1/*-
2 * Copyright (c) 2014 Neel Natu <neel@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: releng/11.0/usr.sbin/bhyve/task_switch.c 302373 2016-07-06 16:02:15Z ngie $");
29
30#include <sys/param.h>
31#include <sys/_iovec.h>
32#include <sys/mman.h>
33
34#include <x86/psl.h>
35#include <x86/segments.h>
36#include <x86/specialreg.h>
37#include <machine/vmm.h>
38#include <machine/vmm_instruction_emul.h>
39
40#include <assert.h>
41#include <errno.h>
42#include <stdbool.h>
43#include <stdio.h>
44#include <stdlib.h>
45
46#include <vmmapi.h>
47
48#include "bhyverun.h"
49
50/*
51 * Using 'struct i386tss' is tempting but causes myriad sign extension
52 * issues because all of its fields are defined as signed integers.
53 */
54struct tss32 {
55	uint16_t	tss_link;
56	uint16_t	rsvd1;
57	uint32_t	tss_esp0;
58	uint16_t	tss_ss0;
59	uint16_t	rsvd2;
60	uint32_t	tss_esp1;
61	uint16_t	tss_ss1;
62	uint16_t	rsvd3;
63	uint32_t	tss_esp2;
64	uint16_t	tss_ss2;
65	uint16_t	rsvd4;
66	uint32_t	tss_cr3;
67	uint32_t	tss_eip;
68	uint32_t	tss_eflags;
69	uint32_t	tss_eax;
70	uint32_t	tss_ecx;
71	uint32_t	tss_edx;
72	uint32_t	tss_ebx;
73	uint32_t	tss_esp;
74	uint32_t	tss_ebp;
75	uint32_t	tss_esi;
76	uint32_t	tss_edi;
77	uint16_t	tss_es;
78	uint16_t	rsvd5;
79	uint16_t	tss_cs;
80	uint16_t	rsvd6;
81	uint16_t	tss_ss;
82	uint16_t	rsvd7;
83	uint16_t	tss_ds;
84	uint16_t	rsvd8;
85	uint16_t	tss_fs;
86	uint16_t	rsvd9;
87	uint16_t	tss_gs;
88	uint16_t	rsvd10;
89	uint16_t	tss_ldt;
90	uint16_t	rsvd11;
91	uint16_t	tss_trap;
92	uint16_t	tss_iomap;
93};
94static_assert(sizeof(struct tss32) == 104, "compile-time assertion failed");
95
96#define	SEL_START(sel)	(((sel) & ~0x7))
97#define	SEL_LIMIT(sel)	(((sel) | 0x7))
98#define	TSS_BUSY(type)	(((type) & 0x2) != 0)
99
100static uint64_t
101GETREG(struct vmctx *ctx, int vcpu, int reg)
102{
103	uint64_t val;
104	int error;
105
106	error = vm_get_register(ctx, vcpu, reg, &val);
107	assert(error == 0);
108	return (val);
109}
110
111static void
112SETREG(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
113{
114	int error;
115
116	error = vm_set_register(ctx, vcpu, reg, val);
117	assert(error == 0);
118}
119
120static struct seg_desc
121usd_to_seg_desc(struct user_segment_descriptor *usd)
122{
123	struct seg_desc seg_desc;
124
125	seg_desc.base = (u_int)USD_GETBASE(usd);
126	if (usd->sd_gran)
127		seg_desc.limit = (u_int)(USD_GETLIMIT(usd) << 12) | 0xfff;
128	else
129		seg_desc.limit = (u_int)USD_GETLIMIT(usd);
130	seg_desc.access = usd->sd_type | usd->sd_dpl << 5 | usd->sd_p << 7;
131	seg_desc.access |= usd->sd_xx << 12;
132	seg_desc.access |= usd->sd_def32 << 14;
133	seg_desc.access |= usd->sd_gran << 15;
134
135	return (seg_desc);
136}
137
138/*
139 * Inject an exception with an error code that is a segment selector.
140 * The format of the error code is described in section 6.13, "Error Code",
141 * Intel SDM volume 3.
142 *
143 * Bit 0 (EXT) denotes whether the exception occurred during delivery
144 * of an external event like an interrupt.
145 *
146 * Bit 1 (IDT) indicates whether the selector points to a gate descriptor
147 * in the IDT.
148 *
149 * Bit 2(GDT/LDT) has the usual interpretation of Table Indicator (TI).
