2090{
2091  asection *sgot;
2092  struct mips_got_info *g;
2093
2094  sgot = mips_elf_got_section (abfd, TRUE);
2095  BFD_ASSERT (sgot != NULL);
2096  BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2097  g = mips_elf_section_data (sgot)->u.got_info;
2098  BFD_ASSERT (g != NULL);
2099
2100  if (sgotp)
2101    *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2102
2103  return g;
2104}
2105
2106/* Count the number of relocations needed for a TLS GOT entry, with
2107   access types from TLS_TYPE, and symbol H (or a local symbol if H
2108   is NULL).  */
2109
2110static int
2111mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2112		     struct elf_link_hash_entry *h)
2113{
2114  int indx = 0;
2115  int ret = 0;
2116  bfd_boolean need_relocs = FALSE;
2117  bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2118
2119  if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2120      && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2121    indx = h->dynindx;
2122
2123  if ((info->shared || indx != 0)
2124      && (h == NULL
2125	  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2126	  || h->root.type != bfd_link_hash_undefweak))
2127    need_relocs = TRUE;
2128
2129  if (!need_relocs)
2130    return FALSE;
2131
2132  if (tls_type & GOT_TLS_GD)
2133    {
2134      ret++;
2135      if (indx != 0)
2136	ret++;
2137    }
2138
2139  if (tls_type & GOT_TLS_IE)
2140    ret++;
2141
2142  if ((tls_type & GOT_TLS_LDM) && info->shared)
2143    ret++;
2144
2145  return ret;
2146}
2147
2148/* Count the number of TLS relocations required for the GOT entry in
2149   ARG1, if it describes a local symbol.  */
2150
2151static int
2152mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2153{
2154  struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2155  struct mips_elf_count_tls_arg *arg = arg2;
2156
2157  if (entry->abfd != NULL && entry->symndx != -1)
2158    arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2159
2160  return 1;
2161}
2162
2163/* Count the number of TLS GOT entries required for the global (or
2164   forced-local) symbol in ARG1.  */
2165
2166static int
2167mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2168{
2169  struct mips_elf_link_hash_entry *hm
2170    = (struct mips_elf_link_hash_entry *) arg1;
2171  struct mips_elf_count_tls_arg *arg = arg2;
2172
2173  if (hm->tls_type & GOT_TLS_GD)
2174    arg->needed += 2;
2175  if (hm->tls_type & GOT_TLS_IE)
2176    arg->needed += 1;
2177
2178  return 1;
2179}
2180
2181/* Count the number of TLS relocations required for the global (or
2182   forced-local) symbol in ARG1.  */
2183
2184static int
2185mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2186{
2187  struct mips_elf_link_hash_entry *hm
2188    = (struct mips_elf_link_hash_entry *) arg1;
2189  struct mips_elf_count_tls_arg *arg = arg2;
2190
2191  arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2192
2193  return 1;
2194}
2195
2196/* Output a simple dynamic relocation into SRELOC.  */
2197
2198static void
2199mips_elf_output_dynamic_relocation (bfd *output_bfd,
2200				    asection *sreloc,
2201				    unsigned long indx,
2202				    int r_type,
2203				    bfd_vma offset)
2204{
2205  Elf_Internal_Rela rel[3];
2206
2207  memset (rel, 0, sizeof (rel));
2208
2209  rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2210  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2211
2212  if (ABI_64_P (output_bfd))
2213    {
2214      (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2215	(output_bfd, &rel[0],
2216	 (sreloc->contents
2217	  + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2218    }
2219  else
2220    bfd_elf32_swap_reloc_out
2221      (output_bfd, &rel[0],
2222       (sreloc->contents
2223	+ sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2224  ++sreloc->reloc_count;
2225}
2226
2227/* Initialize a set of TLS GOT entries for one symbol.  */
2228
2229static void
2230mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2231			       unsigned char *tls_type_p,
2232			       struct bfd_link_info *info,
2233			       struct mips_elf_link_hash_entry *h,
2234			       bfd_vma value)
2235{
2236  int indx;
2237  asection *sreloc, *sgot;
2238  bfd_vma offset, offset2;
2239  bfd *dynobj;
2240  bfd_boolean need_relocs = FALSE;
2241
2242  dynobj = elf_hash_table (info)->dynobj;
2243  sgot = mips_elf_got_section (dynobj, FALSE);
2244
2245  indx = 0;
2246  if (h != NULL)
2247    {
2248      bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2249
2250      if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2251	  && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2252	indx = h->root.dynindx;
2253    }
2254
2255  if (*tls_type_p & GOT_TLS_DONE)
2256    return;
2257
2258  if ((info->shared || indx != 0)
2259      && (h == NULL
2260	  || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2261	  || h->root.type != bfd_link_hash_undefweak))
2262    need_relocs = TRUE;
2263
2264  /* MINUS_ONE means the symbol is not defined in this object.  It may not
2265     be defined at all; assume that the value doesn't matter in that
2266     case.  Otherwise complain if we would use the value.  */
2267  BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2268	      || h->root.root.type == bfd_link_hash_undefweak);
2269
2270  /* Emit necessary relocations.  */
2271  sreloc = mips_elf_rel_dyn_section (info, FALSE);
2272
2273  /* General Dynamic.  */
2274  if (*tls_type_p & GOT_TLS_GD)
2275    {
2276      offset = got_offset;
2277      offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2278
2279      if (need_relocs)
2280	{
2281	  mips_elf_output_dynamic_relocation
2282	    (abfd, sreloc, indx,
2283	     ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2284	     sgot->output_offset + sgot->output_section->vma + offset);
2285
2286	  if (indx)
2287	    mips_elf_output_dynamic_relocation
2288	      (abfd, sreloc, indx,
2289	       ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2290	       sgot->output_offset + sgot->output_section->vma + offset2);
2291	  else
2292	    MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2293			       sgot->contents + offset2);
2294	}
2295      else
2296	{
2297	  MIPS_ELF_PUT_WORD (abfd, 1,
2298			     sgot->contents + offset);
2299	  MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2300			     sgot->contents + offset2);
2301	}
2302
2303      got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2304    }
2305
2306  /* Initial Exec model.  */
2307  if (*tls_type_p & GOT_TLS_IE)
2308    {
2309      offset = got_offset;
2310
2311      if (need_relocs)
2312	{
2313	  if (indx == 0)
2314	    MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2315			       sgot->contents + offset);
2316	  else
2317	    MIPS_ELF_PUT_WORD (abfd, 0,
2318			       sgot->contents + offset);
2319
2320	  mips_elf_output_dynamic_relocation
2321	    (abfd, sreloc, indx,
2322	     ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2323	     sgot->output_offset + sgot->output_section->vma + offset);
2324	}
2325      else
2326	MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2327			   sgot->contents + offset);
2328    }
2329
2330  if (*tls_type_p & GOT_TLS_LDM)
2331    {
2332      /* The initial offset is zero, and the LD offsets will include the
2333	 bias by DTP_OFFSET.  */
2334      MIPS_ELF_PUT_WORD (abfd, 0,
2335			 sgot->contents + got_offset
2336			 + MIPS_ELF_GOT_SIZE (abfd));
2337
2338      if (!info->shared)
2339	MIPS_ELF_PUT_WORD (abfd, 1,
2340			   sgot->contents + got_offset);
2341      else
2342	mips_elf_output_dynamic_relocation
2343	  (abfd, sreloc, indx,
2344	   ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2345	   sgot->output_offset + sgot->output_section->vma + got_offset);
2346    }
2347
2348  *tls_type_p |= GOT_TLS_DONE;
2349}
2350
2351/* Return the GOT index to use for a relocation of type R_TYPE against
2352   a symbol accessed using TLS_TYPE models.  The GOT entries for this
2353   symbol in this GOT start at GOT_INDEX.  This function initializes the
2354   GOT entries and corresponding relocations.  */
2355
2356static bfd_vma
2357mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2358		    int r_type, struct bfd_link_info *info,
2359		    struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2360{
2361  BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2362	      || r_type == R_MIPS_TLS_LDM);
2363
2364  mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2365
2366  if (r_type == R_MIPS_TLS_GOTTPREL)
2367    {
2368      BFD_ASSERT (*tls_type & GOT_TLS_IE);
2369      if (*tls_type & GOT_TLS_GD)
2370	return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2371      else
2372	return got_index;
2373    }
2374
2375  if (r_type == R_MIPS_TLS_GD)
2376    {
2377      BFD_ASSERT (*tls_type & GOT_TLS_GD);
2378      return got_index;
2379    }
2380
2381  if (r_type == R_MIPS_TLS_LDM)
2382    {
2383      BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2384      return got_index;
2385    }
2386
2387  return got_index;
2388}
2389
2390/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2391   for global symbol H.  .got.plt comes before the GOT, so the offset
2392   will be negative.  */
2393
2394static bfd_vma
2395mips_elf_gotplt_index (struct bfd_link_info *info,
2396		       struct elf_link_hash_entry *h)
2397{
2398  bfd_vma plt_index, got_address, got_value;
2399  struct mips_elf_link_hash_table *htab;
2400
2401  htab = mips_elf_hash_table (info);
2402  BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2403
2404  /* Calculate the index of the symbol's PLT entry.  */
2405  plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2406
2407  /* Calculate the address of the associated .got.plt entry.  */
2408  got_address = (htab->sgotplt->output_section->vma
2409		 + htab->sgotplt->output_offset
2410		 + plt_index * 4);
2411
2412  /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
2413  got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2414	       + htab->root.hgot->root.u.def.section->output_offset
2415	       + htab->root.hgot->root.u.def.value);
2416
2417  return got_address - got_value;
2418}
2419
2420/* Return the GOT offset for address VALUE.   If there is not yet a GOT
2421   entry for this value, create one.  If R_SYMNDX refers to a TLS symbol,
2422   create a TLS GOT entry instead.  Return -1 if no satisfactory GOT
2423   offset can be found.  */
2424
2425static bfd_vma
2426mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2427			  bfd_vma value, unsigned long r_symndx,
2428			  struct mips_elf_link_hash_entry *h, int r_type)
2429{
2430  asection *sgot;
2431  struct mips_got_info *g;
2432  struct mips_got_entry *entry;
2433
2434  g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2435
2436  entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2437					   value, r_symndx, h, r_type);
2438  if (!entry)
2439    return MINUS_ONE;
2440
2441  if (TLS_RELOC_P (r_type))
2442    {
2443      if (entry->symndx == -1 && g->next == NULL)
2444	/* A type (3) entry in the single-GOT case.  We use the symbol's
2445	   hash table entry to track the index.  */
2446	return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2447				   r_type, info, h, value);
2448      else
2449	return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2450				   r_type, info, h, value);
2451    }
2452  else
2453    return entry->gotidx;
2454}
2455
2456/* Returns the GOT index for the global symbol indicated by H.  */
2457
2458static bfd_vma
2459mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2460			   int r_type, struct bfd_link_info *info)
2461{
2462  bfd_vma index;
2463  asection *sgot;
2464  struct mips_got_info *g, *gg;
2465  long global_got_dynindx = 0;
2466
2467  gg = g = mips_elf_got_info (abfd, &sgot);
2468  if (g->bfd2got && ibfd)
2469    {
2470      struct mips_got_entry e, *p;
2471
2472      BFD_ASSERT (h->dynindx >= 0);
2473
2474      g = mips_elf_got_for_ibfd (g, ibfd);
2475      if (g->next != gg || TLS_RELOC_P (r_type))
2476	{
2477	  e.abfd = ibfd;
2478	  e.symndx = -1;
2479	  e.d.h = (struct mips_elf_link_hash_entry *)h;
2480	  e.tls_type = 0;
2481
2482	  p = htab_find (g->got_entries, &e);
2483
2484	  BFD_ASSERT (p->gotidx > 0);
2485
2486	  if (TLS_RELOC_P (r_type))
2487	    {
2488	      bfd_vma value = MINUS_ONE;
2489	      if ((h->root.type == bfd_link_hash_defined
2490		   || h->root.type == bfd_link_hash_defweak)
2491		  && h->root.u.def.section->output_section)
2492		value = (h->root.u.def.value
2493			 + h->root.u.def.section->output_offset
2494			 + h->root.u.def.section->output_section->vma);
2495
2496	      return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2497					 info, e.d.h, value);
2498	    }
2499	  else
2500	    return p->gotidx;
2501	}
2502    }
2503
2504  if (gg->global_gotsym != NULL)
2505    global_got_dynindx = gg->global_gotsym->dynindx;
2506
2507  if (TLS_RELOC_P (r_type))
2508    {
2509      struct mips_elf_link_hash_entry *hm
2510	= (struct mips_elf_link_hash_entry *) h;
2511      bfd_vma value = MINUS_ONE;
2512
2513      if ((h->root.type == bfd_link_hash_defined
2514	   || h->root.type == bfd_link_hash_defweak)
2515	  && h->root.u.def.section->output_section)
2516	value = (h->root.u.def.value
2517		 + h->root.u.def.section->output_offset
2518		 + h->root.u.def.section->output_section->vma);
2519
2520      index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2521				  r_type, info, hm, value);
2522    }
2523  else
2524    {
2525      /* Once we determine the global GOT entry with the lowest dynamic
2526	 symbol table index, we must put all dynamic symbols with greater
2527	 indices into the GOT.  That makes it easy to calculate the GOT
2528	 offset.  */
2529      BFD_ASSERT (h->dynindx >= global_got_dynindx);
2530      index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2531	       * MIPS_ELF_GOT_SIZE (abfd));
2532    }
2533  BFD_ASSERT (index < sgot->size);
2534
2535  return index;
2536}
2537
2538/* Find a GOT page entry that points to within 32KB of VALUE.  These
2539   entries are supposed to be placed at small offsets in the GOT, i.e.,
2540   within 32KB of GP.  Return the index of the GOT entry, or -1 if no
2541   entry could be created.  If OFFSETP is nonnull, use it to return the
2542   offset of the GOT entry from VALUE.  */
2543
2544static bfd_vma
2545mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2546		   bfd_vma value, bfd_vma *offsetp)
2547{
2548  asection *sgot;
2549  struct mips_got_info *g;
2550  bfd_vma page, index;
2551  struct mips_got_entry *entry;
2552
2553  g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2554
2555  page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2556  entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2557					   page, 0, NULL, R_MIPS_GOT_PAGE);
2558
2559  if (!entry)
2560    return MINUS_ONE;
2561
2562  index = entry->gotidx;
2563
2564  if (offsetp)
2565    *offsetp = value - entry->d.address;
2566
2567  return index;
2568}
2569
2570/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2571   EXTERNAL is true if the relocation was against a global symbol
2572   that has been forced local.  */
2573
2574static bfd_vma
2575mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2576		      bfd_vma value, bfd_boolean external)
2577{
2578  asection *sgot;
2579  struct mips_got_info *g;
2580  struct mips_got_entry *entry;
2581
2582  /* GOT16 relocations against local symbols are followed by a LO16
2583     relocation; those against global symbols are not.  Thus if the
2584     symbol was originally local, the GOT16 relocation should load the
2585     equivalent of %hi(VALUE), otherwise it should load VALUE itself.  */
2586  if (! external)
2587    value = mips_elf_high (value) << 16;
2588
2589  g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2590
2591  entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2592					   value, 0, NULL, R_MIPS_GOT16);
2593  if (entry)
2594    return entry->gotidx;
2595  else
2596    return MINUS_ONE;
2597}
2598
2599/* Returns the offset for the entry at the INDEXth position
2600   in the GOT.  */
2601
2602static bfd_vma
2603mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2604				bfd *input_bfd, bfd_vma index)
2605{
2606  asection *sgot;
2607  bfd_vma gp;
2608  struct mips_got_info *g;
2609
2610  g = mips_elf_got_info (dynobj, &sgot);
2611  gp = _bfd_get_gp_value (output_bfd)
2612    + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2613
2614  return sgot->output_section->vma + sgot->output_offset + index - gp;
2615}
2616
2617/* Create and return a local GOT entry for VALUE, which was calculated
2618   from a symbol belonging to INPUT_SECTON.  Return NULL if it could not
2619   be created.  If R_SYMNDX refers to a TLS symbol, create a TLS entry
2620   instead.  */
2621
2622static struct mips_got_entry *
2623mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2624				 bfd *ibfd, struct mips_got_info *gg,
2625				 asection *sgot, bfd_vma value,
2626				 unsigned long r_symndx,
2627				 struct mips_elf_link_hash_entry *h,
2628				 int r_type)
2629{
2630  struct mips_got_entry entry, **loc;
2631  struct mips_got_info *g;
2632  struct mips_elf_link_hash_table *htab;
2633
2634  htab = mips_elf_hash_table (info);
2635
2636  entry.abfd = NULL;
2637  entry.symndx = -1;
2638  entry.d.address = value;
2639  entry.tls_type = 0;
2640
2641  g = mips_elf_got_for_ibfd (gg, ibfd);
2642  if (g == NULL)
2643    {
2644      g = mips_elf_got_for_ibfd (gg, abfd);
2645      BFD_ASSERT (g != NULL);
2646    }
2647
2648  /* We might have a symbol, H, if it has been forced local.  Use the
2649     global entry then.  It doesn't matter whether an entry is local
2650     or global for TLS, since the dynamic linker does not
2651     automatically relocate TLS GOT entries.  */
2652  BFD_ASSERT (h == NULL || h->root.forced_local);
2653  if (TLS_RELOC_P (r_type))
2654    {
2655      struct mips_got_entry *p;
2656
2657      entry.abfd = ibfd;
2658      if (r_type == R_MIPS_TLS_LDM)
2659	{
2660	  entry.tls_type = GOT_TLS_LDM;
2661	  entry.symndx = 0;
2662	  entry.d.addend = 0;
2663	}
2664      else if (h == NULL)
2665	{
2666	  entry.symndx = r_symndx;
2667	  entry.d.addend = 0;
2668	}
2669      else
2670	entry.d.h = h;
2671
2672      p = (struct mips_got_entry *)
2673	htab_find (g->got_entries, &entry);
2674
2675      BFD_ASSERT (p);
2676      return p;
2677    }
2678
2679  loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2680						   INSERT);
2681  if (*loc)
2682    return *loc;
2683
2684  entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2685  entry.tls_type = 0;
2686
2687  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2688
2689  if (! *loc)
2690    return NULL;
2691
2692  memcpy (*loc, &entry, sizeof entry);
2693
2694  if (g->assigned_gotno >= g->local_gotno)
2695    {
2696      (*loc)->gotidx = -1;
2697      /* We didn't allocate enough space in the GOT.  */
2698      (*_bfd_error_handler)
2699	(_("not enough GOT space for local GOT entries"));
2700      bfd_set_error (bfd_error_bad_value);
2701      return NULL;
2702    }
2703
2704  MIPS_ELF_PUT_WORD (abfd, value,
2705		     (sgot->contents + entry.gotidx));
2706
2707  /* These GOT entries need a dynamic relocation on VxWorks.  */
2708  if (htab->is_vxworks)
2709    {
2710      Elf_Internal_Rela outrel;
2711      asection *s;
2712      bfd_byte *loc;
2713      bfd_vma got_address;
2714
2715      s = mips_elf_rel_dyn_section (info, FALSE);
2716      got_address = (sgot->output_section->vma
2717		     + sgot->output_offset
2718		     + entry.gotidx);
2719
2720      loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2721      outrel.r_offset = got_address;
2722      outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2723      outrel.r_addend = value;
2724      bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2725    }
2726
2727  return *loc;
2728}
2729
2730/* Sort the dynamic symbol table so that symbols that need GOT entries
2731   appear towards the end.  This reduces the amount of GOT space
2732   required.  MAX_LOCAL is used to set the number of local symbols
2733   known to be in the dynamic symbol table.  During
2734   _bfd_mips_elf_size_dynamic_sections, this value is 1.  Afterward, the
2735   section symbols are added and the count is higher.  */
2736
2737static bfd_boolean
2738mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2739{
2740  struct mips_elf_hash_sort_data hsd;
2741  struct mips_got_info *g;
2742  bfd *dynobj;
2743
2744  dynobj = elf_hash_table (info)->dynobj;
2745
2746  g = mips_elf_got_info (dynobj, NULL);
2747
2748  hsd.low = NULL;
2749  hsd.max_unref_got_dynindx =
2750  hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2751    /* In the multi-got case, assigned_gotno of the master got_info
2752       indicate the number of entries that aren't referenced in the
2753       primary GOT, but that must have entries because there are
2754       dynamic relocations that reference it.  Since they aren't
2755       referenced, we move them to the end of the GOT, so that they
2756       don't prevent other entries that are referenced from getting
2757       too large offsets.  */
2758    - (g->next ? g->assigned_gotno : 0);
2759  hsd.max_non_got_dynindx = max_local;
2760  mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2761				elf_hash_table (info)),
2762			       mips_elf_sort_hash_table_f,
2763			       &hsd);
2764
2765  /* There should have been enough room in the symbol table to
2766     accommodate both the GOT and non-GOT symbols.  */
2767  BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2768  BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2769	      <= elf_hash_table (info)->dynsymcount);
2770
2771  /* Now we know which dynamic symbol has the lowest dynamic symbol
2772     table index in the GOT.  */
2773  g->global_gotsym = hsd.low;
2774
2775  return TRUE;
2776}
2777
2778/* If H needs a GOT entry, assign it the highest available dynamic
2779   index.  Otherwise, assign it the lowest available dynamic
2780   index.  */
2781
2782static bfd_boolean
2783mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2784{
2785  struct mips_elf_hash_sort_data *hsd = data;
2786
2787  if (h->root.root.type == bfd_link_hash_warning)
2788    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2789
2790  /* Symbols without dynamic symbol table entries aren't interesting
2791     at all.  */
2792  if (h->root.dynindx == -1)
2793    return TRUE;
2794
2795  /* Global symbols that need GOT entries that are not explicitly
2796     referenced are marked with got offset 2.  Those that are
2797     referenced get a 1, and those that don't need GOT entries get
2798     -1.  */
2799  if (h->root.got.offset == 2)
2800    {
2801      BFD_ASSERT (h->tls_type == GOT_NORMAL);
2802
2803      if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2804	hsd->low = (struct elf_link_hash_entry *) h;
2805      h->root.dynindx = hsd->max_unref_got_dynindx++;
2806    }
2807  else if (h->root.got.offset != 1)
2808    h->root.dynindx = hsd->max_non_got_dynindx++;
2809  else
2810    {
2811      BFD_ASSERT (h->tls_type == GOT_NORMAL);
2812
2813      h->root.dynindx = --hsd->min_got_dynindx;
2814      hsd->low = (struct elf_link_hash_entry *) h;
2815    }
2816
2817  return TRUE;
2818}
2819
2820/* If H is a symbol that needs a global GOT entry, but has a dynamic
2821   symbol table index lower than any we've seen to date, record it for
2822   posterity.  */
2823
2824static bfd_boolean
2825mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2826				   bfd *abfd, struct bfd_link_info *info,
2827				   struct mips_got_info *g,
2828				   unsigned char tls_flag)
2829{
2830  struct mips_got_entry entry, **loc;
2831
2832  /* A global symbol in the GOT must also be in the dynamic symbol
2833     table.  */
2834  if (h->dynindx == -1)
2835    {
2836      switch (ELF_ST_VISIBILITY (h->other))
2837	{
2838	case STV_INTERNAL:
2839	case STV_HIDDEN:
2840	  _bfd_mips_elf_hide_symbol (info, h, TRUE);
2841	  break;
2842	}
2843      if (!bfd_elf_link_record_dynamic_symbol (info, h))
2844	return FALSE;
2845    }
2846
2847  /* Make sure we have a GOT to put this entry into.  */
2848  BFD_ASSERT (g != NULL);
2849
2850  entry.abfd = abfd;
2851  entry.symndx = -1;
2852  entry.d.h = (struct mips_elf_link_hash_entry *) h;
2853  entry.tls_type = 0;
2854
2855  loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2856						   INSERT);
2857
2858  /* If we've already marked this entry as needing GOT space, we don't
2859     need to do it again.  */
2860  if (*loc)
2861    {
2862      (*loc)->tls_type |= tls_flag;
2863      return TRUE;
2864    }
2865
2866  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2867
2868  if (! *loc)
2869    return FALSE;
2870
2871  entry.gotidx = -1;
2872  entry.tls_type = tls_flag;
2873
2874  memcpy (*loc, &entry, sizeof entry);
2875
2876  if (h->got.offset != MINUS_ONE)
2877    return TRUE;
2878
2879  /* By setting this to a value other than -1, we are indicating that
2880     there needs to be a GOT entry for H.  Avoid using zero, as the
2881     generic ELF copy_indirect_symbol tests for <= 0.  */
2882  if (tls_flag == 0)
2883    h->got.offset = 1;
2884
2885  return TRUE;
2886}
2887
2888/* Reserve space in G for a GOT entry containing the value of symbol
2889   SYMNDX in input bfd ABDF, plus ADDEND.  */
2890
2891static bfd_boolean
2892mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2893				  struct mips_got_info *g,
2894				  unsigned char tls_flag)
2895{
2896  struct mips_got_entry entry, **loc;
2897
2898  entry.abfd = abfd;
2899  entry.symndx = symndx;
2900  entry.d.addend = addend;
2901  entry.tls_type = tls_flag;
2902  loc = (struct mips_got_entry **)
2903    htab_find_slot (g->got_entries, &entry, INSERT);
2904
2905  if (*loc)
2906    {
2907      if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2908	{
2909	  g->tls_gotno += 2;
2910	  (*loc)->tls_type |= tls_flag;
2911	}
2912      else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2913	{
2914	  g->tls_gotno += 1;
2915	  (*loc)->tls_type |= tls_flag;
2916	}
2917      return TRUE;
2918    }
2919
2920  if (tls_flag != 0)
2921    {
2922      entry.gotidx = -1;
2923      entry.tls_type = tls_flag;
2924      if (tls_flag == GOT_TLS_IE)
2925	g->tls_gotno += 1;
2926      else if (tls_flag == GOT_TLS_GD)
2927	g->tls_gotno += 2;
2928      else if (g->tls_ldm_offset == MINUS_ONE)
2929	{
2930	  g->tls_ldm_offset = MINUS_TWO;
2931	  g->tls_gotno += 2;
2932	}
2933    }
2934  else
2935    {
2936      entry.gotidx = g->local_gotno++;
2937      entry.tls_type = 0;
2938    }
2939
2940  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2941
2942  if (! *loc)
2943    return FALSE;
2944
2945  memcpy (*loc, &entry, sizeof entry);
2946
2947  return TRUE;
2948}
2949
2950/* Compute the hash value of the bfd in a bfd2got hash entry.  */
2951
2952static hashval_t
2953mips_elf_bfd2got_entry_hash (const void *entry_)
2954{
2955  const struct mips_elf_bfd2got_hash *entry
2956    = (struct mips_elf_bfd2got_hash *)entry_;
2957
2958  return entry->bfd->id;
2959}
2960
2961/* Check whether two hash entries have the same bfd.  */
2962
2963static int
2964mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2965{
2966  const struct mips_elf_bfd2got_hash *e1
2967    = (const struct mips_elf_bfd2got_hash *)entry1;
2968  const struct mips_elf_bfd2got_hash *e2
2969    = (const struct mips_elf_bfd2got_hash *)entry2;
2970
2971  return e1->bfd == e2->bfd;
2972}
2973
2974/* In a multi-got link, determine the GOT to be used for IBFD.  G must
2975   be the master GOT data.  */
2976
2977static struct mips_got_info *
2978mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2979{
2980  struct mips_elf_bfd2got_hash e, *p;
2981
2982  if (! g->bfd2got)
2983    return g;
2984
2985  e.bfd = ibfd;
2986  p = htab_find (g->bfd2got, &e);
2987  return p ? p->g : NULL;
2988}
2989
2990/* Create one separate got for each bfd that has entries in the global
2991   got, such that we can tell how many local and global entries each
2992   bfd requires.  */
2993
2994static int
2995mips_elf_make_got_per_bfd (void **entryp, void *p)
2996{
2997  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2998  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2999  htab_t bfd2got = arg->bfd2got;
3000  struct mips_got_info *g;
3001  struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3002  void **bfdgotp;
3003
3004  /* Find the got_info for this GOT entry's input bfd.  Create one if
3005     none exists.  */
3006  bfdgot_entry.bfd = entry->abfd;
3007  bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3008  bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3009
3010  if (bfdgot != NULL)
3011    g = bfdgot->g;
3012  else
3013    {
3014      bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3015	(arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3016
3017      if (bfdgot == NULL)
3018	{
3019	  arg->obfd = 0;
3020	  return 0;
3021	}
3022
3023      *bfdgotp = bfdgot;
3024
3025      bfdgot->bfd = entry->abfd;
3026      bfdgot->g = g = (struct mips_got_info *)
3027	bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3028      if (g == NULL)
3029	{
3030	  arg->obfd = 0;
3031	  return 0;
3032	}
3033
3034      g->global_gotsym = NULL;
3035      g->global_gotno = 0;
3036      g->local_gotno = 0;
3037      g->assigned_gotno = -1;
3038      g->tls_gotno = 0;
3039      g->tls_assigned_gotno = 0;
3040      g->tls_ldm_offset = MINUS_ONE;
3041      g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3042					mips_elf_multi_got_entry_eq, NULL);
3043      if (g->got_entries == NULL)
3044	{
3045	  arg->obfd = 0;
3046	  return 0;
3047	}
3048
3049      g->bfd2got = NULL;
3050      g->next = NULL;
3051    }
3052
3053  /* Insert the GOT entry in the bfd's got entry hash table.  */
3054  entryp = htab_find_slot (g->got_entries, entry, INSERT);
3055  if (*entryp != NULL)
3056    return 1;
3057
3058  *entryp = entry;
3059
3060  if (entry->tls_type)
3061    {
3062      if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3063	g->tls_gotno += 2;
3064      if (entry->tls_type & GOT_TLS_IE)
3065	g->tls_gotno += 1;
3066    }
3067  else if (entry->symndx >= 0 || entry->d.h->forced_local)
3068    ++g->local_gotno;
3069  else
3070    ++g->global_gotno;
3071
3072  return 1;
3073}
3074
3075/* Attempt to merge gots of different input bfds.  Try to use as much
3076   as possible of the primary got, since it doesn't require explicit
3077   dynamic relocations, but don't use bfds that would reference global
3078   symbols out of the addressable range.  Failing the primary got,
3079   attempt to merge with the current got, or finish the current got
3080   and then make make the new got current.  */
3081
3082static int
3083mips_elf_merge_gots (void **bfd2got_, void *p)
3084{
3085  struct mips_elf_bfd2got_hash *bfd2got
3086    = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3087  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3088  unsigned int lcount = bfd2got->g->local_gotno;
3089  unsigned int gcount = bfd2got->g->global_gotno;
3090  unsigned int tcount = bfd2got->g->tls_gotno;
3091  unsigned int maxcnt = arg->max_count;
3092  bfd_boolean too_many_for_tls = FALSE;
3093
3094  /* We place TLS GOT entries after both locals and globals.  The globals
3095     for the primary GOT may overflow the normal GOT size limit, so be
3096     sure not to merge a GOT which requires TLS with the primary GOT in that
3097     case.  This doesn't affect non-primary GOTs.  */
3098  if (tcount > 0)
3099    {
3100      unsigned int primary_total = lcount + tcount + arg->global_count;
3101      if (primary_total > maxcnt)
3102	too_many_for_tls = TRUE;
3103    }
3104
3105  /* If we don't have a primary GOT and this is not too big, use it as
3106     a starting point for the primary GOT.  */
3107  if (! arg->primary && lcount + gcount + tcount <= maxcnt
3108      && ! too_many_for_tls)
3109    {
3110      arg->primary = bfd2got->g;
3111      arg->primary_count = lcount + gcount;
3112    }
3113  /* If it looks like we can merge this bfd's entries with those of
3114     the primary, merge them.  The heuristics is conservative, but we
3115     don't have to squeeze it too hard.  */
3116  else if (arg->primary && ! too_many_for_tls
3117	   && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3118    {
3119      struct mips_got_info *g = bfd2got->g;
3120      int old_lcount = arg->primary->local_gotno;
3121      int old_gcount = arg->primary->global_gotno;
3122      int old_tcount = arg->primary->tls_gotno;
3123
3124      bfd2got->g = arg->primary;
3125
3126      htab_traverse (g->got_entries,
3127		     mips_elf_make_got_per_bfd,
3128		     arg);
3129      if (arg->obfd == NULL)
3130	return 0;
3131
3132      htab_delete (g->got_entries);
3133      /* We don't have to worry about releasing memory of the actual
3134	 got entries, since they're all in the master got_entries hash
3135	 table anyway.  */
3136
3137      BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3138      BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3139      BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3140
3141      arg->primary_count = arg->primary->local_gotno
3142	+ arg->primary->global_gotno + arg->primary->tls_gotno;
3143    }
3144  /* If we can merge with the last-created got, do it.  */
3145  else if (arg->current
3146	   && arg->current_count + lcount + gcount + tcount <= maxcnt)
3147    {
3148      struct mips_got_info *g = bfd2got->g;
3149      int old_lcount = arg->current->local_gotno;
3150      int old_gcount = arg->current->global_gotno;
3151      int old_tcount = arg->current->tls_gotno;
3152
3153      bfd2got->g = arg->current;
3154
3155      htab_traverse (g->got_entries,
3156		     mips_elf_make_got_per_bfd,
3157		     arg);
3158      if (arg->obfd == NULL)
3159	return 0;
3160
3161      htab_delete (g->got_entries);
3162
3163      BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3164      BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3165      BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3166
3167      arg->current_count = arg->current->local_gotno
3168	+ arg->current->global_gotno + arg->current->tls_gotno;
3169    }
3170  /* Well, we couldn't merge, so create a new GOT.  Don't check if it
3171     fits; if it turns out that it doesn't, we'll get relocation
3172     overflows anyway.  */
3173  else
3174    {
3175      bfd2got->g->next = arg->current;
3176      arg->current = bfd2got->g;
3177
3178      arg->current_count = lcount + gcount + 2 * tcount;
3179    }
3180
3181  return 1;
3182}
3183
3184/* Set the TLS GOT index for the GOT entry in ENTRYP.  ENTRYP's NEXT field
3185   is null iff there is just a single GOT.  */
3186
3187static int
3188mips_elf_initialize_tls_index (void **entryp, void *p)
3189{
3190  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3191  struct mips_got_info *g = p;
3192  bfd_vma next_index;
3193  unsigned char tls_type;
3194
3195  /* We're only interested in TLS symbols.  */
3196  if (entry->tls_type == 0)
3197    return 1;
3198
3199  next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3200
3201  if (entry->symndx == -1 && g->next == NULL)
3202    {
3203      /* A type (3) got entry in the single-GOT case.  We use the symbol's
3204	 hash table entry to track its index.  */
3205      if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3206	return 1;
3207      entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3208      entry->d.h->tls_got_offset = next_index;
3209      tls_type = entry->d.h->tls_type;
3210    }
3211  else
3212    {
3213      if (entry->tls_type & GOT_TLS_LDM)
3214	{
3215	  /* There are separate mips_got_entry objects for each input bfd
3216	     that requires an LDM entry.  Make sure that all LDM entries in
3217	     a GOT resolve to the same index.  */
3218	  if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3219	    {
3220	      entry->gotidx = g->tls_ldm_offset;
3221	      return 1;
3222	    }
3223	  g->tls_ldm_offset = next_index;
3224	}
3225      entry->gotidx = next_index;
3226      tls_type = entry->tls_type;
3227    }
3228
3229  /* Account for the entries we've just allocated.  */
3230  if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3231    g->tls_assigned_gotno += 2;
3232  if (tls_type & GOT_TLS_IE)
3233    g->tls_assigned_gotno += 1;
3234
3235  return 1;
3236}
3237
3238/* If passed a NULL mips_got_info in the argument, set the marker used
3239   to tell whether a global symbol needs a got entry (in the primary
3240   got) to the given VALUE.
