1/*-
2 * Copyright (c) 2002 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and Network Associates Laboratories, the Security
7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9 * research program
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * Copyright (c) 1982, 1986, 1989, 1993
33 *	The Regents of the University of California.  All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 *    notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 *    notice, this list of conditions and the following disclaimer in the
42 *    documentation and/or other materials provided with the distribution.
43 * 4. Neither the name of the University nor the names of its contributors
44 *    may be used to endorse or promote products derived from this software
45 *    without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
60 */
61
62#include <sys/cdefs.h>
63__FBSDID("$FreeBSD: releng/11.0/sys/ufs/ffs/ffs_alloc.c 300423 2016-05-22 14:31:20Z kevlo $");
64
65#include "opt_quota.h"
66
67#include <sys/param.h>
68#include <sys/capsicum.h>
69#include <sys/systm.h>
70#include <sys/bio.h>
71#include <sys/buf.h>
72#include <sys/conf.h>
73#include <sys/fcntl.h>
74#include <sys/file.h>
75#include <sys/filedesc.h>
76#include <sys/priv.h>
77#include <sys/proc.h>
78#include <sys/vnode.h>
79#include <sys/mount.h>
80#include <sys/kernel.h>
81#include <sys/syscallsubr.h>
82#include <sys/sysctl.h>
83#include <sys/syslog.h>
84#include <sys/taskqueue.h>
85
86#include <security/audit/audit.h>
87
88#include <geom/geom.h>
89
90#include <ufs/ufs/dir.h>
91#include <ufs/ufs/extattr.h>
92#include <ufs/ufs/quota.h>
93#include <ufs/ufs/inode.h>
94#include <ufs/ufs/ufs_extern.h>
95#include <ufs/ufs/ufsmount.h>
96
97#include <ufs/ffs/fs.h>
98#include <ufs/ffs/ffs_extern.h>
99#include <ufs/ffs/softdep.h>
100
101typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref,
102				  int size, int rsize);
103
104static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int);
105static ufs2_daddr_t
106	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
107static void	ffs_blkfree_cg(struct ufsmount *, struct fs *,
108		    struct vnode *, ufs2_daddr_t, long, ino_t,
109		    struct workhead *);
110static void	ffs_blkfree_trim_completed(struct bio *);
111static void	ffs_blkfree_trim_task(void *ctx, int pending __unused);
112#ifdef INVARIANTS
113static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
114#endif
115static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int);
116static ino_t	ffs_dirpref(struct inode *);
117static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t,
118		    int, int);
119static ufs2_daddr_t	ffs_hashalloc
120		(struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *);
121static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int,
122		    int);
123static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
124static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
125static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
126
127/*
128 * Allocate a block in the filesystem.
129 *
130 * The size of the requested block is given, which must be some
131 * multiple of fs_fsize and <= fs_bsize.
132 * A preference may be optionally specified. If a preference is given
133 * the following hierarchy is used to allocate a block:
134 *   1) allocate the requested block.
135 *   2) allocate a rotationally optimal block in the same cylinder.
136 *   3) allocate a block in the same cylinder group.
137 *   4) quadradically rehash into other cylinder groups, until an
138 *      available block is located.
139 * If no block preference is given the following hierarchy is used
140 * to allocate a block:
141 *   1) allocate a block in the cylinder group that contains the
142 *      inode for the file.
143 *   2) quadradically rehash into other cylinder groups, until an
144 *      available block is located.