150 */
151static void
152sel_exception(struct vmctx *ctx, int vcpu, int vector, uint16_t sel, int ext)
153{
154	/*
155	 * Bit 2 from the selector is retained as-is in the error code.
156	 *
157	 * Bit 1 can be safely cleared because none of the selectors
158	 * encountered during task switch emulation refer to a task
159	 * gate in the IDT.
160	 *
161	 * Bit 0 is set depending on the value of 'ext'.
162	 */
163	sel &= ~0x3;
164	if (ext)
165		sel |= 0x1;
166	vm_inject_fault(ctx, vcpu, vector, 1, sel);
167}
168
169/*
170 * Return 0 if the selector 'sel' in within the limits of the GDT/LDT
171 * and non-zero otherwise.
172 */
173static int
174desc_table_limit_check(struct vmctx *ctx, int vcpu, uint16_t sel)
175{
176	uint64_t base;
177	uint32_t limit, access;
178	int error, reg;
179
180	reg = ISLDT(sel) ? VM_REG_GUEST_LDTR : VM_REG_GUEST_GDTR;
181	error = vm_get_desc(ctx, vcpu, reg, &base, &limit, &access);
182	assert(error == 0);
183
184	if (reg == VM_REG_GUEST_LDTR) {
185		if (SEG_DESC_UNUSABLE(access) || !SEG_DESC_PRESENT(access))
186			return (-1);
187	}
188
189	if (limit < SEL_LIMIT(sel))
190		return (-1);
191	else
192		return (0);
193}
194
195/*
196 * Read/write the segment descriptor 'desc' into the GDT/LDT slot referenced
197 * by the selector 'sel'.
198 *
199 * Returns 0 on success.
200 * Returns 1 if an exception was injected into the guest.
201 * Returns -1 otherwise.
202 */
203static int
204desc_table_rw(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
205    uint16_t sel, struct user_segment_descriptor *desc, bool doread,
206    int *faultptr)
207{
208	struct iovec iov[2];
209	uint64_t base;
210	uint32_t limit, access;
211	int error, reg;
212
213	reg = ISLDT(sel) ? VM_REG_GUEST_LDTR : VM_REG_GUEST_GDTR;
214	error = vm_get_desc(ctx, vcpu, reg, &base, &limit, &access);
215	assert(error == 0);
216	assert(limit >= SEL_LIMIT(sel));
217
218	error = vm_copy_setup(ctx, vcpu, paging, base + SEL_START(sel),
219	    sizeof(*desc), doread ? PROT_READ : PROT_WRITE, iov, nitems(iov),
220	    faultptr);
221	if (error || *faultptr)
222		return (error);
223
224	if (doread)
225		vm_copyin(ctx, vcpu, iov, desc, sizeof(*desc));
226	else
227		vm_copyout(ctx, vcpu, desc, iov, sizeof(*desc));
228	return (0);
229}
230
231static int
232desc_table_read(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
233    uint16_t sel, struct user_segment_descriptor *desc, int *faultptr)
234{
235	return (desc_table_rw(ctx, vcpu, paging, sel, desc, true, faultptr));
236}
237
238static int
239desc_table_write(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
240    uint16_t sel, struct user_segment_descriptor *desc, int *faultptr)
241{
242	return (desc_table_rw(ctx, vcpu, paging, sel, desc, false, faultptr));
243}
244
245/*
246 * Read the TSS descriptor referenced by 'sel' into 'desc'.
247 *
248 * Returns 0 on success.
249 * Returns 1 if an exception was injected into the guest.
250 * Returns -1 otherwise.
251 */
252static int
253read_tss_descriptor(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts,
254    uint16_t sel, struct user_segment_descriptor *desc, int *faultptr)
255{
256	struct vm_guest_paging sup_paging;
257	int error;
258
259	assert(!ISLDT(sel));
260	assert(IDXSEL(sel) != 0);
261
262	/* Fetch the new TSS descriptor */
263	if (desc_table_limit_check(ctx, vcpu, sel)) {
264		if (ts->reason == TSR_IRET)
265			sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
266		else
267			sel_exception(ctx, vcpu, IDT_GP, sel, ts->ext);
268		return (1);
269	}
270
271	sup_paging = ts->paging;
272	sup_paging.cpl = 0;		/* implicit supervisor mode */
273	error = desc_table_read(ctx, vcpu, &sup_paging, sel, desc, faultptr);
274	return (error);
275}
276
277static bool
278code_desc(int sd_type)
279{
280	/* code descriptor */
281	return ((sd_type & 0x18) == 0x18);
282}
283
284static bool
285stack_desc(int sd_type)
286{
287	/* writable data descriptor */
288	return ((sd_type & 0x1A) == 0x12);
289}
290
291static bool
292data_desc(int sd_type)
293{
294	/* data descriptor or a readable code descriptor */
295	return ((sd_type & 0x18) == 0x10 || (sd_type & 0x1A) == 0x1A);
296}
297
298static bool
299ldt_desc(int sd_type)
300{
301
302	return (sd_type == SDT_SYSLDT);
303}
304
305/*
306 * Validate the descriptor 'seg_desc' associated with 'segment'.