3241
3242   If passed a pointer G to a mips_got_info in the argument (it must
3243   not be the primary GOT), compute the offset from the beginning of
3244   the (primary) GOT section to the entry in G corresponding to the
3245   global symbol.  G's assigned_gotno must contain the index of the
3246   first available global GOT entry in G.  VALUE must contain the size
3247   of a GOT entry in bytes.  For each global GOT entry that requires a
3248   dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3249   marked as not eligible for lazy resolution through a function
3250   stub.  */
3251static int
3252mips_elf_set_global_got_offset (void **entryp, void *p)
3253{
3254  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3255  struct mips_elf_set_global_got_offset_arg *arg
3256    = (struct mips_elf_set_global_got_offset_arg *)p;
3257  struct mips_got_info *g = arg->g;
3258
3259  if (g && entry->tls_type != GOT_NORMAL)
3260    arg->needed_relocs +=
3261      mips_tls_got_relocs (arg->info, entry->tls_type,
3262			   entry->symndx == -1 ? &entry->d.h->root : NULL);
3263
3264  if (entry->abfd != NULL && entry->symndx == -1
3265      && entry->d.h->root.dynindx != -1
3266      && entry->d.h->tls_type == GOT_NORMAL)
3267    {
3268      if (g)
3269	{
3270	  BFD_ASSERT (g->global_gotsym == NULL);
3271
3272	  entry->gotidx = arg->value * (long) g->assigned_gotno++;
3273	  if (arg->info->shared
3274	      || (elf_hash_table (arg->info)->dynamic_sections_created
3275		  && entry->d.h->root.def_dynamic
3276		  && !entry->d.h->root.def_regular))
3277	    ++arg->needed_relocs;
3278	}
3279      else
3280	entry->d.h->root.got.offset = arg->value;
3281    }
3282
3283  return 1;
3284}
3285
3286/* Mark any global symbols referenced in the GOT we are iterating over
3287   as inelligible for lazy resolution stubs.  */
3288static int
3289mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3290{
3291  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3292
3293  if (entry->abfd != NULL
3294      && entry->symndx == -1
3295      && entry->d.h->root.dynindx != -1)
3296    entry->d.h->no_fn_stub = TRUE;
3297
3298  return 1;
3299}
3300
3301/* Follow indirect and warning hash entries so that each got entry
3302   points to the final symbol definition.  P must point to a pointer
3303   to the hash table we're traversing.  Since this traversal may
3304   modify the hash table, we set this pointer to NULL to indicate
3305   we've made a potentially-destructive change to the hash table, so
3306   the traversal must be restarted.  */
3307static int
3308mips_elf_resolve_final_got_entry (void **entryp, void *p)
3309{
3310  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3311  htab_t got_entries = *(htab_t *)p;
3312
3313  if (entry->abfd != NULL && entry->symndx == -1)
3314    {
3315      struct mips_elf_link_hash_entry *h = entry->d.h;
3316
3317      while (h->root.root.type == bfd_link_hash_indirect
3318 	     || h->root.root.type == bfd_link_hash_warning)
3319	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3320
3321      if (entry->d.h == h)
3322	return 1;
3323
3324      entry->d.h = h;
3325
3326      /* If we can't find this entry with the new bfd hash, re-insert
3327	 it, and get the traversal restarted.  */
3328      if (! htab_find (got_entries, entry))
3329	{
3330	  htab_clear_slot (got_entries, entryp);
3331	  entryp = htab_find_slot (got_entries, entry, INSERT);
3332	  if (! *entryp)
3333	    *entryp = entry;
3334	  /* Abort the traversal, since the whole table may have
3335	     moved, and leave it up to the parent to restart the
3336	     process.  */
3337	  *(htab_t *)p = NULL;
3338	  return 0;
3339	}
3340      /* We might want to decrement the global_gotno count, but it's
3341	 either too early or too late for that at this point.  */
3342    }
3343
3344  return 1;
3345}
3346
3347/* Turn indirect got entries in a got_entries table into their final
3348   locations.  */
3349static void
3350mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3351{
3352  htab_t got_entries;
3353
3354  do
3355    {
3356      got_entries = g->got_entries;
3357
3358      htab_traverse (got_entries,
3359		     mips_elf_resolve_final_got_entry,
3360		     &got_entries);
3361    }
3362  while (got_entries == NULL);
3363}
3364
3365/* Return the offset of an input bfd IBFD's GOT from the beginning of
3366   the primary GOT.  */
3367static bfd_vma
3368mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3369{
3370  if (g->bfd2got == NULL)
3371    return 0;
3372
3373  g = mips_elf_got_for_ibfd (g, ibfd);
3374  if (! g)
3375    return 0;
3376
3377  BFD_ASSERT (g->next);
3378
3379  g = g->next;
3380
3381  return (g->local_gotno + g->global_gotno + g->tls_gotno)
3382    * MIPS_ELF_GOT_SIZE (abfd);
3383}
3384
3385/* Turn a single GOT that is too big for 16-bit addressing into
3386   a sequence of GOTs, each one 16-bit addressable.  */
3387
3388static bfd_boolean
3389mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3390		    struct mips_got_info *g, asection *got,
3391		    bfd_size_type pages)
3392{
3393  struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3394  struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3395  struct mips_got_info *gg;
3396  unsigned int assign;
3397
3398  g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3399				mips_elf_bfd2got_entry_eq, NULL);
3400  if (g->bfd2got == NULL)
3401    return FALSE;
3402
3403  got_per_bfd_arg.bfd2got = g->bfd2got;
3404  got_per_bfd_arg.obfd = abfd;
3405  got_per_bfd_arg.info = info;
3406
3407  /* Count how many GOT entries each input bfd requires, creating a
3408     map from bfd to got info while at that.  */
3409  htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3410  if (got_per_bfd_arg.obfd == NULL)
3411    return FALSE;
3412
3413  got_per_bfd_arg.current = NULL;
3414  got_per_bfd_arg.primary = NULL;
3415  /* Taking out PAGES entries is a worst-case estimate.  We could
3416     compute the maximum number of pages that each separate input bfd
3417     uses, but it's probably not worth it.  */
3418  got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3419				/ MIPS_ELF_GOT_SIZE (abfd))
3420			       - MIPS_RESERVED_GOTNO (info) - pages);
3421  /* The number of globals that will be included in the primary GOT.
3422     See the calls to mips_elf_set_global_got_offset below for more
3423     information.  */
3424  got_per_bfd_arg.global_count = g->global_gotno;
3425
3426  /* Try to merge the GOTs of input bfds together, as long as they
3427     don't seem to exceed the maximum GOT size, choosing one of them
3428     to be the primary GOT.  */
3429  htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3430  if (got_per_bfd_arg.obfd == NULL)
3431    return FALSE;
3432
3433  /* If we do not find any suitable primary GOT, create an empty one.  */
3434  if (got_per_bfd_arg.primary == NULL)
3435    {
3436      g->next = (struct mips_got_info *)
3437	bfd_alloc (abfd, sizeof (struct mips_got_info));
3438      if (g->next == NULL)
3439	return FALSE;
3440
3441      g->next->global_gotsym = NULL;
3442      g->next->global_gotno = 0;
3443      g->next->local_gotno = 0;
3444      g->next->tls_gotno = 0;
3445      g->next->assigned_gotno = 0;
3446      g->next->tls_assigned_gotno = 0;
3447      g->next->tls_ldm_offset = MINUS_ONE;
3448      g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3449					      mips_elf_multi_got_entry_eq,
3450					      NULL);
3451      if (g->next->got_entries == NULL)
3452	return FALSE;
3453      g->next->bfd2got = NULL;
3454    }
3455  else
3456    g->next = got_per_bfd_arg.primary;
3457  g->next->next = got_per_bfd_arg.current;
3458
3459  /* GG is now the master GOT, and G is the primary GOT.  */
3460  gg = g;
3461  g = g->next;
3462
3463  /* Map the output bfd to the primary got.  That's what we're going
3464     to use for bfds that use GOT16 or GOT_PAGE relocations that we
3465     didn't mark in check_relocs, and we want a quick way to find it.
3466     We can't just use gg->next because we're going to reverse the
3467     list.  */
3468  {
3469    struct mips_elf_bfd2got_hash *bfdgot;
3470    void **bfdgotp;
3471
3472    bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3473      (abfd, sizeof (struct mips_elf_bfd2got_hash));
3474
3475    if (bfdgot == NULL)
3476      return FALSE;
3477
3478    bfdgot->bfd = abfd;
3479    bfdgot->g = g;
3480    bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3481
3482    BFD_ASSERT (*bfdgotp == NULL);
3483    *bfdgotp = bfdgot;
3484  }
3485
3486  /* The IRIX dynamic linker requires every symbol that is referenced
3487     in a dynamic relocation to be present in the primary GOT, so
3488     arrange for them to appear after those that are actually
3489     referenced.
3490
3491     GNU/Linux could very well do without it, but it would slow down
3492     the dynamic linker, since it would have to resolve every dynamic
3493     symbol referenced in other GOTs more than once, without help from
3494     the cache.  Also, knowing that every external symbol has a GOT
3495     helps speed up the resolution of local symbols too, so GNU/Linux
3496     follows IRIX's practice.
3497
3498     The number 2 is used by mips_elf_sort_hash_table_f to count
3499     global GOT symbols that are unreferenced in the primary GOT, with
3500     an initial dynamic index computed from gg->assigned_gotno, where
3501     the number of unreferenced global entries in the primary GOT is
3502     preserved.  */
3503  if (1)
3504    {
3505      gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3506      g->global_gotno = gg->global_gotno;
3507      set_got_offset_arg.value = 2;
3508    }
3509  else
3510    {
3511      /* This could be used for dynamic linkers that don't optimize
3512	 symbol resolution while applying relocations so as to use
3513	 primary GOT entries or assuming the symbol is locally-defined.
3514	 With this code, we assign lower dynamic indices to global
3515	 symbols that are not referenced in the primary GOT, so that
3516	 their entries can be omitted.  */
3517      gg->assigned_gotno = 0;
3518      set_got_offset_arg.value = -1;
3519    }
3520
3521  /* Reorder dynamic symbols as described above (which behavior
3522     depends on the setting of VALUE).  */
3523  set_got_offset_arg.g = NULL;
3524  htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3525		 &set_got_offset_arg);
3526  set_got_offset_arg.value = 1;
3527  htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3528		 &set_got_offset_arg);
3529  if (! mips_elf_sort_hash_table (info, 1))
3530    return FALSE;
3531
3532  /* Now go through the GOTs assigning them offset ranges.
3533     [assigned_gotno, local_gotno[ will be set to the range of local
3534     entries in each GOT.  We can then compute the end of a GOT by
3535     adding local_gotno to global_gotno.  We reverse the list and make
3536     it circular since then we'll be able to quickly compute the
3537     beginning of a GOT, by computing the end of its predecessor.  To
3538     avoid special cases for the primary GOT, while still preserving
3539     assertions that are valid for both single- and multi-got links,
3540     we arrange for the main got struct to have the right number of
3541     global entries, but set its local_gotno such that the initial
3542     offset of the primary GOT is zero.  Remember that the primary GOT
3543     will become the last item in the circular linked list, so it
3544     points back to the master GOT.  */
3545  gg->local_gotno = -g->global_gotno;
3546  gg->global_gotno = g->global_gotno;
3547  gg->tls_gotno = 0;
3548  assign = 0;
3549  gg->next = gg;
3550
3551  do
3552    {
3553      struct mips_got_info *gn;
3554
3555      assign += MIPS_RESERVED_GOTNO (info);
3556      g->assigned_gotno = assign;
3557      g->local_gotno += assign + pages;
3558      assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3559
3560      /* Take g out of the direct list, and push it onto the reversed
3561	 list that gg points to.  g->next is guaranteed to be nonnull after
3562	 this operation, as required by mips_elf_initialize_tls_index. */
3563      gn = g->next;
3564      g->next = gg->next;
3565      gg->next = g;
3566
3567      /* Set up any TLS entries.  We always place the TLS entries after
3568	 all non-TLS entries.  */
3569      g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3570      htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3571
3572      /* Move onto the next GOT.  It will be a secondary GOT if nonull.  */
3573      g = gn;
3574
3575      /* Mark global symbols in every non-primary GOT as ineligible for
3576	 stubs.  */
3577      if (g)
3578	htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3579    }
3580  while (g);
3581
3582  got->size = (gg->next->local_gotno
3583		    + gg->next->global_gotno
3584		    + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3585
3586  return TRUE;
3587}
3588
3589
3590/* Returns the first relocation of type r_type found, beginning with
3591   RELOCATION.  RELEND is one-past-the-end of the relocation table.  */
3592
3593static const Elf_Internal_Rela *
3594mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3595			  const Elf_Internal_Rela *relocation,
3596			  const Elf_Internal_Rela *relend)
3597{
3598  unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3599
3600  while (relocation < relend)
3601    {
3602      if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3603	  && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3604	return relocation;
3605
3606      ++relocation;
3607    }
3608
3609  /* We didn't find it.  */
3610  return NULL;
3611}
3612
3613/* Return whether a relocation is against a local symbol.  */
3614
3615static bfd_boolean
3616mips_elf_local_relocation_p (bfd *input_bfd,
3617			     const Elf_Internal_Rela *relocation,
3618			     asection **local_sections,
3619			     bfd_boolean check_forced)
3620{
3621  unsigned long r_symndx;
3622  Elf_Internal_Shdr *symtab_hdr;
3623  struct mips_elf_link_hash_entry *h;
3624  size_t extsymoff;
3625
3626  r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3627  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3628  extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3629
3630  if (r_symndx < extsymoff)
3631    return TRUE;
3632  if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3633    return TRUE;
3634
3635  if (check_forced)
3636    {
3637      /* Look up the hash table to check whether the symbol
3638 	 was forced local.  */
3639      h = (struct mips_elf_link_hash_entry *)
3640	elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3641      /* Find the real hash-table entry for this symbol.  */
3642      while (h->root.root.type == bfd_link_hash_indirect
3643 	     || h->root.root.type == bfd_link_hash_warning)
3644	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3645      if (h->root.forced_local)
3646	return TRUE;
3647    }
3648
3649  return FALSE;
3650}
3651
3652/* Sign-extend VALUE, which has the indicated number of BITS.  */
3653
3654bfd_vma
3655_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3656{
3657  if (value & ((bfd_vma) 1 << (bits - 1)))
3658    /* VALUE is negative.  */
3659    value |= ((bfd_vma) - 1) << bits;
3660
3661  return value;
3662}
3663
3664/* Return non-zero if the indicated VALUE has overflowed the maximum
3665   range expressible by a signed number with the indicated number of
3666   BITS.  */
3667
3668static bfd_boolean
3669mips_elf_overflow_p (bfd_vma value, int bits)
3670{
3671  bfd_signed_vma svalue = (bfd_signed_vma) value;
3672
3673  if (svalue > (1 << (bits - 1)) - 1)
3674    /* The value is too big.  */
3675    return TRUE;
3676  else if (svalue < -(1 << (bits - 1)))
3677    /* The value is too small.  */
3678    return TRUE;
3679
3680  /* All is well.  */
3681  return FALSE;
3682}
3683
3684/* Calculate the %high function.  */
3685
3686static bfd_vma
3687mips_elf_high (bfd_vma value)
3688{
3689  return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3690}
3691
3692/* Calculate the %higher function.  */
3693
3694static bfd_vma
3695mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3696{
3697#ifdef BFD64
3698  return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3699#else
3700  abort ();
3701  return MINUS_ONE;
3702#endif
3703}
3704
3705/* Calculate the %highest function.  */
3706
3707static bfd_vma
3708mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3709{
3710#ifdef BFD64
3711  return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3712#else
3713  abort ();
3714  return MINUS_ONE;
3715#endif
3716}
3717
3718/* Create the .compact_rel section.  */
3719
3720static bfd_boolean
3721mips_elf_create_compact_rel_section
3722  (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3723{
3724  flagword flags;
3725  register asection *s;
3726
3727  if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3728    {
3729      flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3730	       | SEC_READONLY);
3731
3732      s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3733      if (s == NULL
3734	  || ! bfd_set_section_alignment (abfd, s,
3735					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3736	return FALSE;
3737
3738      s->size = sizeof (Elf32_External_compact_rel);
3739    }
3740
3741  return TRUE;
3742}
3743
3744/* Create the .got section to hold the global offset table.  */
3745
3746static bfd_boolean
3747mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3748			     bfd_boolean maybe_exclude)
3749{
3750  flagword flags;
3751  register asection *s;
3752  struct elf_link_hash_entry *h;
3753  struct bfd_link_hash_entry *bh;
3754  struct mips_got_info *g;
3755  bfd_size_type amt;
3756  struct mips_elf_link_hash_table *htab;
3757
3758  htab = mips_elf_hash_table (info);
3759
3760  /* This function may be called more than once.  */
3761  s = mips_elf_got_section (abfd, TRUE);
3762  if (s)
3763    {
3764      if (! maybe_exclude)
3765	s->flags &= ~SEC_EXCLUDE;
3766      return TRUE;
3767    }
3768
3769  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3770	   | SEC_LINKER_CREATED);
3771
3772  if (maybe_exclude)
3773    flags |= SEC_EXCLUDE;
3774
3775  /* We have to use an alignment of 2**4 here because this is hardcoded
3776     in the function stub generation and in the linker script.  */
3777  s = bfd_make_section_with_flags (abfd, ".got", flags);
3778  if (s == NULL
3779      || ! bfd_set_section_alignment (abfd, s, 4))
3780    return FALSE;
3781
3782  /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the
3783     linker script because we don't want to define the symbol if we
3784     are not creating a global offset table.  */
3785  bh = NULL;
3786  if (! (_bfd_generic_link_add_one_symbol
3787	 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3788	  0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3789    return FALSE;
3790
3791  h = (struct elf_link_hash_entry *) bh;
3792  h->non_elf = 0;
3793  h->def_regular = 1;
3794  h->type = STT_OBJECT;
3795  elf_hash_table (info)->hgot = h;
3796
3797  if (info->shared
3798      && ! bfd_elf_link_record_dynamic_symbol (info, h))
3799    return FALSE;
3800
3801  amt = sizeof (struct mips_got_info);
3802  g = bfd_alloc (abfd, amt);
3803  if (g == NULL)
3804    return FALSE;
3805  g->global_gotsym = NULL;
3806  g->global_gotno = 0;
3807  g->tls_gotno = 0;
3808  g->local_gotno = MIPS_RESERVED_GOTNO (info);
3809  g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3810  g->bfd2got = NULL;
3811  g->next = NULL;
3812  g->tls_ldm_offset = MINUS_ONE;
3813  g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3814				    mips_elf_got_entry_eq, NULL);
3815  if (g->got_entries == NULL)
3816    return FALSE;
3817  mips_elf_section_data (s)->u.got_info = g;
3818  mips_elf_section_data (s)->elf.this_hdr.sh_flags
3819    |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3820
3821  /* VxWorks also needs a .got.plt section.  */
3822  if (htab->is_vxworks)
3823    {
3824      s = bfd_make_section_with_flags (abfd, ".got.plt",
3825				       SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3826				       | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3827      if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3828	return FALSE;
3829
3830      htab->sgotplt = s;
3831    }
3832  return TRUE;
3833}
3834
3835/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3836   __GOTT_INDEX__ symbols.  These symbols are only special for
3837   shared objects; they are not used in executables.  */
3838
3839static bfd_boolean
3840is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3841{
3842  return (mips_elf_hash_table (info)->is_vxworks
3843	  && info->shared
3844	  && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3845	      || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3846}
3847
3848/* Calculate the value produced by the RELOCATION (which comes from
3849   the INPUT_BFD).  The ADDEND is the addend to use for this
3850   RELOCATION; RELOCATION->R_ADDEND is ignored.
3851
3852   The result of the relocation calculation is stored in VALUEP.
3853   REQUIRE_JALXP indicates whether or not the opcode used with this
3854   relocation must be JALX.
3855
3856   This function returns bfd_reloc_continue if the caller need take no
3857   further action regarding this relocation, bfd_reloc_notsupported if
3858   something goes dramatically wrong, bfd_reloc_overflow if an
3859   overflow occurs, and bfd_reloc_ok to indicate success.  */
3860
3861static bfd_reloc_status_type
3862mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3863			       asection *input_section,
3864			       struct bfd_link_info *info,
3865			       const Elf_Internal_Rela *relocation,
3866			       bfd_vma addend, reloc_howto_type *howto,
3867			       Elf_Internal_Sym *local_syms,
3868			       asection **local_sections, bfd_vma *valuep,
3869			       const char **namep, bfd_boolean *require_jalxp,
3870			       bfd_boolean save_addend)
3871{
3872  /* The eventual value we will return.  */
3873  bfd_vma value;
3874  /* The address of the symbol against which the relocation is
3875     occurring.  */
3876  bfd_vma symbol = 0;
3877  /* The final GP value to be used for the relocatable, executable, or
3878     shared object file being produced.  */
3879  bfd_vma gp = MINUS_ONE;
3880  /* The place (section offset or address) of the storage unit being
3881     relocated.  */
3882  bfd_vma p;
3883  /* The value of GP used to create the relocatable object.  */
3884  bfd_vma gp0 = MINUS_ONE;
3885  /* The offset into the global offset table at which the address of
3886     the relocation entry symbol, adjusted by the addend, resides
3887     during execution.  */
3888  bfd_vma g = MINUS_ONE;
3889  /* The section in which the symbol referenced by the relocation is
3890     located.  */
3891  asection *sec = NULL;
3892  struct mips_elf_link_hash_entry *h = NULL;
3893  /* TRUE if the symbol referred to by this relocation is a local
3894     symbol.  */
3895  bfd_boolean local_p, was_local_p;
3896  /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */
3897  bfd_boolean gp_disp_p = FALSE;
3898  /* TRUE if the symbol referred to by this relocation is
3899     "__gnu_local_gp".  */
3900  bfd_boolean gnu_local_gp_p = FALSE;
3901  Elf_Internal_Shdr *symtab_hdr;
3902  size_t extsymoff;
3903  unsigned long r_symndx;
3904  int r_type;
3905  /* TRUE if overflow occurred during the calculation of the
3906     relocation value.  */
3907  bfd_boolean overflowed_p;
3908  /* TRUE if this relocation refers to a MIPS16 function.  */
3909  bfd_boolean target_is_16_bit_code_p = FALSE;
3910  struct mips_elf_link_hash_table *htab;
3911  bfd *dynobj;
3912
3913  dynobj = elf_hash_table (info)->dynobj;
3914  htab = mips_elf_hash_table (info);
3915
3916  /* Parse the relocation.  */
3917  r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3918  r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3919  p = (input_section->output_section->vma
3920       + input_section->output_offset
3921       + relocation->r_offset);
3922
3923  /* Assume that there will be no overflow.  */
3924  overflowed_p = FALSE;
3925
3926  /* Figure out whether or not the symbol is local, and get the offset
3927     used in the array of hash table entries.  */
3928  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3929  local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3930					 local_sections, FALSE);
3931  was_local_p = local_p;
3932  if (! elf_bad_symtab (input_bfd))
3933    extsymoff = symtab_hdr->sh_info;
3934  else
3935    {
3936      /* The symbol table does not follow the rule that local symbols
3937	 must come before globals.  */
3938      extsymoff = 0;
3939    }
3940
3941  /* Figure out the value of the symbol.  */
3942  if (local_p)
3943    {
3944      Elf_Internal_Sym *sym;
3945
3946      sym = local_syms + r_symndx;
3947      sec = local_sections[r_symndx];
3948
3949      symbol = sec->output_section->vma + sec->output_offset;
3950      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3951	  || (sec->flags & SEC_MERGE))
3952	symbol += sym->st_value;
3953      if ((sec->flags & SEC_MERGE)
3954	  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3955	{
3956	  addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3957	  addend -= symbol;
3958	  addend += sec->output_section->vma + sec->output_offset;
3959	}
3960
3961      /* MIPS16 text labels should be treated as odd.  */
3962      if (sym->st_other == STO_MIPS16)
3963	++symbol;
3964
3965      /* Record the name of this symbol, for our caller.  */
3966      *namep = bfd_elf_string_from_elf_section (input_bfd,
3967						symtab_hdr->sh_link,
3968						sym->st_name);
3969      if (*namep == NULL || **namep == '\0')
3970	*namep = bfd_section_name (input_bfd, sec);
3971
3972      target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3973    }
3974  else
3975    {
3976      /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ?  */
3977
3978      /* For global symbols we look up the symbol in the hash-table.  */
3979      h = ((struct mips_elf_link_hash_entry *)
3980	   elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3981      /* Find the real hash-table entry for this symbol.  */
3982      while (h->root.root.type == bfd_link_hash_indirect
3983	     || h->root.root.type == bfd_link_hash_warning)
3984	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3985
3986      /* Record the name of this symbol, for our caller.  */
3987      *namep = h->root.root.root.string;
3988
3989      /* See if this is the special _gp_disp symbol.  Note that such a
3990	 symbol must always be a global symbol.  */
3991      if (strcmp (*namep, "_gp_disp") == 0
3992	  && ! NEWABI_P (input_bfd))
3993	{
3994	  /* Relocations against _gp_disp are permitted only with
3995	     R_MIPS_HI16 and R_MIPS_LO16 relocations.  */
3996	  if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3997	      && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3998	    return bfd_reloc_notsupported;
3999
4000	  gp_disp_p = TRUE;
4001	}
4002      /* See if this is the special _gp symbol.  Note that such a
4003	 symbol must always be a global symbol.  */
4004      else if (strcmp (*namep, "__gnu_local_gp") == 0)
4005	gnu_local_gp_p = TRUE;
4006
4007
4008      /* If this symbol is defined, calculate its address.  Note that
4009	 _gp_disp is a magic symbol, always implicitly defined by the
4010	 linker, so it's inappropriate to check to see whether or not
4011	 its defined.  */
4012      else if ((h->root.root.type == bfd_link_hash_defined
4013		|| h->root.root.type == bfd_link_hash_defweak)
4014	       && h->root.root.u.def.section)
4015	{
4016	  sec = h->root.root.u.def.section;
4017	  if (sec->output_section)
4018	    symbol = (h->root.root.u.def.value
4019		      + sec->output_section->vma
4020		      + sec->output_offset);
4021	  else
4022	    symbol = h->root.root.u.def.value;
4023	}
4024      else if (h->root.root.type == bfd_link_hash_undefweak)
4025	/* We allow relocations against undefined weak symbols, giving
4026	   it the value zero, so that you can undefined weak functions
4027	   and check to see if they exist by looking at their
4028	   addresses.  */
4029	symbol = 0;
4030      else if (info->unresolved_syms_in_objects == RM_IGNORE
4031	       && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4032	symbol = 0;
4033      else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4034		       ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4035	{
4036	  /* If this is a dynamic link, we should have created a
4037	     _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4038	     in in _bfd_mips_elf_create_dynamic_sections.
4039	     Otherwise, we should define the symbol with a value of 0.
4040	     FIXME: It should probably get into the symbol table
4041	     somehow as well.  */
4042	  BFD_ASSERT (! info->shared);
4043	  BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4044	  symbol = 0;
4045	}
4046      else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4047	{
4048	  /* This is an optional symbol - an Irix specific extension to the
4049	     ELF spec.  Ignore it for now.
4050	     XXX - FIXME - there is more to the spec for OPTIONAL symbols
4051	     than simply ignoring them, but we do not handle this for now.
4052	     For information see the "64-bit ELF Object File Specification"
4053	     which is available from here:
4054	     http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf  */
4055	  symbol = 0;
4056	}
4057      else
4058	{
4059	  if (! ((*info->callbacks->undefined_symbol)
4060		 (info, h->root.root.root.string, input_bfd,
4061		  input_section, relocation->r_offset,
4062		  (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4063		   || ELF_ST_VISIBILITY (h->root.other))))
4064	    return bfd_reloc_undefined;
4065	  symbol = 0;
4066	}
4067
4068      target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4069    }
4070
4071  /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4072     need to redirect the call to the stub, unless we're already *in*
4073     a stub.  */
4074  if (r_type != R_MIPS16_26 && !info->relocatable
4075      && ((h != NULL && h->fn_stub != NULL)
4076	  || (local_p
4077	      && elf_tdata (input_bfd)->local_stubs != NULL
4078	      && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4079      && !mips16_stub_section_p (input_bfd, input_section))
4080    {
4081      /* This is a 32- or 64-bit call to a 16-bit function.  We should
4082	 have already noticed that we were going to need the
4083	 stub.  */
4084      if (local_p)
4085	sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4086      else
4087	{
4088	  BFD_ASSERT (h->need_fn_stub);
4089	  sec = h->fn_stub;
4090	}
4091
4092      symbol = sec->output_section->vma + sec->output_offset;
4093      /* The target is 16-bit, but the stub isn't.  */
4094      target_is_16_bit_code_p = FALSE;
4095    }
4096  /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4097     need to redirect the call to the stub.  */
4098  else if (r_type == R_MIPS16_26 && !info->relocatable
4099	   && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
4100	       || (local_p
4101		   && elf_tdata (input_bfd)->local_call_stubs != NULL
4102		   && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4103	   && !target_is_16_bit_code_p)
4104    {
4105      if (local_p)
4106	sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4107      else
4108	{
4109	  /* If both call_stub and call_fp_stub are defined, we can figure
4110	     out which one to use by checking which one appears in the input
4111	     file.  */
4112	  if (h->call_stub != NULL && h->call_fp_stub != NULL)
4113	    {
4114	      asection *o;
4115
4116	      sec = NULL;
4117	      for (o = input_bfd->sections; o != NULL; o = o->next)
4118		{
4119		  if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4120		    {
4121		      sec = h->call_fp_stub;
4122		      break;
4123		    }
4124		}
4125	      if (sec == NULL)
4126		sec = h->call_stub;
4127	    }
4128	  else if (h->call_stub != NULL)
4129	    sec = h->call_stub;
4130	  else
4131	    sec = h->call_fp_stub;
4132  	}
4133
4134      BFD_ASSERT (sec->size > 0);
4135      symbol = sec->output_section->vma + sec->output_offset;
4136    }
4137
4138  /* Calls from 16-bit code to 32-bit code and vice versa require the
4139     special jalx instruction.  */
4140  *require_jalxp = (!info->relocatable
4141                    && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4142                        || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4143
4144  local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4145					 local_sections, TRUE);
4146
4147  /* If we haven't already determined the GOT offset, or the GP value,
4148     and we're going to need it, get it now.  */
4149  switch (r_type)
4150    {
4151    case R_MIPS_GOT_PAGE:
4152    case R_MIPS_GOT_OFST:
4153      /* We need to decay to GOT_DISP/addend if the symbol doesn't
4154	 bind locally.  */
4155      local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4156      if (local_p || r_type == R_MIPS_GOT_OFST)
4157	break;
4158      /* Fall through.  */
4159
4160    case R_MIPS_CALL16:
4161    case R_MIPS_GOT16:
4162    case R_MIPS_GOT_DISP:
4163    case R_MIPS_GOT_HI16:
4164    case R_MIPS_CALL_HI16:
4165    case R_MIPS_GOT_LO16:
4166    case R_MIPS_CALL_LO16:
4167    case R_MIPS_TLS_GD:
4168    case R_MIPS_TLS_GOTTPREL:
4169    case R_MIPS_TLS_LDM:
4170      /* Find the index into the GOT where this value is located.  */
4171      if (r_type == R_MIPS_TLS_LDM)
4172	{
4173	  g = mips_elf_local_got_index (abfd, input_bfd, info,
4174					0, 0, NULL, r_type);
4175	  if (g == MINUS_ONE)
4176	    return bfd_reloc_outofrange;
4177	}
4178      else if (!local_p)
4179	{
4180	  /* On VxWorks, CALL relocations should refer to the .got.plt
4181	     entry, which is initialized to point at the PLT stub.  */
4182	  if (htab->is_vxworks
4183	      && (r_type == R_MIPS_CALL_HI16
4184		  || r_type == R_MIPS_CALL_LO16
4185		  || r_type == R_MIPS_CALL16))
4186	    {
4187	      BFD_ASSERT (addend == 0);
4188	      BFD_ASSERT (h->root.needs_plt);
4189	      g = mips_elf_gotplt_index (info, &h->root);
4190	    }
4191	  else
4192	    {
4193	      /* GOT_PAGE may take a non-zero addend, that is ignored in a
4194		 GOT_PAGE relocation that decays to GOT_DISP because the
4195		 symbol turns out to be global.  The addend is then added
4196		 as GOT_OFST.  */
4197	      BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4198	      g = mips_elf_global_got_index (dynobj, input_bfd,
4199					     &h->root, r_type, info);
4200	      if (h->tls_type == GOT_NORMAL
4201		  && (! elf_hash_table(info)->dynamic_sections_created
4202		      || (info->shared
4203			  && (info->symbolic || h->root.forced_local)
4204			  && h->root.def_regular)))
4205		{
4206		  /* This is a static link or a -Bsymbolic link.  The
4207		     symbol is defined locally, or was forced to be local.
4208		     We must initialize this entry in the GOT.  */
4209		  asection *sgot = mips_elf_got_section (dynobj, FALSE);
4210		  MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4211		}
4212	    }
4213	}
4214      else if (!htab->is_vxworks
4215	       && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4216	/* The calculation below does not involve "g".  */
4217	break;
4218      else
4219	{
4220	  g = mips_elf_local_got_index (abfd, input_bfd, info,
4221					symbol + addend, r_symndx, h, r_type);
4222	  if (g == MINUS_ONE)
4223	    return bfd_reloc_outofrange;
4224	}
4225
4226      /* Convert GOT indices to actual offsets.  */
4227      g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4228      break;
4229
4230    case R_MIPS_HI16:
4231    case R_MIPS_LO16:
4232    case R_MIPS_GPREL16:
4233    case R_MIPS_GPREL32:
4234    case R_MIPS_LITERAL:
4235    case R_MIPS16_HI16:
4236    case R_MIPS16_LO16:
4237    case R_MIPS16_GPREL:
4238      gp0 = _bfd_get_gp_value (input_bfd);
4239      gp = _bfd_get_gp_value (abfd);
4240      if (dynobj)
4241	gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4242				  input_bfd);
4243      break;
4244
4245    default:
4246      break;
4247    }
4248
4249  if (gnu_local_gp_p)
4250    symbol = gp;
4251
4252  /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4253     symbols are resolved by the loader.  Add them to .rela.dyn.  */
4254  if (h != NULL && is_gott_symbol (info, &h->root))
4255    {
4256      Elf_Internal_Rela outrel;
4257      bfd_byte *loc;
4258      asection *s;
4259
4260      s = mips_elf_rel_dyn_section (info, FALSE);
4261      loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4262
4263      outrel.r_offset = (input_section->output_section->vma
4264			 + input_section->output_offset
4265			 + relocation->r_offset);
4266      outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4267      outrel.r_addend = addend;
4268      bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4269
4270      /* If we've written this relocation for a readonly section,
4271	 we need to set DF_TEXTREL again, so that we do not delete the
4272	 DT_TEXTREL tag.  */
4273      if (MIPS_ELF_READONLY_SECTION (input_section))
4274	info->flags |= DF_TEXTREL;
4275
4276      *valuep = 0;
4277      return bfd_reloc_ok;
4278    }
4279
4280  /* Figure out what kind of relocation is being performed.  */
4281  switch (r_type)
4282    {
4283    case R_MIPS_NONE:
4284      return bfd_reloc_continue;
4285
4286    case R_MIPS_16:
4287      value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4288      overflowed_p = mips_elf_overflow_p (value, 16);
4289      break;
4290
4291    case R_MIPS_32:
4292    case R_MIPS_REL32:
4293    case R_MIPS_64:
4294      if ((info->shared
4295	   || (!htab->is_vxworks
4296	       && htab->root.dynamic_sections_created
4297	       && h != NULL
4298	       && h->root.def_dynamic
4299	       && !h->root.def_regular))
4300	  && r_symndx != 0
4301	  && (input_section->flags & SEC_ALLOC) != 0)
4302	{
4303	  /* If we're creating a shared library, or this relocation is
4304	     against a symbol in a shared library, then we can't know
4305	     where the symbol will end up.  So, we create a relocation
4306	     record in the output, and leave the job up to the dynamic
4307	     linker.
4308
4309	     In VxWorks executables, references to external symbols
4310	     are handled using copy relocs or PLT stubs, so there's
4311	     no need to add a dynamic relocation here.  */
4312	  value = addend;
4313	  if (!mips_elf_create_dynamic_relocation (abfd,
4314						   info,
4315						   relocation,
4316						   h,
4317						   sec,
4318						   symbol,
4319						   &value,
4320						   input_section))
4321	    return bfd_reloc_undefined;
4322	}
4323      else
4324	{
4325	  if (r_type != R_MIPS_REL32)
4326	    value = symbol + addend;
4327	  else
4328	    value = addend;
4329	}
4330      value &= howto->dst_mask;
4331      break;
4332
4333    case R_MIPS_PC32:
4334      value = symbol + addend - p;
4335      value &= howto->dst_mask;
4336      break;
4337
4338    case R_MIPS16_26:
4339      /* The calculation for R_MIPS16_26 is just the same as for an
4340	 R_MIPS_26.  It's only the storage of the relocated field into
4341	 the output file that's different.  That's handled in
4342	 mips_elf_perform_relocation.  So, we just fall through to the
4343	 R_MIPS_26 case here.  */
4344    case R_MIPS_26:
4345      if (local_p)
4346	value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4347      else
4348	{
4349	  value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4350	  if (h->root.root.type != bfd_link_hash_undefweak)
4351	    overflowed_p = (value >> 26) != ((p + 4) >> 28);
4352	}
4353      value &= howto->dst_mask;
4354      break;
4355
4356    case R_MIPS_TLS_DTPREL_HI16:
4357      value = (mips_elf_high (addend + symbol - dtprel_base (info))
4358	       & howto->dst_mask);
4359      break;
4360
4361    case R_MIPS_TLS_DTPREL_LO16:
4362    case R_MIPS_TLS_DTPREL32:
4363    case R_MIPS_TLS_DTPREL64:
4364      value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4365      break;
4366
4367    case R_MIPS_TLS_TPREL_HI16:
4368      value = (mips_elf_high (addend + symbol - tprel_base (info))
4369	       & howto->dst_mask);
4370      break;
4371
4372    case R_MIPS_TLS_TPREL_LO16:
4373      value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4374      break;
4375
4376    case R_MIPS_HI16:
4377    case R_MIPS16_HI16:
4378      if (!gp_disp_p)
4379	{
4380	  value = mips_elf_high (addend + symbol);
4381	  value &= howto->dst_mask;
4382	}
4383      else
4384	{
4385	  /* For MIPS16 ABI code we generate this sequence
4386	        0: li      $v0,%hi(_gp_disp)
4387	        4: addiupc $v1,%lo(_gp_disp)
4388	        8: sll     $v0,16
4389	       12: addu    $v0,$v1
4390	       14: move    $gp,$v0
4391	     So the offsets of hi and lo relocs are the same, but the
4392	     $pc is four higher than $t9 would be, so reduce
4393	     both reloc addends by 4. */
4394	  if (r_type == R_MIPS16_HI16)
4395	    value = mips_elf_high (addend + gp - p - 4);
4396	  else
4397	    value = mips_elf_high (addend + gp - p);
4398	  overflowed_p = mips_elf_overflow_p (value, 16);
4399	}
4400      break;
4401
4402    case R_MIPS_LO16:
4403    case R_MIPS16_LO16:
4404      if (!gp_disp_p)
4405	value = (symbol + addend) & howto->dst_mask;
4406      else
4407	{
4408	  /* See the comment for R_MIPS16_HI16 above for the reason
4409	     for this conditional.  */
4410	  if (r_type == R_MIPS16_LO16)
4411	    value = addend + gp - p;
4412	  else
4413	    value = addend + gp - p + 4;
4414	  /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4415	     for overflow.  But, on, say, IRIX5, relocations against
4416	     _gp_disp are normally generated from the .cpload
4417	     pseudo-op.  It generates code that normally looks like
4418	     this:
4419
4420	       lui    $gp,%hi(_gp_disp)
4421	       addiu  $gp,$gp,%lo(_gp_disp)
4422	       addu   $gp,$gp,$t9
4423
4424	     Here $t9 holds the address of the function being called,
4425	     as required by the MIPS ELF ABI.  The R_MIPS_LO16
4426	     relocation can easily overflow in this situation, but the
4427	     R_MIPS_HI16 relocation will handle the overflow.
4428	     Therefore, we consider this a bug in the MIPS ABI, and do
4429	     not check for overflow here.  */
4430	}
4431      break;
4432
4433    case R_MIPS_LITERAL:
4434      /* Because we don't merge literal sections, we can handle this
4435	 just like R_MIPS_GPREL16.  In the long run, we should merge
4436	 shared literals, and then we will need to additional work
4437	 here.  */
4438
4439      /* Fall through.  */
4440
4441    case R_MIPS16_GPREL:
4442      /* The R_MIPS16_GPREL performs the same calculation as
4443	 R_MIPS_GPREL16, but stores the relocated bits in a different
4444	 order.  We don't need to do anything special here; the
4445	 differences are handled in mips_elf_perform_relocation.  */
4446    case R_MIPS_GPREL16:
4447      /* Only sign-extend the addend if it was extracted from the
4448	 instruction.  If the addend was separate, leave it alone,
4449	 otherwise we may lose significant bits.  */
4450      if (howto->partial_inplace)
4451	addend = _bfd_mips_elf_sign_extend (addend, 16);
4452      value = symbol + addend - gp;
4453      /* If the symbol was local, any earlier relocatable links will
4454	 have adjusted its addend with the gp offset, so compensate
4455	 for that now.  Don't do it for symbols forced local in this
4456	 link, though, since they won't have had the gp offset applied
4457	 to them before.  */
4458      if (was_local_p)
4459	value += gp0;
4460      overflowed_p = mips_elf_overflow_p (value, 16);
4461      break;
4462
4463    case R_MIPS_GOT16:
4464    case R_MIPS_CALL16:
4465      /* VxWorks does not have separate local and global semantics for
4466	 R_MIPS_GOT16; every relocation evaluates to "G".  */
4467      if (!htab->is_vxworks && local_p)
4468	{
4469	  bfd_boolean forced;
4470
4471	  forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4472						  local_sections, FALSE);
4473	  value = mips_elf_got16_entry (abfd, input_bfd, info,
4474					symbol + addend, forced);
4475	  if (value == MINUS_ONE)
4476	    return bfd_reloc_outofrange;
4477	  value
4478	    = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4479	  overflowed_p = mips_elf_overflow_p (value, 16);
4480	  break;
4481	}
4482
4483      /* Fall through.  */
4484
4485    case R_MIPS_TLS_GD:
4486    case R_MIPS_TLS_GOTTPREL:
4487    case R_MIPS_TLS_LDM:
4488    case R_MIPS_GOT_DISP:
4489    got_disp:
4490      value = g;
4491      overflowed_p = mips_elf_overflow_p (value, 16);
4492      break;
4493
4494    case R_MIPS_GPREL32:
4495      value = (addend + symbol + gp0 - gp);
4496      if (!save_addend)
4497	value &= howto->dst_mask;
4498      break;
4499
4500    case R_MIPS_PC16:
4501    case R_MIPS_GNU_REL16_S2:
4502      value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4503      overflowed_p = mips_elf_overflow_p (value, 18);
4504      value >>= howto->rightshift;
4505      value &= howto->dst_mask;
4506      break;
4507
4508    case R_MIPS_GOT_HI16:
4509    case R_MIPS_CALL_HI16:
4510      /* We're allowed to handle these two relocations identically.