145 */
146int
147ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp)
148	struct inode *ip;
149	ufs2_daddr_t lbn, bpref;
150	int size, flags;
151	struct ucred *cred;
152	ufs2_daddr_t *bnp;
153{
154	struct fs *fs;
155	struct ufsmount *ump;
156	ufs2_daddr_t bno;
157	u_int cg, reclaimed;
158	static struct timeval lastfail;
159	static int curfail;
160	int64_t delta;
161#ifdef QUOTA
162	int error;
163#endif
164
165	*bnp = 0;
166	fs = ip->i_fs;
167	ump = ip->i_ump;
168	mtx_assert(UFS_MTX(ump), MA_OWNED);
169#ifdef INVARIANTS
170	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
171		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
172		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
173		    fs->fs_fsmnt);
174		panic("ffs_alloc: bad size");
175	}
176	if (cred == NOCRED)
177		panic("ffs_alloc: missing credential");
178#endif /* INVARIANTS */
179	reclaimed = 0;
180retry:
181#ifdef QUOTA
182	UFS_UNLOCK(ump);
183	error = chkdq(ip, btodb(size), cred, 0);
184	if (error)
185		return (error);
186	UFS_LOCK(ump);
187#endif
188	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
189		goto nospace;
190	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
191	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
192		goto nospace;
193	if (bpref >= fs->fs_size)
194		bpref = 0;
195	if (bpref == 0)
196		cg = ino_to_cg(fs, ip->i_number);
197	else
198		cg = dtog(fs, bpref);
199	bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
200	if (bno > 0) {
201		delta = btodb(size);
202		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
203		if (flags & IO_EXT)
204			ip->i_flag |= IN_CHANGE;
205		else
206			ip->i_flag |= IN_CHANGE | IN_UPDATE;
207		*bnp = bno;
208		return (0);
209	}
210nospace:
211#ifdef QUOTA
212	UFS_UNLOCK(ump);
213	/*
214	 * Restore user's disk quota because allocation failed.
215	 */
216	(void) chkdq(ip, -btodb(size), cred, FORCE);
217	UFS_LOCK(ump);
218#endif
219	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
220		reclaimed = 1;
221		softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
222		goto retry;
223	}
224	UFS_UNLOCK(ump);
225	if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
226		ffs_fserr(fs, ip->i_number, "filesystem full");
227		uprintf("\n%s: write failed, filesystem is full\n",
228		    fs->fs_fsmnt);
229	}
230	return (ENOSPC);
231}
232
233/*
234 * Reallocate a fragment to a bigger size
235 *
236 * The number and size of the old block is given, and a preference
237 * and new size is also specified. The allocator attempts to extend
238 * the original block. Failing that, the regular block allocator is
239 * invoked to get an appropriate block.
240 */
241int
242ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp)
243	struct inode *ip;
244	ufs2_daddr_t lbprev;
245	ufs2_daddr_t bprev;
246	ufs2_daddr_t bpref;
247	int osize, nsize, flags;
248	struct ucred *cred;
249	struct buf **bpp;
250{
251	struct vnode *vp;
252	struct fs *fs;
253	struct buf *bp;
254	struct ufsmount *ump;
255	u_int cg, request, reclaimed;
256	int error, gbflags;
257	ufs2_daddr_t bno;
258	static struct timeval lastfail;
259	static int curfail;
260	int64_t delta;
261
262	vp = ITOV(ip);
263	fs = ip->i_fs;
264	bp = NULL;
265	ump = ip->i_ump;
266	gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
267
268	mtx_assert(UFS_MTX(ump), MA_OWNED);
269#ifdef INVARIANTS
270	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
271		panic("ffs_realloccg: allocation on suspended filesystem");
272	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
273	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
274		printf(
275		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
276		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
277		    nsize, fs->fs_fsmnt);
278		panic("ffs_realloccg: bad size");
279	}
280	if (cred == NOCRED)
281		panic("ffs_realloccg: missing credential");
282#endif /* INVARIANTS */
283	reclaimed = 0;
284retry:
285	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
286	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
287		goto nospace;
288	}
289	if (bprev == 0) {
290		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
291		    devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
292		    fs->fs_fsmnt);
293		panic("ffs_realloccg: bad bprev");
294	}
295	UFS_UNLOCK(ump);
296	/*
297	 * Allocate the extra space in the buffer.
298	 */
299	error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
300	if (error) {
301		brelse(bp);
302		return (error);
303	}
304
305	if (bp->b_blkno == bp->b_lblkno) {
306		if (lbprev >= NDADDR)
307			panic("ffs_realloccg: lbprev out of range");
308		bp->b_blkno = fsbtodb(fs, bprev);
309	}
310
311#ifdef QUOTA
312	error = chkdq(ip, btodb(nsize - osize), cred, 0);
313	if (error) {
314		brelse(bp);
315		return (error);
316	}
317#endif
318	/*
319	 * Check for extension in the existing location.