307 */
308static int
309validate_seg_desc(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts,
310    int segment, struct seg_desc *seg_desc, int *faultptr)
311{
312	struct vm_guest_paging sup_paging;
313	struct user_segment_descriptor usd;
314	int error, idtvec;
315	int cpl, dpl, rpl;
316	uint16_t sel, cs;
317	bool ldtseg, codeseg, stackseg, dataseg, conforming;
318
319	ldtseg = codeseg = stackseg = dataseg = false;
320	switch (segment) {
321	case VM_REG_GUEST_LDTR:
322		ldtseg = true;
323		break;
324	case VM_REG_GUEST_CS:
325		codeseg = true;
326		break;
327	case VM_REG_GUEST_SS:
328		stackseg = true;
329		break;
330	case VM_REG_GUEST_DS:
331	case VM_REG_GUEST_ES:
332	case VM_REG_GUEST_FS:
333	case VM_REG_GUEST_GS:
334		dataseg = true;
335		break;
336	default:
337		assert(0);
338	}
339
340	/* Get the segment selector */
341	sel = GETREG(ctx, vcpu, segment);
342
343	/* LDT selector must point into the GDT */
344	if (ldtseg && ISLDT(sel)) {
345		sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
346		return (1);
347	}
348
349	/* Descriptor table limit check */
350	if (desc_table_limit_check(ctx, vcpu, sel)) {
351		sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
352		return (1);
353	}
354
355	/* NULL selector */
356	if (IDXSEL(sel) == 0) {
357		/* Code and stack segment selectors cannot be NULL */
358		if (codeseg || stackseg) {
359			sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
360			return (1);
361		}
362		seg_desc->base = 0;
363		seg_desc->limit = 0;
364		seg_desc->access = 0x10000;	/* unusable */
365		return (0);
366	}
367
368	/* Read the descriptor from the GDT/LDT */
369	sup_paging = ts->paging;
370	sup_paging.cpl = 0;	/* implicit supervisor mode */
371	error = desc_table_read(ctx, vcpu, &sup_paging, sel, &usd, faultptr);
372	if (error || *faultptr)
373		return (error);
374
375	/* Verify that the descriptor type is compatible with the segment */
376	if ((ldtseg && !ldt_desc(usd.sd_type)) ||
377	    (codeseg && !code_desc(usd.sd_type)) ||
378	    (dataseg && !data_desc(usd.sd_type)) ||
379	    (stackseg && !stack_desc(usd.sd_type))) {
380		sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
381		return (1);
382	}
383
384	/* Segment must be marked present */
385	if (!usd.sd_p) {
386		if (ldtseg)
387			idtvec = IDT_TS;
388		else if (stackseg)
389			idtvec = IDT_SS;
390		else
391			idtvec = IDT_NP;
392		sel_exception(ctx, vcpu, idtvec, sel, ts->ext);
393		return (1);
394	}
395
396	cs = GETREG(ctx, vcpu, VM_REG_GUEST_CS);
397	cpl = cs & SEL_RPL_MASK;
398	rpl = sel & SEL_RPL_MASK;
399	dpl = usd.sd_dpl;
400
401	if (stackseg && (rpl != cpl || dpl != cpl)) {
402		sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
403		return (1);
404	}
405
406	if (codeseg) {
407		conforming = (usd.sd_type & 0x4) ? true : false;
408		if ((conforming && (cpl < dpl)) ||
409		    (!conforming && (cpl != dpl))) {
410			sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
411			return (1);
412		}
413	}
414
415	if (dataseg) {
416		/*
417		 * A data segment is always non-conforming except when it's
418		 * descriptor is a readable, conforming code segment.