4511	 The dynamic linker is allowed to handle the CALL relocations
4512	 differently by creating a lazy evaluation stub.  */
4513      value = g;
4514      value = mips_elf_high (value);
4515      value &= howto->dst_mask;
4516      break;
4517
4518    case R_MIPS_GOT_LO16:
4519    case R_MIPS_CALL_LO16:
4520      value = g & howto->dst_mask;
4521      break;
4522
4523    case R_MIPS_GOT_PAGE:
4524      /* GOT_PAGE relocations that reference non-local symbols decay
4525	 to GOT_DISP.  The corresponding GOT_OFST relocation decays to
4526	 0.  */
4527      if (! local_p)
4528	goto got_disp;
4529      value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4530      if (value == MINUS_ONE)
4531	return bfd_reloc_outofrange;
4532      value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4533      overflowed_p = mips_elf_overflow_p (value, 16);
4534      break;
4535
4536    case R_MIPS_GOT_OFST:
4537      if (local_p)
4538	mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4539      else
4540	value = addend;
4541      overflowed_p = mips_elf_overflow_p (value, 16);
4542      break;
4543
4544    case R_MIPS_SUB:
4545      value = symbol - addend;
4546      value &= howto->dst_mask;
4547      break;
4548
4549    case R_MIPS_HIGHER:
4550      value = mips_elf_higher (addend + symbol);
4551      value &= howto->dst_mask;
4552      break;
4553
4554    case R_MIPS_HIGHEST:
4555      value = mips_elf_highest (addend + symbol);
4556      value &= howto->dst_mask;
4557      break;
4558
4559    case R_MIPS_SCN_DISP:
4560      value = symbol + addend - sec->output_offset;
4561      value &= howto->dst_mask;
4562      break;
4563
4564    case R_MIPS_JALR:
4565      /* This relocation is only a hint.  In some cases, we optimize
4566	 it into a bal instruction.  But we don't try to optimize
4567	 branches to the PLT; that will wind up wasting time.  */
4568      if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4569	return bfd_reloc_continue;
4570      value = symbol + addend;
4571      break;
4572
4573    case R_MIPS_PJUMP:
4574    case R_MIPS_GNU_VTINHERIT:
4575    case R_MIPS_GNU_VTENTRY:
4576      /* We don't do anything with these at present.  */
4577      return bfd_reloc_continue;
4578
4579    default:
4580      /* An unrecognized relocation type.  */
4581      return bfd_reloc_notsupported;
4582    }
4583
4584  /* Store the VALUE for our caller.  */
4585  *valuep = value;
4586  return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4587}
4588
4589/* Obtain the field relocated by RELOCATION.  */
4590
4591static bfd_vma
4592mips_elf_obtain_contents (reloc_howto_type *howto,
4593			  const Elf_Internal_Rela *relocation,
4594			  bfd *input_bfd, bfd_byte *contents)
4595{
4596  bfd_vma x;
4597  bfd_byte *location = contents + relocation->r_offset;
4598
4599  /* Obtain the bytes.  */
4600  x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4601
4602  return x;
4603}
4604
4605/* It has been determined that the result of the RELOCATION is the
4606   VALUE.  Use HOWTO to place VALUE into the output file at the
4607   appropriate position.  The SECTION is the section to which the
4608   relocation applies.  If REQUIRE_JALX is TRUE, then the opcode used
4609   for the relocation must be either JAL or JALX, and it is
4610   unconditionally converted to JALX.
4611
4612   Returns FALSE if anything goes wrong.  */
4613
4614static bfd_boolean
4615mips_elf_perform_relocation (struct bfd_link_info *info,
4616			     reloc_howto_type *howto,
4617			     const Elf_Internal_Rela *relocation,
4618			     bfd_vma value, bfd *input_bfd,
4619			     asection *input_section, bfd_byte *contents,
4620			     bfd_boolean require_jalx)
4621{
4622  bfd_vma x;
4623  bfd_byte *location;
4624  int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4625
4626  /* Figure out where the relocation is occurring.  */
4627  location = contents + relocation->r_offset;
4628
4629  _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4630
4631  /* Obtain the current value.  */
4632  x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4633
4634  /* Clear the field we are setting.  */
4635  x &= ~howto->dst_mask;
4636
4637  /* Set the field.  */
4638  x |= (value & howto->dst_mask);
4639
4640  /* If required, turn JAL into JALX.  */
4641  if (require_jalx)
4642    {
4643      bfd_boolean ok;
4644      bfd_vma opcode = x >> 26;
4645      bfd_vma jalx_opcode;
4646
4647      /* Check to see if the opcode is already JAL or JALX.  */
4648      if (r_type == R_MIPS16_26)
4649	{
4650	  ok = ((opcode == 0x6) || (opcode == 0x7));
4651	  jalx_opcode = 0x7;
4652	}
4653      else
4654	{
4655	  ok = ((opcode == 0x3) || (opcode == 0x1d));
4656	  jalx_opcode = 0x1d;
4657	}
4658
4659      /* If the opcode is not JAL or JALX, there's a problem.  */
4660      if (!ok)
4661	{
4662	  (*_bfd_error_handler)
4663	    (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4664	     input_bfd,
4665	     input_section,
4666	     (unsigned long) relocation->r_offset);
4667	  bfd_set_error (bfd_error_bad_value);
4668	  return FALSE;
4669	}
4670
4671      /* Make this the JALX opcode.  */
4672      x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4673    }
4674
4675  /* On the RM9000, bal is faster than jal, because bal uses branch
4676     prediction hardware.  If we are linking for the RM9000, and we
4677     see jal, and bal fits, use it instead.  Note that this
4678     transformation should be safe for all architectures.  */
4679  if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4680      && !info->relocatable
4681      && !require_jalx
4682      && ((r_type == R_MIPS_26 && (x >> 26) == 0x3)	    /* jal addr */
4683	  || (r_type == R_MIPS_JALR && x == 0x0320f809)))   /* jalr t9 */
4684    {
4685      bfd_vma addr;
4686      bfd_vma dest;
4687      bfd_signed_vma off;
4688
4689      addr = (input_section->output_section->vma
4690	      + input_section->output_offset
4691	      + relocation->r_offset
4692	      + 4);
4693      if (r_type == R_MIPS_26)
4694	dest = (value << 2) | ((addr >> 28) << 28);
4695      else
4696	dest = value;
4697      off = dest - addr;
4698      if (off <= 0x1ffff && off >= -0x20000)
4699	x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff);   /* bal addr */
4700    }
4701
4702  /* Put the value into the output.  */
4703  bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4704
4705  _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4706				location);
4707
4708  return TRUE;
4709}
4710
4711/* Returns TRUE if SECTION is a MIPS16 stub section.  */
4712
4713static bfd_boolean
4714mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4715{
4716  const char *name = bfd_get_section_name (abfd, section);
4717
4718  return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4719}
4720
4721/* Add room for N relocations to the .rel(a).dyn section in ABFD.  */
4722
4723static void
4724mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4725				       unsigned int n)
4726{
4727  asection *s;
4728  struct mips_elf_link_hash_table *htab;
4729
4730  htab = mips_elf_hash_table (info);
4731  s = mips_elf_rel_dyn_section (info, FALSE);
4732  BFD_ASSERT (s != NULL);
4733
4734  if (htab->is_vxworks)
4735    s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4736  else
4737    {
4738      if (s->size == 0)
4739	{
4740	  /* Make room for a null element.  */
4741	  s->size += MIPS_ELF_REL_SIZE (abfd);
4742	  ++s->reloc_count;
4743	}
4744      s->size += n * MIPS_ELF_REL_SIZE (abfd);
4745    }
4746}
4747
4748/* Create a rel.dyn relocation for the dynamic linker to resolve.  REL
4749   is the original relocation, which is now being transformed into a
4750   dynamic relocation.  The ADDENDP is adjusted if necessary; the
4751   caller should store the result in place of the original addend.  */
4752
4753static bfd_boolean
4754mips_elf_create_dynamic_relocation (bfd *output_bfd,
4755				    struct bfd_link_info *info,
4756				    const Elf_Internal_Rela *rel,
4757				    struct mips_elf_link_hash_entry *h,
4758				    asection *sec, bfd_vma symbol,
4759				    bfd_vma *addendp, asection *input_section)
4760{
4761  Elf_Internal_Rela outrel[3];
4762  asection *sreloc;
4763  bfd *dynobj;
4764  int r_type;
4765  long indx;
4766  bfd_boolean defined_p;
4767  struct mips_elf_link_hash_table *htab;
4768
4769  htab = mips_elf_hash_table (info);
4770  r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4771  dynobj = elf_hash_table (info)->dynobj;
4772  sreloc = mips_elf_rel_dyn_section (info, FALSE);
4773  BFD_ASSERT (sreloc != NULL);
4774  BFD_ASSERT (sreloc->contents != NULL);
4775  BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4776	      < sreloc->size);
4777
4778  outrel[0].r_offset =
4779    _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4780  if (ABI_64_P (output_bfd))
4781    {
4782      outrel[1].r_offset =
4783	_bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4784      outrel[2].r_offset =
4785	_bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4786    }
4787
4788  if (outrel[0].r_offset == MINUS_ONE)
4789    /* The relocation field has been deleted.  */
4790    return TRUE;
4791
4792  if (outrel[0].r_offset == MINUS_TWO)
4793    {
4794      /* The relocation field has been converted into a relative value of
4795	 some sort.  Functions like _bfd_elf_write_section_eh_frame expect
4796	 the field to be fully relocated, so add in the symbol's value.  */
4797      *addendp += symbol;
4798      return TRUE;
4799    }
4800
4801  /* We must now calculate the dynamic symbol table index to use
4802     in the relocation.  */
4803  if (h != NULL
4804      && (sec == NULL || !h->root.def_regular
4805	  || (info->shared && !info->symbolic && !h->root.forced_local)))
4806    {
4807      indx = h->root.dynindx;
4808      if (SGI_COMPAT (output_bfd))
4809	defined_p = h->root.def_regular;
4810      else
4811	/* ??? glibc's ld.so just adds the final GOT entry to the
4812	   relocation field.  It therefore treats relocs against
4813	   defined symbols in the same way as relocs against
4814	   undefined symbols.  */
4815	defined_p = FALSE;
4816    }
4817  else
4818    {
4819      if (sec != NULL && bfd_is_abs_section (sec))
4820	indx = 0;
4821      else if (sec == NULL || sec->owner == NULL)
4822	{
4823	  bfd_set_error (bfd_error_bad_value);
4824	  return FALSE;
4825	}
4826      else
4827	{
4828	  indx = elf_section_data (sec->output_section)->dynindx;
4829	  if (indx == 0)
4830	    {
4831	      asection *osec = htab->root.text_index_section;
4832	      indx = elf_section_data (osec)->dynindx;
4833	    }
4834	  if (indx == 0)
4835	    abort ();
4836	}
4837
4838      /* Instead of generating a relocation using the section
4839	 symbol, we may as well make it a fully relative
4840	 relocation.  We want to avoid generating relocations to
4841	 local symbols because we used to generate them
4842	 incorrectly, without adding the original symbol value,
4843	 which is mandated by the ABI for section symbols.  In
4844	 order to give dynamic loaders and applications time to
4845	 phase out the incorrect use, we refrain from emitting
4846	 section-relative relocations.  It's not like they're
4847	 useful, after all.  This should be a bit more efficient
4848	 as well.  */
4849      /* ??? Although this behavior is compatible with glibc's ld.so,
4850	 the ABI says that relocations against STN_UNDEF should have
4851	 a symbol value of 0.  Irix rld honors this, so relocations
4852	 against STN_UNDEF have no effect.  */
4853      if (!SGI_COMPAT (output_bfd))
4854	indx = 0;
4855      defined_p = TRUE;
4856    }
4857
4858  /* If the relocation was previously an absolute relocation and
4859     this symbol will not be referred to by the relocation, we must
4860     adjust it by the value we give it in the dynamic symbol table.
4861     Otherwise leave the job up to the dynamic linker.  */
4862  if (defined_p && r_type != R_MIPS_REL32)
4863    *addendp += symbol;
4864
4865  if (htab->is_vxworks)
4866    /* VxWorks uses non-relative relocations for this.  */
4867    outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4868  else
4869    /* The relocation is always an REL32 relocation because we don't
4870       know where the shared library will wind up at load-time.  */
4871    outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4872				   R_MIPS_REL32);
4873
4874  /* For strict adherence to the ABI specification, we should
4875     generate a R_MIPS_64 relocation record by itself before the
4876     _REL32/_64 record as well, such that the addend is read in as
4877     a 64-bit value (REL32 is a 32-bit relocation, after all).
4878     However, since none of the existing ELF64 MIPS dynamic
4879     loaders seems to care, we don't waste space with these
4880     artificial relocations.  If this turns out to not be true,
4881     mips_elf_allocate_dynamic_relocation() should be tweaked so
4882     as to make room for a pair of dynamic relocations per
4883     invocation if ABI_64_P, and here we should generate an
4884     additional relocation record with R_MIPS_64 by itself for a
4885     NULL symbol before this relocation record.  */
4886  outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4887				 ABI_64_P (output_bfd)
4888				 ? R_MIPS_64
4889				 : R_MIPS_NONE);
4890  outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4891
4892  /* Adjust the output offset of the relocation to reference the
4893     correct location in the output file.  */
4894  outrel[0].r_offset += (input_section->output_section->vma
4895			 + input_section->output_offset);
4896  outrel[1].r_offset += (input_section->output_section->vma
4897			 + input_section->output_offset);
4898  outrel[2].r_offset += (input_section->output_section->vma
4899			 + input_section->output_offset);
4900
4901  /* Put the relocation back out.  We have to use the special
4902     relocation outputter in the 64-bit case since the 64-bit
4903     relocation format is non-standard.  */
4904  if (ABI_64_P (output_bfd))
4905    {
4906      (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4907	(output_bfd, &outrel[0],
4908	 (sreloc->contents
4909	  + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4910    }
4911  else if (htab->is_vxworks)
4912    {
4913      /* VxWorks uses RELA rather than REL dynamic relocations.  */
4914      outrel[0].r_addend = *addendp;
4915      bfd_elf32_swap_reloca_out
4916	(output_bfd, &outrel[0],
4917	 (sreloc->contents
4918	  + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4919    }
4920  else
4921    bfd_elf32_swap_reloc_out
4922      (output_bfd, &outrel[0],
4923       (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4924
4925  /* We've now added another relocation.  */
4926  ++sreloc->reloc_count;
4927
4928  /* Make sure the output section is writable.  The dynamic linker
4929     will be writing to it.  */
4930  elf_section_data (input_section->output_section)->this_hdr.sh_flags
4931    |= SHF_WRITE;
4932
4933  /* On IRIX5, make an entry of compact relocation info.  */
4934  if (IRIX_COMPAT (output_bfd) == ict_irix5)
4935    {
4936      asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4937      bfd_byte *cr;
4938
4939      if (scpt)
4940	{
4941	  Elf32_crinfo cptrel;
4942
4943	  mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4944	  cptrel.vaddr = (rel->r_offset
4945			  + input_section->output_section->vma
4946			  + input_section->output_offset);
4947	  if (r_type == R_MIPS_REL32)
4948	    mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4949	  else
4950	    mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4951	  mips_elf_set_cr_dist2to (cptrel, 0);
4952	  cptrel.konst = *addendp;
4953
4954	  cr = (scpt->contents
4955		+ sizeof (Elf32_External_compact_rel));
4956	  mips_elf_set_cr_relvaddr (cptrel, 0);
4957	  bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4958				     ((Elf32_External_crinfo *) cr
4959				      + scpt->reloc_count));
4960	  ++scpt->reloc_count;
4961	}
4962    }
4963
4964  /* If we've written this relocation for a readonly section,
4965     we need to set DF_TEXTREL again, so that we do not delete the
4966     DT_TEXTREL tag.  */
4967  if (MIPS_ELF_READONLY_SECTION (input_section))
4968    info->flags |= DF_TEXTREL;
4969
4970  return TRUE;
4971}
4972
4973/* Return the MACH for a MIPS e_flags value.  */
4974
4975unsigned long
4976_bfd_elf_mips_mach (flagword flags)
4977{
4978  switch (flags & EF_MIPS_MACH)
4979    {
4980    case E_MIPS_MACH_3900:
4981      return bfd_mach_mips3900;
4982
4983    case E_MIPS_MACH_4010:
4984      return bfd_mach_mips4010;
4985
4986    case E_MIPS_MACH_4100:
4987      return bfd_mach_mips4100;
4988
4989    case E_MIPS_MACH_4111:
4990      return bfd_mach_mips4111;
4991
4992    case E_MIPS_MACH_4120:
4993      return bfd_mach_mips4120;
4994
4995    case E_MIPS_MACH_4650:
4996      return bfd_mach_mips4650;
4997
4998    case E_MIPS_MACH_5400:
4999      return bfd_mach_mips5400;
5000
5001    case E_MIPS_MACH_5500:
5002      return bfd_mach_mips5500;
5003
5004    case E_MIPS_MACH_9000:
5005      return bfd_mach_mips9000;
5006
5007    case E_MIPS_MACH_OCTEON:
5008      return bfd_mach_mips_octeon;
5009
5010    case E_MIPS_MACH_SB1:
5011      return bfd_mach_mips_sb1;
5012
5013    default:
5014      switch (flags & EF_MIPS_ARCH)
5015	{
5016	default:
5017	case E_MIPS_ARCH_1:
5018	  return bfd_mach_mips3000;
5019
5020	case E_MIPS_ARCH_2:
5021	  return bfd_mach_mips6000;
5022
5023	case E_MIPS_ARCH_3:
5024	  return bfd_mach_mips4000;
5025
5026	case E_MIPS_ARCH_4:
5027	  return bfd_mach_mips8000;
5028
5029	case E_MIPS_ARCH_5:
5030	  return bfd_mach_mips5;
5031
5032	case E_MIPS_ARCH_32:
5033	  return bfd_mach_mipsisa32;
5034
5035	case E_MIPS_ARCH_64:
5036	  return bfd_mach_mipsisa64;
5037
5038	case E_MIPS_ARCH_32R2:
5039	  return bfd_mach_mipsisa32r2;
5040
5041	case E_MIPS_ARCH_64R2:
5042	  return bfd_mach_mipsisa64r2;
5043	}
5044    }
5045
5046  return 0;
5047}
5048
5049/* Return printable name for ABI.  */
5050
5051static INLINE char *
5052elf_mips_abi_name (bfd *abfd)
5053{
5054  flagword flags;
5055
5056  flags = elf_elfheader (abfd)->e_flags;
5057  switch (flags & EF_MIPS_ABI)
5058    {
5059    case 0:
5060      if (ABI_N32_P (abfd))
5061	return "N32";
5062      else if (ABI_64_P (abfd))
5063	return "64";
5064      else
5065	return "none";
5066    case E_MIPS_ABI_O32:
5067      return "O32";
5068    case E_MIPS_ABI_O64:
5069      return "O64";
5070    case E_MIPS_ABI_EABI32:
5071      return "EABI32";
5072    case E_MIPS_ABI_EABI64:
5073      return "EABI64";
5074    default:
5075      return "unknown abi";
5076    }
5077}
5078
5079/* MIPS ELF uses two common sections.  One is the usual one, and the
5080   other is for small objects.  All the small objects are kept
5081   together, and then referenced via the gp pointer, which yields
5082   faster assembler code.  This is what we use for the small common
5083   section.  This approach is copied from ecoff.c.  */
5084static asection mips_elf_scom_section;
5085static asymbol mips_elf_scom_symbol;
5086static asymbol *mips_elf_scom_symbol_ptr;
5087
5088/* MIPS ELF also uses an acommon section, which represents an
5089   allocated common symbol which may be overridden by a
5090   definition in a shared library.  */
5091static asection mips_elf_acom_section;
5092static asymbol mips_elf_acom_symbol;
5093static asymbol *mips_elf_acom_symbol_ptr;
5094
5095/* Handle the special MIPS section numbers that a symbol may use.
5096   This is used for both the 32-bit and the 64-bit ABI.  */
5097
5098void
5099_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5100{
5101  elf_symbol_type *elfsym;
5102
5103  elfsym = (elf_symbol_type *) asym;
5104  switch (elfsym->internal_elf_sym.st_shndx)
5105    {
5106    case SHN_MIPS_ACOMMON:
5107      /* This section is used in a dynamically linked executable file.
5108	 It is an allocated common section.  The dynamic linker can
5109	 either resolve these symbols to something in a shared
5110	 library, or it can just leave them here.  For our purposes,
5111	 we can consider these symbols to be in a new section.  */
5112      if (mips_elf_acom_section.name == NULL)
5113	{
5114	  /* Initialize the acommon section.  */
5115	  mips_elf_acom_section.name = ".acommon";
5116	  mips_elf_acom_section.flags = SEC_ALLOC;
5117	  mips_elf_acom_section.output_section = &mips_elf_acom_section;
5118	  mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5119	  mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5120	  mips_elf_acom_symbol.name = ".acommon";
5121	  mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5122	  mips_elf_acom_symbol.section = &mips_elf_acom_section;
5123	  mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5124	}
5125      asym->section = &mips_elf_acom_section;
5126      break;
5127
5128    case SHN_COMMON:
5129      /* Common symbols less than the GP size are automatically
5130	 treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */
5131      if (asym->value > elf_gp_size (abfd)
5132	  || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5133	  || IRIX_COMPAT (abfd) == ict_irix6)
5134	break;
5135      /* Fall through.  */
5136    case SHN_MIPS_SCOMMON:
5137      if (mips_elf_scom_section.name == NULL)
5138	{
5139	  /* Initialize the small common section.  */
5140	  mips_elf_scom_section.name = ".scommon";
5141	  mips_elf_scom_section.flags = SEC_IS_COMMON;
5142	  mips_elf_scom_section.output_section = &mips_elf_scom_section;
5143	  mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5144	  mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5145	  mips_elf_scom_symbol.name = ".scommon";
5146	  mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5147	  mips_elf_scom_symbol.section = &mips_elf_scom_section;
5148	  mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5149	}
5150      asym->section = &mips_elf_scom_section;
5151      asym->value = elfsym->internal_elf_sym.st_size;
5152      break;
5153
5154    case SHN_MIPS_SUNDEFINED:
5155      asym->section = bfd_und_section_ptr;
5156      break;
5157
5158    case SHN_MIPS_TEXT:
5159      {
5160	asection *section = bfd_get_section_by_name (abfd, ".text");
5161
5162	BFD_ASSERT (SGI_COMPAT (abfd));
5163	if (section != NULL)
5164	  {
5165	    asym->section = section;
5166	    /* MIPS_TEXT is a bit special, the address is not an offset
5167	       to the base of the .text section.  So substract the section
5168	       base address to make it an offset.  */
5169	    asym->value -= section->vma;
5170	  }
5171      }
5172      break;
5173
5174    case SHN_MIPS_DATA:
5175      {
5176	asection *section = bfd_get_section_by_name (abfd, ".data");
5177
5178	BFD_ASSERT (SGI_COMPAT (abfd));
5179	if (section != NULL)
5180	  {
5181	    asym->section = section;
5182	    /* MIPS_DATA is a bit special, the address is not an offset
5183	       to the base of the .data section.  So substract the section
5184	       base address to make it an offset.  */
5185	    asym->value -= section->vma;
5186	  }
5187      }
5188      break;
5189    }
5190}
5191
5192/* Implement elf_backend_eh_frame_address_size.  This differs from
5193   the default in the way it handles EABI64.
5194
5195   EABI64 was originally specified as an LP64 ABI, and that is what
5196   -mabi=eabi normally gives on a 64-bit target.  However, gcc has
5197   historically accepted the combination of -mabi=eabi and -mlong32,
5198   and this ILP32 variation has become semi-official over time.
5199   Both forms use elf32 and have pointer-sized FDE addresses.
5200
5201   If an EABI object was generated by GCC 4.0 or above, it will have
5202   an empty .gcc_compiled_longXX section, where XX is the size of longs
5203   in bits.  Unfortunately, ILP32 objects generated by earlier compilers
5204   have no special marking to distinguish them from LP64 objects.
5205
5206   We don't want users of the official LP64 ABI to be punished for the
5207   existence of the ILP32 variant, but at the same time, we don't want
5208   to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5209   We therefore take the following approach:
5210
5211      - If ABFD contains a .gcc_compiled_longXX section, use it to
5212        determine the pointer size.
5213
5214      - Otherwise check the type of the first relocation.  Assume that
5215        the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5216
5217      - Otherwise punt.
5218
5219   The second check is enough to detect LP64 objects generated by pre-4.0
5220   compilers because, in the kind of output generated by those compilers,
5221   the first relocation will be associated with either a CIE personality
5222   routine or an FDE start address.  Furthermore, the compilers never
5223   used a special (non-pointer) encoding for this ABI.
5224
5225   Checking the relocation type should also be safe because there is no
5226   reason to use R_MIPS_64 in an ILP32 object.  Pre-4.0 compilers never
5227   did so.  */
5228
5229unsigned int
5230_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5231{
5232  if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5233    return 8;
5234  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5235    {
5236      bfd_boolean long32_p, long64_p;
5237
5238      long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5239      long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5240      if (long32_p && long64_p)
5241	return 0;
5242      if (long32_p)
5243	return 4;
5244      if (long64_p)
5245	return 8;
5246
5247      if (sec->reloc_count > 0
5248	  && elf_section_data (sec)->relocs != NULL
5249	  && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5250	      == R_MIPS_64))
5251	return 8;
5252
5253      return 0;
5254    }
5255  return 4;
5256}
5257
5258/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5259   relocations against two unnamed section symbols to resolve to the
5260   same address.  For example, if we have code like:
5261
5262	lw	$4,%got_disp(.data)($gp)
5263	lw	$25,%got_disp(.text)($gp)
5264	jalr	$25
5265
5266   then the linker will resolve both relocations to .data and the program
5267   will jump there rather than to .text.
5268
5269   We can work around this problem by giving names to local section symbols.
5270   This is also what the MIPSpro tools do.  */
5271
5272bfd_boolean
5273_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5274{
5275  return SGI_COMPAT (abfd);
5276}
5277
5278/* Work over a section just before writing it out.  This routine is
5279   used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize
5280   sections that need the SHF_MIPS_GPREL flag by name; there has to be
5281   a better way.  */
5282
5283bfd_boolean
5284_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5285{
5286  if (hdr->sh_type == SHT_MIPS_REGINFO
5287      && hdr->sh_size > 0)
5288    {
5289      bfd_byte buf[4];
5290
5291      BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5292      BFD_ASSERT (hdr->contents == NULL);
5293
5294      if (bfd_seek (abfd,
5295		    hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5296		    SEEK_SET) != 0)
5297	return FALSE;
5298      H_PUT_32 (abfd, elf_gp (abfd), buf);
5299      if (bfd_bwrite (buf, 4, abfd) != 4)
5300	return FALSE;
5301    }
5302
5303  if (hdr->sh_type == SHT_MIPS_OPTIONS
5304      && hdr->bfd_section != NULL
5305      && mips_elf_section_data (hdr->bfd_section) != NULL
5306      && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5307    {
5308      bfd_byte *contents, *l, *lend;
5309
5310      /* We stored the section contents in the tdata field in the
5311	 set_section_contents routine.  We save the section contents
5312	 so that we don't have to read them again.
5313	 At this point we know that elf_gp is set, so we can look
5314	 through the section contents to see if there is an
5315	 ODK_REGINFO structure.  */
5316
5317      contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5318      l = contents;
5319      lend = contents + hdr->sh_size;
5320      while (l + sizeof (Elf_External_Options) <= lend)
5321	{
5322	  Elf_Internal_Options intopt;
5323
5324	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5325					&intopt);
5326	  if (intopt.size < sizeof (Elf_External_Options))
5327	    {
5328	      (*_bfd_error_handler)
5329		(_("%B: Warning: bad `%s' option size %u smaller than its header"),
5330		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5331	      break;
5332	    }
5333	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5334	    {
5335	      bfd_byte buf[8];
5336
5337	      if (bfd_seek (abfd,
5338			    (hdr->sh_offset
5339			     + (l - contents)
5340			     + sizeof (Elf_External_Options)
5341			     + (sizeof (Elf64_External_RegInfo) - 8)),
5342			     SEEK_SET) != 0)
5343		return FALSE;
5344	      H_PUT_64 (abfd, elf_gp (abfd), buf);
5345	      if (bfd_bwrite (buf, 8, abfd) != 8)
5346		return FALSE;
5347	    }
5348	  else if (intopt.kind == ODK_REGINFO)
5349	    {
5350	      bfd_byte buf[4];
5351
5352	      if (bfd_seek (abfd,
5353			    (hdr->sh_offset
5354			     + (l - contents)
5355			     + sizeof (Elf_External_Options)
5356			     + (sizeof (Elf32_External_RegInfo) - 4)),
5357			    SEEK_SET) != 0)
5358		return FALSE;
5359	      H_PUT_32 (abfd, elf_gp (abfd), buf);
5360	      if (bfd_bwrite (buf, 4, abfd) != 4)
5361		return FALSE;
5362	    }
5363	  l += intopt.size;
5364	}
5365    }
5366
5367  if (hdr->bfd_section != NULL)
5368    {
5369      const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5370
5371      if (strcmp (name, ".sdata") == 0
5372	  || strcmp (name, ".lit8") == 0
5373	  || strcmp (name, ".lit4") == 0)
5374	{
5375	  hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5376	  hdr->sh_type = SHT_PROGBITS;
5377	}
5378      else if (strcmp (name, ".sbss") == 0)
5379	{
5380	  hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5381	  hdr->sh_type = SHT_NOBITS;
5382	}
5383      else if (strcmp (name, ".srdata") == 0)
5384	{
5385	  hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5386	  hdr->sh_type = SHT_PROGBITS;
5387	}
5388      else if (strcmp (name, ".compact_rel") == 0)
5389	{
5390	  hdr->sh_flags = 0;
5391	  hdr->sh_type = SHT_PROGBITS;
5392	}
5393      else if (strcmp (name, ".rtproc") == 0)
5394	{
5395	  if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5396	    {
5397	      unsigned int adjust;
5398
5399	      adjust = hdr->sh_size % hdr->sh_addralign;
5400	      if (adjust != 0)
5401		hdr->sh_size += hdr->sh_addralign - adjust;
5402	    }
5403	}
5404    }
5405
5406  return TRUE;
5407}
5408
5409/* Handle a MIPS specific section when reading an object file.  This
5410   is called when elfcode.h finds a section with an unknown type.
5411   This routine supports both the 32-bit and 64-bit ELF ABI.
5412
5413   FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5414   how to.  */
5415
5416bfd_boolean
5417_bfd_mips_elf_section_from_shdr (bfd *abfd,
5418				 Elf_Internal_Shdr *hdr,
5419				 const char *name,
5420				 int shindex)
5421{
5422  flagword flags = 0;
5423
5424  /* There ought to be a place to keep ELF backend specific flags, but
5425     at the moment there isn't one.  We just keep track of the
5426     sections by their name, instead.  Fortunately, the ABI gives
5427     suggested names for all the MIPS specific sections, so we will
5428     probably get away with this.  */
5429  switch (hdr->sh_type)
5430    {
5431    case SHT_MIPS_LIBLIST:
5432      if (strcmp (name, ".liblist") != 0)
5433	return FALSE;
5434      break;
5435    case SHT_MIPS_MSYM:
5436      if (strcmp (name, ".msym") != 0)
5437	return FALSE;
5438      break;
5439    case SHT_MIPS_CONFLICT:
5440      if (strcmp (name, ".conflict") != 0)
5441	return FALSE;
5442      break;
5443    case SHT_MIPS_GPTAB:
5444      if (! CONST_STRNEQ (name, ".gptab."))
5445	return FALSE;
5446      break;
5447    case SHT_MIPS_UCODE:
5448      if (strcmp (name, ".ucode") != 0)
5449	return FALSE;
5450      break;
5451    case SHT_MIPS_DEBUG:
5452      if (strcmp (name, ".mdebug") != 0)
5453	return FALSE;
5454      flags = SEC_DEBUGGING;
5455      break;
5456    case SHT_MIPS_REGINFO:
5457      if (strcmp (name, ".reginfo") != 0
5458	  || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5459	return FALSE;
5460      flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5461      break;
5462    case SHT_MIPS_IFACE:
5463      if (strcmp (name, ".MIPS.interfaces") != 0)
5464	return FALSE;
5465      break;
5466    case SHT_MIPS_CONTENT:
5467      if (! CONST_STRNEQ (name, ".MIPS.content"))
5468	return FALSE;
5469      break;
5470    case SHT_MIPS_OPTIONS:
5471      if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5472	return FALSE;
5473      break;
5474    case SHT_MIPS_DWARF:
5475      if (! CONST_STRNEQ (name, ".debug_"))
5476	return FALSE;
5477      break;
5478    case SHT_MIPS_SYMBOL_LIB:
5479      if (strcmp (name, ".MIPS.symlib") != 0)
5480	return FALSE;
5481      break;
5482    case SHT_MIPS_EVENTS:
5483      if (! CONST_STRNEQ (name, ".MIPS.events")
5484	  && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5485	return FALSE;
5486      break;
5487    default:
5488      break;
5489    }
5490
5491  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5492    return FALSE;
5493
5494  if (flags)
5495    {
5496      if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5497				   (bfd_get_section_flags (abfd,
5498							   hdr->bfd_section)
5499				    | flags)))
5500	return FALSE;
5501    }
5502
5503  /* FIXME: We should record sh_info for a .gptab section.  */
5504
5505  /* For a .reginfo section, set the gp value in the tdata information
5506     from the contents of this section.  We need the gp value while
5507     processing relocs, so we just get it now.  The .reginfo section
5508     is not used in the 64-bit MIPS ELF ABI.  */
5509  if (hdr->sh_type == SHT_MIPS_REGINFO)
5510    {
5511      Elf32_External_RegInfo ext;
5512      Elf32_RegInfo s;
5513
5514      if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5515				      &ext, 0, sizeof ext))
5516	return FALSE;
5517      bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5518      elf_gp (abfd) = s.ri_gp_value;
5519    }
5520
5521  /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5522     set the gp value based on what we find.  We may see both
5523     SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5524     they should agree.  */
5525  if (hdr->sh_type == SHT_MIPS_OPTIONS)
5526    {
5527      bfd_byte *contents, *l, *lend;
5528
5529      contents = bfd_malloc (hdr->sh_size);
5530      if (contents == NULL)
5531	return FALSE;
5532      if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5533				      0, hdr->sh_size))
5534	{
5535	  free (contents);
5536	  return FALSE;
5537	}
5538      l = contents;
5539      lend = contents + hdr->sh_size;
5540      while (l + sizeof (Elf_External_Options) <= lend)
5541	{
5542	  Elf_Internal_Options intopt;
5543
5544	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5545					&intopt);
5546	  if (intopt.size < sizeof (Elf_External_Options))
5547	    {
5548	      (*_bfd_error_handler)
5549		(_("%B: Warning: bad `%s' option size %u smaller than its header"),
5550		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5551	      break;
5552	    }
5553	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5554	    {
5555	      Elf64_Internal_RegInfo intreg;
5556
5557	      bfd_mips_elf64_swap_reginfo_in
5558		(abfd,
5559		 ((Elf64_External_RegInfo *)
5560		  (l + sizeof (Elf_External_Options))),
5561		 &intreg);
5562	      elf_gp (abfd) = intreg.ri_gp_value;
5563	    }
5564	  else if (intopt.kind == ODK_REGINFO)
5565	    {
5566	      Elf32_RegInfo intreg;
5567
5568	      bfd_mips_elf32_swap_reginfo_in
5569		(abfd,
5570		 ((Elf32_External_RegInfo *)
5571		  (l + sizeof (Elf_External_Options))),
5572		 &intreg);
5573	      elf_gp (abfd) = intreg.ri_gp_value;
5574	    }
5575	  l += intopt.size;
5576	}
5577      free (contents);
5578    }
5579
5580  return TRUE;
5581}
5582
5583/* Set the correct type for a MIPS ELF section.  We do this by the
5584   section name, which is a hack, but ought to work.  This routine is
5585   used by both the 32-bit and the 64-bit ABI.  */
5586
5587bfd_boolean
5588_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5589{
5590  const char *name = bfd_get_section_name (abfd, sec);
5591
5592  if (strcmp (name, ".liblist") == 0)
5593    {
5594      hdr->sh_type = SHT_MIPS_LIBLIST;
5595      hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5596      /* The sh_link field is set in final_write_processing.  */
5597    }
5598  else if (strcmp (name, ".conflict") == 0)
5599    hdr->sh_type = SHT_MIPS_CONFLICT;
5600  else if (CONST_STRNEQ (name, ".gptab."))