320	 */
321	*bpp = NULL;
322	cg = dtog(fs, bprev);
323	UFS_LOCK(ump);
324	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
325	if (bno) {
326		if (bp->b_blkno != fsbtodb(fs, bno))
327			panic("ffs_realloccg: bad blockno");
328		delta = btodb(nsize - osize);
329		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
330		if (flags & IO_EXT)
331			ip->i_flag |= IN_CHANGE;
332		else
333			ip->i_flag |= IN_CHANGE | IN_UPDATE;
334		allocbuf(bp, nsize);
335		bp->b_flags |= B_DONE;
336		vfs_bio_bzero_buf(bp, osize, nsize - osize);
337		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
338			vfs_bio_set_valid(bp, osize, nsize - osize);
339		*bpp = bp;
340		return (0);
341	}
342	/*
343	 * Allocate a new disk location.
344	 */
345	if (bpref >= fs->fs_size)
346		bpref = 0;
347	switch ((int)fs->fs_optim) {
348	case FS_OPTSPACE:
349		/*
350		 * Allocate an exact sized fragment. Although this makes
351		 * best use of space, we will waste time relocating it if
352		 * the file continues to grow. If the fragmentation is
353		 * less than half of the minimum free reserve, we choose
354		 * to begin optimizing for time.
355		 */
356		request = nsize;
357		if (fs->fs_minfree <= 5 ||
358		    fs->fs_cstotal.cs_nffree >
359		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
360			break;
361		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
362			fs->fs_fsmnt);
363		fs->fs_optim = FS_OPTTIME;
364		break;
365	case FS_OPTTIME:
366		/*
367		 * At this point we have discovered a file that is trying to
368		 * grow a small fragment to a larger fragment. To save time,
369		 * we allocate a full sized block, then free the unused portion.
370		 * If the file continues to grow, the `ffs_fragextend' call
371		 * above will be able to grow it in place without further
372		 * copying. If aberrant programs cause disk fragmentation to
373		 * grow within 2% of the free reserve, we choose to begin
374		 * optimizing for space.
375		 */
376		request = fs->fs_bsize;
377		if (fs->fs_cstotal.cs_nffree <
378		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
379			break;
380		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
381			fs->fs_fsmnt);
382		fs->fs_optim = FS_OPTSPACE;
383		break;
384	default:
385		printf("dev = %s, optim = %ld, fs = %s\n",
386		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
387		panic("ffs_realloccg: bad optim");
388		/* NOTREACHED */
389	}
390	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
391	if (bno > 0) {
392		bp->b_blkno = fsbtodb(fs, bno);
393		if (!DOINGSOFTDEP(vp))
394			ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize,
395			    ip->i_number, vp->v_type, NULL);
396		delta = btodb(nsize - osize);
397		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
398		if (flags & IO_EXT)
399			ip->i_flag |= IN_CHANGE;
400		else
401			ip->i_flag |= IN_CHANGE | IN_UPDATE;
402		allocbuf(bp, nsize);
403		bp->b_flags |= B_DONE;
404		vfs_bio_bzero_buf(bp, osize, nsize - osize);
405		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
406			vfs_bio_set_valid(bp, osize, nsize - osize);
407		*bpp = bp;
408		return (0);
409	}
410#ifdef QUOTA
411	UFS_UNLOCK(ump);
412	/*
413	 * Restore user's disk quota because allocation failed.
414	 */
415	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
416	UFS_LOCK(ump);
417#endif
418nospace:
419	/*
420	 * no space available
421	 */
422	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
423		reclaimed = 1;
424		UFS_UNLOCK(ump);
425		if (bp) {
426			brelse(bp);
427			bp = NULL;
428		}
429		UFS_LOCK(ump);
430		softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
431		goto retry;
432	}
433	UFS_UNLOCK(ump);
434	if (bp)
435		brelse(bp);
436	if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) {
437		ffs_fserr(fs, ip->i_number, "filesystem full");
438		uprintf("\n%s: write failed, filesystem is full\n",
439		    fs->fs_fsmnt);
440	}
441	return (ENOSPC);
442}
443
444/*
445 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
446 *
447 * The vnode and an array of buffer pointers for a range of sequential
448 * logical blocks to be made contiguous is given. The allocator attempts
449 * to find a range of sequential blocks starting as close as possible
450 * from the end of the allocation for the logical block immediately
451 * preceding the current range. If successful, the physical block numbers
452 * in the buffer pointers and in the inode are changed to reflect the new
453 * allocation. If unsuccessful, the allocation is left unchanged. The
454 * success in doing the reallocation is returned. Note that the error
455 * return is not reflected back to the user. Rather the previous block
456 * allocation will be used.