419		 */
420		if (code_desc(usd.sd_type) && (usd.sd_type & 0x4) != 0)
421			conforming = true;
422		else
423			conforming = false;
424
425		if (!conforming && (rpl > dpl || cpl > dpl)) {
426			sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
427			return (1);
428		}
429	}
430	*seg_desc = usd_to_seg_desc(&usd);
431	return (0);
432}
433
434static void
435tss32_save(struct vmctx *ctx, int vcpu, struct vm_task_switch *task_switch,
436    uint32_t eip, struct tss32 *tss, struct iovec *iov)
437{
438
439	/* General purpose registers */
440	tss->tss_eax = GETREG(ctx, vcpu, VM_REG_GUEST_RAX);
441	tss->tss_ecx = GETREG(ctx, vcpu, VM_REG_GUEST_RCX);
442	tss->tss_edx = GETREG(ctx, vcpu, VM_REG_GUEST_RDX);
443	tss->tss_ebx = GETREG(ctx, vcpu, VM_REG_GUEST_RBX);
444	tss->tss_esp = GETREG(ctx, vcpu, VM_REG_GUEST_RSP);
445	tss->tss_ebp = GETREG(ctx, vcpu, VM_REG_GUEST_RBP);
446	tss->tss_esi = GETREG(ctx, vcpu, VM_REG_GUEST_RSI);
447	tss->tss_edi = GETREG(ctx, vcpu, VM_REG_GUEST_RDI);
448
449	/* Segment selectors */
450	tss->tss_es = GETREG(ctx, vcpu, VM_REG_GUEST_ES);
451	tss->tss_cs = GETREG(ctx, vcpu, VM_REG_GUEST_CS);
452	tss->tss_ss = GETREG(ctx, vcpu, VM_REG_GUEST_SS);
453	tss->tss_ds = GETREG(ctx, vcpu, VM_REG_GUEST_DS);
454	tss->tss_fs = GETREG(ctx, vcpu, VM_REG_GUEST_FS);
455	tss->tss_gs = GETREG(ctx, vcpu, VM_REG_GUEST_GS);
456
457	/* eflags and eip */
458	tss->tss_eflags = GETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS);
459	if (task_switch->reason == TSR_IRET)
460		tss->tss_eflags &= ~PSL_NT;
461	tss->tss_eip = eip;
462
463	/* Copy updated old TSS into guest memory */
464	vm_copyout(ctx, vcpu, tss, iov, sizeof(struct tss32));
465}
466
467static void
468update_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *sd)
469{
470	int error;
471
472	error = vm_set_desc(ctx, vcpu, reg, sd->base, sd->limit, sd->access);
473	assert(error == 0);
474}
475
476/*
477 * Update the vcpu registers to reflect the state of the new task.
478 */
479static int
480tss32_restore(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts,
481    uint16_t ot_sel, struct tss32 *tss, struct iovec *iov, int *faultptr)
482{
483	struct seg_desc seg_desc, seg_desc2;
484	uint64_t *pdpte, maxphyaddr, reserved;
485	uint32_t eflags;
486	int error, i;
487	bool nested;
488
489	nested = false;
490	if (ts->reason != TSR_IRET && ts->reason != TSR_JMP) {
491		tss->tss_link = ot_sel;
492		nested = true;
493	}
494
495	eflags = tss->tss_eflags;
496	if (nested)
497		eflags |= PSL_NT;
498
499	/* LDTR */
500	SETREG(ctx, vcpu, VM_REG_GUEST_LDTR, tss->tss_ldt);
501
502	/* PBDR */
503	if (ts->paging.paging_mode != PAGING_MODE_FLAT) {
504		if (ts->paging.paging_mode == PAGING_MODE_PAE) {
505			/*
506			 * XXX Assuming 36-bit MAXPHYADDR.
507			 */
508			maxphyaddr = (1UL << 36) - 1;
509			pdpte = paddr_guest2host(ctx, tss->tss_cr3 & ~0x1f, 32);
510			for (i = 0; i < 4; i++) {
511				/* Check reserved bits if the PDPTE is valid */
512				if (!(pdpte[i] & 0x1))
513					continue;
514				/*
515				 * Bits 2:1, 8:5 and bits above the processor's
516				 * maximum physical address are reserved.