5601    {
5602      hdr->sh_type = SHT_MIPS_GPTAB;
5603      hdr->sh_entsize = sizeof (Elf32_External_gptab);
5604      /* The sh_info field is set in final_write_processing.  */
5605    }
5606  else if (strcmp (name, ".ucode") == 0)
5607    hdr->sh_type = SHT_MIPS_UCODE;
5608  else if (strcmp (name, ".mdebug") == 0)
5609    {
5610      hdr->sh_type = SHT_MIPS_DEBUG;
5611      /* In a shared object on IRIX 5.3, the .mdebug section has an
5612         entsize of 0.  FIXME: Does this matter?  */
5613      if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5614	hdr->sh_entsize = 0;
5615      else
5616	hdr->sh_entsize = 1;
5617    }
5618  else if (strcmp (name, ".reginfo") == 0)
5619    {
5620      hdr->sh_type = SHT_MIPS_REGINFO;
5621      /* In a shared object on IRIX 5.3, the .reginfo section has an
5622         entsize of 0x18.  FIXME: Does this matter?  */
5623      if (SGI_COMPAT (abfd))
5624	{
5625	  if ((abfd->flags & DYNAMIC) != 0)
5626	    hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5627	  else
5628	    hdr->sh_entsize = 1;
5629	}
5630      else
5631	hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5632    }
5633  else if (SGI_COMPAT (abfd)
5634	   && (strcmp (name, ".hash") == 0
5635	       || strcmp (name, ".dynamic") == 0
5636	       || strcmp (name, ".dynstr") == 0))
5637    {
5638      if (SGI_COMPAT (abfd))
5639	hdr->sh_entsize = 0;
5640#if 0
5641      /* This isn't how the IRIX6 linker behaves.  */
5642      hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5643#endif
5644    }
5645  else if (strcmp (name, ".got") == 0
5646	   || strcmp (name, ".srdata") == 0
5647	   || strcmp (name, ".sdata") == 0
5648	   || strcmp (name, ".sbss") == 0
5649	   || strcmp (name, ".lit4") == 0
5650	   || strcmp (name, ".lit8") == 0)
5651    hdr->sh_flags |= SHF_MIPS_GPREL;
5652  else if (strcmp (name, ".MIPS.interfaces") == 0)
5653    {
5654      hdr->sh_type = SHT_MIPS_IFACE;
5655      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5656    }
5657  else if (CONST_STRNEQ (name, ".MIPS.content"))
5658    {
5659      hdr->sh_type = SHT_MIPS_CONTENT;
5660      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5661      /* The sh_info field is set in final_write_processing.  */
5662    }
5663  else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5664    {
5665      hdr->sh_type = SHT_MIPS_OPTIONS;
5666      hdr->sh_entsize = 1;
5667      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5668    }
5669  else if (CONST_STRNEQ (name, ".debug_"))
5670    hdr->sh_type = SHT_MIPS_DWARF;
5671  else if (strcmp (name, ".MIPS.symlib") == 0)
5672    {
5673      hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5674      /* The sh_link and sh_info fields are set in
5675         final_write_processing.  */
5676    }
5677  else if (CONST_STRNEQ (name, ".MIPS.events")
5678	   || CONST_STRNEQ (name, ".MIPS.post_rel"))
5679    {
5680      hdr->sh_type = SHT_MIPS_EVENTS;
5681      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5682      /* The sh_link field is set in final_write_processing.  */
5683    }
5684  else if (strcmp (name, ".msym") == 0)
5685    {
5686      hdr->sh_type = SHT_MIPS_MSYM;
5687      hdr->sh_flags |= SHF_ALLOC;
5688      hdr->sh_entsize = 8;
5689    }
5690
5691  /* The generic elf_fake_sections will set up REL_HDR using the default
5692   kind of relocations.  We used to set up a second header for the
5693   non-default kind of relocations here, but only NewABI would use
5694   these, and the IRIX ld doesn't like resulting empty RELA sections.
5695   Thus we create those header only on demand now.  */
5696
5697  return TRUE;
5698}
5699
5700/* Given a BFD section, try to locate the corresponding ELF section
5701   index.  This is used by both the 32-bit and the 64-bit ABI.
5702   Actually, it's not clear to me that the 64-bit ABI supports these,
5703   but for non-PIC objects we will certainly want support for at least
5704   the .scommon section.  */
5705
5706bfd_boolean
5707_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5708					asection *sec, int *retval)
5709{
5710  if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5711    {
5712      *retval = SHN_MIPS_SCOMMON;
5713      return TRUE;
5714    }
5715  if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5716    {
5717      *retval = SHN_MIPS_ACOMMON;
5718      return TRUE;
5719    }
5720  return FALSE;
5721}
5722
5723/* Hook called by the linker routine which adds symbols from an object
5724   file.  We must handle the special MIPS section numbers here.  */
5725
5726bfd_boolean
5727_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5728			       Elf_Internal_Sym *sym, const char **namep,
5729			       flagword *flagsp ATTRIBUTE_UNUSED,
5730			       asection **secp, bfd_vma *valp)
5731{
5732  if (SGI_COMPAT (abfd)
5733      && (abfd->flags & DYNAMIC) != 0
5734      && strcmp (*namep, "_rld_new_interface") == 0)
5735    {
5736      /* Skip IRIX5 rld entry name.  */
5737      *namep = NULL;
5738      return TRUE;
5739    }
5740
5741  /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5742     a SECTION *ABS*.  This causes ld to think it can resolve _gp_disp
5743     by setting a DT_NEEDED for the shared object.  Since _gp_disp is
5744     a magic symbol resolved by the linker, we ignore this bogus definition
5745     of _gp_disp.  New ABI objects do not suffer from this problem so this
5746     is not done for them. */
5747  if (!NEWABI_P(abfd)
5748      && (sym->st_shndx == SHN_ABS)
5749      && (strcmp (*namep, "_gp_disp") == 0))
5750    {
5751      *namep = NULL;
5752      return TRUE;
5753    }
5754
5755  switch (sym->st_shndx)
5756    {
5757    case SHN_COMMON:
5758      /* Common symbols less than the GP size are automatically
5759	 treated as SHN_MIPS_SCOMMON symbols.  */
5760      if (sym->st_size > elf_gp_size (abfd)
5761	  || ELF_ST_TYPE (sym->st_info) == STT_TLS
5762	  || IRIX_COMPAT (abfd) == ict_irix6)
5763	break;
5764      /* Fall through.  */
5765    case SHN_MIPS_SCOMMON:
5766      *secp = bfd_make_section_old_way (abfd, ".scommon");
5767      (*secp)->flags |= SEC_IS_COMMON;
5768      *valp = sym->st_size;
5769      break;
5770
5771    case SHN_MIPS_TEXT:
5772      /* This section is used in a shared object.  */
5773      if (elf_tdata (abfd)->elf_text_section == NULL)
5774	{
5775	  asymbol *elf_text_symbol;
5776	  asection *elf_text_section;
5777	  bfd_size_type amt = sizeof (asection);
5778
5779	  elf_text_section = bfd_zalloc (abfd, amt);
5780	  if (elf_text_section == NULL)
5781	    return FALSE;
5782
5783	  amt = sizeof (asymbol);
5784	  elf_text_symbol = bfd_zalloc (abfd, amt);
5785	  if (elf_text_symbol == NULL)
5786	    return FALSE;
5787
5788	  /* Initialize the section.  */
5789
5790	  elf_tdata (abfd)->elf_text_section = elf_text_section;
5791	  elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5792
5793	  elf_text_section->symbol = elf_text_symbol;
5794	  elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5795
5796	  elf_text_section->name = ".text";
5797	  elf_text_section->flags = SEC_NO_FLAGS;
5798	  elf_text_section->output_section = NULL;
5799	  elf_text_section->owner = abfd;
5800	  elf_text_symbol->name = ".text";
5801	  elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5802	  elf_text_symbol->section = elf_text_section;
5803	}
5804      /* This code used to do *secp = bfd_und_section_ptr if
5805         info->shared.  I don't know why, and that doesn't make sense,
5806         so I took it out.  */
5807      *secp = elf_tdata (abfd)->elf_text_section;
5808      break;
5809
5810    case SHN_MIPS_ACOMMON:
5811      /* Fall through. XXX Can we treat this as allocated data?  */
5812    case SHN_MIPS_DATA:
5813      /* This section is used in a shared object.  */
5814      if (elf_tdata (abfd)->elf_data_section == NULL)
5815	{
5816	  asymbol *elf_data_symbol;
5817	  asection *elf_data_section;
5818	  bfd_size_type amt = sizeof (asection);
5819
5820	  elf_data_section = bfd_zalloc (abfd, amt);
5821	  if (elf_data_section == NULL)
5822	    return FALSE;
5823
5824	  amt = sizeof (asymbol);
5825	  elf_data_symbol = bfd_zalloc (abfd, amt);
5826	  if (elf_data_symbol == NULL)
5827	    return FALSE;
5828
5829	  /* Initialize the section.  */
5830
5831	  elf_tdata (abfd)->elf_data_section = elf_data_section;
5832	  elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5833
5834	  elf_data_section->symbol = elf_data_symbol;
5835	  elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5836
5837	  elf_data_section->name = ".data";
5838	  elf_data_section->flags = SEC_NO_FLAGS;
5839	  elf_data_section->output_section = NULL;
5840	  elf_data_section->owner = abfd;
5841	  elf_data_symbol->name = ".data";
5842	  elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5843	  elf_data_symbol->section = elf_data_section;
5844	}
5845      /* This code used to do *secp = bfd_und_section_ptr if
5846         info->shared.  I don't know why, and that doesn't make sense,
5847         so I took it out.  */
5848      *secp = elf_tdata (abfd)->elf_data_section;
5849      break;
5850
5851    case SHN_MIPS_SUNDEFINED:
5852      *secp = bfd_und_section_ptr;
5853      break;
5854    }
5855
5856  if (SGI_COMPAT (abfd)
5857      && ! info->shared
5858      && info->hash->creator == abfd->xvec
5859      && strcmp (*namep, "__rld_obj_head") == 0)
5860    {
5861      struct elf_link_hash_entry *h;
5862      struct bfd_link_hash_entry *bh;
5863
5864      /* Mark __rld_obj_head as dynamic.  */
5865      bh = NULL;
5866      if (! (_bfd_generic_link_add_one_symbol
5867	     (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5868	      get_elf_backend_data (abfd)->collect, &bh)))
5869	return FALSE;
5870
5871      h = (struct elf_link_hash_entry *) bh;
5872      h->non_elf = 0;
5873      h->def_regular = 1;
5874      h->type = STT_OBJECT;
5875
5876      if (! bfd_elf_link_record_dynamic_symbol (info, h))
5877	return FALSE;
5878
5879      mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5880    }
5881
5882  /* If this is a mips16 text symbol, add 1 to the value to make it
5883     odd.  This will cause something like .word SYM to come up with
5884     the right value when it is loaded into the PC.  */
5885  if (sym->st_other == STO_MIPS16)
5886    ++*valp;
5887
5888  return TRUE;
5889}
5890
5891/* This hook function is called before the linker writes out a global
5892   symbol.  We mark symbols as small common if appropriate.  This is
5893   also where we undo the increment of the value for a mips16 symbol.  */
5894
5895bfd_boolean
5896_bfd_mips_elf_link_output_symbol_hook
5897  (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5898   const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5899   asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5900{
5901  /* If we see a common symbol, which implies a relocatable link, then
5902     if a symbol was small common in an input file, mark it as small
5903     common in the output file.  */
5904  if (sym->st_shndx == SHN_COMMON
5905      && strcmp (input_sec->name, ".scommon") == 0)
5906    sym->st_shndx = SHN_MIPS_SCOMMON;
5907
5908  if (sym->st_other == STO_MIPS16)
5909    sym->st_value &= ~1;
5910
5911  return TRUE;
5912}
5913
5914/* Functions for the dynamic linker.  */
5915
5916/* Create dynamic sections when linking against a dynamic object.  */
5917
5918bfd_boolean
5919_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5920{
5921  struct elf_link_hash_entry *h;
5922  struct bfd_link_hash_entry *bh;
5923  flagword flags;
5924  register asection *s;
5925  const char * const *namep;
5926  struct mips_elf_link_hash_table *htab;
5927
5928  htab = mips_elf_hash_table (info);
5929  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5930	   | SEC_LINKER_CREATED | SEC_READONLY);
5931
5932  /* The psABI requires a read-only .dynamic section, but the VxWorks
5933     EABI doesn't.  */
5934  if (!htab->is_vxworks)
5935    {
5936      s = bfd_get_section_by_name (abfd, ".dynamic");
5937      if (s != NULL)
5938	{
5939	  if (! bfd_set_section_flags (abfd, s, flags))
5940	    return FALSE;
5941	}
5942    }
5943
5944  /* We need to create .got section.  */
5945  if (! mips_elf_create_got_section (abfd, info, FALSE))
5946    return FALSE;
5947
5948  if (! mips_elf_rel_dyn_section (info, TRUE))
5949    return FALSE;
5950
5951  /* Create .stub section.  */
5952  if (bfd_get_section_by_name (abfd,
5953			       MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5954    {
5955      s = bfd_make_section_with_flags (abfd,
5956				       MIPS_ELF_STUB_SECTION_NAME (abfd),
5957				       flags | SEC_CODE);
5958      if (s == NULL
5959	  || ! bfd_set_section_alignment (abfd, s,
5960					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5961	return FALSE;
5962    }
5963
5964  if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5965      && !info->shared
5966      && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5967    {
5968      s = bfd_make_section_with_flags (abfd, ".rld_map",
5969				       flags &~ (flagword) SEC_READONLY);
5970      if (s == NULL
5971	  || ! bfd_set_section_alignment (abfd, s,
5972					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5973	return FALSE;
5974    }
5975
5976  /* On IRIX5, we adjust add some additional symbols and change the
5977     alignments of several sections.  There is no ABI documentation
5978     indicating that this is necessary on IRIX6, nor any evidence that
5979     the linker takes such action.  */
5980  if (IRIX_COMPAT (abfd) == ict_irix5)
5981    {
5982      for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5983	{
5984	  bh = NULL;
5985	  if (! (_bfd_generic_link_add_one_symbol
5986		 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5987		  NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5988	    return FALSE;
5989
5990	  h = (struct elf_link_hash_entry *) bh;
5991	  h->non_elf = 0;
5992	  h->def_regular = 1;
5993	  h->type = STT_SECTION;
5994
5995	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
5996	    return FALSE;
5997	}
5998
5999      /* We need to create a .compact_rel section.  */
6000      if (SGI_COMPAT (abfd))
6001	{
6002	  if (!mips_elf_create_compact_rel_section (abfd, info))
6003	    return FALSE;
6004	}
6005
6006      /* Change alignments of some sections.  */
6007      s = bfd_get_section_by_name (abfd, ".hash");
6008      if (s != NULL)
6009	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6010      s = bfd_get_section_by_name (abfd, ".dynsym");
6011      if (s != NULL)
6012	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6013      s = bfd_get_section_by_name (abfd, ".dynstr");
6014      if (s != NULL)
6015	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6016      s = bfd_get_section_by_name (abfd, ".reginfo");
6017      if (s != NULL)
6018	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6019      s = bfd_get_section_by_name (abfd, ".dynamic");
6020      if (s != NULL)
6021	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6022    }
6023
6024  if (!info->shared)
6025    {
6026      const char *name;
6027
6028      name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6029      bh = NULL;
6030      if (!(_bfd_generic_link_add_one_symbol
6031	    (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6032	     NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6033	return FALSE;
6034
6035      h = (struct elf_link_hash_entry *) bh;
6036      h->non_elf = 0;
6037      h->def_regular = 1;
6038      h->type = STT_SECTION;
6039
6040      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6041	return FALSE;
6042
6043      if (! mips_elf_hash_table (info)->use_rld_obj_head)
6044	{
6045	  /* __rld_map is a four byte word located in the .data section
6046	     and is filled in by the rtld to contain a pointer to
6047	     the _r_debug structure. Its symbol value will be set in
6048	     _bfd_mips_elf_finish_dynamic_symbol.  */
6049	  s = bfd_get_section_by_name (abfd, ".rld_map");
6050	  BFD_ASSERT (s != NULL);
6051
6052	  name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6053	  bh = NULL;
6054	  if (!(_bfd_generic_link_add_one_symbol
6055		(info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6056		 get_elf_backend_data (abfd)->collect, &bh)))
6057	    return FALSE;
6058
6059	  h = (struct elf_link_hash_entry *) bh;
6060	  h->non_elf = 0;
6061	  h->def_regular = 1;
6062	  h->type = STT_OBJECT;
6063
6064	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
6065	    return FALSE;
6066	}
6067    }
6068
6069  if (htab->is_vxworks)
6070    {
6071      /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6072	 Also create the _PROCEDURE_LINKAGE_TABLE symbol.  */
6073      if (!_bfd_elf_create_dynamic_sections (abfd, info))
6074	return FALSE;
6075
6076      /* Cache the sections created above.  */
6077      htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6078      htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6079      htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6080      htab->splt = bfd_get_section_by_name (abfd, ".plt");
6081      if (!htab->sdynbss
6082	  || (!htab->srelbss && !info->shared)
6083	  || !htab->srelplt
6084	  || !htab->splt)
6085	abort ();
6086
6087      /* Do the usual VxWorks handling.  */
6088      if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6089	return FALSE;
6090
6091      /* Work out the PLT sizes.  */
6092      if (info->shared)
6093	{
6094	  htab->plt_header_size
6095	    = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6096	  htab->plt_entry_size
6097	    = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6098	}
6099      else
6100	{
6101	  htab->plt_header_size
6102	    = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6103	  htab->plt_entry_size
6104	    = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6105	}
6106    }
6107
6108  return TRUE;
6109}
6110
6111/* Look through the relocs for a section during the first phase, and
6112   allocate space in the global offset table.  */
6113
6114bfd_boolean
6115_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6116			    asection *sec, const Elf_Internal_Rela *relocs)
6117{
6118  const char *name;
6119  bfd *dynobj;
6120  Elf_Internal_Shdr *symtab_hdr;
6121  struct elf_link_hash_entry **sym_hashes;
6122  struct mips_got_info *g;
6123  size_t extsymoff;
6124  const Elf_Internal_Rela *rel;
6125  const Elf_Internal_Rela *rel_end;
6126  asection *sgot;
6127  asection *sreloc;
6128  const struct elf_backend_data *bed;
6129  struct mips_elf_link_hash_table *htab;
6130
6131  if (info->relocatable)
6132    return TRUE;
6133
6134  htab = mips_elf_hash_table (info);
6135  dynobj = elf_hash_table (info)->dynobj;
6136  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6137  sym_hashes = elf_sym_hashes (abfd);
6138  extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6139
6140  /* Check for the mips16 stub sections.  */
6141
6142  name = bfd_get_section_name (abfd, sec);
6143  if (FN_STUB_P (name))
6144    {
6145      unsigned long r_symndx;
6146
6147      /* Look at the relocation information to figure out which symbol
6148         this is for.  */
6149
6150      r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6151
6152      if (r_symndx < extsymoff
6153	  || sym_hashes[r_symndx - extsymoff] == NULL)
6154	{
6155	  asection *o;
6156
6157	  /* This stub is for a local symbol.  This stub will only be
6158             needed if there is some relocation in this BFD, other
6159             than a 16 bit function call, which refers to this symbol.  */
6160	  for (o = abfd->sections; o != NULL; o = o->next)
6161	    {
6162	      Elf_Internal_Rela *sec_relocs;
6163	      const Elf_Internal_Rela *r, *rend;
6164
6165	      /* We can ignore stub sections when looking for relocs.  */
6166	      if ((o->flags & SEC_RELOC) == 0
6167		  || o->reloc_count == 0
6168		  || mips16_stub_section_p (abfd, o))
6169		continue;
6170
6171	      sec_relocs
6172		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6173					     info->keep_memory);
6174	      if (sec_relocs == NULL)
6175		return FALSE;
6176
6177	      rend = sec_relocs + o->reloc_count;
6178	      for (r = sec_relocs; r < rend; r++)
6179		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6180		    && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6181		  break;
6182
6183	      if (elf_section_data (o)->relocs != sec_relocs)
6184		free (sec_relocs);
6185
6186	      if (r < rend)
6187		break;
6188	    }
6189
6190	  if (o == NULL)
6191	    {
6192	      /* There is no non-call reloc for this stub, so we do
6193                 not need it.  Since this function is called before
6194                 the linker maps input sections to output sections, we
6195                 can easily discard it by setting the SEC_EXCLUDE
6196                 flag.  */
6197	      sec->flags |= SEC_EXCLUDE;
6198	      return TRUE;
6199	    }
6200
6201	  /* Record this stub in an array of local symbol stubs for
6202             this BFD.  */
6203	  if (elf_tdata (abfd)->local_stubs == NULL)
6204	    {
6205	      unsigned long symcount;
6206	      asection **n;
6207	      bfd_size_type amt;
6208
6209	      if (elf_bad_symtab (abfd))
6210		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6211	      else
6212		symcount = symtab_hdr->sh_info;
6213	      amt = symcount * sizeof (asection *);
6214	      n = bfd_zalloc (abfd, amt);
6215	      if (n == NULL)
6216		return FALSE;
6217	      elf_tdata (abfd)->local_stubs = n;
6218	    }
6219
6220	  sec->flags |= SEC_KEEP;
6221	  elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6222
6223	  /* We don't need to set mips16_stubs_seen in this case.
6224             That flag is used to see whether we need to look through
6225             the global symbol table for stubs.  We don't need to set
6226             it here, because we just have a local stub.  */
6227	}
6228      else
6229	{
6230	  struct mips_elf_link_hash_entry *h;
6231
6232	  h = ((struct mips_elf_link_hash_entry *)
6233	       sym_hashes[r_symndx - extsymoff]);
6234
6235	  while (h->root.root.type == bfd_link_hash_indirect
6236		 || h->root.root.type == bfd_link_hash_warning)
6237	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6238
6239	  /* H is the symbol this stub is for.  */
6240
6241	  /* If we already have an appropriate stub for this function, we
6242	     don't need another one, so we can discard this one.  Since
6243	     this function is called before the linker maps input sections
6244	     to output sections, we can easily discard it by setting the
6245	     SEC_EXCLUDE flag.  */
6246	  if (h->fn_stub != NULL)
6247	    {
6248	      sec->flags |= SEC_EXCLUDE;
6249	      return TRUE;
6250	    }
6251
6252	  sec->flags |= SEC_KEEP;
6253	  h->fn_stub = sec;
6254	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6255	}
6256    }
6257  else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6258    {
6259      unsigned long r_symndx;
6260      struct mips_elf_link_hash_entry *h;
6261      asection **loc;
6262
6263      /* Look at the relocation information to figure out which symbol
6264         this is for.  */
6265
6266      r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6267
6268      if (r_symndx < extsymoff
6269	  || sym_hashes[r_symndx - extsymoff] == NULL)
6270	{
6271	  asection *o;
6272
6273	  /* This stub is for a local symbol.  This stub will only be
6274             needed if there is some relocation (R_MIPS16_26) in this BFD
6275             that refers to this symbol.  */
6276	  for (o = abfd->sections; o != NULL; o = o->next)
6277	    {
6278	      Elf_Internal_Rela *sec_relocs;
6279	      const Elf_Internal_Rela *r, *rend;
6280
6281	      /* We can ignore stub sections when looking for relocs.  */
6282	      if ((o->flags & SEC_RELOC) == 0
6283		  || o->reloc_count == 0
6284		  || mips16_stub_section_p (abfd, o))
6285		continue;
6286
6287	      sec_relocs
6288		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6289					     info->keep_memory);
6290	      if (sec_relocs == NULL)
6291		return FALSE;
6292
6293	      rend = sec_relocs + o->reloc_count;
6294	      for (r = sec_relocs; r < rend; r++)
6295		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6296		    && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6297		    break;
6298
6299	      if (elf_section_data (o)->relocs != sec_relocs)
6300		free (sec_relocs);
6301
6302	      if (r < rend)
6303		break;
6304	    }
6305
6306	  if (o == NULL)
6307	    {
6308	      /* There is no non-call reloc for this stub, so we do
6309                 not need it.  Since this function is called before
6310                 the linker maps input sections to output sections, we
6311                 can easily discard it by setting the SEC_EXCLUDE
6312                 flag.  */
6313	      sec->flags |= SEC_EXCLUDE;
6314	      return TRUE;
6315	    }
6316
6317	  /* Record this stub in an array of local symbol call_stubs for
6318             this BFD.  */
6319	  if (elf_tdata (abfd)->local_call_stubs == NULL)
6320	    {
6321	      unsigned long symcount;
6322	      asection **n;
6323	      bfd_size_type amt;
6324
6325	      if (elf_bad_symtab (abfd))
6326		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6327	      else
6328		symcount = symtab_hdr->sh_info;
6329	      amt = symcount * sizeof (asection *);
6330	      n = bfd_zalloc (abfd, amt);
6331	      if (n == NULL)
6332		return FALSE;
6333	      elf_tdata (abfd)->local_call_stubs = n;
6334	    }
6335
6336	  sec->flags |= SEC_KEEP;
6337	  elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6338
6339	  /* We don't need to set mips16_stubs_seen in this case.
6340             That flag is used to see whether we need to look through
6341             the global symbol table for stubs.  We don't need to set
6342             it here, because we just have a local stub.  */
6343	}
6344      else
6345	{
6346	  h = ((struct mips_elf_link_hash_entry *)
6347	       sym_hashes[r_symndx - extsymoff]);
6348
6349	  /* H is the symbol this stub is for.  */
6350
6351	  if (CALL_FP_STUB_P (name))
6352	    loc = &h->call_fp_stub;
6353	  else
6354	    loc = &h->call_stub;
6355
6356	  /* If we already have an appropriate stub for this function, we
6357	     don't need another one, so we can discard this one.  Since
6358	     this function is called before the linker maps input sections
6359	     to output sections, we can easily discard it by setting the
6360	     SEC_EXCLUDE flag.  */
6361	  if (*loc != NULL)
6362	    {
6363	      sec->flags |= SEC_EXCLUDE;
6364	      return TRUE;
6365	    }
6366
6367	  sec->flags |= SEC_KEEP;
6368	  *loc = sec;
6369	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6370	}
6371    }
6372
6373  if (dynobj == NULL)
6374    {
6375      sgot = NULL;
6376      g = NULL;
6377    }
6378  else
6379    {
6380      sgot = mips_elf_got_section (dynobj, FALSE);
6381      if (sgot == NULL)
6382	g = NULL;
6383      else
6384	{
6385	  BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6386	  g = mips_elf_section_data (sgot)->u.got_info;
6387	  BFD_ASSERT (g != NULL);
6388	}
6389    }
6390
6391  sreloc = NULL;
6392  bed = get_elf_backend_data (abfd);
6393  rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6394  for (rel = relocs; rel < rel_end; ++rel)
6395    {
6396      unsigned long r_symndx;
6397      unsigned int r_type;
6398      struct elf_link_hash_entry *h;
6399
6400      r_symndx = ELF_R_SYM (abfd, rel->r_info);
6401      r_type = ELF_R_TYPE (abfd, rel->r_info);
6402
6403      if (r_symndx < extsymoff)
6404	h = NULL;
6405      else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6406	{
6407	  (*_bfd_error_handler)
6408	    (_("%B: Malformed reloc detected for section %s"),
6409	     abfd, name);
6410	  bfd_set_error (bfd_error_bad_value);
6411	  return FALSE;
6412	}
6413      else
6414	{
6415	  h = sym_hashes[r_symndx - extsymoff];
6416
6417	  /* This may be an indirect symbol created because of a version.  */
6418	  if (h != NULL)
6419	    {
6420	      while (h->root.type == bfd_link_hash_indirect)
6421		h = (struct elf_link_hash_entry *) h->root.u.i.link;
6422	    }
6423	}
6424
6425      /* Some relocs require a global offset table.  */
6426      if (dynobj == NULL || sgot == NULL)
6427	{
6428	  switch (r_type)
6429	    {
6430	    case R_MIPS_GOT16:
6431	    case R_MIPS_CALL16:
6432	    case R_MIPS_CALL_HI16:
6433	    case R_MIPS_CALL_LO16:
6434	    case R_MIPS_GOT_HI16:
6435	    case R_MIPS_GOT_LO16:
6436	    case R_MIPS_GOT_PAGE:
6437	    case R_MIPS_GOT_OFST:
6438	    case R_MIPS_GOT_DISP:
6439	    case R_MIPS_TLS_GOTTPREL:
6440	    case R_MIPS_TLS_GD:
6441	    case R_MIPS_TLS_LDM:
6442	      if (dynobj == NULL)
6443		elf_hash_table (info)->dynobj = dynobj = abfd;
6444	      if (! mips_elf_create_got_section (dynobj, info, FALSE))
6445		return FALSE;
6446	      g = mips_elf_got_info (dynobj, &sgot);
6447	      if (htab->is_vxworks && !info->shared)
6448		{
6449		  (*_bfd_error_handler)
6450		    (_("%B: GOT reloc at 0x%lx not expected in executables"),
6451		     abfd, (unsigned long) rel->r_offset);
6452		  bfd_set_error (bfd_error_bad_value);
6453		  return FALSE;
6454		}
6455	      break;
6456
6457	    case R_MIPS_32:
6458	    case R_MIPS_REL32:
6459	    case R_MIPS_64:
6460	      /* In VxWorks executables, references to external symbols
6461		 are handled using copy relocs or PLT stubs, so there's
6462		 no need to add a dynamic relocation here.  */
6463	      if (dynobj == NULL
6464		  && (info->shared || (h != NULL && !htab->is_vxworks))
6465		  && (sec->flags & SEC_ALLOC) != 0)
6466		elf_hash_table (info)->dynobj = dynobj = abfd;
6467	      break;
6468
6469	    default:
6470	      break;
6471	    }
6472	}
6473
6474      if (h)
6475	{
6476	  ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6477
6478	  /* Relocations against the special VxWorks __GOTT_BASE__ and
6479	     __GOTT_INDEX__ symbols must be left to the loader.  Allocate
6480	     room for them in .rela.dyn.  */
6481	  if (is_gott_symbol (info, h))
6482	    {
6483	      if (sreloc == NULL)
6484		{
6485		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
6486		  if (sreloc == NULL)
6487		    return FALSE;
6488		}
6489	      mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6490	      if (MIPS_ELF_READONLY_SECTION (sec))
6491		/* We tell the dynamic linker that there are
6492		   relocations against the text segment.  */
6493		info->flags |= DF_TEXTREL;
6494	    }
6495	}
6496      else if (r_type == R_MIPS_CALL_LO16
6497	       || r_type == R_MIPS_GOT_LO16
6498	       || r_type == R_MIPS_GOT_DISP
6499	       || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6500	{
6501	  /* We may need a local GOT entry for this relocation.  We
6502	     don't count R_MIPS_GOT_PAGE because we can estimate the
6503	     maximum number of pages needed by looking at the size of
6504	     the segment.  Similar comments apply to R_MIPS_GOT16 and
6505	     R_MIPS_CALL16, except on VxWorks, where GOT relocations
6506	     always evaluate to "G".  We don't count R_MIPS_GOT_HI16, or
6507	     R_MIPS_CALL_HI16 because these are always followed by an
6508	     R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */
6509	  if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6510						  rel->r_addend, g, 0))
6511	    return FALSE;
6512	}
6513
6514      switch (r_type)
6515	{
6516	case R_MIPS_CALL16:
6517	  if (h == NULL)
6518	    {
6519	      (*_bfd_error_handler)
6520		(_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6521		 abfd, (unsigned long) rel->r_offset);
6522	      bfd_set_error (bfd_error_bad_value);
6523	      return FALSE;
6524	    }
6525	  /* Fall through.  */
6526
6527	case R_MIPS_CALL_HI16:
6528	case R_MIPS_CALL_LO16:
6529	  if (h != NULL)
6530	    {
6531	      /* VxWorks call relocations point the function's .got.plt
6532		 entry, which will be allocated by adjust_dynamic_symbol.
6533		 Otherwise, this symbol requires a global GOT entry.  */
6534	      if (!htab->is_vxworks
6535		  && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6536		return FALSE;
6537
6538	      /* We need a stub, not a plt entry for the undefined
6539		 function.  But we record it as if it needs plt.  See
6540		 _bfd_elf_adjust_dynamic_symbol.  */
6541	      h->needs_plt = 1;
6542	      h->type = STT_FUNC;
6543	    }
6544	  break;
6545
6546	case R_MIPS_GOT_PAGE:
6547	  /* If this is a global, overridable symbol, GOT_PAGE will
6548	     decay to GOT_DISP, so we'll need a GOT entry for it.  */
6549	  if (h == NULL)
6550	    break;
6551	  else
6552	    {
6553	      struct mips_elf_link_hash_entry *hmips =
6554		(struct mips_elf_link_hash_entry *) h;
6555
6556	      while (hmips->root.root.type == bfd_link_hash_indirect
6557		     || hmips->root.root.type == bfd_link_hash_warning)
6558		hmips = (struct mips_elf_link_hash_entry *)
6559		  hmips->root.root.u.i.link;
6560
6561	      if (hmips->root.def_regular
6562		  && ! (info->shared && ! info->symbolic
6563			&& ! hmips->root.forced_local))
6564		break;
6565	    }
6566	  /* Fall through.  */
6567
6568	case R_MIPS_GOT16:
6569	case R_MIPS_GOT_HI16:
6570	case R_MIPS_GOT_LO16:
6571	case R_MIPS_GOT_DISP:
6572	  if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6573	    return FALSE;
6574	  break;
6575
6576	case R_MIPS_TLS_GOTTPREL:
6577	  if (info->shared)
6578	    info->flags |= DF_STATIC_TLS;
6579	  /* Fall through */
6580
6581	case R_MIPS_TLS_LDM:
6582	  if (r_type == R_MIPS_TLS_LDM)
6583	    {
6584	      r_symndx = 0;
6585	      h = NULL;
6586	    }
6587	  /* Fall through */
6588
6589	case R_MIPS_TLS_GD:
6590	  /* This symbol requires a global offset table entry, or two
6591	     for TLS GD relocations.  */
6592	  {
6593	    unsigned char flag = (r_type == R_MIPS_TLS_GD
6594				  ? GOT_TLS_GD
6595				  : r_type == R_MIPS_TLS_LDM
6596				  ? GOT_TLS_LDM
6597				  : GOT_TLS_IE);
6598	    if (h != NULL)
6599	      {
6600		struct mips_elf_link_hash_entry *hmips =
6601		  (struct mips_elf_link_hash_entry *) h;
6602		hmips->tls_type |= flag;
6603
6604		if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6605		  return FALSE;
6606	      }
6607	    else
6608	      {
6609		BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6610
6611		if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6612							rel->r_addend, g, flag))
6613		  return FALSE;
6614	      }
6615	  }
6616	  break;
6617
6618	case R_MIPS_32:
6619	case R_MIPS_REL32:
6620	case R_MIPS_64:
6621	  /* In VxWorks executables, references to external symbols
6622	     are handled using copy relocs or PLT stubs, so there's
6623	     no need to add a .rela.dyn entry for this relocation.  */
6624	  if ((info->shared || (h != NULL && !htab->is_vxworks))
6625	      && (sec->flags & SEC_ALLOC) != 0)
6626	    {
6627	      if (sreloc == NULL)
6628		{
6629		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
6630		  if (sreloc == NULL)
6631		    return FALSE;
6632		}
6633	      if (info->shared)
6634		{
6635		  /* When creating a shared object, we must copy these
6636		     reloc types into the output file as R_MIPS_REL32
6637		     relocs.  Make room for this reloc in .rel(a).dyn.  */
6638		  mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6639		  if (MIPS_ELF_READONLY_SECTION (sec))
6640		    /* We tell the dynamic linker that there are
6641		       relocations against the text segment.  */
6642		    info->flags |= DF_TEXTREL;
6643		}
6644	      else
6645		{
6646		  struct mips_elf_link_hash_entry *hmips;
6647
6648		  /* We only need to copy this reloc if the symbol is
6649                     defined in a dynamic object.  */
6650		  hmips = (struct mips_elf_link_hash_entry *) h;
6651		  ++hmips->possibly_dynamic_relocs;
6652		  if (MIPS_ELF_READONLY_SECTION (sec))
6653		    /* We need it to tell the dynamic linker if there
6654		       are relocations against the text segment.  */
6655		    hmips->readonly_reloc = TRUE;
6656		}
6657
6658	      /* Even though we don't directly need a GOT entry for
6659		 this symbol, a symbol must have a dynamic symbol
6660		 table index greater that DT_MIPS_GOTSYM if there are
6661		 dynamic relocations against it.  This does not apply
6662		 to VxWorks, which does not have the usual coupling
6663		 between global GOT entries and .dynsym entries.  */
6664	      if (h != NULL && !htab->is_vxworks)
6665		{
6666		  if (dynobj == NULL)
6667		    elf_hash_table (info)->dynobj = dynobj = abfd;
6668		  if (! mips_elf_create_got_section (dynobj, info, TRUE))
6669		    return FALSE;
6670		  g = mips_elf_got_info (dynobj, &sgot);
6671		  if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6672		    return FALSE;
6673		}
6674	    }
6675
6676	  if (SGI_COMPAT (abfd))
6677	    mips_elf_hash_table (info)->compact_rel_size +=
6678	      sizeof (Elf32_External_crinfo);
6679	  break;
6680
6681	case R_MIPS_PC16:
6682	  if (h)
6683	    ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6684	  break;
6685
6686	case R_MIPS_26:
6687	  if (h)
6688	    ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6689	  /* Fall through.  */
6690
6691	case R_MIPS_GPREL16:
6692	case R_MIPS_LITERAL:
6693	case R_MIPS_GPREL32:
6694	  if (SGI_COMPAT (abfd))
6695	    mips_elf_hash_table (info)->compact_rel_size +=
6696	      sizeof (Elf32_External_crinfo);
6697	  break;
6698
6699	  /* This relocation describes the C++ object vtable hierarchy.