457 */
458
459SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
460
461static int doasyncfree = 1;
462SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
463"do not force synchronous writes when blocks are reallocated");
464
465static int doreallocblks = 1;
466SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
467"enable block reallocation");
468
469static int maxclustersearch = 10;
470SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
4710, "max number of cylinder group to search for contigous blocks");
472
473#ifdef DEBUG
474static volatile int prtrealloc = 0;
475#endif
476
477int
478ffs_reallocblks(ap)
479	struct vop_reallocblks_args /* {
480		struct vnode *a_vp;
481		struct cluster_save *a_buflist;
482	} */ *ap;
483{
484	struct ufsmount *ump;
485
486	/*
487	 * If the underlying device can do deletes, then skip reallocating
488	 * the blocks of this file into contiguous sequences. Devices that
489	 * benefit from BIO_DELETE also benefit from not moving the data.
490	 * These devices are flash and therefore work less well with this
491	 * optimization. Also skip if reallocblks has been disabled globally.
492	 */
493	ump = VTOI(ap->a_vp)->i_ump;
494	if (ump->um_candelete || doreallocblks == 0)
495		return (ENOSPC);
496
497	/*
498	 * We can't wait in softdep prealloc as it may fsync and recurse
499	 * here.  Instead we simply fail to reallocate blocks if this
500	 * rare condition arises.
501	 */
502	if (DOINGSOFTDEP(ap->a_vp))
503		if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
504			return (ENOSPC);
505	if (ump->um_fstype == UFS1)
506		return (ffs_reallocblks_ufs1(ap));
507	return (ffs_reallocblks_ufs2(ap));
508}
509
510static int
511ffs_reallocblks_ufs1(ap)
512	struct vop_reallocblks_args /* {
513		struct vnode *a_vp;
514		struct cluster_save *a_buflist;
515	} */ *ap;
516{
517	struct fs *fs;
518	struct inode *ip;
519	struct vnode *vp;
520	struct buf *sbp, *ebp;
521	ufs1_daddr_t *bap, *sbap, *ebap;
522	struct cluster_save *buflist;
523	struct ufsmount *ump;
524	ufs_lbn_t start_lbn, end_lbn;
525	ufs1_daddr_t soff, newblk, blkno;
526	ufs2_daddr_t pref;
527	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
528	int i, cg, len, start_lvl, end_lvl, ssize;
529
530	vp = ap->a_vp;
531	ip = VTOI(vp);
532	fs = ip->i_fs;
533	ump = ip->i_ump;
534	/*
535	 * If we are not tracking block clusters or if we have less than 4%
536	 * free blocks left, then do not attempt to cluster. Running with
537	 * less than 5% free block reserve is not recommended and those that
538	 * choose to do so do not expect to have good file layout.
539	 */
540	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
541		return (ENOSPC);
542	buflist = ap->a_buflist;
543	len = buflist->bs_nchildren;
544	start_lbn = buflist->bs_children[0]->b_lblkno;
545	end_lbn = start_lbn + len - 1;
546#ifdef INVARIANTS
547	for (i = 0; i < len; i++)
548		if (!ffs_checkblk(ip,
549		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
550			panic("ffs_reallocblks: unallocated block 1");
551	for (i = 1; i < len; i++)
552		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
553			panic("ffs_reallocblks: non-logical cluster");
554	blkno = buflist->bs_children[0]->b_blkno;
555	ssize = fsbtodb(fs, fs->fs_frag);
556	for (i = 1; i < len - 1; i++)
557		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
558			panic("ffs_reallocblks: non-physical cluster %d", i);
559#endif
560	/*
561	 * If the cluster crosses the boundary for the first indirect
562	 * block, leave space for the indirect block. Indirect blocks
563	 * are initially laid out in a position after the last direct
564	 * block. Block reallocation would usually destroy locality by
565	 * moving the indirect block out of the way to make room for
566	 * data blocks if we didn't compensate here. We should also do
567	 * this for other indirect block boundaries, but it is only
568	 * important for the first one.
569	 */
570	if (start_lbn < NDADDR && end_lbn >= NDADDR)
571		return (ENOSPC);
572	/*
573	 * If the latest allocation is in a new cylinder group, assume that
574	 * the filesystem has decided to move and do not force it back to
575	 * the previous cylinder group.
576	 */
577	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
578	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
579		return (ENOSPC);
580	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
581	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
582		return (ENOSPC);
583	/*
584	 * Get the starting offset and block map for the first block.