517				 */
518				reserved = ~maxphyaddr | 0x1E6;
519				if (pdpte[i] & reserved) {
520					vm_inject_gp(ctx, vcpu);
521					return (1);
522				}
523			}
524			SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE0, pdpte[0]);
525			SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE1, pdpte[1]);
526			SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE2, pdpte[2]);
527			SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE3, pdpte[3]);
528		}
529		SETREG(ctx, vcpu, VM_REG_GUEST_CR3, tss->tss_cr3);
530		ts->paging.cr3 = tss->tss_cr3;
531	}
532
533	/* eflags and eip */
534	SETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS, eflags);
535	SETREG(ctx, vcpu, VM_REG_GUEST_RIP, tss->tss_eip);
536
537	/* General purpose registers */
538	SETREG(ctx, vcpu, VM_REG_GUEST_RAX, tss->tss_eax);
539	SETREG(ctx, vcpu, VM_REG_GUEST_RCX, tss->tss_ecx);
540	SETREG(ctx, vcpu, VM_REG_GUEST_RDX, tss->tss_edx);
541	SETREG(ctx, vcpu, VM_REG_GUEST_RBX, tss->tss_ebx);
542	SETREG(ctx, vcpu, VM_REG_GUEST_RSP, tss->tss_esp);
543	SETREG(ctx, vcpu, VM_REG_GUEST_RBP, tss->tss_ebp);
544	SETREG(ctx, vcpu, VM_REG_GUEST_RSI, tss->tss_esi);
545	SETREG(ctx, vcpu, VM_REG_GUEST_RDI, tss->tss_edi);
546
547	/* Segment selectors */
548	SETREG(ctx, vcpu, VM_REG_GUEST_ES, tss->tss_es);
549	SETREG(ctx, vcpu, VM_REG_GUEST_CS, tss->tss_cs);
550	SETREG(ctx, vcpu, VM_REG_GUEST_SS, tss->tss_ss);
551	SETREG(ctx, vcpu, VM_REG_GUEST_DS, tss->tss_ds);
552	SETREG(ctx, vcpu, VM_REG_GUEST_FS, tss->tss_fs);
553	SETREG(ctx, vcpu, VM_REG_GUEST_GS, tss->tss_gs);
554
555	/*
556	 * If this is a nested task then write out the new TSS to update
557	 * the previous link field.
558	 */
559	if (nested)
560		vm_copyout(ctx, vcpu, tss, iov, sizeof(*tss));
561
562	/* Validate segment descriptors */
563	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_LDTR, &seg_desc,
564	    faultptr);
565	if (error || *faultptr)
566		return (error);
567	update_seg_desc(ctx, vcpu, VM_REG_GUEST_LDTR, &seg_desc);
568
569	/*
570	 * Section "Checks on Guest Segment Registers", Intel SDM, Vol 3.
571	 *
572	 * The SS and CS attribute checks on VM-entry are inter-dependent so
573	 * we need to make sure that both segments are valid before updating
574	 * either of them. This ensures that the VMCS state can pass the
575	 * VM-entry checks so the guest can handle any exception injected
576	 * during task switch emulation.
577	 */
578	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_CS, &seg_desc,
579	    faultptr);
580	if (error || *faultptr)
581		return (error);
582
583	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_SS, &seg_desc2,
584	    faultptr);
585	if (error || *faultptr)
586		return (error);
587	update_seg_desc(ctx, vcpu, VM_REG_GUEST_CS, &seg_desc);
588	update_seg_desc(ctx, vcpu, VM_REG_GUEST_SS, &seg_desc2);
589	ts->paging.cpl = tss->tss_cs & SEL_RPL_MASK;
590
591	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_DS, &seg_desc,
592	    faultptr);
593	if (error || *faultptr)
594		return (error);
595	update_seg_desc(ctx, vcpu, VM_REG_GUEST_DS, &seg_desc);
596
597	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_ES, &seg_desc,
598	    faultptr);
599	if (error || *faultptr)
600		return (error);
601	update_seg_desc(ctx, vcpu, VM_REG_GUEST_ES, &seg_desc);
602
603	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_FS, &seg_desc,
604	    faultptr);
605	if (error || *faultptr)
606		return (error);
607	update_seg_desc(ctx, vcpu, VM_REG_GUEST_FS, &seg_desc);
608
609	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_GS, &seg_desc,
610	    faultptr);
611	if (error || *faultptr)
612		return (error);
613	update_seg_desc(ctx, vcpu, VM_REG_GUEST_GS, &seg_desc);
614
615	return (0);
616}
617
618/*
619 * Push an error code on the stack of the new task. This is needed if the
620 * task switch was triggered by a hardware exception that causes an error
621 * code to be saved (e.g. #PF).