6700	     Reconstruct it for later use during GC.  */
6701	case R_MIPS_GNU_VTINHERIT:
6702	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6703	    return FALSE;
6704	  break;
6705
6706	  /* This relocation describes which C++ vtable entries are actually
6707	     used.  Record for later use during GC.  */
6708	case R_MIPS_GNU_VTENTRY:
6709	  if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6710	    return FALSE;
6711	  break;
6712
6713	default:
6714	  break;
6715	}
6716
6717      /* We must not create a stub for a symbol that has relocations
6718	 related to taking the function's address.  This doesn't apply to
6719	 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6720	 a normal .got entry.  */
6721      if (!htab->is_vxworks && h != NULL)
6722	switch (r_type)
6723	  {
6724	  default:
6725	    ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6726	    break;
6727	  case R_MIPS_CALL16:
6728	  case R_MIPS_CALL_HI16:
6729	  case R_MIPS_CALL_LO16:
6730	  case R_MIPS_JALR:
6731	    break;
6732	  }
6733
6734      /* If this reloc is not a 16 bit call, and it has a global
6735         symbol, then we will need the fn_stub if there is one.
6736         References from a stub section do not count.  */
6737      if (h != NULL
6738	  && r_type != R_MIPS16_26
6739	  && !mips16_stub_section_p (abfd, sec))
6740	{
6741	  struct mips_elf_link_hash_entry *mh;
6742
6743	  mh = (struct mips_elf_link_hash_entry *) h;
6744	  mh->need_fn_stub = TRUE;
6745	}
6746    }
6747
6748  return TRUE;
6749}
6750
6751bfd_boolean
6752_bfd_mips_relax_section (bfd *abfd, asection *sec,
6753			 struct bfd_link_info *link_info,
6754			 bfd_boolean *again)
6755{
6756  Elf_Internal_Rela *internal_relocs;
6757  Elf_Internal_Rela *irel, *irelend;
6758  Elf_Internal_Shdr *symtab_hdr;
6759  bfd_byte *contents = NULL;
6760  size_t extsymoff;
6761  bfd_boolean changed_contents = FALSE;
6762  bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6763  Elf_Internal_Sym *isymbuf = NULL;
6764
6765  /* We are not currently changing any sizes, so only one pass.  */
6766  *again = FALSE;
6767
6768  if (link_info->relocatable)
6769    return TRUE;
6770
6771  internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6772					       link_info->keep_memory);
6773  if (internal_relocs == NULL)
6774    return TRUE;
6775
6776  irelend = internal_relocs + sec->reloc_count
6777    * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6778  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6779  extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6780
6781  for (irel = internal_relocs; irel < irelend; irel++)
6782    {
6783      bfd_vma symval;
6784      bfd_signed_vma sym_offset;
6785      unsigned int r_type;
6786      unsigned long r_symndx;
6787      asection *sym_sec;
6788      unsigned long instruction;
6789
6790      /* Turn jalr into bgezal, and jr into beq, if they're marked
6791	 with a JALR relocation, that indicate where they jump to.
6792	 This saves some pipeline bubbles.  */
6793      r_type = ELF_R_TYPE (abfd, irel->r_info);
6794      if (r_type != R_MIPS_JALR)
6795	continue;
6796
6797      r_symndx = ELF_R_SYM (abfd, irel->r_info);
6798      /* Compute the address of the jump target.  */
6799      if (r_symndx >= extsymoff)
6800	{
6801	  struct mips_elf_link_hash_entry *h
6802	    = ((struct mips_elf_link_hash_entry *)
6803	       elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6804
6805	  while (h->root.root.type == bfd_link_hash_indirect
6806		 || h->root.root.type == bfd_link_hash_warning)
6807	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6808
6809	  /* If a symbol is undefined, or if it may be overridden,
6810	     skip it.  */
6811	  if (! ((h->root.root.type == bfd_link_hash_defined
6812		  || h->root.root.type == bfd_link_hash_defweak)
6813		 && h->root.root.u.def.section)
6814	      || (link_info->shared && ! link_info->symbolic
6815		  && !h->root.forced_local))
6816	    continue;
6817
6818	  sym_sec = h->root.root.u.def.section;
6819	  if (sym_sec->output_section)
6820	    symval = (h->root.root.u.def.value
6821		      + sym_sec->output_section->vma
6822		      + sym_sec->output_offset);
6823	  else
6824	    symval = h->root.root.u.def.value;
6825	}
6826      else
6827	{
6828	  Elf_Internal_Sym *isym;
6829
6830	  /* Read this BFD's symbols if we haven't done so already.  */
6831	  if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6832	    {
6833	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6834	      if (isymbuf == NULL)
6835		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6836						symtab_hdr->sh_info, 0,
6837						NULL, NULL, NULL);
6838	      if (isymbuf == NULL)
6839		goto relax_return;
6840	    }
6841
6842	  isym = isymbuf + r_symndx;
6843	  if (isym->st_shndx == SHN_UNDEF)
6844	    continue;
6845	  else if (isym->st_shndx == SHN_ABS)
6846	    sym_sec = bfd_abs_section_ptr;
6847	  else if (isym->st_shndx == SHN_COMMON)
6848	    sym_sec = bfd_com_section_ptr;
6849	  else
6850	    sym_sec
6851	      = bfd_section_from_elf_index (abfd, isym->st_shndx);
6852	  symval = isym->st_value
6853	    + sym_sec->output_section->vma
6854	    + sym_sec->output_offset;
6855	}
6856
6857      /* Compute branch offset, from delay slot of the jump to the
6858	 branch target.  */
6859      sym_offset = (symval + irel->r_addend)
6860	- (sec_start + irel->r_offset + 4);
6861
6862      /* Branch offset must be properly aligned.  */
6863      if ((sym_offset & 3) != 0)
6864	continue;
6865
6866      sym_offset >>= 2;
6867
6868      /* Check that it's in range.  */
6869      if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6870	continue;
6871
6872      /* Get the section contents if we haven't done so already.  */
6873      if (contents == NULL)
6874	{
6875	  /* Get cached copy if it exists.  */
6876	  if (elf_section_data (sec)->this_hdr.contents != NULL)
6877	    contents = elf_section_data (sec)->this_hdr.contents;
6878	  else
6879	    {
6880	      if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6881		goto relax_return;
6882	    }
6883	}
6884
6885      instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6886
6887      /* If it was jalr <reg>, turn it into bgezal $zero, <target>.  */
6888      if ((instruction & 0xfc1fffff) == 0x0000f809)
6889	instruction = 0x04110000;
6890      /* If it was jr <reg>, turn it into b <target>.  */
6891      else if ((instruction & 0xfc1fffff) == 0x00000008)
6892	instruction = 0x10000000;
6893      else
6894	continue;
6895
6896      instruction |= (sym_offset & 0xffff);
6897      bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6898      changed_contents = TRUE;
6899    }
6900
6901  if (contents != NULL
6902      && elf_section_data (sec)->this_hdr.contents != contents)
6903    {
6904      if (!changed_contents && !link_info->keep_memory)
6905        free (contents);
6906      else
6907        {
6908          /* Cache the section contents for elf_link_input_bfd.  */
6909          elf_section_data (sec)->this_hdr.contents = contents;
6910        }
6911    }
6912  return TRUE;
6913
6914 relax_return:
6915  if (contents != NULL
6916      && elf_section_data (sec)->this_hdr.contents != contents)
6917    free (contents);
6918  return FALSE;
6919}
6920
6921/* Adjust a symbol defined by a dynamic object and referenced by a
6922   regular object.  The current definition is in some section of the
6923   dynamic object, but we're not including those sections.  We have to
6924   change the definition to something the rest of the link can
6925   understand.  */
6926
6927bfd_boolean
6928_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6929				     struct elf_link_hash_entry *h)
6930{
6931  bfd *dynobj;
6932  struct mips_elf_link_hash_entry *hmips;
6933  asection *s;
6934  struct mips_elf_link_hash_table *htab;
6935
6936  htab = mips_elf_hash_table (info);
6937  dynobj = elf_hash_table (info)->dynobj;
6938
6939  /* Make sure we know what is going on here.  */
6940  BFD_ASSERT (dynobj != NULL
6941	      && (h->needs_plt
6942		  || h->u.weakdef != NULL
6943		  || (h->def_dynamic
6944		      && h->ref_regular
6945		      && !h->def_regular)));
6946
6947  /* If this symbol is defined in a dynamic object, we need to copy
6948     any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6949     file.  */
6950  hmips = (struct mips_elf_link_hash_entry *) h;
6951  if (! info->relocatable
6952      && hmips->possibly_dynamic_relocs != 0
6953      && (h->root.type == bfd_link_hash_defweak
6954	  || !h->def_regular))
6955    {
6956      mips_elf_allocate_dynamic_relocations
6957	(dynobj, info, hmips->possibly_dynamic_relocs);
6958      if (hmips->readonly_reloc)
6959	/* We tell the dynamic linker that there are relocations
6960	   against the text segment.  */
6961	info->flags |= DF_TEXTREL;
6962    }
6963
6964  /* For a function, create a stub, if allowed.  */
6965  if (! hmips->no_fn_stub
6966      && h->needs_plt)
6967    {
6968      if (! elf_hash_table (info)->dynamic_sections_created)
6969	return TRUE;
6970
6971      /* If this symbol is not defined in a regular file, then set
6972	 the symbol to the stub location.  This is required to make
6973	 function pointers compare as equal between the normal
6974	 executable and the shared library.  */
6975      if (!h->def_regular)
6976	{
6977	  /* We need .stub section.  */
6978	  s = bfd_get_section_by_name (dynobj,
6979				       MIPS_ELF_STUB_SECTION_NAME (dynobj));
6980	  BFD_ASSERT (s != NULL);
6981
6982	  h->root.u.def.section = s;
6983	  h->root.u.def.value = s->size;
6984
6985	  /* XXX Write this stub address somewhere.  */
6986	  h->plt.offset = s->size;
6987
6988	  /* Make room for this stub code.  */
6989	  s->size += htab->function_stub_size;
6990
6991	  /* The last half word of the stub will be filled with the index
6992	     of this symbol in .dynsym section.  */
6993	  return TRUE;
6994	}
6995    }
6996  else if ((h->type == STT_FUNC)
6997	   && !h->needs_plt)
6998    {
6999      /* This will set the entry for this symbol in the GOT to 0, and
7000         the dynamic linker will take care of this.  */
7001      h->root.u.def.value = 0;
7002      return TRUE;
7003    }
7004
7005  /* If this is a weak symbol, and there is a real definition, the
7006     processor independent code will have arranged for us to see the
7007     real definition first, and we can just use the same value.  */
7008  if (h->u.weakdef != NULL)
7009    {
7010      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7011		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
7012      h->root.u.def.section = h->u.weakdef->root.u.def.section;
7013      h->root.u.def.value = h->u.weakdef->root.u.def.value;
7014      return TRUE;
7015    }
7016
7017  /* This is a reference to a symbol defined by a dynamic object which
7018     is not a function.  */
7019
7020  return TRUE;
7021}
7022
7023/* Likewise, for VxWorks.  */
7024
7025bfd_boolean
7026_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7027					 struct elf_link_hash_entry *h)
7028{
7029  bfd *dynobj;
7030  struct mips_elf_link_hash_entry *hmips;
7031  struct mips_elf_link_hash_table *htab;
7032
7033  htab = mips_elf_hash_table (info);
7034  dynobj = elf_hash_table (info)->dynobj;
7035  hmips = (struct mips_elf_link_hash_entry *) h;
7036
7037  /* Make sure we know what is going on here.  */
7038  BFD_ASSERT (dynobj != NULL
7039	      && (h->needs_plt
7040		  || h->needs_copy
7041		  || h->u.weakdef != NULL
7042		  || (h->def_dynamic
7043		      && h->ref_regular
7044		      && !h->def_regular)));
7045
7046  /* If the symbol is defined by a dynamic object, we need a PLT stub if
7047     either (a) we want to branch to the symbol or (b) we're linking an
7048     executable that needs a canonical function address.  In the latter
7049     case, the canonical address will be the address of the executable's
7050     load stub.  */
7051  if ((hmips->is_branch_target
7052       || (!info->shared
7053	   && h->type == STT_FUNC
7054	   && hmips->is_relocation_target))
7055      && h->def_dynamic
7056      && h->ref_regular
7057      && !h->def_regular
7058      && !h->forced_local)
7059    h->needs_plt = 1;
7060
7061  /* Locally-binding symbols do not need a PLT stub; we can refer to
7062     the functions directly.  */
7063  else if (h->needs_plt
7064	   && (SYMBOL_CALLS_LOCAL (info, h)
7065	       || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7066		   && h->root.type == bfd_link_hash_undefweak)))
7067    {
7068      h->needs_plt = 0;
7069      return TRUE;
7070    }
7071
7072  if (h->needs_plt)
7073    {
7074      /* If this is the first symbol to need a PLT entry, allocate room
7075	 for the header, and for the header's .rela.plt.unloaded entries.  */
7076      if (htab->splt->size == 0)
7077	{
7078	  htab->splt->size += htab->plt_header_size;
7079	  if (!info->shared)
7080	    htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7081	}
7082
7083      /* Assign the next .plt entry to this symbol.  */
7084      h->plt.offset = htab->splt->size;
7085      htab->splt->size += htab->plt_entry_size;
7086
7087      /* If the output file has no definition of the symbol, set the
7088	 symbol's value to the address of the stub.  For executables,
7089	 point at the PLT load stub rather than the lazy resolution stub;
7090	 this stub will become the canonical function address.  */
7091      if (!h->def_regular)
7092	{
7093	  h->root.u.def.section = htab->splt;
7094	  h->root.u.def.value = h->plt.offset;
7095	  if (!info->shared)
7096	    h->root.u.def.value += 8;
7097	}
7098
7099      /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation.  */
7100      htab->sgotplt->size += 4;
7101      htab->srelplt->size += sizeof (Elf32_External_Rela);
7102
7103      /* Make room for the .rela.plt.unloaded relocations.  */
7104      if (!info->shared)
7105	htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7106
7107      return TRUE;
7108    }
7109
7110  /* If a function symbol is defined by a dynamic object, and we do not
7111     need a PLT stub for it, the symbol's value should be zero.  */
7112  if (h->type == STT_FUNC
7113      && h->def_dynamic
7114      && h->ref_regular
7115      && !h->def_regular)
7116    {
7117      h->root.u.def.value = 0;
7118      return TRUE;
7119    }
7120
7121  /* If this is a weak symbol, and there is a real definition, the
7122     processor independent code will have arranged for us to see the
7123     real definition first, and we can just use the same value.  */
7124  if (h->u.weakdef != NULL)
7125    {
7126      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7127		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
7128      h->root.u.def.section = h->u.weakdef->root.u.def.section;
7129      h->root.u.def.value = h->u.weakdef->root.u.def.value;
7130      return TRUE;
7131    }
7132
7133  /* This is a reference to a symbol defined by a dynamic object which
7134     is not a function.  */
7135  if (info->shared)
7136    return TRUE;
7137
7138  /* We must allocate the symbol in our .dynbss section, which will
7139     become part of the .bss section of the executable.  There will be
7140     an entry for this symbol in the .dynsym section.  The dynamic
7141     object will contain position independent code, so all references
7142     from the dynamic object to this symbol will go through the global
7143     offset table.  The dynamic linker will use the .dynsym entry to
7144     determine the address it must put in the global offset table, so
7145     both the dynamic object and the regular object will refer to the
7146     same memory location for the variable.  */
7147
7148  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7149    {
7150      htab->srelbss->size += sizeof (Elf32_External_Rela);
7151      h->needs_copy = 1;
7152    }
7153
7154  return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7155}
7156
7157/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7158   The number might be exact or a worst-case estimate, depending on how
7159   much information is available to elf_backend_omit_section_dynsym at
7160   the current linking stage.  */
7161
7162static bfd_size_type
7163count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7164{
7165  bfd_size_type count;
7166
7167  count = 0;
7168  if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7169    {
7170      asection *p;
7171      const struct elf_backend_data *bed;
7172
7173      bed = get_elf_backend_data (output_bfd);
7174      for (p = output_bfd->sections; p ; p = p->next)
7175	if ((p->flags & SEC_EXCLUDE) == 0
7176	    && (p->flags & SEC_ALLOC) != 0
7177	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7178	  ++count;
7179    }
7180  return count;
7181}
7182
7183/* This function is called after all the input files have been read,
7184   and the input sections have been assigned to output sections.  We
7185   check for any mips16 stub sections that we can discard.  */
7186
7187bfd_boolean
7188_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7189				    struct bfd_link_info *info)
7190{
7191  asection *ri;
7192
7193  bfd *dynobj;
7194  asection *s;
7195  struct mips_got_info *g;
7196  int i;
7197  bfd_size_type loadable_size = 0;
7198  bfd_size_type local_gotno;
7199  bfd_size_type dynsymcount;
7200  bfd *sub;
7201  struct mips_elf_count_tls_arg count_tls_arg;
7202  struct mips_elf_link_hash_table *htab;
7203
7204  htab = mips_elf_hash_table (info);
7205
7206  /* The .reginfo section has a fixed size.  */
7207  ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7208  if (ri != NULL)
7209    bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7210
7211  if (! (info->relocatable
7212	 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7213    mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7214				 mips_elf_check_mips16_stubs, NULL);
7215
7216  dynobj = elf_hash_table (info)->dynobj;
7217  if (dynobj == NULL)
7218    /* Relocatable links don't have it.  */
7219    return TRUE;
7220
7221  g = mips_elf_got_info (dynobj, &s);
7222  if (s == NULL)
7223    return TRUE;
7224
7225  /* Calculate the total loadable size of the output.  That
7226     will give us the maximum number of GOT_PAGE entries
7227     required.  */
7228  for (sub = info->input_bfds; sub; sub = sub->link_next)
7229    {
7230      asection *subsection;
7231
7232      for (subsection = sub->sections;
7233	   subsection;
7234	   subsection = subsection->next)
7235	{
7236	  if ((subsection->flags & SEC_ALLOC) == 0)
7237	    continue;
7238	  loadable_size += ((subsection->size + 0xf)
7239			    &~ (bfd_size_type) 0xf);
7240	}
7241    }
7242
7243  /* There has to be a global GOT entry for every symbol with
7244     a dynamic symbol table index of DT_MIPS_GOTSYM or
7245     higher.  Therefore, it make sense to put those symbols
7246     that need GOT entries at the end of the symbol table.  We
7247     do that here.  */
7248  if (! mips_elf_sort_hash_table (info, 1))
7249    return FALSE;
7250
7251  if (g->global_gotsym != NULL)
7252    i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7253  else
7254    /* If there are no global symbols, or none requiring
7255       relocations, then GLOBAL_GOTSYM will be NULL.  */
7256    i = 0;
7257
7258  /* Get a worst-case estimate of the number of dynamic symbols needed.
7259     At this point, dynsymcount does not account for section symbols
7260     and count_section_dynsyms may overestimate the number that will
7261     be needed.  */
7262  dynsymcount = (elf_hash_table (info)->dynsymcount
7263		 + count_section_dynsyms (output_bfd, info));
7264
7265  /* Determine the size of one stub entry.  */
7266  htab->function_stub_size = (dynsymcount > 0x10000
7267			      ? MIPS_FUNCTION_STUB_BIG_SIZE
7268			      : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7269
7270  /* In the worst case, we'll get one stub per dynamic symbol, plus
7271     one to account for the dummy entry at the end required by IRIX
7272     rld.  */
7273  loadable_size += htab->function_stub_size * (i + 1);
7274
7275  if (htab->is_vxworks)
7276    /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7277       relocations against local symbols evaluate to "G", and the EABI does
7278       not include R_MIPS_GOT_PAGE.  */
7279    local_gotno = 0;
7280  else
7281    /* Assume there are two loadable segments consisting of contiguous
7282       sections.  Is 5 enough?  */
7283    local_gotno = (loadable_size >> 16) + 5;
7284
7285  g->local_gotno += local_gotno;
7286  s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7287
7288  g->global_gotno = i;
7289  s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7290
7291  /* We need to calculate tls_gotno for global symbols at this point
7292     instead of building it up earlier, to avoid doublecounting
7293     entries for one global symbol from multiple input files.  */
7294  count_tls_arg.info = info;
7295  count_tls_arg.needed = 0;
7296  elf_link_hash_traverse (elf_hash_table (info),
7297			  mips_elf_count_global_tls_entries,
7298			  &count_tls_arg);
7299  g->tls_gotno += count_tls_arg.needed;
7300  s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7301
7302  mips_elf_resolve_final_got_entries (g);
7303
7304  /* VxWorks does not support multiple GOTs.  It initializes $gp to
7305     __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7306     dynamic loader.  */
7307  if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7308    {
7309      if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7310	return FALSE;
7311    }
7312  else
7313    {
7314      /* Set up TLS entries for the first GOT.  */
7315      g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7316      htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7317    }
7318
7319  return TRUE;
7320}
7321
7322/* Set the sizes of the dynamic sections.  */
7323
7324bfd_boolean
7325_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7326				     struct bfd_link_info *info)
7327{
7328  bfd *dynobj;
7329  asection *s, *sreldyn;
7330  bfd_boolean reltext;
7331  struct mips_elf_link_hash_table *htab;
7332
7333  htab = mips_elf_hash_table (info);
7334  dynobj = elf_hash_table (info)->dynobj;
7335  BFD_ASSERT (dynobj != NULL);
7336
7337  if (elf_hash_table (info)->dynamic_sections_created)
7338    {
7339      /* Set the contents of the .interp section to the interpreter.  */
7340      if (info->executable)
7341	{
7342	  s = bfd_get_section_by_name (dynobj, ".interp");
7343	  BFD_ASSERT (s != NULL);
7344	  s->size
7345	    = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7346	  s->contents
7347	    = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7348	}
7349    }
7350
7351  /* The check_relocs and adjust_dynamic_symbol entry points have
7352     determined the sizes of the various dynamic sections.  Allocate
7353     memory for them.  */
7354  reltext = FALSE;
7355  sreldyn = NULL;
7356  for (s = dynobj->sections; s != NULL; s = s->next)
7357    {
7358      const char *name;
7359
7360      /* It's OK to base decisions on the section name, because none
7361	 of the dynobj section names depend upon the input files.  */
7362      name = bfd_get_section_name (dynobj, s);
7363
7364      if ((s->flags & SEC_LINKER_CREATED) == 0)
7365	continue;
7366
7367      if (CONST_STRNEQ (name, ".rel"))
7368	{
7369	  if (s->size != 0)
7370	    {
7371	      const char *outname;
7372	      asection *target;
7373
7374	      /* If this relocation section applies to a read only
7375                 section, then we probably need a DT_TEXTREL entry.
7376                 If the relocation section is .rel(a).dyn, we always
7377                 assert a DT_TEXTREL entry rather than testing whether
7378                 there exists a relocation to a read only section or
7379                 not.  */
7380	      outname = bfd_get_section_name (output_bfd,
7381					      s->output_section);
7382	      target = bfd_get_section_by_name (output_bfd, outname + 4);
7383	      if ((target != NULL
7384		   && (target->flags & SEC_READONLY) != 0
7385		   && (target->flags & SEC_ALLOC) != 0)
7386		  || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7387		reltext = TRUE;
7388
7389	      /* We use the reloc_count field as a counter if we need
7390		 to copy relocs into the output file.  */
7391	      if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7392		s->reloc_count = 0;
7393
7394	      /* If combreloc is enabled, elf_link_sort_relocs() will
7395		 sort relocations, but in a different way than we do,
7396		 and before we're done creating relocations.  Also, it
7397		 will move them around between input sections'
7398		 relocation's contents, so our sorting would be
7399		 broken, so don't let it run.  */
7400	      info->combreloc = 0;
7401	    }
7402	}
7403      else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7404	{
7405	  /* Executables do not need a GOT.  */
7406	  if (info->shared)
7407	    {
7408	      /* Allocate relocations for all but the reserved entries.  */
7409	      struct mips_got_info *g;
7410	      unsigned int count;
7411
7412	      g = mips_elf_got_info (dynobj, NULL);
7413	      count = (g->global_gotno
7414		       + g->local_gotno
7415		       - MIPS_RESERVED_GOTNO (info));
7416	      mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7417	    }
7418	}
7419      else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7420	{
7421	  /* _bfd_mips_elf_always_size_sections() has already done
7422	     most of the work, but some symbols may have been mapped
7423	     to versions that we must now resolve in the got_entries
7424	     hash tables.  */
7425	  struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7426	  struct mips_got_info *g = gg;
7427	  struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7428	  unsigned int needed_relocs = 0;
7429
7430	  if (gg->next)
7431	    {
7432	      set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7433	      set_got_offset_arg.info = info;
7434
7435	      /* NOTE 2005-02-03: How can this call, or the next, ever
7436		 find any indirect entries to resolve?  They were all
7437		 resolved in mips_elf_multi_got.  */
7438	      mips_elf_resolve_final_got_entries (gg);
7439	      for (g = gg->next; g && g->next != gg; g = g->next)
7440		{
7441		  unsigned int save_assign;
7442
7443		  mips_elf_resolve_final_got_entries (g);
7444
7445		  /* Assign offsets to global GOT entries.  */
7446		  save_assign = g->assigned_gotno;
7447		  g->assigned_gotno = g->local_gotno;
7448		  set_got_offset_arg.g = g;
7449		  set_got_offset_arg.needed_relocs = 0;
7450		  htab_traverse (g->got_entries,
7451				 mips_elf_set_global_got_offset,
7452				 &set_got_offset_arg);
7453		  needed_relocs += set_got_offset_arg.needed_relocs;
7454		  BFD_ASSERT (g->assigned_gotno - g->local_gotno
7455			      <= g->global_gotno);
7456
7457		  g->assigned_gotno = save_assign;
7458		  if (info->shared)
7459		    {
7460		      needed_relocs += g->local_gotno - g->assigned_gotno;
7461		      BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7462				  + g->next->global_gotno
7463				  + g->next->tls_gotno
7464				  + MIPS_RESERVED_GOTNO (info));
7465		    }
7466		}
7467	    }
7468	  else
7469	    {
7470	      struct mips_elf_count_tls_arg arg;
7471	      arg.info = info;
7472	      arg.needed = 0;
7473
7474	      htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7475			     &arg);
7476	      elf_link_hash_traverse (elf_hash_table (info),
7477				      mips_elf_count_global_tls_relocs,
7478				      &arg);
7479
7480	      needed_relocs += arg.needed;
7481	    }
7482
7483	  if (needed_relocs)
7484	    mips_elf_allocate_dynamic_relocations (dynobj, info,
7485						   needed_relocs);
7486	}
7487      else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7488	{
7489	  /* IRIX rld assumes that the function stub isn't at the end
7490	     of .text section.  So put a dummy.  XXX  */
7491	  s->size += htab->function_stub_size;
7492	}
7493      else if (! info->shared
7494	       && ! mips_elf_hash_table (info)->use_rld_obj_head
7495	       && CONST_STRNEQ (name, ".rld_map"))
7496	{
7497	  /* We add a room for __rld_map.  It will be filled in by the
7498	     rtld to contain a pointer to the _r_debug structure.  */
7499	  s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
7500	}
7501      else if (SGI_COMPAT (output_bfd)
7502	       && CONST_STRNEQ (name, ".compact_rel"))
7503	s->size += mips_elf_hash_table (info)->compact_rel_size;
7504      else if (! CONST_STRNEQ (name, ".init")
7505	       && s != htab->sgotplt
7506	       && s != htab->splt)
7507	{
7508	  /* It's not one of our sections, so don't allocate space.  */
7509	  continue;
7510	}
7511
7512      if (s->size == 0)
7513	{
7514	  s->flags |= SEC_EXCLUDE;
7515	  continue;
7516	}
7517
7518      if ((s->flags & SEC_HAS_CONTENTS) == 0)
7519	continue;
7520
7521      /* Allocate memory for this section last, since we may increase its
7522	 size above.  */
7523      if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7524	{
7525	  sreldyn = s;
7526	  continue;
7527	}
7528
7529      /* Allocate memory for the section contents.  */
7530      s->contents = bfd_zalloc (dynobj, s->size);
7531      if (s->contents == NULL)
7532	{
7533	  bfd_set_error (bfd_error_no_memory);
7534	  return FALSE;
7535	}
7536    }
7537
7538  /* Allocate memory for the .rel(a).dyn section.  */
7539  if (sreldyn != NULL)
7540    {
7541      sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7542      if (sreldyn->contents == NULL)
7543	{
7544	  bfd_set_error (bfd_error_no_memory);
7545	  return FALSE;
7546	}
7547    }
7548
7549  if (elf_hash_table (info)->dynamic_sections_created)
7550    {
7551      /* Add some entries to the .dynamic section.  We fill in the
7552	 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7553	 must add the entries now so that we get the correct size for
7554	 the .dynamic section.  */
7555
7556      /* SGI object has the equivalence of DT_DEBUG in the
7557	 DT_MIPS_RLD_MAP entry.  This must come first because glibc
7558	 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7559	 looks at the first one it sees.  */
7560      if (!info->shared
7561	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7562	return FALSE;
7563
7564      /* The DT_DEBUG entry may be filled in by the dynamic linker and
7565	 used by the debugger.  */
7566      if (info->executable
7567	  && !SGI_COMPAT (output_bfd)
7568	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7569	return FALSE;
7570
7571      if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7572	info->flags |= DF_TEXTREL;
7573
7574      if ((info->flags & DF_TEXTREL) != 0)
7575	{
7576	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7577	    return FALSE;
7578
7579	  /* Clear the DF_TEXTREL flag.  It will be set again if we
7580	     write out an actual text relocation; we may not, because
7581	     at this point we do not know whether e.g. any .eh_frame
7582	     absolute relocations have been converted to PC-relative.  */
7583	  info->flags &= ~DF_TEXTREL;
7584	}
7585
7586      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7587	return FALSE;
7588
7589      if (htab->is_vxworks)
7590	{
7591	  /* VxWorks uses .rela.dyn instead of .rel.dyn.  It does not
7592	     use any of the DT_MIPS_* tags.  */
7593	  if (mips_elf_rel_dyn_section (info, FALSE))
7594	    {
7595	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7596		return FALSE;
7597
7598	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7599		return FALSE;
7600
7601	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7602		return FALSE;
7603	    }
7604	  if (htab->splt->size > 0)
7605	    {
7606	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7607		return FALSE;
7608
7609	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7610		return FALSE;
7611
7612	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7613		return FALSE;
7614	    }
7615	}
7616      else
7617	{
7618	  if (mips_elf_rel_dyn_section (info, FALSE))
7619	    {
7620	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7621		return FALSE;
7622
7623	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7624		return FALSE;
7625
7626	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7627		return FALSE;
7628	    }
7629
7630	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7631	    return FALSE;
7632
7633	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7634	    return FALSE;
7635
7636	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7637	    return FALSE;
7638
7639	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7640	    return FALSE;
7641
7642	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7643	    return FALSE;
7644
7645	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7646	    return FALSE;
7647
7648	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7649	    return FALSE;
7650
7651	  if (IRIX_COMPAT (dynobj) == ict_irix5
7652	      && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7653	    return FALSE;
7654
7655	  if (IRIX_COMPAT (dynobj) == ict_irix6
7656	      && (bfd_get_section_by_name
7657		  (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7658	      && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7659	    return FALSE;
7660	}
7661    }
7662
7663  return TRUE;
7664}
7665
7666/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7667   Adjust its R_ADDEND field so that it is correct for the output file.
7668   LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7669   and sections respectively; both use symbol indexes.  */
7670
7671static void
7672mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7673			bfd *input_bfd, Elf_Internal_Sym *local_syms,
7674			asection **local_sections, Elf_Internal_Rela *rel)
7675{
7676  unsigned int r_type, r_symndx;
7677  Elf_Internal_Sym *sym;
7678  asection *sec;
7679
7680  if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7681    {
7682      r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7683      if (r_type == R_MIPS16_GPREL
7684	  || r_type == R_MIPS_GPREL16
7685	  || r_type == R_MIPS_GPREL32
7686	  || r_type == R_MIPS_LITERAL)
7687	{
7688	  rel->r_addend += _bfd_get_gp_value (input_bfd);
7689	  rel->r_addend -= _bfd_get_gp_value (output_bfd);
7690	}
7691
7692      r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7693      sym = local_syms + r_symndx;
7694
7695      /* Adjust REL's addend to account for section merging.  */
7696      if (!info->relocatable)
7697	{
7698	  sec = local_sections[r_symndx];
7699	  _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7700	}
7701
7702      /* This would normally be done by the rela_normal code in elflink.c.  */
7703      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7704	rel->r_addend += local_sections[r_symndx]->output_offset;
7705    }
7706}
7707
7708/* Relocate a MIPS ELF section.  */
7709
7710bfd_boolean
7711_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7712				bfd *input_bfd, asection *input_section,
7713				bfd_byte *contents, Elf_Internal_Rela *relocs,
7714				Elf_Internal_Sym *local_syms,
7715				asection **local_sections)
7716{
7717  Elf_Internal_Rela *rel;
7718  const Elf_Internal_Rela *relend;
7719  bfd_vma addend = 0;
7720  bfd_boolean use_saved_addend_p = FALSE;
7721  const struct elf_backend_data *bed;
7722
7723  bed = get_elf_backend_data (output_bfd);
7724  relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7725  for (rel = relocs; rel < relend; ++rel)
7726    {
7727      const char *name;
7728      bfd_vma value = 0;
7729      reloc_howto_type *howto;
7730      bfd_boolean require_jalx;
7731      /* TRUE if the relocation is a RELA relocation, rather than a
7732         REL relocation.  */
7733      bfd_boolean rela_relocation_p = TRUE;
7734      unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7735      const char *msg;
7736      unsigned long r_symndx;
7737      asection *sec;
7738      Elf_Internal_Shdr *symtab_hdr;
7739      struct elf_link_hash_entry *h;
7740
7741      /* Find the relocation howto for this relocation.  */
7742      howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7743				       NEWABI_P (input_bfd)
7744				       && (MIPS_RELOC_RELA_P
7745					   (input_bfd, input_section,
7746					    rel - relocs)));
7747
7748      r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7749      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7750      if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7751	{
7752	  sec = local_sections[r_symndx];
7753	  h = NULL;
7754	}
7755      else
7756	{
7757	  unsigned long extsymoff;
7758
7759	  extsymoff = 0;
7760	  if (!elf_bad_symtab (input_bfd))
7761	    extsymoff = symtab_hdr->sh_info;
7762	  h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7763	  while (h->root.type == bfd_link_hash_indirect
7764		 || h->root.type == bfd_link_hash_warning)
7765	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
7766
7767	  sec = NULL;
7768	  if (h->root.type == bfd_link_hash_defined
7769	      || h->root.type == bfd_link_hash_defweak)
7770	    sec = h->root.u.def.section;
7771	}
7772
7773      if (sec != NULL && elf_discarded_section (sec))
7774	{
7775	  /* For relocs against symbols from removed linkonce sections,
7776	     or sections discarded by a linker script, we just want the
7777	     section contents zeroed.  Avoid any special processing.  */
7778	  _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7779	  rel->r_info = 0;
7780	  rel->r_addend = 0;
7781	  continue;
7782	}
7783
7784      if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7785	{
7786	  /* Some 32-bit code uses R_MIPS_64.  In particular, people use
7787	     64-bit code, but make sure all their addresses are in the
7788	     lowermost or uppermost 32-bit section of the 64-bit address
7789	     space.  Thus, when they use an R_MIPS_64 they mean what is
7790	     usually meant by R_MIPS_32, with the exception that the
7791	     stored value is sign-extended to 64 bits.  */
7792	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7793
7794	  /* On big-endian systems, we need to lie about the position
7795	     of the reloc.  */
7796	  if (bfd_big_endian (input_bfd))
7797	    rel->r_offset += 4;
7798	}
7799
7800      if (!use_saved_addend_p)
7801	{
7802	  Elf_Internal_Shdr *rel_hdr;
7803
7804	  /* If these relocations were originally of the REL variety,
7805	     we must pull the addend out of the field that will be
7806	     relocated.  Otherwise, we simply use the contents of the
7807	     RELA relocation.  To determine which flavor or relocation
7808	     this is, we depend on the fact that the INPUT_SECTION's
7809	     REL_HDR is read before its REL_HDR2.  */
7810	  rel_hdr = &elf_section_data (input_section)->rel_hdr;
7811	  if ((size_t) (rel - relocs)
7812	      >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7813	    rel_hdr = elf_section_data (input_section)->rel_hdr2;
7814	  if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7815	    {
7816	      bfd_byte *location = contents + rel->r_offset;
7817
7818	      /* Note that this is a REL relocation.  */
7819	      rela_relocation_p = FALSE;
7820
7821	      /* Get the addend, which is stored in the input file.  */
7822	      _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7823					       location);
7824	      addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7825						 contents);
7826	      _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7827					    location);
7828
7829	      addend &= howto->src_mask;
7830
7831	      /* For some kinds of relocations, the ADDEND is a
7832		 combination of the addend stored in two different
7833		 relocations.   */
7834	      if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7835		  || (r_type == R_MIPS_GOT16
7836		      && mips_elf_local_relocation_p (input_bfd, rel,
7837						      local_sections, FALSE)))
7838		{
7839		  const Elf_Internal_Rela *lo16_relocation;
7840		  reloc_howto_type *lo16_howto;
7841		  int lo16_type;
7842
7843		  if (r_type == R_MIPS16_HI16)
7844		    lo16_type = R_MIPS16_LO16;
7845		  else
7846		    lo16_type = R_MIPS_LO16;
7847
7848		  /* The combined value is the sum of the HI16 addend,
7849		     left-shifted by sixteen bits, and the LO16
7850		     addend, sign extended.  (Usually, the code does
7851		     a `lui' of the HI16 value, and then an `addiu' of
7852		     the LO16 value.)