622 */
623static int
624push_errcode(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
625    int task_type, uint32_t errcode, int *faultptr)
626{
627	struct iovec iov[2];
628	struct seg_desc seg_desc;
629	int stacksize, bytes, error;
630	uint64_t gla, cr0, rflags;
631	uint32_t esp;
632	uint16_t stacksel;
633
634	*faultptr = 0;
635
636	cr0 = GETREG(ctx, vcpu, VM_REG_GUEST_CR0);
637	rflags = GETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS);
638	stacksel = GETREG(ctx, vcpu, VM_REG_GUEST_SS);
639
640	error = vm_get_desc(ctx, vcpu, VM_REG_GUEST_SS, &seg_desc.base,
641	    &seg_desc.limit, &seg_desc.access);
642	assert(error == 0);
643
644	/*
645	 * Section "Error Code" in the Intel SDM vol 3: the error code is
646	 * pushed on the stack as a doubleword or word (depending on the
647	 * default interrupt, trap or task gate size).
648	 */
649	if (task_type == SDT_SYS386BSY || task_type == SDT_SYS386TSS)
650		bytes = 4;
651	else
652		bytes = 2;
653
654	/*
655	 * PUSH instruction from Intel SDM vol 2: the 'B' flag in the
656	 * stack-segment descriptor determines the size of the stack
657	 * pointer outside of 64-bit mode.
658	 */
659	if (SEG_DESC_DEF32(seg_desc.access))
660		stacksize = 4;
661	else
662		stacksize = 2;
663
664	esp = GETREG(ctx, vcpu, VM_REG_GUEST_RSP);
665	esp -= bytes;
666
667	if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS,
668	    &seg_desc, esp, bytes, stacksize, PROT_WRITE, &gla)) {
669		sel_exception(ctx, vcpu, IDT_SS, stacksel, 1);
670		*faultptr = 1;
671		return (0);
672	}
673
674	if (vie_alignment_check(paging->cpl, bytes, cr0, rflags, gla)) {
675		vm_inject_ac(ctx, vcpu, 1);
676		*faultptr = 1;
677		return (0);
678	}
679
680	error = vm_copy_setup(ctx, vcpu, paging, gla, bytes, PROT_WRITE,
681	    iov, nitems(iov), faultptr);
682	if (error || *faultptr)
683		return (error);
684
685	vm_copyout(ctx, vcpu, &errcode, iov, bytes);
686	SETREG(ctx, vcpu, VM_REG_GUEST_RSP, esp);
687	return (0);
688}
689
690/*
691 * Evaluate return value from helper functions and potentially return to
692 * the VM run loop.
693 */
694#define	CHKERR(error,fault)						\
695	do {								\
696		assert((error == 0) || (error == EFAULT));		\
697		if (error)						\
698			return (VMEXIT_ABORT);				\
699		else if (fault)						\
700			return (VMEXIT_CONTINUE);			\
701	} while (0)
702
703int
704vmexit_task_switch(struct vmctx *ctx, struct vm_exit *vmexit, int *pvcpu)
705{
706	struct seg_desc nt;
707	struct tss32 oldtss, newtss;
708	struct vm_task_switch *task_switch;
709	struct vm_guest_paging *paging, sup_paging;
710	struct user_segment_descriptor nt_desc, ot_desc;
711	struct iovec nt_iov[2], ot_iov[2];
712	uint64_t cr0, ot_base;
713	uint32_t eip, ot_lim, access;
714	int error, ext, fault, minlimit, nt_type, ot_type, vcpu;
715	enum task_switch_reason reason;
716	uint16_t nt_sel, ot_sel;
717
718	task_switch = &vmexit->u.task_switch;
719	nt_sel = task_switch->tsssel;
720	ext = vmexit->u.task_switch.ext;
721	reason = vmexit->u.task_switch.reason;
722	paging = &vmexit->u.task_switch.paging;
723	vcpu = *pvcpu;
724
725	assert(paging->cpu_mode == CPU_MODE_PROTECTED);
726
727	/*
728	 * Calculate the instruction pointer to store in the old TSS.
729	 */
730	eip = vmexit->rip + vmexit->inst_length;
731
732	/*
733	 * Section 4.6, "Access Rights" in Intel SDM Vol 3.
734	 * The following page table accesses are implicitly supervisor mode:
735	 * - accesses to GDT or LDT to load segment descriptors
736	 * - accesses to the task state segment during task switch
737	 */
738	sup_paging = *paging;
739	sup_paging.cpl = 0;	/* implicit supervisor mode */
740
741	/* Fetch the new TSS descriptor */
742	error = read_tss_descriptor(ctx, vcpu, task_switch, nt_sel, &nt_desc,
743	    &fault);
744	CHKERR(error, fault);
745
746	nt = usd_to_seg_desc(&nt_desc);
747
748	/* Verify the type of the new TSS */
749	nt_type = SEG_DESC_TYPE(nt.access);
750	if (nt_type != SDT_SYS386BSY && nt_type != SDT_SYS386TSS &&
751	    nt_type != SDT_SYS286BSY && nt_type != SDT_SYS286TSS) {
752		sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext);
753		goto done;
754	}
755
756	/* TSS descriptor must have present bit set */
757	if (!SEG_DESC_PRESENT(nt.access)) {
758		sel_exception(ctx, vcpu, IDT_NP, nt_sel, ext);
759		goto done;
760	}
761
762	/*
763	 * TSS must have a minimum length of 104 bytes for a 32-bit TSS and
764	 * 44 bytes for a 16-bit TSS.
765	 */
766	if (nt_type == SDT_SYS386BSY || nt_type == SDT_SYS386TSS)
767		minlimit = 104 - 1;
768	else if (nt_type == SDT_SYS286BSY || nt_type == SDT_SYS286TSS)
769		minlimit = 44 - 1;
770	else
771		minlimit = 0;
772
773	assert(minlimit > 0);
774	if (nt.limit < minlimit) {
775		sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext);
776		goto done;
777	}
778
779	/* TSS must be busy if task switch is due to IRET */
780	if (reason == TSR_IRET && !TSS_BUSY(nt_type)) {
781		sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext);
782		goto done;
783	}
784
785	/*
786	 * TSS must be available (not busy) if task switch reason is
787	 * CALL, JMP, exception or interrupt.
788	 */
789	if (reason != TSR_IRET && TSS_BUSY(nt_type)) {
790		sel_exception(ctx, vcpu, IDT_GP, nt_sel, ext);
791		goto done;
792	}
793
794	/* Fetch the new TSS */
795	error = vm_copy_setup(ctx, vcpu, &sup_paging, nt.base, minlimit + 1,
796	    PROT_READ | PROT_WRITE, nt_iov, nitems(nt_iov), &fault);
797	CHKERR(error, fault);
798	vm_copyin(ctx, vcpu, nt_iov, &newtss, minlimit + 1);
799
800	/* Get the old TSS selector from the guest's task register */
801	ot_sel = GETREG(ctx, vcpu, VM_REG_GUEST_TR);
802	if (ISLDT(ot_sel) || IDXSEL(ot_sel) == 0) {
803		/*
804		 * This might happen if a task switch was attempted without
805		 * ever loading the task register with LTR. In this case the
806		 * TR would contain the values from power-on:
807		 * (sel = 0, base = 0, limit = 0xffff).
808		 */
809		sel_exception(ctx, vcpu, IDT_TS, ot_sel, task_switch->ext);
810		goto done;
811	}
812
813	/* Get the old TSS base and limit from the guest's task register */
814	error = vm_get_desc(ctx, vcpu, VM_REG_GUEST_TR, &ot_base, &ot_lim,
815	    &access);
816	assert(error == 0);
817	assert(!SEG_DESC_UNUSABLE(access) && SEG_DESC_PRESENT(access));
818	ot_type = SEG_DESC_TYPE(access);
819	assert(ot_type == SDT_SYS386BSY || ot_type == SDT_SYS286BSY);
820
821	/* Fetch the old TSS descriptor */
822	error = read_tss_descriptor(ctx, vcpu, task_switch, ot_sel, &ot_desc,
823	    &fault);
824	CHKERR(error, fault);
825
826	/* Get the old TSS */
827	error = vm_copy_setup(ctx, vcpu, &sup_paging, ot_base, minlimit + 1,
828	    PROT_READ | PROT_WRITE, ot_iov, nitems(ot_iov), &fault);
829	CHKERR(error, fault);
830	vm_copyin(ctx, vcpu, ot_iov, &oldtss, minlimit + 1);
831
832	/*
833	 * Clear the busy bit in the old TSS descriptor if the task switch
834	 * due to an IRET or JMP instruction.