7853
7854		     Scan ahead to find a matching LO16 relocation.
7855
7856		     According to the MIPS ELF ABI, the R_MIPS_LO16
7857		     relocation must be immediately following.
7858		     However, for the IRIX6 ABI, the next relocation
7859		     may be a composed relocation consisting of
7860		     several relocations for the same address.  In
7861		     that case, the R_MIPS_LO16 relocation may occur
7862		     as one of these.  We permit a similar extension
7863		     in general, as that is useful for GCC.
7864
7865		     In some cases GCC dead code elimination removes
7866		     the LO16 but keeps the corresponding HI16.  This
7867		     is strictly speaking a violation of the ABI but
7868		     not immediately harmful.  */
7869		  lo16_relocation = mips_elf_next_relocation (input_bfd,
7870							      lo16_type,
7871							      rel, relend);
7872		  if (lo16_relocation == NULL)
7873		    {
7874		      const char *name;
7875
7876		      if (h)
7877			name = h->root.root.string;
7878		      else
7879			name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7880						 local_syms + r_symndx,
7881						 sec);
7882		      (*_bfd_error_handler)
7883			(_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7884			 input_bfd, input_section, name, howto->name,
7885			 rel->r_offset);
7886		    }
7887		  else
7888		    {
7889		      bfd_byte *lo16_location;
7890		      bfd_vma l;
7891
7892		      lo16_location = contents + lo16_relocation->r_offset;
7893
7894		      /* Obtain the addend kept there.  */
7895		      lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7896							    lo16_type, FALSE);
7897		      _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7898						       FALSE, lo16_location);
7899		      l = mips_elf_obtain_contents (lo16_howto,
7900						    lo16_relocation,
7901						    input_bfd, contents);
7902		      _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7903						     FALSE, lo16_location);
7904		      l &= lo16_howto->src_mask;
7905		      l <<= lo16_howto->rightshift;
7906		      l = _bfd_mips_elf_sign_extend (l, 16);
7907
7908		      addend <<= 16;
7909
7910		      /* Compute the combined addend.  */
7911		      addend += l;
7912		    }
7913		}
7914	      else
7915		addend <<= howto->rightshift;
7916	    }
7917	  else
7918	    addend = rel->r_addend;
7919	  mips_elf_adjust_addend (output_bfd, info, input_bfd,
7920				  local_syms, local_sections, rel);
7921	}
7922
7923      if (info->relocatable)
7924	{
7925	  if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7926	      && bfd_big_endian (input_bfd))
7927	    rel->r_offset -= 4;
7928
7929	  if (!rela_relocation_p && rel->r_addend)
7930	    {
7931	      addend += rel->r_addend;
7932	      if (r_type == R_MIPS_HI16
7933		  || r_type == R_MIPS_GOT16)
7934		addend = mips_elf_high (addend);
7935	      else if (r_type == R_MIPS_HIGHER)
7936		addend = mips_elf_higher (addend);
7937	      else if (r_type == R_MIPS_HIGHEST)
7938		addend = mips_elf_highest (addend);
7939	      else
7940		addend >>= howto->rightshift;
7941
7942	      /* We use the source mask, rather than the destination
7943		 mask because the place to which we are writing will be
7944		 source of the addend in the final link.  */
7945	      addend &= howto->src_mask;
7946
7947	      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7948		/* See the comment above about using R_MIPS_64 in the 32-bit
7949		   ABI.  Here, we need to update the addend.  It would be
7950		   possible to get away with just using the R_MIPS_32 reloc
7951		   but for endianness.  */
7952		{
7953		  bfd_vma sign_bits;
7954		  bfd_vma low_bits;
7955		  bfd_vma high_bits;
7956
7957		  if (addend & ((bfd_vma) 1 << 31))
7958#ifdef BFD64
7959		    sign_bits = ((bfd_vma) 1 << 32) - 1;
7960#else
7961		    sign_bits = -1;
7962#endif
7963		  else
7964		    sign_bits = 0;
7965
7966		  /* If we don't know that we have a 64-bit type,
7967		     do two separate stores.  */
7968		  if (bfd_big_endian (input_bfd))
7969		    {
7970		      /* Store the sign-bits (which are most significant)
7971			 first.  */
7972		      low_bits = sign_bits;
7973		      high_bits = addend;
7974		    }
7975		  else
7976		    {
7977		      low_bits = addend;
7978		      high_bits = sign_bits;
7979		    }
7980		  bfd_put_32 (input_bfd, low_bits,
7981			      contents + rel->r_offset);
7982		  bfd_put_32 (input_bfd, high_bits,
7983			      contents + rel->r_offset + 4);
7984		  continue;
7985		}
7986
7987	      if (! mips_elf_perform_relocation (info, howto, rel, addend,
7988						 input_bfd, input_section,
7989						 contents, FALSE))
7990		return FALSE;
7991	    }
7992
7993	  /* Go on to the next relocation.  */
7994	  continue;
7995	}
7996
7997      /* In the N32 and 64-bit ABIs there may be multiple consecutive
7998	 relocations for the same offset.  In that case we are
7999	 supposed to treat the output of each relocation as the addend
8000	 for the next.  */
8001      if (rel + 1 < relend
8002	  && rel->r_offset == rel[1].r_offset
8003	  && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8004	use_saved_addend_p = TRUE;
8005      else
8006	use_saved_addend_p = FALSE;
8007
8008      /* Figure out what value we are supposed to relocate.  */
8009      switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8010					     input_section, info, rel,
8011					     addend, howto, local_syms,
8012					     local_sections, &value,
8013					     &name, &require_jalx,
8014					     use_saved_addend_p))
8015	{
8016	case bfd_reloc_continue:
8017	  /* There's nothing to do.  */
8018	  continue;
8019
8020	case bfd_reloc_undefined:
8021	  /* mips_elf_calculate_relocation already called the
8022	     undefined_symbol callback.  There's no real point in
8023	     trying to perform the relocation at this point, so we
8024	     just skip ahead to the next relocation.  */
8025	  continue;
8026
8027	case bfd_reloc_notsupported:
8028	  msg = _("internal error: unsupported relocation error");
8029	  info->callbacks->warning
8030	    (info, msg, name, input_bfd, input_section, rel->r_offset);
8031	  return FALSE;
8032
8033	case bfd_reloc_overflow:
8034	  if (use_saved_addend_p)
8035	    /* Ignore overflow until we reach the last relocation for
8036	       a given location.  */
8037	    ;
8038	  else
8039	    {
8040	      BFD_ASSERT (name != NULL);
8041	      if (! ((*info->callbacks->reloc_overflow)
8042		     (info, NULL, name, howto->name, (bfd_vma) 0,
8043		      input_bfd, input_section, rel->r_offset)))
8044		return FALSE;
8045	    }
8046	  break;
8047
8048	case bfd_reloc_ok:
8049	  break;
8050
8051	default:
8052	  abort ();
8053	  break;
8054	}
8055
8056      /* If we've got another relocation for the address, keep going
8057	 until we reach the last one.  */
8058      if (use_saved_addend_p)
8059	{
8060	  addend = value;
8061	  continue;
8062	}
8063
8064      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8065	/* See the comment above about using R_MIPS_64 in the 32-bit
8066	   ABI.  Until now, we've been using the HOWTO for R_MIPS_32;
8067	   that calculated the right value.  Now, however, we
8068	   sign-extend the 32-bit result to 64-bits, and store it as a
8069	   64-bit value.  We are especially generous here in that we
8070	   go to extreme lengths to support this usage on systems with
8071	   only a 32-bit VMA.  */
8072	{
8073	  bfd_vma sign_bits;
8074	  bfd_vma low_bits;
8075	  bfd_vma high_bits;
8076
8077	  if (value & ((bfd_vma) 1 << 31))
8078#ifdef BFD64
8079	    sign_bits = ((bfd_vma) 1 << 32) - 1;
8080#else
8081	    sign_bits = -1;
8082#endif
8083	  else
8084	    sign_bits = 0;
8085
8086	  /* If we don't know that we have a 64-bit type,
8087	     do two separate stores.  */
8088	  if (bfd_big_endian (input_bfd))
8089	    {
8090	      /* Undo what we did above.  */
8091	      rel->r_offset -= 4;
8092	      /* Store the sign-bits (which are most significant)
8093		 first.  */
8094	      low_bits = sign_bits;
8095	      high_bits = value;
8096	    }
8097	  else
8098	    {
8099	      low_bits = value;
8100	      high_bits = sign_bits;
8101	    }
8102	  bfd_put_32 (input_bfd, low_bits,
8103		      contents + rel->r_offset);
8104	  bfd_put_32 (input_bfd, high_bits,
8105		      contents + rel->r_offset + 4);
8106	  continue;
8107	}
8108
8109      /* Actually perform the relocation.  */
8110      if (! mips_elf_perform_relocation (info, howto, rel, value,
8111					 input_bfd, input_section,
8112					 contents, require_jalx))
8113	return FALSE;
8114    }
8115
8116  return TRUE;
8117}
8118
8119/* If NAME is one of the special IRIX6 symbols defined by the linker,
8120   adjust it appropriately now.  */
8121
8122static void
8123mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8124				      const char *name, Elf_Internal_Sym *sym)
8125{
8126  /* The linker script takes care of providing names and values for
8127     these, but we must place them into the right sections.  */
8128  static const char* const text_section_symbols[] = {
8129    "_ftext",
8130    "_etext",
8131    "__dso_displacement",
8132    "__elf_header",
8133    "__program_header_table",
8134    NULL
8135  };
8136
8137  static const char* const data_section_symbols[] = {
8138    "_fdata",
8139    "_edata",
8140    "_end",
8141    "_fbss",
8142    NULL
8143  };
8144
8145  const char* const *p;
8146  int i;
8147
8148  for (i = 0; i < 2; ++i)
8149    for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8150	 *p;
8151	 ++p)
8152      if (strcmp (*p, name) == 0)
8153	{
8154	  /* All of these symbols are given type STT_SECTION by the
8155	     IRIX6 linker.  */
8156	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8157	  sym->st_other = STO_PROTECTED;
8158
8159	  /* The IRIX linker puts these symbols in special sections.  */
8160	  if (i == 0)
8161	    sym->st_shndx = SHN_MIPS_TEXT;
8162	  else
8163	    sym->st_shndx = SHN_MIPS_DATA;
8164
8165	  break;
8166	}
8167}
8168
8169/* Finish up dynamic symbol handling.  We set the contents of various
8170   dynamic sections here.  */
8171
8172bfd_boolean
8173_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8174				     struct bfd_link_info *info,
8175				     struct elf_link_hash_entry *h,
8176				     Elf_Internal_Sym *sym)
8177{
8178  bfd *dynobj;
8179  asection *sgot;
8180  struct mips_got_info *g, *gg;
8181  const char *name;
8182  int idx;
8183  struct mips_elf_link_hash_table *htab;
8184
8185  htab = mips_elf_hash_table (info);
8186  dynobj = elf_hash_table (info)->dynobj;
8187
8188  if (h->plt.offset != MINUS_ONE)
8189    {
8190      asection *s;
8191      bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8192
8193      /* This symbol has a stub.  Set it up.  */
8194
8195      BFD_ASSERT (h->dynindx != -1);
8196
8197      s = bfd_get_section_by_name (dynobj,
8198				   MIPS_ELF_STUB_SECTION_NAME (dynobj));
8199      BFD_ASSERT (s != NULL);
8200
8201      BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8202                  || (h->dynindx <= 0xffff));
8203
8204      /* Values up to 2^31 - 1 are allowed.  Larger values would cause
8205	 sign extension at runtime in the stub, resulting in a negative
8206	 index value.  */
8207      if (h->dynindx & ~0x7fffffff)
8208	return FALSE;
8209
8210      /* Fill the stub.  */
8211      idx = 0;
8212      bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8213      idx += 4;
8214      bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8215      idx += 4;
8216      if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8217        {
8218          bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8219                      stub + idx);
8220          idx += 4;
8221        }
8222      bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8223      idx += 4;
8224
8225      /* If a large stub is not required and sign extension is not a
8226         problem, then use legacy code in the stub.  */
8227      if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8228	bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8229      else if (h->dynindx & ~0x7fff)
8230        bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8231      else
8232        bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8233		    stub + idx);
8234
8235      BFD_ASSERT (h->plt.offset <= s->size);
8236      memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8237
8238      /* Mark the symbol as undefined.  plt.offset != -1 occurs
8239	 only for the referenced symbol.  */
8240      sym->st_shndx = SHN_UNDEF;
8241
8242      /* The run-time linker uses the st_value field of the symbol
8243	 to reset the global offset table entry for this external
8244	 to its stub address when unlinking a shared object.  */
8245      sym->st_value = (s->output_section->vma + s->output_offset
8246		       + h->plt.offset);
8247    }
8248
8249  BFD_ASSERT (h->dynindx != -1
8250	      || h->forced_local);
8251
8252  sgot = mips_elf_got_section (dynobj, FALSE);
8253  BFD_ASSERT (sgot != NULL);
8254  BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8255  g = mips_elf_section_data (sgot)->u.got_info;
8256  BFD_ASSERT (g != NULL);
8257
8258  /* Run through the global symbol table, creating GOT entries for all
8259     the symbols that need them.  */
8260  if (g->global_gotsym != NULL
8261      && h->dynindx >= g->global_gotsym->dynindx)
8262    {
8263      bfd_vma offset;
8264      bfd_vma value;
8265
8266      value = sym->st_value;
8267      offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8268      MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8269    }
8270
8271  if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8272    {
8273      struct mips_got_entry e, *p;
8274      bfd_vma entry;
8275      bfd_vma offset;
8276
8277      gg = g;
8278
8279      e.abfd = output_bfd;
8280      e.symndx = -1;
8281      e.d.h = (struct mips_elf_link_hash_entry *)h;
8282      e.tls_type = 0;
8283
8284      for (g = g->next; g->next != gg; g = g->next)
8285	{
8286	  if (g->got_entries
8287	      && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8288							   &e)))
8289	    {
8290	      offset = p->gotidx;
8291	      if (info->shared
8292		  || (elf_hash_table (info)->dynamic_sections_created
8293		      && p->d.h != NULL
8294		      && p->d.h->root.def_dynamic
8295		      && !p->d.h->root.def_regular))
8296		{
8297		  /* Create an R_MIPS_REL32 relocation for this entry.  Due to
8298		     the various compatibility problems, it's easier to mock
8299		     up an R_MIPS_32 or R_MIPS_64 relocation and leave
8300		     mips_elf_create_dynamic_relocation to calculate the
8301		     appropriate addend.  */
8302		  Elf_Internal_Rela rel[3];
8303
8304		  memset (rel, 0, sizeof (rel));
8305		  if (ABI_64_P (output_bfd))
8306		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8307		  else
8308		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8309		  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8310
8311		  entry = 0;
8312		  if (! (mips_elf_create_dynamic_relocation
8313			 (output_bfd, info, rel,
8314			  e.d.h, NULL, sym->st_value, &entry, sgot)))
8315		    return FALSE;
8316		}
8317	      else
8318		entry = sym->st_value;
8319	      MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8320	    }
8321	}
8322    }
8323
8324  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
8325  name = h->root.root.string;
8326  if (strcmp (name, "_DYNAMIC") == 0
8327      || h == elf_hash_table (info)->hgot)
8328    sym->st_shndx = SHN_ABS;
8329  else if (strcmp (name, "_DYNAMIC_LINK") == 0
8330	   || strcmp (name, "_DYNAMIC_LINKING") == 0)
8331    {
8332      sym->st_shndx = SHN_ABS;
8333      sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8334      sym->st_value = 1;
8335    }
8336  else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8337    {
8338      sym->st_shndx = SHN_ABS;
8339      sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8340      sym->st_value = elf_gp (output_bfd);
8341    }
8342  else if (SGI_COMPAT (output_bfd))
8343    {
8344      if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8345	  || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8346	{
8347	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8348	  sym->st_other = STO_PROTECTED;
8349	  sym->st_value = 0;
8350	  sym->st_shndx = SHN_MIPS_DATA;
8351	}
8352      else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8353	{
8354	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8355	  sym->st_other = STO_PROTECTED;
8356	  sym->st_value = mips_elf_hash_table (info)->procedure_count;
8357	  sym->st_shndx = SHN_ABS;
8358	}
8359      else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8360	{
8361	  if (h->type == STT_FUNC)
8362	    sym->st_shndx = SHN_MIPS_TEXT;
8363	  else if (h->type == STT_OBJECT)
8364	    sym->st_shndx = SHN_MIPS_DATA;
8365	}
8366    }
8367
8368  /* Handle the IRIX6-specific symbols.  */
8369  if (IRIX_COMPAT (output_bfd) == ict_irix6)
8370    mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8371
8372  if (! info->shared)
8373    {
8374      if (! mips_elf_hash_table (info)->use_rld_obj_head
8375	  && (strcmp (name, "__rld_map") == 0
8376	      || strcmp (name, "__RLD_MAP") == 0))
8377	{
8378	  asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8379	  BFD_ASSERT (s != NULL);
8380	  sym->st_value = s->output_section->vma + s->output_offset;
8381	  bfd_put_32 (output_bfd, 0, s->contents);
8382	  if (mips_elf_hash_table (info)->rld_value == 0)
8383	    mips_elf_hash_table (info)->rld_value = sym->st_value;
8384	}
8385      else if (mips_elf_hash_table (info)->use_rld_obj_head
8386	       && strcmp (name, "__rld_obj_head") == 0)
8387	{
8388	  /* IRIX6 does not use a .rld_map section.  */
8389	  if (IRIX_COMPAT (output_bfd) == ict_irix5
8390              || IRIX_COMPAT (output_bfd) == ict_none)
8391	    BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8392			!= NULL);
8393	  mips_elf_hash_table (info)->rld_value = sym->st_value;
8394	}
8395    }
8396
8397  /* If this is a mips16 symbol, force the value to be even.  */
8398  if (sym->st_other == STO_MIPS16)
8399    sym->st_value &= ~1;
8400
8401  return TRUE;
8402}
8403
8404/* Likewise, for VxWorks.  */
8405
8406bfd_boolean
8407_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8408					 struct bfd_link_info *info,
8409					 struct elf_link_hash_entry *h,
8410					 Elf_Internal_Sym *sym)
8411{
8412  bfd *dynobj;
8413  asection *sgot;
8414  struct mips_got_info *g;
8415  struct mips_elf_link_hash_table *htab;
8416
8417  htab = mips_elf_hash_table (info);
8418  dynobj = elf_hash_table (info)->dynobj;
8419
8420  if (h->plt.offset != (bfd_vma) -1)
8421    {
8422      bfd_byte *loc;
8423      bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8424      Elf_Internal_Rela rel;
8425      static const bfd_vma *plt_entry;
8426
8427      BFD_ASSERT (h->dynindx != -1);
8428      BFD_ASSERT (htab->splt != NULL);
8429      BFD_ASSERT (h->plt.offset <= htab->splt->size);
8430
8431      /* Calculate the address of the .plt entry.  */
8432      plt_address = (htab->splt->output_section->vma
8433		     + htab->splt->output_offset
8434		     + h->plt.offset);
8435
8436      /* Calculate the index of the entry.  */
8437      plt_index = ((h->plt.offset - htab->plt_header_size)
8438		   / htab->plt_entry_size);
8439
8440      /* Calculate the address of the .got.plt entry.  */
8441      got_address = (htab->sgotplt->output_section->vma
8442		     + htab->sgotplt->output_offset
8443		     + plt_index * 4);
8444
8445      /* Calculate the offset of the .got.plt entry from
8446	 _GLOBAL_OFFSET_TABLE_.  */
8447      got_offset = mips_elf_gotplt_index (info, h);
8448
8449      /* Calculate the offset for the branch at the start of the PLT
8450	 entry.  The branch jumps to the beginning of .plt.  */
8451      branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8452
8453      /* Fill in the initial value of the .got.plt entry.  */
8454      bfd_put_32 (output_bfd, plt_address,
8455		  htab->sgotplt->contents + plt_index * 4);
8456
8457      /* Find out where the .plt entry should go.  */
8458      loc = htab->splt->contents + h->plt.offset;
8459
8460      if (info->shared)
8461	{
8462	  plt_entry = mips_vxworks_shared_plt_entry;
8463	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8464	  bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8465	}
8466      else
8467	{
8468	  bfd_vma got_address_high, got_address_low;
8469
8470	  plt_entry = mips_vxworks_exec_plt_entry;
8471	  got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8472	  got_address_low = got_address & 0xffff;
8473
8474	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8475	  bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8476	  bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8477	  bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8478	  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8479	  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8480	  bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8481	  bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8482
8483	  loc = (htab->srelplt2->contents
8484		 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8485
8486	  /* Emit a relocation for the .got.plt entry.  */
8487	  rel.r_offset = got_address;
8488	  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8489	  rel.r_addend = h->plt.offset;
8490	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8491
8492	  /* Emit a relocation for the lui of %hi(<.got.plt slot>).  */
8493	  loc += sizeof (Elf32_External_Rela);
8494	  rel.r_offset = plt_address + 8;
8495	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8496	  rel.r_addend = got_offset;
8497	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8498
8499	  /* Emit a relocation for the addiu of %lo(<.got.plt slot>).  */
8500	  loc += sizeof (Elf32_External_Rela);
8501	  rel.r_offset += 4;
8502	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8503	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8504	}
8505
8506      /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
8507      loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8508      rel.r_offset = got_address;
8509      rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8510      rel.r_addend = 0;
8511      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8512
8513      if (!h->def_regular)
8514	sym->st_shndx = SHN_UNDEF;
8515    }
8516
8517  BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8518
8519  sgot = mips_elf_got_section (dynobj, FALSE);
8520  BFD_ASSERT (sgot != NULL);
8521  BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8522  g = mips_elf_section_data (sgot)->u.got_info;
8523  BFD_ASSERT (g != NULL);
8524
8525  /* See if this symbol has an entry in the GOT.  */
8526  if (g->global_gotsym != NULL
8527      && h->dynindx >= g->global_gotsym->dynindx)
8528    {
8529      bfd_vma offset;
8530      Elf_Internal_Rela outrel;
8531      bfd_byte *loc;
8532      asection *s;
8533
8534      /* Install the symbol value in the GOT.   */
8535      offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8536					  R_MIPS_GOT16, info);
8537      MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8538
8539      /* Add a dynamic relocation for it.  */
8540      s = mips_elf_rel_dyn_section (info, FALSE);
8541      loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8542      outrel.r_offset = (sgot->output_section->vma
8543			 + sgot->output_offset
8544			 + offset);
8545      outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8546      outrel.r_addend = 0;
8547      bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8548    }
8549
8550  /* Emit a copy reloc, if needed.  */
8551  if (h->needs_copy)
8552    {
8553      Elf_Internal_Rela rel;
8554
8555      BFD_ASSERT (h->dynindx != -1);
8556
8557      rel.r_offset = (h->root.u.def.section->output_section->vma
8558		      + h->root.u.def.section->output_offset
8559		      + h->root.u.def.value);
8560      rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8561      rel.r_addend = 0;
8562      bfd_elf32_swap_reloca_out (output_bfd, &rel,
8563				 htab->srelbss->contents
8564				 + (htab->srelbss->reloc_count
8565				    * sizeof (Elf32_External_Rela)));
8566      ++htab->srelbss->reloc_count;
8567    }
8568
8569  /* If this is a mips16 symbol, force the value to be even.  */
8570  if (sym->st_other == STO_MIPS16)
8571    sym->st_value &= ~1;
8572
8573  return TRUE;
8574}
8575
8576/* Install the PLT header for a VxWorks executable and finalize the
8577   contents of .rela.plt.unloaded.  */
8578
8579static void
8580mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8581{
8582  Elf_Internal_Rela rela;
8583  bfd_byte *loc;
8584  bfd_vma got_value, got_value_high, got_value_low, plt_address;
8585  static const bfd_vma *plt_entry;
8586  struct mips_elf_link_hash_table *htab;
8587
8588  htab = mips_elf_hash_table (info);
8589  plt_entry = mips_vxworks_exec_plt0_entry;
8590
8591  /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
8592  got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8593	       + htab->root.hgot->root.u.def.section->output_offset
8594	       + htab->root.hgot->root.u.def.value);
8595
8596  got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8597  got_value_low = got_value & 0xffff;
8598
8599  /* Calculate the address of the PLT header.  */
8600  plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8601
8602  /* Install the PLT header.  */
8603  loc = htab->splt->contents;
8604  bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8605  bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8606  bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8607  bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8608  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8609  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8610
8611  /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_).  */
8612  loc = htab->srelplt2->contents;
8613  rela.r_offset = plt_address;
8614  rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8615  rela.r_addend = 0;
8616  bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8617  loc += sizeof (Elf32_External_Rela);
8618
8619  /* Output the relocation for the following addiu of
8620     %lo(_GLOBAL_OFFSET_TABLE_).  */
8621  rela.r_offset += 4;
8622  rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8623  bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8624  loc += sizeof (Elf32_External_Rela);
8625
8626  /* Fix up the remaining relocations.  They may have the wrong
8627     symbol index for _G_O_T_ or _P_L_T_ depending on the order
8628     in which symbols were output.  */
8629  while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8630    {
8631      Elf_Internal_Rela rel;
8632
8633      bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8634      rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8635      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8636      loc += sizeof (Elf32_External_Rela);
8637
8638      bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8639      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8640      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8641      loc += sizeof (Elf32_External_Rela);
8642
8643      bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8644      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8645      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8646      loc += sizeof (Elf32_External_Rela);
8647    }
8648}
8649
8650/* Install the PLT header for a VxWorks shared library.  */
8651
8652static void
8653mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8654{
8655  unsigned int i;
8656  struct mips_elf_link_hash_table *htab;
8657
8658  htab = mips_elf_hash_table (info);
8659
8660  /* We just need to copy the entry byte-by-byte.  */
8661  for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8662    bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8663		htab->splt->contents + i * 4);
8664}
8665
8666/* Finish up the dynamic sections.  */
8667
8668bfd_boolean
8669_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8670				       struct bfd_link_info *info)
8671{
8672  bfd *dynobj;
8673  asection *sdyn;
8674  asection *sgot;
8675  struct mips_got_info *gg, *g;
8676  struct mips_elf_link_hash_table *htab;
8677
8678  htab = mips_elf_hash_table (info);
8679  dynobj = elf_hash_table (info)->dynobj;
8680
8681  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8682
8683  sgot = mips_elf_got_section (dynobj, FALSE);
8684  if (sgot == NULL)
8685    gg = g = NULL;
8686  else
8687    {
8688      BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8689      gg = mips_elf_section_data (sgot)->u.got_info;
8690      BFD_ASSERT (gg != NULL);
8691      g = mips_elf_got_for_ibfd (gg, output_bfd);
8692      BFD_ASSERT (g != NULL);
8693    }
8694
8695  if (elf_hash_table (info)->dynamic_sections_created)
8696    {
8697      bfd_byte *b;
8698      int dyn_to_skip = 0, dyn_skipped = 0;
8699
8700      BFD_ASSERT (sdyn != NULL);
8701      BFD_ASSERT (g != NULL);
8702
8703      for (b = sdyn->contents;
8704	   b < sdyn->contents + sdyn->size;
8705	   b += MIPS_ELF_DYN_SIZE (dynobj))
8706	{
8707	  Elf_Internal_Dyn dyn;
8708	  const char *name;
8709	  size_t elemsize;
8710	  asection *s;
8711	  bfd_boolean swap_out_p;
8712
8713	  /* Read in the current dynamic entry.  */
8714	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8715
8716	  /* Assume that we're going to modify it and write it out.  */
8717	  swap_out_p = TRUE;
8718
8719	  switch (dyn.d_tag)
8720	    {
8721	    case DT_RELENT:
8722	      dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8723	      break;
8724
8725	    case DT_RELAENT:
8726	      BFD_ASSERT (htab->is_vxworks);
8727	      dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8728	      break;
8729
8730	    case DT_STRSZ:
8731	      /* Rewrite DT_STRSZ.  */
8732	      dyn.d_un.d_val =
8733		_bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8734	      break;
8735
8736	    case DT_PLTGOT:
8737	      name = ".got";
8738	      if (htab->is_vxworks)
8739		{
8740		  /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8741		     of the ".got" section in DYNOBJ.  */
8742		  s = bfd_get_section_by_name (dynobj, name);
8743		  BFD_ASSERT (s != NULL);
8744		  dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8745		}
8746	      else
8747		{
8748		  s = bfd_get_section_by_name (output_bfd, name);
8749		  BFD_ASSERT (s != NULL);
8750		  dyn.d_un.d_ptr = s->vma;
8751		}
8752	      break;
8753
8754	    case DT_MIPS_RLD_VERSION:
8755	      dyn.d_un.d_val = 1; /* XXX */
8756	      break;
8757
8758	    case DT_MIPS_FLAGS:
8759	      dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8760	      break;
8761
8762	    case DT_MIPS_TIME_STAMP:
8763	      {
8764		time_t t;
8765		time (&t);
8766		dyn.d_un.d_val = t;
8767	      }
8768	      break;
8769
8770	    case DT_MIPS_ICHECKSUM:
8771	      /* XXX FIXME: */
8772	      swap_out_p = FALSE;
8773	      break;
8774
8775	    case DT_MIPS_IVERSION:
8776	      /* XXX FIXME: */
8777	      swap_out_p = FALSE;
8778	      break;
8779
8780	    case DT_MIPS_BASE_ADDRESS:
8781	      s = output_bfd->sections;
8782	      BFD_ASSERT (s != NULL);
8783	      dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8784	      break;
8785
8786	    case DT_MIPS_LOCAL_GOTNO:
8787	      dyn.d_un.d_val = g->local_gotno;
8788	      break;
8789
8790	    case DT_MIPS_UNREFEXTNO:
8791	      /* The index into the dynamic symbol table which is the
8792		 entry of the first external symbol that is not
8793		 referenced within the same object.  */
8794	      dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8795	      break;
8796
8797	    case DT_MIPS_GOTSYM:
8798	      if (gg->global_gotsym)
8799		{
8800		  dyn.d_un.d_val = gg->global_gotsym->dynindx;
8801		  break;
8802		}
8803	      /* In case if we don't have global got symbols we default
8804		 to setting DT_MIPS_GOTSYM to the same value as
8805		 DT_MIPS_SYMTABNO, so we just fall through.  */
8806
8807	    case DT_MIPS_SYMTABNO:
8808	      name = ".dynsym";
8809	      elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8810	      s = bfd_get_section_by_name (output_bfd, name);
8811	      BFD_ASSERT (s != NULL);
8812
8813	      dyn.d_un.d_val = s->size / elemsize;
8814	      break;
8815
8816	    case DT_MIPS_HIPAGENO:
8817	      dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8818	      break;
8819
8820	    case DT_MIPS_RLD_MAP:
8821	      dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8822	      break;
8823
8824	    case DT_MIPS_OPTIONS:
8825	      s = (bfd_get_section_by_name
8826		   (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8827	      dyn.d_un.d_ptr = s->vma;
8828	      break;
8829
8830	    case DT_RELASZ:
8831	      BFD_ASSERT (htab->is_vxworks);
8832	      /* The count does not include the JUMP_SLOT relocations.  */
8833	      if (htab->srelplt)
8834		dyn.d_un.d_val -= htab->srelplt->size;
8835	      break;
8836
8837	    case DT_PLTREL:
8838	      BFD_ASSERT (htab->is_vxworks);
8839	      dyn.d_un.d_val = DT_RELA;
8840	      break;
8841
8842	    case DT_PLTRELSZ:
8843	      BFD_ASSERT (htab->is_vxworks);
8844	      dyn.d_un.d_val = htab->srelplt->size;
8845	      break;
8846
8847	    case DT_JMPREL:
8848	      BFD_ASSERT (htab->is_vxworks);
8849	      dyn.d_un.d_val = (htab->srelplt->output_section->vma
8850				+ htab->srelplt->output_offset);
8851	      break;
8852
8853	    case DT_TEXTREL:
8854	      /* If we didn't need any text relocations after all, delete
8855		 the dynamic tag.  */
8856	      if (!(info->flags & DF_TEXTREL))
8857		{
8858		  dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8859		  swap_out_p = FALSE;
8860		}
8861	      break;
8862
8863	    case DT_FLAGS:
8864	      /* If we didn't need any text relocations after all, clear
8865		 DF_TEXTREL from DT_FLAGS.  */
8866	      if (!(info->flags & DF_TEXTREL))
8867		dyn.d_un.d_val &= ~DF_TEXTREL;
8868	      else
8869		swap_out_p = FALSE;
8870	      break;
8871
8872	    default:
8873	      swap_out_p = FALSE;
8874	      break;
8875	    }
8876
8877	  if (swap_out_p || dyn_skipped)
8878	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8879	      (dynobj, &dyn, b - dyn_skipped);
8880
8881	  if (dyn_to_skip)
8882	    {
8883	      dyn_skipped += dyn_to_skip;
8884	      dyn_to_skip = 0;
8885	    }
8886	}
8887
8888      /* Wipe out any trailing entries if we shifted down a dynamic tag.  */
8889      if (dyn_skipped > 0)
8890	memset (b - dyn_skipped, 0, dyn_skipped);
8891    }
8892
8893  if (sgot != NULL && sgot->size > 0)
8894    {
8895      if (htab->is_vxworks)
8896	{
8897	  /* The first entry of the global offset table points to the
8898	     ".dynamic" section.  The second is initialized by the
8899	     loader and contains the shared library identifier.
8900	     The third is also initialized by the loader and points
8901	     to the lazy resolution stub.  */
8902	  MIPS_ELF_PUT_WORD (output_bfd,
8903			     sdyn->output_offset + sdyn->output_section->vma,
8904			     sgot->contents);
8905	  MIPS_ELF_PUT_WORD (output_bfd, 0,
8906			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8907	  MIPS_ELF_PUT_WORD (output_bfd, 0,
8908			     sgot->contents
8909			     + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8910	}
8911      else
8912	{
8913	  /* The first entry of the global offset table will be filled at
8914	     runtime. The second entry will be used by some runtime loaders.