835	 */
836	if (reason == TSR_IRET || reason == TSR_JMP) {
837		ot_desc.sd_type &= ~0x2;
838		error = desc_table_write(ctx, vcpu, &sup_paging, ot_sel,
839		    &ot_desc, &fault);
840		CHKERR(error, fault);
841	}
842
843	if (nt_type == SDT_SYS286BSY || nt_type == SDT_SYS286TSS) {
844		fprintf(stderr, "Task switch to 16-bit TSS not supported\n");
845		return (VMEXIT_ABORT);
846	}
847
848	/* Save processor state in old TSS */
849	tss32_save(ctx, vcpu, task_switch, eip, &oldtss, ot_iov);
850
851	/*
852	 * If the task switch was triggered for any reason other than IRET
853	 * then set the busy bit in the new TSS descriptor.
854	 */
855	if (reason != TSR_IRET) {
856		nt_desc.sd_type |= 0x2;
857		error = desc_table_write(ctx, vcpu, &sup_paging, nt_sel,
858		    &nt_desc, &fault);
859		CHKERR(error, fault);
860	}
861
862	/* Update task register to point at the new TSS */
863	SETREG(ctx, vcpu, VM_REG_GUEST_TR, nt_sel);
864
865	/* Update the hidden descriptor state of the task register */
866	nt = usd_to_seg_desc(&nt_desc);
867	update_seg_desc(ctx, vcpu, VM_REG_GUEST_TR, &nt);
868
869	/* Set CR0.TS */
870	cr0 = GETREG(ctx, vcpu, VM_REG_GUEST_CR0);
871	SETREG(ctx, vcpu, VM_REG_GUEST_CR0, cr0 | CR0_TS);
872
873	/*
874	 * We are now committed to the task switch. Any exceptions encountered
875	 * after this point will be handled in the context of the new task and
876	 * the saved instruction pointer will belong to the new task.
877	 */
878	error = vm_set_register(ctx, vcpu, VM_REG_GUEST_RIP, newtss.tss_eip);
879	assert(error == 0);
880
881	/* Load processor state from new TSS */
882	error = tss32_restore(ctx, vcpu, task_switch, ot_sel, &newtss, nt_iov,
883	    &fault);
884	CHKERR(error, fault);
885
886	/*
887	 * Section "Interrupt Tasks" in Intel SDM, Vol 3: if an exception
888	 * caused an error code to be generated, this error code is copied
889	 * to the stack of the new task.
890	 */
891	if (task_switch->errcode_valid) {
892		assert(task_switch->ext);
893		assert(task_switch->reason == TSR_IDT_GATE);
894		error = push_errcode(ctx, vcpu, &task_switch->paging, nt_type,
895		    task_switch->errcode, &fault);
896		CHKERR(error, fault);
897	}
898
899	/*
900	 * Treatment of virtual-NMI blocking if NMI is delivered through
901	 * a task gate.
902	 *
903	 * Section "Architectural State Before A VM Exit", Intel SDM, Vol3:
904	 * If the virtual NMIs VM-execution control is 1, VM entry injects
905	 * an NMI, and delivery of the NMI causes a task switch that causes
906	 * a VM exit, virtual-NMI blocking is in effect before the VM exit
907	 * commences.
908	 *
909	 * Thus, virtual-NMI blocking is in effect at the time of the task
910	 * switch VM exit.
911	 */
912
913	/*
914	 * Treatment of virtual-NMI unblocking on IRET from NMI handler task.
915	 *
916	 * Section "Changes to Instruction Behavior in VMX Non-Root Operation"
917	 * If "virtual NMIs" control is 1 IRET removes any virtual-NMI blocking.
918	 * This unblocking of virtual-NMI occurs even if IRET causes a fault.
919	 *
920	 * Thus, virtual-NMI blocking is cleared at the time of the task switch
921	 * VM exit.
922	 */
923
924	/*
925	 * If the task switch was triggered by an event delivered through
926	 * the IDT then extinguish the pending event from the vcpu's
927	 * exitintinfo.
928	 */
929	if (task_switch->reason == TSR_IDT_GATE) {
930		error = vm_set_intinfo(ctx, vcpu, 0);
931		assert(error == 0);
932	}
933
934	/*
935	 * XXX should inject debug exception if 'T' bit is 1
936	 */
937done:
938	return (VMEXIT_CONTINUE);
939}
940