8915	     This isn't the case of IRIX rld.  */
8916	  MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8917	  MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8918			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8919	}
8920
8921      elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8922	 = MIPS_ELF_GOT_SIZE (output_bfd);
8923    }
8924
8925  /* Generate dynamic relocations for the non-primary gots.  */
8926  if (gg != NULL && gg->next)
8927    {
8928      Elf_Internal_Rela rel[3];
8929      bfd_vma addend = 0;
8930
8931      memset (rel, 0, sizeof (rel));
8932      rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8933
8934      for (g = gg->next; g->next != gg; g = g->next)
8935	{
8936	  bfd_vma index = g->next->local_gotno + g->next->global_gotno
8937	    + g->next->tls_gotno;
8938
8939	  MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8940			     + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8941	  MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8942			     + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8943
8944	  if (! info->shared)
8945	    continue;
8946
8947	  while (index < g->assigned_gotno)
8948	    {
8949	      rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8950		= index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8951	      if (!(mips_elf_create_dynamic_relocation
8952		    (output_bfd, info, rel, NULL,
8953		     bfd_abs_section_ptr,
8954		     0, &addend, sgot)))
8955		return FALSE;
8956	      BFD_ASSERT (addend == 0);
8957	    }
8958	}
8959    }
8960
8961  /* The generation of dynamic relocations for the non-primary gots
8962     adds more dynamic relocations.  We cannot count them until
8963     here.  */
8964
8965  if (elf_hash_table (info)->dynamic_sections_created)
8966    {
8967      bfd_byte *b;
8968      bfd_boolean swap_out_p;
8969
8970      BFD_ASSERT (sdyn != NULL);
8971
8972      for (b = sdyn->contents;
8973	   b < sdyn->contents + sdyn->size;
8974	   b += MIPS_ELF_DYN_SIZE (dynobj))
8975	{
8976	  Elf_Internal_Dyn dyn;
8977	  asection *s;
8978
8979	  /* Read in the current dynamic entry.  */
8980	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8981
8982	  /* Assume that we're going to modify it and write it out.  */
8983	  swap_out_p = TRUE;
8984
8985	  switch (dyn.d_tag)
8986	    {
8987	    case DT_RELSZ:
8988	      /* Reduce DT_RELSZ to account for any relocations we
8989		 decided not to make.  This is for the n64 irix rld,
8990		 which doesn't seem to apply any relocations if there
8991		 are trailing null entries.  */
8992	      s = mips_elf_rel_dyn_section (info, FALSE);
8993	      dyn.d_un.d_val = (s->reloc_count
8994				* (ABI_64_P (output_bfd)
8995				   ? sizeof (Elf64_Mips_External_Rel)
8996				   : sizeof (Elf32_External_Rel)));
8997	      /* Adjust the section size too.  Tools like the prelinker
8998		 can reasonably expect the values to the same.  */
8999	      elf_section_data (s->output_section)->this_hdr.sh_size
9000		= dyn.d_un.d_val;
9001	      break;
9002
9003	    default:
9004	      swap_out_p = FALSE;
9005	      break;
9006	    }
9007
9008	  if (swap_out_p)
9009	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9010	      (dynobj, &dyn, b);
9011	}
9012    }
9013
9014  {
9015    asection *s;
9016    Elf32_compact_rel cpt;
9017
9018    if (SGI_COMPAT (output_bfd))
9019      {
9020	/* Write .compact_rel section out.  */
9021	s = bfd_get_section_by_name (dynobj, ".compact_rel");
9022	if (s != NULL)
9023	  {
9024	    cpt.id1 = 1;
9025	    cpt.num = s->reloc_count;
9026	    cpt.id2 = 2;
9027	    cpt.offset = (s->output_section->filepos
9028			  + sizeof (Elf32_External_compact_rel));
9029	    cpt.reserved0 = 0;
9030	    cpt.reserved1 = 0;
9031	    bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9032					    ((Elf32_External_compact_rel *)
9033					     s->contents));
9034
9035	    /* Clean up a dummy stub function entry in .text.  */
9036	    s = bfd_get_section_by_name (dynobj,
9037					 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9038	    if (s != NULL)
9039	      {
9040		file_ptr dummy_offset;
9041
9042		BFD_ASSERT (s->size >= htab->function_stub_size);
9043		dummy_offset = s->size - htab->function_stub_size;
9044		memset (s->contents + dummy_offset, 0,
9045			htab->function_stub_size);
9046	      }
9047	  }
9048      }
9049
9050    /* The psABI says that the dynamic relocations must be sorted in
9051       increasing order of r_symndx.  The VxWorks EABI doesn't require
9052       this, and because the code below handles REL rather than RELA
9053       relocations, using it for VxWorks would be outright harmful.  */
9054    if (!htab->is_vxworks)
9055      {
9056	s = mips_elf_rel_dyn_section (info, FALSE);
9057	if (s != NULL
9058	    && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9059	  {
9060	    reldyn_sorting_bfd = output_bfd;
9061
9062	    if (ABI_64_P (output_bfd))
9063	      qsort ((Elf64_External_Rel *) s->contents + 1,
9064		     s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9065		     sort_dynamic_relocs_64);
9066	    else
9067	      qsort ((Elf32_External_Rel *) s->contents + 1,
9068		     s->reloc_count - 1, sizeof (Elf32_External_Rel),
9069		     sort_dynamic_relocs);
9070	  }
9071      }
9072  }
9073
9074  if (htab->is_vxworks && htab->splt->size > 0)
9075    {
9076      if (info->shared)
9077	mips_vxworks_finish_shared_plt (output_bfd, info);
9078      else
9079	mips_vxworks_finish_exec_plt (output_bfd, info);
9080    }
9081  return TRUE;
9082}
9083
9084
9085/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */
9086
9087static void
9088mips_set_isa_flags (bfd *abfd)
9089{
9090  flagword val;
9091
9092  switch (bfd_get_mach (abfd))
9093    {
9094    default:
9095    case bfd_mach_mips3000:
9096      val = E_MIPS_ARCH_1;
9097      break;
9098
9099    case bfd_mach_mips3900:
9100      val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9101      break;
9102
9103    case bfd_mach_mips6000:
9104      val = E_MIPS_ARCH_2;
9105      break;
9106
9107    case bfd_mach_mips4000:
9108    case bfd_mach_mips4300:
9109    case bfd_mach_mips4400:
9110    case bfd_mach_mips4600:
9111      val = E_MIPS_ARCH_3;
9112      break;
9113
9114    case bfd_mach_mips4010:
9115      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9116      break;
9117
9118    case bfd_mach_mips4100:
9119      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9120      break;
9121
9122    case bfd_mach_mips4111:
9123      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9124      break;
9125
9126    case bfd_mach_mips4120:
9127      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9128      break;
9129
9130    case bfd_mach_mips4650:
9131      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9132      break;
9133
9134    case bfd_mach_mips5400:
9135      val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9136      break;
9137
9138    case bfd_mach_mips5500:
9139      val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9140      break;
9141
9142    case bfd_mach_mips9000:
9143      val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9144      break;
9145
9146    case bfd_mach_mips5000:
9147    case bfd_mach_mips7000:
9148    case bfd_mach_mips8000:
9149    case bfd_mach_mips10000:
9150    case bfd_mach_mips12000:
9151      val = E_MIPS_ARCH_4;
9152      break;
9153
9154    case bfd_mach_mips5:
9155      val = E_MIPS_ARCH_5;
9156      break;
9157
9158    case bfd_mach_mips_octeon:
9159      val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
9160      break;
9161
9162    case bfd_mach_mips_sb1:
9163      val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9164      break;
9165
9166    case bfd_mach_mipsisa32:
9167      val = E_MIPS_ARCH_32;
9168      break;
9169
9170    case bfd_mach_mipsisa64:
9171      val = E_MIPS_ARCH_64;
9172      break;
9173
9174    case bfd_mach_mipsisa32r2:
9175      val = E_MIPS_ARCH_32R2;
9176      break;
9177
9178    case bfd_mach_mipsisa64r2:
9179      val = E_MIPS_ARCH_64R2;
9180      break;
9181    }
9182  elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9183  elf_elfheader (abfd)->e_flags |= val;
9184
9185}
9186
9187
9188/* The final processing done just before writing out a MIPS ELF object
9189   file.  This gets the MIPS architecture right based on the machine
9190   number.  This is used by both the 32-bit and the 64-bit ABI.  */
9191
9192void
9193_bfd_mips_elf_final_write_processing (bfd *abfd,
9194				      bfd_boolean linker ATTRIBUTE_UNUSED)
9195{
9196  unsigned int i;
9197  Elf_Internal_Shdr **hdrpp;
9198  const char *name;
9199  asection *sec;
9200
9201  /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9202     is nonzero.  This is for compatibility with old objects, which used
9203     a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */
9204  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9205    mips_set_isa_flags (abfd);
9206
9207  /* Set the sh_info field for .gptab sections and other appropriate
9208     info for each special section.  */
9209  for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9210       i < elf_numsections (abfd);
9211       i++, hdrpp++)
9212    {
9213      switch ((*hdrpp)->sh_type)
9214	{
9215	case SHT_MIPS_MSYM:
9216	case SHT_MIPS_LIBLIST:
9217	  sec = bfd_get_section_by_name (abfd, ".dynstr");
9218	  if (sec != NULL)
9219	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9220	  break;
9221
9222	case SHT_MIPS_GPTAB:
9223	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9224	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9225	  BFD_ASSERT (name != NULL
9226		      && CONST_STRNEQ (name, ".gptab."));
9227	  sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9228	  BFD_ASSERT (sec != NULL);
9229	  (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9230	  break;
9231
9232	case SHT_MIPS_CONTENT:
9233	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9234	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9235	  BFD_ASSERT (name != NULL
9236		      && CONST_STRNEQ (name, ".MIPS.content"));
9237	  sec = bfd_get_section_by_name (abfd,
9238					 name + sizeof ".MIPS.content" - 1);
9239	  BFD_ASSERT (sec != NULL);
9240	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9241	  break;
9242
9243	case SHT_MIPS_SYMBOL_LIB:
9244	  sec = bfd_get_section_by_name (abfd, ".dynsym");
9245	  if (sec != NULL)
9246	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9247	  sec = bfd_get_section_by_name (abfd, ".liblist");
9248	  if (sec != NULL)
9249	    (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9250	  break;
9251
9252	case SHT_MIPS_EVENTS:
9253	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9254	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9255	  BFD_ASSERT (name != NULL);
9256	  if (CONST_STRNEQ (name, ".MIPS.events"))
9257	    sec = bfd_get_section_by_name (abfd,
9258					   name + sizeof ".MIPS.events" - 1);
9259	  else
9260	    {
9261	      BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9262	      sec = bfd_get_section_by_name (abfd,
9263					     (name
9264					      + sizeof ".MIPS.post_rel" - 1));
9265	    }
9266	  BFD_ASSERT (sec != NULL);
9267	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9268	  break;
9269
9270	}
9271    }
9272}
9273
9274/* When creating an IRIX5 executable, we need REGINFO and RTPROC
9275   segments.  */
9276
9277int
9278_bfd_mips_elf_additional_program_headers (bfd *abfd,
9279					  struct bfd_link_info *info ATTRIBUTE_UNUSED)
9280{
9281  asection *s;
9282  int ret = 0;
9283
9284  /* See if we need a PT_MIPS_REGINFO segment.  */
9285  s = bfd_get_section_by_name (abfd, ".reginfo");
9286  if (s && (s->flags & SEC_LOAD))
9287    ++ret;
9288
9289  /* See if we need a PT_MIPS_OPTIONS segment.  */
9290  if (IRIX_COMPAT (abfd) == ict_irix6
9291      && bfd_get_section_by_name (abfd,
9292				  MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9293    ++ret;
9294
9295  /* See if we need a PT_MIPS_RTPROC segment.  */
9296  if (IRIX_COMPAT (abfd) == ict_irix5
9297      && bfd_get_section_by_name (abfd, ".dynamic")
9298      && bfd_get_section_by_name (abfd, ".mdebug"))
9299    ++ret;
9300
9301  /* Allocate a PT_NULL header in dynamic objects.  See
9302     _bfd_mips_elf_modify_segment_map for details.  */
9303  if (!SGI_COMPAT (abfd)
9304      && bfd_get_section_by_name (abfd, ".dynamic"))
9305    ++ret;
9306
9307  return ret;
9308}
9309
9310/* Modify the segment map for an IRIX5 executable.  */
9311
9312bfd_boolean
9313_bfd_mips_elf_modify_segment_map (bfd *abfd,
9314				  struct bfd_link_info *info ATTRIBUTE_UNUSED)
9315{
9316  asection *s;
9317  struct elf_segment_map *m, **pm;
9318  bfd_size_type amt;
9319
9320  /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9321     segment.  */
9322  s = bfd_get_section_by_name (abfd, ".reginfo");
9323  if (s != NULL && (s->flags & SEC_LOAD) != 0)
9324    {
9325      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9326	if (m->p_type == PT_MIPS_REGINFO)
9327	  break;
9328      if (m == NULL)
9329	{
9330	  amt = sizeof *m;
9331	  m = bfd_zalloc (abfd, amt);
9332	  if (m == NULL)
9333	    return FALSE;
9334
9335	  m->p_type = PT_MIPS_REGINFO;
9336	  m->count = 1;
9337	  m->sections[0] = s;
9338
9339	  /* We want to put it after the PHDR and INTERP segments.  */
9340	  pm = &elf_tdata (abfd)->segment_map;
9341	  while (*pm != NULL
9342		 && ((*pm)->p_type == PT_PHDR
9343		     || (*pm)->p_type == PT_INTERP))
9344	    pm = &(*pm)->next;
9345
9346	  m->next = *pm;
9347	  *pm = m;
9348	}
9349    }
9350
9351  /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9352     .dynamic end up in PT_DYNAMIC.  However, we do have to insert a
9353     PT_MIPS_OPTIONS segment immediately following the program header
9354     table.  */
9355  if (NEWABI_P (abfd)
9356      /* On non-IRIX6 new abi, we'll have already created a segment
9357	 for this section, so don't create another.  I'm not sure this
9358	 is not also the case for IRIX 6, but I can't test it right
9359	 now.  */
9360      && IRIX_COMPAT (abfd) == ict_irix6)
9361    {
9362      for (s = abfd->sections; s; s = s->next)
9363	if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9364	  break;
9365
9366      if (s)
9367	{
9368	  struct elf_segment_map *options_segment;
9369
9370	  pm = &elf_tdata (abfd)->segment_map;
9371	  while (*pm != NULL
9372		 && ((*pm)->p_type == PT_PHDR
9373		     || (*pm)->p_type == PT_INTERP))
9374	    pm = &(*pm)->next;
9375
9376	  if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9377	    {
9378	      amt = sizeof (struct elf_segment_map);
9379	      options_segment = bfd_zalloc (abfd, amt);
9380	      options_segment->next = *pm;
9381	      options_segment->p_type = PT_MIPS_OPTIONS;
9382	      options_segment->p_flags = PF_R;
9383	      options_segment->p_flags_valid = TRUE;
9384	      options_segment->count = 1;
9385	      options_segment->sections[0] = s;
9386	      *pm = options_segment;
9387	    }
9388	}
9389    }
9390  else
9391    {
9392      if (IRIX_COMPAT (abfd) == ict_irix5)
9393	{
9394	  /* If there are .dynamic and .mdebug sections, we make a room
9395	     for the RTPROC header.  FIXME: Rewrite without section names.  */
9396	  if (bfd_get_section_by_name (abfd, ".interp") == NULL
9397	      && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9398	      && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9399	    {
9400	      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9401		if (m->p_type == PT_MIPS_RTPROC)
9402		  break;
9403	      if (m == NULL)
9404		{
9405		  amt = sizeof *m;
9406		  m = bfd_zalloc (abfd, amt);
9407		  if (m == NULL)
9408		    return FALSE;
9409
9410		  m->p_type = PT_MIPS_RTPROC;
9411
9412		  s = bfd_get_section_by_name (abfd, ".rtproc");
9413		  if (s == NULL)
9414		    {
9415		      m->count = 0;
9416		      m->p_flags = 0;
9417		      m->p_flags_valid = 1;
9418		    }
9419		  else
9420		    {
9421		      m->count = 1;
9422		      m->sections[0] = s;
9423		    }
9424
9425		  /* We want to put it after the DYNAMIC segment.  */
9426		  pm = &elf_tdata (abfd)->segment_map;
9427		  while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9428		    pm = &(*pm)->next;
9429		  if (*pm != NULL)
9430		    pm = &(*pm)->next;
9431
9432		  m->next = *pm;
9433		  *pm = m;
9434		}
9435	    }
9436	}
9437      /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9438	 .dynstr, .dynsym, and .hash sections, and everything in
9439	 between.  */
9440      for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9441	   pm = &(*pm)->next)
9442	if ((*pm)->p_type == PT_DYNAMIC)
9443	  break;
9444      m = *pm;
9445      if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9446	{
9447	  /* For a normal mips executable the permissions for the PT_DYNAMIC
9448	     segment are read, write and execute. We do that here since
9449	     the code in elf.c sets only the read permission. This matters
9450	     sometimes for the dynamic linker.  */
9451	  if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9452	    {
9453	      m->p_flags = PF_R | PF_W | PF_X;
9454	      m->p_flags_valid = 1;
9455	    }
9456	}
9457      /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9458	 glibc's dynamic linker has traditionally derived the number of
9459	 tags from the p_filesz field, and sometimes allocates stack
9460	 arrays of that size.  An overly-big PT_DYNAMIC segment can
9461	 be actively harmful in such cases.  Making PT_DYNAMIC contain
9462	 other sections can also make life hard for the prelinker,
9463	 which might move one of the other sections to a different
9464	 PT_LOAD segment.  */
9465      if (SGI_COMPAT (abfd)
9466	  && m != NULL
9467	  && m->count == 1
9468	  && strcmp (m->sections[0]->name, ".dynamic") == 0)
9469	{
9470	  static const char *sec_names[] =
9471	  {
9472	    ".dynamic", ".dynstr", ".dynsym", ".hash"
9473	  };
9474	  bfd_vma low, high;
9475	  unsigned int i, c;
9476	  struct elf_segment_map *n;
9477
9478	  low = ~(bfd_vma) 0;
9479	  high = 0;
9480	  for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9481	    {
9482	      s = bfd_get_section_by_name (abfd, sec_names[i]);
9483	      if (s != NULL && (s->flags & SEC_LOAD) != 0)
9484		{
9485		  bfd_size_type sz;
9486
9487		  if (low > s->vma)
9488		    low = s->vma;
9489		  sz = s->size;
9490		  if (high < s->vma + sz)
9491		    high = s->vma + sz;
9492		}
9493	    }
9494
9495	  c = 0;
9496	  for (s = abfd->sections; s != NULL; s = s->next)
9497	    if ((s->flags & SEC_LOAD) != 0
9498		&& s->vma >= low
9499		&& s->vma + s->size <= high)
9500	      ++c;
9501
9502	  amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9503	  n = bfd_zalloc (abfd, amt);
9504	  if (n == NULL)
9505	    return FALSE;
9506	  *n = *m;
9507	  n->count = c;
9508
9509	  i = 0;
9510	  for (s = abfd->sections; s != NULL; s = s->next)
9511	    {
9512	      if ((s->flags & SEC_LOAD) != 0
9513		  && s->vma >= low
9514		  && s->vma + s->size <= high)
9515		{
9516		  n->sections[i] = s;
9517		  ++i;
9518		}
9519	    }
9520
9521	  *pm = n;
9522	}
9523    }
9524
9525  /* Allocate a spare program header in dynamic objects so that tools
9526     like the prelinker can add an extra PT_LOAD entry.
9527
9528     If the prelinker needs to make room for a new PT_LOAD entry, its
9529     standard procedure is to move the first (read-only) sections into
9530     the new (writable) segment.  However, the MIPS ABI requires
9531     .dynamic to be in a read-only segment, and the section will often
9532     start within sizeof (ElfNN_Phdr) bytes of the last program header.
9533
9534     Although the prelinker could in principle move .dynamic to a
9535     writable segment, it seems better to allocate a spare program
9536     header instead, and avoid the need to move any sections.
9537     There is a long tradition of allocating spare dynamic tags,
9538     so allocating a spare program header seems like a natural
9539     extension.  */
9540  if (!SGI_COMPAT (abfd)
9541      && bfd_get_section_by_name (abfd, ".dynamic"))
9542    {
9543      for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9544	if ((*pm)->p_type == PT_NULL)
9545	  break;
9546      if (*pm == NULL)
9547	{
9548	  m = bfd_zalloc (abfd, sizeof (*m));
9549	  if (m == NULL)
9550	    return FALSE;
9551
9552	  m->p_type = PT_NULL;
9553	  *pm = m;
9554	}
9555    }
9556
9557  return TRUE;
9558}
9559
9560/* Return the section that should be marked against GC for a given
9561   relocation.  */
9562
9563asection *
9564_bfd_mips_elf_gc_mark_hook (asection *sec,
9565			    struct bfd_link_info *info,
9566			    Elf_Internal_Rela *rel,
9567			    struct elf_link_hash_entry *h,
9568			    Elf_Internal_Sym *sym)
9569{
9570  /* ??? Do mips16 stub sections need to be handled special?  */
9571
9572  if (h != NULL)
9573    switch (ELF_R_TYPE (sec->owner, rel->r_info))
9574      {
9575      case R_MIPS_GNU_VTINHERIT:
9576      case R_MIPS_GNU_VTENTRY:
9577	return NULL;
9578      }
9579
9580  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9581}
9582
9583/* Update the got entry reference counts for the section being removed.  */
9584
9585bfd_boolean
9586_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9587			     struct bfd_link_info *info ATTRIBUTE_UNUSED,
9588			     asection *sec ATTRIBUTE_UNUSED,
9589			     const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9590{
9591#if 0
9592  Elf_Internal_Shdr *symtab_hdr;
9593  struct elf_link_hash_entry **sym_hashes;
9594  bfd_signed_vma *local_got_refcounts;
9595  const Elf_Internal_Rela *rel, *relend;
9596  unsigned long r_symndx;
9597  struct elf_link_hash_entry *h;
9598
9599  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9600  sym_hashes = elf_sym_hashes (abfd);
9601  local_got_refcounts = elf_local_got_refcounts (abfd);
9602
9603  relend = relocs + sec->reloc_count;
9604  for (rel = relocs; rel < relend; rel++)
9605    switch (ELF_R_TYPE (abfd, rel->r_info))
9606      {
9607      case R_MIPS_GOT16:
9608      case R_MIPS_CALL16:
9609      case R_MIPS_CALL_HI16:
9610      case R_MIPS_CALL_LO16:
9611      case R_MIPS_GOT_HI16:
9612      case R_MIPS_GOT_LO16:
9613      case R_MIPS_GOT_DISP:
9614      case R_MIPS_GOT_PAGE:
9615      case R_MIPS_GOT_OFST:
9616	/* ??? It would seem that the existing MIPS code does no sort
9617	   of reference counting or whatnot on its GOT and PLT entries,
9618	   so it is not possible to garbage collect them at this time.  */
9619	break;
9620
9621      default:
9622	break;
9623      }
9624#endif
9625
9626  return TRUE;
9627}
9628
9629/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9630   hiding the old indirect symbol.  Process additional relocation
9631   information.  Also called for weakdefs, in which case we just let
9632   _bfd_elf_link_hash_copy_indirect copy the flags for us.  */
9633
9634void
9635_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9636				    struct elf_link_hash_entry *dir,
9637				    struct elf_link_hash_entry *ind)
9638{
9639  struct mips_elf_link_hash_entry *dirmips, *indmips;
9640
9641  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9642
9643  if (ind->root.type != bfd_link_hash_indirect)
9644    return;
9645
9646  dirmips = (struct mips_elf_link_hash_entry *) dir;
9647  indmips = (struct mips_elf_link_hash_entry *) ind;
9648  dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9649  if (indmips->readonly_reloc)
9650    dirmips->readonly_reloc = TRUE;
9651  if (indmips->no_fn_stub)
9652    dirmips->no_fn_stub = TRUE;
9653
9654  if (dirmips->tls_type == 0)
9655    dirmips->tls_type = indmips->tls_type;
9656}
9657
9658void
9659_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9660			   struct elf_link_hash_entry *entry,
9661			   bfd_boolean force_local)
9662{
9663  bfd *dynobj;
9664  asection *got;
9665  struct mips_got_info *g;
9666  struct mips_elf_link_hash_entry *h;
9667
9668  h = (struct mips_elf_link_hash_entry *) entry;
9669  if (h->forced_local)
9670    return;
9671  h->forced_local = force_local;
9672
9673  dynobj = elf_hash_table (info)->dynobj;
9674  if (dynobj != NULL && force_local && h->root.type != STT_TLS
9675      && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9676      && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9677    {
9678      if (g->next)
9679	{
9680	  struct mips_got_entry e;
9681	  struct mips_got_info *gg = g;
9682
9683	  /* Since we're turning what used to be a global symbol into a
9684	     local one, bump up the number of local entries of each GOT
9685	     that had an entry for it.  This will automatically decrease
9686	     the number of global entries, since global_gotno is actually
9687	     the upper limit of global entries.  */
9688	  e.abfd = dynobj;
9689	  e.symndx = -1;
9690	  e.d.h = h;
9691	  e.tls_type = 0;
9692
9693	  for (g = g->next; g != gg; g = g->next)
9694	    if (htab_find (g->got_entries, &e))
9695	      {
9696		BFD_ASSERT (g->global_gotno > 0);
9697		g->local_gotno++;
9698		g->global_gotno--;
9699	      }
9700
9701	  /* If this was a global symbol forced into the primary GOT, we
9702	     no longer need an entry for it.  We can't release the entry
9703	     at this point, but we must at least stop counting it as one
9704	     of the symbols that required a forced got entry.  */
9705	  if (h->root.got.offset == 2)
9706	    {
9707	      BFD_ASSERT (gg->assigned_gotno > 0);
9708	      gg->assigned_gotno--;
9709	    }
9710	}
9711      else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9712	/* If we haven't got through GOT allocation yet, just bump up the
9713	   number of local entries, as this symbol won't be counted as
9714	   global.  */
9715	g->local_gotno++;
9716      else if (h->root.got.offset == 1)
9717	{
9718	  /* If we're past non-multi-GOT allocation and this symbol had
9719	     been marked for a global got entry, give it a local entry
9720	     instead.  */
9721	  BFD_ASSERT (g->global_gotno > 0);
9722	  g->local_gotno++;
9723	  g->global_gotno--;
9724	}
9725    }
9726
9727  _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9728}
9729
9730#define PDR_SIZE 32
9731
9732bfd_boolean
9733_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9734			    struct bfd_link_info *info)
9735{
9736  asection *o;
9737  bfd_boolean ret = FALSE;
9738  unsigned char *tdata;
9739  size_t i, skip;
9740
9741  o = bfd_get_section_by_name (abfd, ".pdr");
9742  if (! o)
9743    return FALSE;
9744  if (o->size == 0)
9745    return FALSE;
9746  if (o->size % PDR_SIZE != 0)
9747    return FALSE;
9748  if (o->output_section != NULL
9749      && bfd_is_abs_section (o->output_section))
9750    return FALSE;
9751
9752  tdata = bfd_zmalloc (o->size / PDR_SIZE);
9753  if (! tdata)
9754    return FALSE;
9755
9756  cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9757					    info->keep_memory);
9758  if (!cookie->rels)
9759    {
9760      free (tdata);
9761      return FALSE;
9762    }
9763
9764  cookie->rel = cookie->rels;
9765  cookie->relend = cookie->rels + o->reloc_count;
9766
9767  for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9768    {
9769      if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9770	{
9771	  tdata[i] = 1;
9772	  skip ++;
9773	}
9774    }
9775
9776  if (skip != 0)
9777    {
9778      mips_elf_section_data (o)->u.tdata = tdata;
9779      o->size -= skip * PDR_SIZE;
9780      ret = TRUE;
9781    }
9782  else
9783    free (tdata);
9784
9785  if (! info->keep_memory)
9786    free (cookie->rels);
9787
9788  return ret;
9789}
9790
9791bfd_boolean
9792_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9793{
9794  if (strcmp (sec->name, ".pdr") == 0)
9795    return TRUE;
9796  return FALSE;
9797}
9798
9799bfd_boolean
9800_bfd_mips_elf_write_section (bfd *output_bfd,
9801			     struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9802                             asection *sec, bfd_byte *contents)
9803{
9804  bfd_byte *to, *from, *end;
9805  int i;
9806
9807  if (strcmp (sec->name, ".pdr") != 0)
9808    return FALSE;
9809
9810  if (mips_elf_section_data (sec)->u.tdata == NULL)
9811    return FALSE;
9812
9813  to = contents;
9814  end = contents + sec->size;
9815  for (from = contents, i = 0;
9816       from < end;
9817       from += PDR_SIZE, i++)
9818    {
9819      if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9820	continue;
9821      if (to != from)
9822	memcpy (to, from, PDR_SIZE);
9823      to += PDR_SIZE;
9824    }
9825  bfd_set_section_contents (output_bfd, sec->output_section, contents,
9826			    sec->output_offset, sec->size);
9827  return TRUE;
9828}
9829
9830/* MIPS ELF uses a special find_nearest_line routine in order the
9831   handle the ECOFF debugging information.  */
9832
9833struct mips_elf_find_line
9834{
9835  struct ecoff_debug_info d;
9836  struct ecoff_find_line i;
9837};
9838
9839bfd_boolean
9840_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9841				 asymbol **symbols, bfd_vma offset,
9842				 const char **filename_ptr,
9843				 const char **functionname_ptr,
9844				 unsigned int *line_ptr)
9845{
9846  asection *msec;
9847
9848  if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9849				     filename_ptr, functionname_ptr,
9850				     line_ptr))
9851    return TRUE;
9852
9853  if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9854				     filename_ptr, functionname_ptr,
9855				     line_ptr, ABI_64_P (abfd) ? 8 : 0,
9856				     &elf_tdata (abfd)->dwarf2_find_line_info))
9857    return TRUE;
9858
9859  msec = bfd_get_section_by_name (abfd, ".mdebug");
9860  if (msec != NULL)
9861    {
9862      flagword origflags;
9863      struct mips_elf_find_line *fi;
9864      const struct ecoff_debug_swap * const swap =
9865	get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9866
9867      /* If we are called during a link, mips_elf_final_link may have
9868	 cleared the SEC_HAS_CONTENTS field.  We force it back on here
9869	 if appropriate (which it normally will be).  */
9870      origflags = msec->flags;
9871      if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9872	msec->flags |= SEC_HAS_CONTENTS;
9873
9874      fi = elf_tdata (abfd)->find_line_info;
9875      if (fi == NULL)
9876	{
9877	  bfd_size_type external_fdr_size;
9878	  char *fraw_src;
9879	  char *fraw_end;
9880	  struct fdr *fdr_ptr;
9881	  bfd_size_type amt = sizeof (struct mips_elf_find_line);
9882
9883	  fi = bfd_zalloc (abfd, amt);
9884	  if (fi == NULL)
9885	    {
9886	      msec->flags = origflags;
9887	      return FALSE;
9888	    }
9889
9890	  if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9891	    {
9892	      msec->flags = origflags;
9893	      return FALSE;
9894	    }
9895
9896	  /* Swap in the FDR information.  */
9897	  amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9898	  fi->d.fdr = bfd_alloc (abfd, amt);
9899	  if (fi->d.fdr == NULL)
9900	    {
9901	      msec->flags = origflags;
9902	      return FALSE;
9903	    }
9904	  external_fdr_size = swap->external_fdr_size;
9905	  fdr_ptr = fi->d.fdr;
9906	  fraw_src = (char *) fi->d.external_fdr;
9907	  fraw_end = (fraw_src
9908		      + fi->d.symbolic_header.ifdMax * external_fdr_size);
9909	  for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9910	    (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9911
9912	  elf_tdata (abfd)->find_line_info = fi;
9913
9914	  /* Note that we don't bother to ever free this information.
9915             find_nearest_line is either called all the time, as in
9916             objdump -l, so the information should be saved, or it is
9917             rarely called, as in ld error messages, so the memory
9918             wasted is unimportant.  Still, it would probably be a
9919             good idea for free_cached_info to throw it away.  */
9920	}
9921
9922      if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9923				  &fi->i, filename_ptr, functionname_ptr,
9924				  line_ptr))
9925	{
9926	  msec->flags = origflags;
9927	  return TRUE;
9928	}
9929
9930      msec->flags = origflags;
9931    }
9932
9933  /* Fall back on the generic ELF find_nearest_line routine.  */
9934
9935  return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9936				     filename_ptr, functionname_ptr,
9937				     line_ptr);
9938}
9939
9940bfd_boolean
9941_bfd_mips_elf_find_inliner_info (bfd *abfd,
9942				 const char **filename_ptr,
9943				 const char **functionname_ptr,
9944				 unsigned int *line_ptr)
9945{
9946  bfd_boolean found;
9947  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9948					 functionname_ptr, line_ptr,
9949					 & elf_tdata (abfd)->dwarf2_find_line_info);
9950  return found;
9951}
9952
9953
9954/* When are writing out the .options or .MIPS.options section,
9955   remember the bytes we are writing out, so that we can install the
9956   GP value in the section_processing routine.  */
9957
9958bfd_boolean
9959_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9960				    const void *location,
9961				    file_ptr offset, bfd_size_type count)
9962{
9963  if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9964    {
9965      bfd_byte *c;
9966
9967      if (elf_section_data (section) == NULL)
9968	{
9969	  bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9970	  section->used_by_bfd = bfd_zalloc (abfd, amt);
9971	  if (elf_section_data (section) == NULL)
9972	    return FALSE;
9973	}
9974      c = mips_elf_section_data (section)->u.tdata;
9975      if (c == NULL)
9976	{
9977	  c = bfd_zalloc (abfd, section->size);
9978	  if (c == NULL)
9979	    return FALSE;
9980	  mips_elf_section_data (section)->u.tdata = c;
9981	}
9982
9983      memcpy (c + offset, location, count);
9984    }
9985
9986  return _bfd_elf_set_section_contents (abfd, section, location, offset,
9987					count);
9988}
9989
9990/* This is almost identical to bfd_generic_get_... except that some
9991   MIPS relocations need to be handled specially.  Sigh.  */
9992
9993bfd_byte *
9994_bfd_elf_mips_get_relocated_section_contents
9995  (bfd *abfd,
9996   struct bfd_link_info *link_info,
9997   struct bfd_link_order *link_order,
9998   bfd_byte *data,
9999   bfd_boolean relocatable,
10000   asymbol **symbols)
10001{
10002  /* Get enough memory to hold the stuff */
10003  bfd *input_bfd = link_order->u.indirect.section->owner;
10004  asection *input_section = link_order->u.indirect.section;
10005  bfd_size_type sz;
10006
10007  long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10008  arelent **reloc_vector = NULL;
10009  long reloc_count;
10010
10011  if (reloc_size < 0)
10012    goto error_return;
10013
10014  reloc_vector = bfd_malloc (reloc_size);
10015  if (reloc_vector == NULL && reloc_size != 0)
10016    goto error_return;
10017
10018  /* read in the section */
10019  sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10020  if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10021    goto error_return;
10022
10023  reloc_count = bfd_canonicalize_reloc (input_bfd,
10024					input_section,
10025					reloc_vector,
10026					symbols);
10027  if (reloc_count < 0)
10028    goto error_return;
10029
10030  if (reloc_count > 0)
10031    {
10032      arelent **parent;
10033      /* for mips */
10034      int gp_found;
10035      bfd_vma gp = 0x12345678;	/* initialize just to shut gcc up */
10036
10037      {
10038	struct bfd_hash_entry *h;
10039	struct bfd_link_hash_entry *lh;
10040	/* Skip all this stuff if we aren't mixing formats.  */
10041	if (abfd && input_bfd
10042	    && abfd->xvec == input_bfd->xvec)
10043	  lh = 0;
10044	else
10045	  {
10046	    h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10047	    lh = (struct bfd_link_hash_entry *) h;
10048	  }
10049      lookup:
10050	if (lh)
10051	  {
10052	    switch (lh->type)
10053	      {
10054	      case bfd_link_hash_undefined:
10055	      case bfd_link_hash_undefweak:
10056	      case bfd_link_hash_common:
10057		gp_found = 0;
10058		break;
10059	      case bfd_link_hash_defined:
10060	      case bfd_link_hash_defweak:
10061		gp_found = 1;
10062		gp = lh->u.def.value;
10063		break;
10064	      case bfd_link_hash_indirect:
10065	      case bfd_link_hash_warning:
10066		lh = lh->u.i.link;
10067		/* @@FIXME  ignoring warning for now */
10068		goto lookup;
10069	      case bfd_link_hash_new:
10070	      default:
10071		abort ();
10072	      }
10073	  }
10074	else
10075	  gp_found = 0;
10076      }
10077      /* end mips */
10078      for (parent = reloc_vector; *parent != NULL; parent++)
10079	{
10080	  char *error_message = NULL;
10081	  bfd_reloc_status_type r;
10082
10083	  /* Specific to MIPS: Deal with relocation types that require
10084	     knowing the gp of the output bfd.  */
10085	  asymbol *sym = *(*parent)->sym_ptr_ptr;
10086
10087	  /* If we've managed to find the gp and have a special
10088	     function for the relocation then go ahead, else default
10089	     to the generic handling.  */
10090	  if (gp_found
10091	      && (*parent)->howto->special_function
10092	      == _bfd_mips_elf32_gprel16_reloc)
10093	    r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10094					       input_section, relocatable,
10095					       data, gp);
10096	  else
10097	    r = bfd_perform_relocation (input_bfd, *parent, data,
10098					input_section,
10099					relocatable ? abfd : NULL,
10100					&error_message);
10101
10102	  if (relocatable)
10103	    {
10104	      asection *os = input_section->output_section;
10105
10106	      /* A partial link, so keep the relocs */
10107	      os->orelocation[os->reloc_count] = *parent;
10108	      os->reloc_count++;
10109	    }
10110
10111	  if (r != bfd_reloc_ok)
10112	    {
10113	      switch (r)
10114		{
10115		case bfd_reloc_undefined:
10116		  if (!((*link_info->callbacks->undefined_symbol)
10117			(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10118			 input_bfd, input_section, (*parent)->address, TRUE)))
10119		    goto error_return;
10120		  break;
10121		case bfd_reloc_dangerous:
10122		  BFD_ASSERT (error_message != NULL);
10123		  if (!((*link_info->callbacks->reloc_dangerous)
10124			(link_info, error_message, input_bfd, input_section,
10125			 (*parent)->address)))
10126		    goto error_return;
10127		  break;
10128		case bfd_reloc_overflow:
10129		  if (!((*link_info->callbacks->reloc_overflow)
10130			(link_info, NULL,
10131			 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10132			 (*parent)->howto->name, (*parent)->addend,
10133			 input_bfd, input_section, (*parent)->address)))
10134		    goto error_return;
10135		  break;
10136		case bfd_reloc_outofrange:
10137		default:
10138		  abort ();
10139		  break;
10140		}
10141
10142	    }
10143	}
10144    }
10145  if (reloc_vector != NULL)
10146    free (reloc_vector);
10147  return data;
10148
10149error_return:
10150  if (reloc_vector != NULL)
10151    free (reloc_vector);
10152  return NULL;
10153}
10154
10155/* Create a MIPS ELF linker hash table.  */
10156
10157struct bfd_link_hash_table *
10158_bfd_mips_elf_link_hash_table_create (bfd *abfd)
10159{
10160  struct mips_elf_link_hash_table *ret;
10161  bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10162
10163  ret = bfd_malloc (amt);
10164  if (ret == NULL)
10165    return NULL;
10166
10167  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10168				      mips_elf_link_hash_newfunc,
10169				      sizeof (struct mips_elf_link_hash_entry)))
10170    {
10171      free (ret);
10172      return NULL;
10173    }
10174
10175#if 0
10176  /* We no longer use this.  */
10177  for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10178    ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10179#endif
10180  ret->procedure_count = 0;
10181  ret->compact_rel_size = 0;
10182  ret->use_rld_obj_head = FALSE;
10183  ret->rld_value = 0;
10184  ret->mips16_stubs_seen = FALSE;
10185  ret->is_vxworks = FALSE;
10186  ret->srelbss = NULL;
10187  ret->sdynbss = NULL;
10188  ret->srelplt = NULL;
10189  ret->srelplt2 = NULL;
10190  ret->sgotplt = NULL;
10191  ret->splt = NULL;
10192  ret->plt_header_size = 0;
10193  ret->plt_entry_size = 0;
10194  ret->function_stub_size = 0;
10195
10196  return &ret->root.root;
10197}
10198
10199/* Likewise, but indicate that the target is VxWorks.  */
10200
10201struct bfd_link_hash_table *
10202_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10203{
10204  struct bfd_link_hash_table *ret;
10205
10206  ret = _bfd_mips_elf_link_hash_table_create (abfd);
10207  if (ret)
10208    {
10209      struct mips_elf_link_hash_table *htab;
10210
10211      htab = (struct mips_elf_link_hash_table *) ret;
10212      htab->is_vxworks = 1;
10213    }
10214  return ret;
10215}
10216
10217/* We need to use a special link routine to handle the .reginfo and
10218   the .mdebug sections.  We need to merge all instances of these
10219   sections together, not write them all out sequentially.  */
10220
10221bfd_boolean
10222_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10223{
10224  asection *o;
10225  struct bfd_link_order *p;
10226  asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10227  asection *rtproc_sec;
10228  Elf32_RegInfo reginfo;
10229  struct ecoff_debug_info debug;
10230  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10231  const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10232  HDRR *symhdr = &debug.symbolic_header;
10233  void *mdebug_handle = NULL;
10234  asection *s;
10235  EXTR esym;
10236  unsigned int i;
10237  bfd_size_type amt;
10238  struct mips_elf_link_hash_table *htab;
10239
10240  static const char * const secname[] =
10241  {
10242    ".text", ".init", ".fini", ".data",
10243    ".rodata", ".sdata", ".sbss", ".bss"
10244  };
10245  static const int sc[] =
10246  {
10247    scText, scInit, scFini, scData,
10248    scRData, scSData, scSBss, scBss
10249  };
10250
10251  /* We'd carefully arranged the dynamic symbol indices, and then the
10252     generic size_dynamic_sections renumbered them out from under us.
10253     Rather than trying somehow to prevent the renumbering, just do
10254     the sort again.  */
10255  htab = mips_elf_hash_table (info);
10256  if (elf_hash_table (info)->dynamic_sections_created)
10257    {
10258      bfd *dynobj;
10259      asection *got;
10260      struct mips_got_info *g;
10261      bfd_size_type dynsecsymcount;
10262
10263      /* When we resort, we must tell mips_elf_sort_hash_table what
10264	 the lowest index it may use is.  That's the number of section
10265	 symbols we're going to add.  The generic ELF linker only
10266	 adds these symbols when building a shared object.  Note that
10267	 we count the sections after (possibly) removing the .options
10268	 section above.  */
10269
10270      dynsecsymcount = count_section_dynsyms (abfd, info);
10271      if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10272	return FALSE;
10273
10274      /* Make sure we didn't grow the global .got region.  */
10275      dynobj = elf_hash_table (info)->dynobj;
10276      got = mips_elf_got_section (dynobj, FALSE);
10277      g = mips_elf_section_data (got)->u.got_info;
10278
10279      if (g->global_gotsym != NULL)
10280	BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10281		     - g->global_gotsym->dynindx)
10282		    <= g->global_gotno);
10283    }
10284
10285  /* Get a value for the GP register.  */
10286  if (elf_gp (abfd) == 0)
10287    {
10288      struct bfd_link_hash_entry *h;
10289
10290      h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10291      if (h != NULL && h->type == bfd_link_hash_defined)
10292	elf_gp (abfd) = (h->u.def.value
10293			 + h->u.def.section->output_section->vma
10294			 + h->u.def.section->output_offset);
10295      else if (htab->is_vxworks
10296	       && (h = bfd_link_hash_lookup (info->hash,
10297					     "_GLOBAL_OFFSET_TABLE_",
10298					     FALSE, FALSE, TRUE))
10299	       && h->type == bfd_link_hash_defined)
10300	elf_gp (abfd) = (h->u.def.section->output_section->vma
10301			 + h->u.def.section->output_offset
10302			 + h->u.def.value);
10303      else if (info->relocatable)
10304	{
10305	  bfd_vma lo = MINUS_ONE;
10306
10307	  /* Find the GP-relative section with the lowest offset.  */
10308	  for (o = abfd->sections; o != NULL; o = o->next)
10309	    if (o->vma < lo
10310		&& (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10311	      lo = o->vma;
10312
10313	  /* And calculate GP relative to that.  */
10314	  elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10315	}
10316      else
10317	{
10318	  /* If the relocate_section function needs to do a reloc
10319	     involving the GP value, it should make a reloc_dangerous
10320	     callback to warn that GP is not defined.  */
10321	}
10322    }
10323
10324  /* Go through the sections and collect the .reginfo and .mdebug
10325     information.  */
10326  reginfo_sec = NULL;
10327  mdebug_sec = NULL;
10328  gptab_data_sec = NULL;
10329  gptab_bss_sec = NULL;
10330  for (o = abfd->sections; o != NULL; o = o->next)
10331    {
10332      if (strcmp (o->name, ".reginfo") == 0)
10333	{
10334	  memset (&reginfo, 0, sizeof reginfo);
10335
10336	  /* We have found the .reginfo section in the output file.
10337	     Look through all the link_orders comprising it and merge
10338	     the information together.  */
10339	  for (p = o->map_head.link_order; p != NULL; p = p->next)
10340	    {
10341	      asection *input_section;
10342	      bfd *input_bfd;
10343	      Elf32_External_RegInfo ext;
10344	      Elf32_RegInfo sub;
10345
10346	      if (p->type != bfd_indirect_link_order)
10347		{
10348		  if (p->type == bfd_data_link_order)
10349		    continue;
10350		  abort ();
10351		}
10352
10353	      input_section = p->u.indirect.section;
10354	      input_bfd = input_section->owner;
10355
10356	      if (! bfd_get_section_contents (input_bfd, input_section,
10357					      &ext, 0, sizeof ext))
10358		return FALSE;
10359
10360	      bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10361
10362	      reginfo.ri_gprmask |= sub.ri_gprmask;
10363	      reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10364	      reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10365	      reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10366	      reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10367
10368	      /* ri_gp_value is set by the function
10369		 mips_elf32_section_processing when the section is
10370		 finally written out.  */
10371
10372	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
10373		 elf_link_input_bfd ignores this section.  */
10374	      input_section->flags &= ~SEC_HAS_CONTENTS;
10375	    }
10376
10377	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
10378	  BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10379
10380	  /* Skip this section later on (I don't think this currently
10381	     matters, but someday it might).  */
10382	  o->map_head.link_order = NULL;
10383
10384	  reginfo_sec = o;
10385	}
10386
10387      if (strcmp (o->name, ".mdebug") == 0)
10388	{
10389	  struct extsym_info einfo;
10390	  bfd_vma last;
10391
10392	  /* We have found the .mdebug section in the output file.
10393	     Look through all the link_orders comprising it and merge
10394	     the information together.  */
10395	  symhdr->magic = swap->sym_magic;
10396	  /* FIXME: What should the version stamp be?  */
10397	  symhdr->vstamp = 0;
10398	  symhdr->ilineMax = 0;
10399	  symhdr->cbLine = 0;
10400	  symhdr->idnMax = 0;
10401	  symhdr->ipdMax = 0;
10402	  symhdr->isymMax = 0;
10403	  symhdr->ioptMax = 0;
10404	  symhdr->iauxMax = 0;
10405	  symhdr->issMax = 0;
10406	  symhdr->issExtMax = 0;
10407	  symhdr->ifdMax = 0;
10408	  symhdr->crfd = 0;
10409	  symhdr->iextMax = 0;
10410
10411	  /* We accumulate the debugging information itself in the
10412	     debug_info structure.  */
10413	  debug.line = NULL;
10414	  debug.external_dnr = NULL;
10415	  debug.external_pdr = NULL;
10416	  debug.external_sym = NULL;
10417	  debug.external_opt = NULL;
10418	  debug.external_aux = NULL;
10419	  debug.ss = NULL;
10420	  debug.ssext = debug.ssext_end = NULL;
10421	  debug.external_fdr = NULL;
10422	  debug.external_rfd = NULL;
10423	  debug.external_ext = debug.external_ext_end = NULL;
10424
10425	  mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10426	  if (mdebug_handle == NULL)
10427	    return FALSE;
10428
10429	  esym.jmptbl = 0;
10430	  esym.cobol_main = 0;
10431	  esym.weakext = 0;
10432	  esym.reserved = 0;
10433	  esym.ifd = ifdNil;
10434	  esym.asym.iss = issNil;
10435	  esym.asym.st = stLocal;
10436	  esym.asym.reserved = 0;
10437	  esym.asym.index = indexNil;
10438	  last = 0;
10439	  for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10440	    {
10441	      esym.asym.sc = sc[i];
10442	      s = bfd_get_section_by_name (abfd, secname[i]);
10443	      if (s != NULL)
10444		{
10445		  esym.asym.value = s->vma;
10446		  last = s->vma + s->size;
10447		}
10448	      else
10449		esym.asym.value = last;
10450	      if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10451						 secname[i], &esym))
10452		return FALSE;
10453	    }
10454
10455	  for (p = o->map_head.link_order; p != NULL; p = p->next)
10456	    {
10457	      asection *input_section;
10458	      bfd *input_bfd;
10459	      const struct ecoff_debug_swap *input_swap;
10460	      struct ecoff_debug_info input_debug;
10461	      char *eraw_src;
10462	      char *eraw_end;
10463
10464	      if (p->type != bfd_indirect_link_order)
10465		{
10466		  if (p->type == bfd_data_link_order)
10467		    continue;
10468		  abort ();
10469		}
10470
10471	      input_section = p->u.indirect.section;
10472	      input_bfd = input_section->owner;
10473
10474	      if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10475		  || (get_elf_backend_data (input_bfd)
10476		      ->elf_backend_ecoff_debug_swap) == NULL)
10477		{
10478		  /* I don't know what a non MIPS ELF bfd would be
10479		     doing with a .mdebug section, but I don't really
10480		     want to deal with it.  */
10481		  continue;
10482		}
10483
10484	      input_swap = (get_elf_backend_data (input_bfd)
10485			    ->elf_backend_ecoff_debug_swap);
10486
10487	      BFD_ASSERT (p->size == input_section->size);
10488
10489	      /* The ECOFF linking code expects that we have already
10490		 read in the debugging information and set up an
10491		 ecoff_debug_info structure, so we do that now.  */
10492	      if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10493						   &input_debug))
10494		return FALSE;
10495
10496	      if (! (bfd_ecoff_debug_accumulate
10497		     (mdebug_handle, abfd, &debug, swap, input_bfd,
10498		      &input_debug, input_swap, info)))
10499		return FALSE;
10500
10501	      /* Loop through the external symbols.  For each one with
10502		 interesting information, try to find the symbol in
10503		 the linker global hash table and save the information
10504		 for the output external symbols.  */
10505	      eraw_src = input_debug.external_ext;
10506	      eraw_end = (eraw_src
10507			  + (input_debug.symbolic_header.iextMax
10508			     * input_swap->external_ext_size));
10509	      for (;
10510		   eraw_src < eraw_end;
10511		   eraw_src += input_swap->external_ext_size)
10512		{
10513		  EXTR ext;
10514		  const char *name;
10515		  struct mips_elf_link_hash_entry *h;
10516
10517		  (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10518		  if (ext.asym.sc == scNil
10519		      || ext.asym.sc == scUndefined
10520		      || ext.asym.sc == scSUndefined)
10521		    continue;
10522
10523		  name = input_debug.ssext + ext.asym.iss;
10524		  h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10525						 name, FALSE, FALSE, TRUE);
10526		  if (h == NULL || h->esym.ifd != -2)
10527		    continue;
10528
10529		  if (ext.ifd != -1)
10530		    {
10531		      BFD_ASSERT (ext.ifd
10532				  < input_debug.symbolic_header.ifdMax);
10533		      ext.ifd = input_debug.ifdmap[ext.ifd];
10534		    }
10535
10536		  h->esym = ext;
10537		}
10538
10539	      /* Free up the information we just read.  */
10540	      free (input_debug.line);
10541	      free (input_debug.external_dnr);
10542	      free (input_debug.external_pdr);
10543	      free (input_debug.external_sym);
10544	      free (input_debug.external_opt);
10545	      free (input_debug.external_aux);
10546	      free (input_debug.ss);
10547	      free (input_debug.ssext);
10548	      free (input_debug.external_fdr);
10549	      free (input_debug.external_rfd);
10550	      free (input_debug.external_ext);
10551
10552	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
10553		 elf_link_input_bfd ignores this section.  */
10554	      input_section->flags &= ~SEC_HAS_CONTENTS;
10555	    }
10556
10557	  if (SGI_COMPAT (abfd) && info->shared)
10558	    {
10559	      /* Create .rtproc section.  */
10560	      rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10561	      if (rtproc_sec == NULL)
10562		{
10563		  flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10564				    | SEC_LINKER_CREATED | SEC_READONLY);
10565
10566		  rtproc_sec = bfd_make_section_with_flags (abfd,
10567							    ".rtproc",
10568							    flags);
10569		  if (rtproc_sec == NULL
10570		      || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10571		    return FALSE;
10572		}
10573
10574	      if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10575						     info, rtproc_sec,
10576						     &debug))
10577		return FALSE;
10578	    }
10579
10580	  /* Build the external symbol information.  */
10581	  einfo.abfd = abfd;
10582	  einfo.info = info;
10583	  einfo.debug = &debug;
10584	  einfo.swap = swap;
10585	  einfo.failed = FALSE;
10586	  mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10587				       mips_elf_output_extsym, &einfo);
10588	  if (einfo.failed)
10589	    return FALSE;
10590
10591	  /* Set the size of the .mdebug section.  */
10592	  o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10593
10594	  /* Skip this section later on (I don't think this currently
10595	     matters, but someday it might).  */
10596	  o->map_head.link_order = NULL;
10597
10598	  mdebug_sec = o;
10599	}
10600
10601      if (CONST_STRNEQ (o->name, ".gptab."))
10602	{
10603	  const char *subname;
10604	  unsigned int c;
10605	  Elf32_gptab *tab;
10606	  Elf32_External_gptab *ext_tab;
10607	  unsigned int j;
10608
10609	  /* The .gptab.sdata and .gptab.sbss sections hold
10610	     information describing how the small data area would
10611	     change depending upon the -G switch.  These sections
10612	     not used in executables files.  */
10613	  if (! info->relocatable)
10614	    {
10615	      for (p = o->map_head.link_order; p != NULL; p = p->next)
10616		{
10617		  asection *input_section;
10618
10619		  if (p->type != bfd_indirect_link_order)
10620		    {
10621		      if (p->type == bfd_data_link_order)
10622			continue;
10623		      abort ();
10624		    }
10625
10626		  input_section = p->u.indirect.section;
10627
10628		  /* Hack: reset the SEC_HAS_CONTENTS flag so that
10629		     elf_link_input_bfd ignores this section.  */
10630		  input_section->flags &= ~SEC_HAS_CONTENTS;
10631		}
10632
10633	      /* Skip this section later on (I don't think this
10634		 currently matters, but someday it might).  */
10635	      o->map_head.link_order = NULL;
10636
10637	      /* Really remove the section.  */
10638	      bfd_section_list_remove (abfd, o);
10639	      --abfd->section_count;
10640
10641	      continue;
10642	    }
10643
10644	  /* There is one gptab for initialized data, and one for
10645	     uninitialized data.  */
10646	  if (strcmp (o->name, ".gptab.sdata") == 0)
10647	    gptab_data_sec = o;
10648	  else if (strcmp (o->name, ".gptab.sbss") == 0)
10649	    gptab_bss_sec = o;
10650	  else
10651	    {
10652	      (*_bfd_error_handler)
10653		(_("%s: illegal section name `%s'"),
10654		 bfd_get_filename (abfd), o->name);
10655	      bfd_set_error (bfd_error_nonrepresentable_section);
10656	      return FALSE;
10657	    }
10658
10659	  /* The linker script always combines .gptab.data and
10660	     .gptab.sdata into .gptab.sdata, and likewise for
10661	     .gptab.bss and .gptab.sbss.  It is possible that there is
10662	     no .sdata or .sbss section in the output file, in which
10663	     case we must change the name of the output section.  */
10664	  subname = o->name + sizeof ".gptab" - 1;
10665	  if (bfd_get_section_by_name (abfd, subname) == NULL)
10666	    {
10667	      if (o == gptab_data_sec)
10668		o->name = ".gptab.data";
10669	      else
10670		o->name = ".gptab.bss";
10671	      subname = o->name + sizeof ".gptab" - 1;
10672	      BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10673	    }
10674
10675	  /* Set up the first entry.  */
10676	  c = 1;
10677	  amt = c * sizeof (Elf32_gptab);
10678	  tab = bfd_malloc (amt);
10679	  if (tab == NULL)
10680	    return FALSE;
10681	  tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10682	  tab[0].gt_header.gt_unused = 0;
10683
10684	  /* Combine the input sections.  */
10685	  for (p = o->map_head.link_order; p != NULL; p = p->next)
10686	    {
10687	      asection *input_section;
10688	      bfd *input_bfd;
10689	      bfd_size_type size;
10690	      unsigned long last;
10691	      bfd_size_type gpentry;
10692
10693	      if (p->type != bfd_indirect_link_order)
10694		{
10695		  if (p->type == bfd_data_link_order)
10696		    continue;
10697		  abort ();
10698		}
10699
10700	      input_section = p->u.indirect.section;
10701	      input_bfd = input_section->owner;
10702
10703	      /* Combine the gptab entries for this input section one
10704		 by one.  We know that the input gptab entries are
10705		 sorted by ascending -G value.  */
10706	      size = input_section->size;
10707	      last = 0;
10708	      for (gpentry = sizeof (Elf32_External_gptab);
10709		   gpentry < size;
10710		   gpentry += sizeof (Elf32_External_gptab))
10711		{
10712		  Elf32_External_gptab ext_gptab;
10713		  Elf32_gptab int_gptab;
10714		  unsigned long val;
10715		  unsigned long add;
10716		  bfd_boolean exact;
10717		  unsigned int look;
10718
10719		  if (! (bfd_get_section_contents
10720			 (input_bfd, input_section, &ext_gptab, gpentry,
10721			  sizeof (Elf32_External_gptab))))
10722		    {
10723		      free (tab);
10724		      return FALSE;
10725		    }
10726
10727		  bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10728						&int_gptab);
10729		  val = int_gptab.gt_entry.gt_g_value;
10730		  add = int_gptab.gt_entry.gt_bytes - last;
10731
10732		  exact = FALSE;
10733		  for (look = 1; look < c; look++)
10734		    {
10735		      if (tab[look].gt_entry.gt_g_value >= val)
10736			tab[look].gt_entry.gt_bytes += add;
10737
10738		      if (tab[look].gt_entry.gt_g_value == val)
10739			exact = TRUE;
10740		    }
10741
10742		  if (! exact)
10743		    {
10744		      Elf32_gptab *new_tab;
10745		      unsigned int max;
10746
10747		      /* We need a new table entry.  */
10748		      amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10749		      new_tab = bfd_realloc (tab, amt);
10750		      if (new_tab == NULL)
10751			{
10752			  free (tab);
10753			  return FALSE;
10754			}
10755		      tab = new_tab;
10756		      tab[c].gt_entry.gt_g_value = val;
10757		      tab[c].gt_entry.gt_bytes = add;
10758
10759		      /* Merge in the size for the next smallest -G
10760			 value, since that will be implied by this new
10761			 value.  */
10762		      max = 0;
10763		      for (look = 1; look < c; look++)
10764			{
10765			  if (tab[look].gt_entry.gt_g_value < val
10766			      && (max == 0
10767				  || (tab[look].gt_entry.gt_g_value
10768				      > tab[max].gt_entry.gt_g_value)))
10769			    max = look;
10770			}
10771		      if (max != 0)
10772			tab[c].gt_entry.gt_bytes +=
10773			  tab[max].gt_entry.gt_bytes;
10774
10775		      ++c;
10776		    }
10777
10778		  last = int_gptab.gt_entry.gt_bytes;
10779		}
10780
10781	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
10782		 elf_link_input_bfd ignores this section.  */
10783	      input_section->flags &= ~SEC_HAS_CONTENTS;
10784	    }
10785
10786	  /* The table must be sorted by -G value.  */
10787	  if (c > 2)
10788	    qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10789
10790	  /* Swap out the table.  */
10791	  amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10792	  ext_tab = bfd_alloc (abfd, amt);
10793	  if (ext_tab == NULL)
10794	    {
10795	      free (tab);
10796	      return FALSE;
10797	    }
10798
10799	  for (j = 0; j < c; j++)
10800	    bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10801	  free (tab);
10802
10803	  o->size = c * sizeof (Elf32_External_gptab);
10804	  o->contents = (bfd_byte *) ext_tab;
10805
10806	  /* Skip this section later on (I don't think this currently
10807	     matters, but someday it might).  */
10808	  o->map_head.link_order = NULL;
10809	}
10810    }
10811
10812  /* Invoke the regular ELF backend linker to do all the work.  */
10813  if (!bfd_elf_final_link (abfd, info))
10814    return FALSE;
10815
10816  /* Now write out the computed sections.  */
10817
10818  if (reginfo_sec != NULL)
10819    {
10820      Elf32_External_RegInfo ext;
10821
10822      bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10823      if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10824	return FALSE;
10825    }
10826
10827  if (mdebug_sec != NULL)
10828    {
10829      BFD_ASSERT (abfd->output_has_begun);
10830      if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10831					       swap, info,
10832					       mdebug_sec->filepos))
10833	return FALSE;
10834
10835      bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10836    }
10837
10838  if (gptab_data_sec != NULL)
10839    {
10840      if (! bfd_set_section_contents (abfd, gptab_data_sec,
10841				      gptab_data_sec->contents,
10842				      0, gptab_data_sec->size))
10843	return FALSE;
10844    }
10845
10846  if (gptab_bss_sec != NULL)
10847    {
10848      if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10849				      gptab_bss_sec->contents,
10850				      0, gptab_bss_sec->size))
10851	return FALSE;
10852    }
10853
10854  if (SGI_COMPAT (abfd))
10855    {
10856      rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10857      if (rtproc_sec != NULL)
10858	{
10859	  if (! bfd_set_section_contents (abfd, rtproc_sec,
10860					  rtproc_sec->contents,
10861					  0, rtproc_sec->size))
10862	    return FALSE;
10863	}
10864    }
10865
10866  return TRUE;
10867}
10868
10869/* Structure for saying that BFD machine EXTENSION extends BASE.  */
10870
10871struct mips_mach_extension {
10872  unsigned long extension, base;
10873};
10874
10875
10876/* An array describing how BFD machines relate to one another.  The entries
10877   are ordered topologically with MIPS I extensions listed last.  */
10878
10879static const struct mips_mach_extension mips_mach_extensions[] = {
10880  /* MIPS64r2 extensions.  */
10881  { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
10882
10883  /* MIPS64 extensions.  */
10884  { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10885  { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10886
10887  /* MIPS V extensions.  */
10888  { bfd_mach_mipsisa64, bfd_mach_mips5 },
10889
10890  /* R10000 extensions.  */
10891  { bfd_mach_mips12000, bfd_mach_mips10000 },
10892
10893  /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core
10894     vr5400 ISA, but doesn't include the multimedia stuff.  It seems
10895     better to allow vr5400 and vr5500 code to be merged anyway, since
10896     many libraries will just use the core ISA.  Perhaps we could add
10897     some sort of ASE flag if this ever proves a problem.  */
10898  { bfd_mach_mips5500, bfd_mach_mips5400 },
10899  { bfd_mach_mips5400, bfd_mach_mips5000 },
10900
10901  /* MIPS IV extensions.  */
10902  { bfd_mach_mips5, bfd_mach_mips8000 },
10903  { bfd_mach_mips10000, bfd_mach_mips8000 },
10904  { bfd_mach_mips5000, bfd_mach_mips8000 },
10905  { bfd_mach_mips7000, bfd_mach_mips8000 },
10906  { bfd_mach_mips9000, bfd_mach_mips8000 },
10907
10908  /* VR4100 extensions.  */
10909  { bfd_mach_mips4120, bfd_mach_mips4100 },
10910  { bfd_mach_mips4111, bfd_mach_mips4100 },
10911
10912  /* MIPS III extensions.  */
10913  { bfd_mach_mips8000, bfd_mach_mips4000 },
10914  { bfd_mach_mips4650, bfd_mach_mips4000 },
10915  { bfd_mach_mips4600, bfd_mach_mips4000 },
10916  { bfd_mach_mips4400, bfd_mach_mips4000 },
10917  { bfd_mach_mips4300, bfd_mach_mips4000 },
10918  { bfd_mach_mips4100, bfd_mach_mips4000 },
10919  { bfd_mach_mips4010, bfd_mach_mips4000 },
10920
10921  /* MIPS32 extensions.  */
10922  { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10923
10924  /* MIPS II extensions.  */
10925  { bfd_mach_mips4000, bfd_mach_mips6000 },
10926  { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10927
10928  /* MIPS I extensions.  */
10929  { bfd_mach_mips6000, bfd_mach_mips3000 },
10930  { bfd_mach_mips3900, bfd_mach_mips3000 }
10931};
10932
10933
10934/* Return true if bfd machine EXTENSION is an extension of machine BASE.  */
10935
10936static bfd_boolean
10937mips_mach_extends_p (unsigned long base, unsigned long extension)
10938{
10939  size_t i;
10940
10941  if (extension == base)
10942    return TRUE;
10943
10944  if (base == bfd_mach_mipsisa32
10945      && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10946    return TRUE;
10947
10948  if (base == bfd_mach_mipsisa32r2
10949      && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10950    return TRUE;
10951
10952  for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10953    if (extension == mips_mach_extensions[i].extension)
10954      {
10955	extension = mips_mach_extensions[i].base;
10956	if (extension == base)
10957	  return TRUE;
10958      }
10959
10960  return FALSE;
10961}
10962
10963
10964/* Return true if the given ELF header flags describe a 32-bit binary.  */
10965
10966static bfd_boolean
10967mips_32bit_flags_p (flagword flags)
10968{
10969  return ((flags & EF_MIPS_32BITMODE) != 0
10970	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10971	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10972	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10973	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10974	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10975	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10976}
10977
10978
10979/* Merge object attributes from IBFD into OBFD.  Raise an error if
10980   there are conflicting attributes.  */
10981static bfd_boolean
10982mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
10983{
10984  obj_attribute *in_attr;
10985  obj_attribute *out_attr;
10986
10987  if (!elf_known_obj_attributes_proc (obfd)[0].i)
10988    {
10989      /* This is the first object.  Copy the attributes.  */
10990      _bfd_elf_copy_obj_attributes (ibfd, obfd);
10991
10992      /* Use the Tag_null value to indicate the attributes have been
10993	 initialized.  */
10994      elf_known_obj_attributes_proc (obfd)[0].i = 1;
10995
10996      return TRUE;
10997    }
10998
10999  /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11000     non-conflicting ones.  */
11001  in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11002  out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11003  if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11004    {
11005      out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11006      if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11007	out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11008      else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11009	;
11010      else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11011	_bfd_error_handler
11012	  (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11013	   in_attr[Tag_GNU_MIPS_ABI_FP].i);
11014      else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11015	_bfd_error_handler
11016	  (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11017	   out_attr[Tag_GNU_MIPS_ABI_FP].i);
11018      else
11019	switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11020	  {
11021	  case 1:
11022	    switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11023	      {
11024	      case 2:
11025		_bfd_error_handler
11026		  (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11027		   obfd, ibfd);
11028
11029	      case 3:
11030		_bfd_error_handler
11031		  (_("Warning: %B uses hard float, %B uses soft float"),
11032		   obfd, ibfd);
11033		break;
11034
11035	      default:
11036		abort ();
11037	      }
11038	    break;
11039
11040	  case 2:
11041	    switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11042	      {
11043	      case 1:
11044		_bfd_error_handler
11045		  (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11046		   ibfd, obfd);
11047
11048	      case 3:
11049		_bfd_error_handler
11050		  (_("Warning: %B uses hard float, %B uses soft float"),
11051		   obfd, ibfd);
11052		break;
11053
11054	      default:
11055		abort ();
11056	      }
11057	    break;
11058
11059	  case 3:
11060	    switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11061	      {
11062	      case 1:
11063	      case 2:
11064		_bfd_error_handler
11065		  (_("Warning: %B uses hard float, %B uses soft float"),
11066		   ibfd, obfd);
11067		break;
11068
11069	      default:
11070		abort ();
11071	      }
11072	    break;
11073
11074	  default:
11075	    abort ();
11076	  }
11077    }
11078
11079  /* Merge Tag_compatibility attributes and any common GNU ones.  */
11080  _bfd_elf_merge_object_attributes (ibfd, obfd);
11081
11082  return TRUE;
11083}
11084
11085/* Merge backend specific data from an object file to the output
11086   object file when linking.  */
11087
11088bfd_boolean
11089_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11090{
11091  flagword old_flags;
11092  flagword new_flags;
11093  bfd_boolean ok;
11094  bfd_boolean null_input_bfd = TRUE;
11095  asection *sec;
11096
11097  /* Check if we have the same endianess */
11098  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11099    {
11100      (*_bfd_error_handler)
11101	(_("%B: endianness incompatible with that of the selected emulation"),
11102	 ibfd);
11103      return FALSE;
11104    }
11105
11106  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11107      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11108    return TRUE;
11109
11110  if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11111    {
11112      (*_bfd_error_handler)
11113	(_("%B: ABI is incompatible with that of the selected emulation"),
11114	 ibfd);
11115      return FALSE;
11116    }
11117
11118  if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11119    return FALSE;
11120
11121  new_flags = elf_elfheader (ibfd)->e_flags;
11122  elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11123  old_flags = elf_elfheader (obfd)->e_flags;
11124
11125  if (! elf_flags_init (obfd))
11126    {
11127      elf_flags_init (obfd) = TRUE;
11128      elf_elfheader (obfd)->e_flags = new_flags;
11129      elf_elfheader (obfd)->e_ident[EI_CLASS]
11130	= elf_elfheader (ibfd)->e_ident[EI_CLASS];
11131
11132      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11133	  && (bfd_get_arch_info (obfd)->the_default
11134	      || mips_mach_extends_p (bfd_get_mach (obfd),
11135				      bfd_get_mach (ibfd))))
11136	{
11137	  if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11138				   bfd_get_mach (ibfd)))
11139	    return FALSE;
11140	}
11141
11142      return TRUE;
11143    }
11144
11145  /* Check flag compatibility.  */
11146
11147  new_flags &= ~EF_MIPS_NOREORDER;
11148  old_flags &= ~EF_MIPS_NOREORDER;
11149
11150  /* Some IRIX 6 BSD-compatibility objects have this bit set.  It
11151     doesn't seem to matter.  */
11152  new_flags &= ~EF_MIPS_XGOT;
11153  old_flags &= ~EF_MIPS_XGOT;
11154
11155  /* MIPSpro generates ucode info in n64 objects.  Again, we should
11156     just be able to ignore this.  */
11157  new_flags &= ~EF_MIPS_UCODE;
11158  old_flags &= ~EF_MIPS_UCODE;
11159
11160  /* Don't care about the PIC flags from dynamic objects; they are
11161     PIC by design.  */
11162  if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11163      && (ibfd->flags & DYNAMIC) != 0)
11164    new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11165
11166  if (new_flags == old_flags)
11167    return TRUE;
11168
11169  /* Check to see if the input BFD actually contains any sections.
11170     If not, its flags may not have been initialised either, but it cannot
11171     actually cause any incompatibility.  */
11172  for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11173    {
11174      /* Ignore synthetic sections and empty .text, .data and .bss sections
11175	  which are automatically generated by gas.  */
11176      if (strcmp (sec->name, ".reginfo")
11177	  && strcmp (sec->name, ".mdebug")
11178	  && (sec->size != 0
11179	      || (strcmp (sec->name, ".text")
11180		  && strcmp (sec->name, ".data")
11181		  && strcmp (sec->name, ".bss"))))
11182	{
11183	  null_input_bfd = FALSE;
11184	  break;
11185	}
11186    }
11187  if (null_input_bfd)
11188    return TRUE;
11189
11190  ok = TRUE;
11191
11192  if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11193      != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11194    {
11195      (*_bfd_error_handler)
11196	(_("%B: warning: linking PIC files with non-PIC files"),
11197	 ibfd);
11198      ok = TRUE;
11199    }
11200
11201  if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11202    elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11203  if (! (new_flags & EF_MIPS_PIC))
11204    elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11205
11206  new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11207  old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11208
11209  /* Compare the ISAs.  */
11210  if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11211    {
11212      (*_bfd_error_handler)
11213	(_("%B: linking 32-bit code with 64-bit code"),
11214	 ibfd);
11215      ok = FALSE;
11216    }
11217  else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11218    {
11219      /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */
11220      if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11221	{
11222	  /* Copy the architecture info from IBFD to OBFD.  Also copy
11223	     the 32-bit flag (if set) so that we continue to recognise
11224	     OBFD as a 32-bit binary.  */
11225	  bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11226	  elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11227	  elf_elfheader (obfd)->e_flags
11228	    |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11229
11230	  /* Copy across the ABI flags if OBFD doesn't use them
11231	     and if that was what caused us to treat IBFD as 32-bit.  */
11232	  if ((old_flags & EF_MIPS_ABI) == 0
11233	      && mips_32bit_flags_p (new_flags)
11234	      && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11235	    elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11236	}
11237      else
11238	{
11239	  /* The ISAs aren't compatible.  */
11240	  (*_bfd_error_handler)
11241	    (_("%B: linking %s module with previous %s modules"),
11242	     ibfd,
11243	     bfd_printable_name (ibfd),
11244	     bfd_printable_name (obfd));
11245	  ok = FALSE;
11246	}
11247    }
11248
11249  new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11250  old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11251
11252  /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it
11253     does set EI_CLASS differently from any 32-bit ABI.  */
11254  if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11255      || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11256	  != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11257    {
11258      /* Only error if both are set (to different values).  */
11259      if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11260	  || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11261	      != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11262	{
11263	  (*_bfd_error_handler)
11264	    (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11265	     ibfd,
11266	     elf_mips_abi_name (ibfd),
11267	     elf_mips_abi_name (obfd));
11268	  ok = FALSE;
11269	}
11270      new_flags &= ~EF_MIPS_ABI;
11271      old_flags &= ~EF_MIPS_ABI;
11272    }
11273
11274  /* For now, allow arbitrary mixing of ASEs (retain the union).  */
11275  if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11276    {
11277      elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11278
11279      new_flags &= ~ EF_MIPS_ARCH_ASE;
11280      old_flags &= ~ EF_MIPS_ARCH_ASE;
11281    }
11282
11283  /* Warn about any other mismatches */
11284  if (new_flags != old_flags)
11285    {
11286      (*_bfd_error_handler)
11287	(_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11288	 ibfd, (unsigned long) new_flags,
11289	 (unsigned long) old_flags);
11290      ok = FALSE;
11291    }
11292
11293  if (! ok)
11294    {
11295      bfd_set_error (bfd_error_bad_value);
11296      return FALSE;
11297    }
11298
11299  return TRUE;
11300}
11301
11302/* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */
11303
11304bfd_boolean
11305_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11306{
11307  BFD_ASSERT (!elf_flags_init (abfd)
11308	      || elf_elfheader (abfd)->e_flags == flags);
11309
11310  elf_elfheader (abfd)->e_flags = flags;
11311  elf_flags_init (abfd) = TRUE;
11312  return TRUE;
11313}
11314
11315bfd_boolean
11316_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11317{
11318  FILE *file = ptr;
11319
11320  BFD_ASSERT (abfd != NULL && ptr != NULL);
11321
11322  /* Print normal ELF private data.  */
11323  _bfd_elf_print_private_bfd_data (abfd, ptr);
11324
11325  /* xgettext:c-format */
11326  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11327
11328  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11329    fprintf (file, _(" [abi=O32]"));
11330  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11331    fprintf (file, _(" [abi=O64]"));
11332  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11333    fprintf (file, _(" [abi=EABI32]"));
11334  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11335    fprintf (file, _(" [abi=EABI64]"));
11336  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11337    fprintf (file, _(" [abi unknown]"));
11338  else if (ABI_N32_P (abfd))
11339    fprintf (file, _(" [abi=N32]"));
11340  else if (ABI_64_P (abfd))
11341    fprintf (file, _(" [abi=64]"));
11342  else
11343    fprintf (file, _(" [no abi set]"));
11344
11345  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11346    fprintf (file, " [mips1]");
11347  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11348    fprintf (file, " [mips2]");
11349  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11350    fprintf (file, " [mips3]");
11351  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11352    fprintf (file, " [mips4]");
11353  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11354    fprintf (file, " [mips5]");
11355  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11356    fprintf (file, " [mips32]");
11357  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11358    fprintf (file, " [mips64]");
11359  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11360    fprintf (file, " [mips32r2]");
11361  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11362    fprintf (file, " [mips64r2]");
11363  else
11364    fprintf (file, _(" [unknown ISA]"));
11365
11366  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11367    fprintf (file, " [mdmx]");
11368
11369  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11370    fprintf (file, " [mips16]");
11371
11372  if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11373    fprintf (file, " [32bitmode]");
11374  else
11375    fprintf (file, _(" [not 32bitmode]"));
11376
11377  if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11378    fprintf (file, " [noreorder]");
11379
11380  if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11381    fprintf (file, " [PIC]");
11382
11383  if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11384    fprintf (file, " [CPIC]");
11385
11386  if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11387    fprintf (file, " [XGOT]");
11388
11389  if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11390    fprintf (file, " [UCODE]");
11391
11392  fputc ('\n', file);
11393
11394  return TRUE;
11395}
11396
11397const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11398{
11399  { STRING_COMMA_LEN (".lit4"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11400  { STRING_COMMA_LEN (".lit8"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11401  { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11402  { STRING_COMMA_LEN (".sbss"),  -2, SHT_NOBITS,     SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11403  { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11404  { STRING_COMMA_LEN (".ucode"),  0, SHT_MIPS_UCODE, 0 },
11405  { NULL,                     0,  0, 0,              0 }
11406};
11407
11408/* Merge non visibility st_other attributes.  Ensure that the
11409   STO_OPTIONAL flag is copied into h->other, even if this is not a
11410   definiton of the symbol.  */
11411void
11412_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11413				      const Elf_Internal_Sym *isym,
11414				      bfd_boolean definition,
11415				      bfd_boolean dynamic ATTRIBUTE_UNUSED)
11416{
11417  if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11418    {
11419      unsigned char other;
11420
11421      other = (definition ? isym->st_other : h->other);
11422      other &= ~ELF_ST_VISIBILITY (-1);
11423      h->other = other | ELF_ST_VISIBILITY (h->other);
11424    }
11425
11426  if (!definition
11427      && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11428    h->other |= STO_OPTIONAL;
11429}
11430
11431/* Decide whether an undefined symbol is special and can be ignored.
11432   This is the case for OPTIONAL symbols on IRIX.  */
11433bfd_boolean
11434_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11435{
11436  return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11437}
11438
11439bfd_boolean
11440_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11441{
11442  return (sym->st_shndx == SHN_COMMON
11443	  || sym->st_shndx == SHN_MIPS_ACOMMON
11444	  || sym->st_shndx == SHN_MIPS_SCOMMON);
11445}
11446