585	 */
586	if (start_lvl == 0) {
587		sbap = &ip->i_din1->di_db[0];
588		soff = start_lbn;
589	} else {
590		idp = &start_ap[start_lvl - 1];
591		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
592			brelse(sbp);
593			return (ENOSPC);
594		}
595		sbap = (ufs1_daddr_t *)sbp->b_data;
596		soff = idp->in_off;
597	}
598	/*
599	 * If the block range spans two block maps, get the second map.
600	 */
601	ebap = NULL;
602	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
603		ssize = len;
604	} else {
605#ifdef INVARIANTS
606		if (start_lvl > 0 &&
607		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
608			panic("ffs_reallocblk: start == end");
609#endif
610		ssize = len - (idp->in_off + 1);
611		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
612			goto fail;
613		ebap = (ufs1_daddr_t *)ebp->b_data;
614	}
615	/*
616	 * Find the preferred location for the cluster. If we have not
617	 * previously failed at this endeavor, then follow our standard
618	 * preference calculation. If we have failed at it, then pick up
619	 * where we last ended our search.
620	 */
621	UFS_LOCK(ump);
622	if (ip->i_nextclustercg == -1)
623		pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
624	else
625		pref = cgdata(fs, ip->i_nextclustercg);
626	/*
627	 * Search the block map looking for an allocation of the desired size.
628	 * To avoid wasting too much time, we limit the number of cylinder
629	 * groups that we will search.
630	 */
631	cg = dtog(fs, pref);
632	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
633		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
634			break;
635		cg += 1;
636		if (cg >= fs->fs_ncg)
637			cg = 0;
638	}
639	/*
640	 * If we have failed in our search, record where we gave up for
641	 * next time. Otherwise, fall back to our usual search citerion.
642	 */
643	if (newblk == 0) {
644		ip->i_nextclustercg = cg;
645		UFS_UNLOCK(ump);
646		goto fail;
647	}
648	ip->i_nextclustercg = -1;
649	/*
650	 * We have found a new contiguous block.
651	 *
652	 * First we have to replace the old block pointers with the new
653	 * block pointers in the inode and indirect blocks associated
654	 * with the file.
655	 */
656#ifdef DEBUG
657	if (prtrealloc)
658		printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
659		    (uintmax_t)ip->i_number,
660		    (intmax_t)start_lbn, (intmax_t)end_lbn);
661#endif
662	blkno = newblk;
663	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
664		if (i == ssize) {
665			bap = ebap;
666			soff = -i;
667		}
668#ifdef INVARIANTS
669		if (!ffs_checkblk(ip,
670		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
671			panic("ffs_reallocblks: unallocated block 2");
672		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
673			panic("ffs_reallocblks: alloc mismatch");
674#endif
675#ifdef DEBUG
676		if (prtrealloc)
677			printf(" %d,", *bap);
678#endif
679		if (DOINGSOFTDEP(vp)) {
680			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
681				softdep_setup_allocdirect(ip, start_lbn + i,
682				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
683				    buflist->bs_children[i]);
684			else
685				softdep_setup_allocindir_page(ip, start_lbn + i,
686				    i < ssize ? sbp : ebp, soff + i, blkno,
687				    *bap, buflist->bs_children[i]);
688		}
689		*bap++ = blkno;
690	}
691	/*
692	 * Next we must write out the modified inode and indirect blocks.
693	 * For strict correctness, the writes should be synchronous since
694	 * the old block values may have been written to disk. In practise
695	 * they are almost never written, but if we are concerned about
696	 * strict correctness, the `doasyncfree' flag should be set to zero.
697	 *
698	 * The test on `doasyncfree' should be changed to test a flag
699	 * that shows whether the associated buffers and inodes have
700	 * been written. The flag should be set when the cluster is
701	 * started and cleared whenever the buffer or inode is flushed.
702	 * We can then check below to see if it is set, and do the
703	 * synchronous write only when it has been cleared.
704	 */
705	if (sbap != &ip->i_din1->di_db[0]) {
706		if (doasyncfree)
707			bdwrite(sbp);
708		else
709			bwrite(sbp);
710	} else {
711		ip->i_flag |= IN_CHANGE | IN_UPDATE;
712		if (!doasyncfree)
713			ffs_update(vp, 1);
714	}
715	if (ssize < len) {
716		if (doasyncfree)
717			bdwrite(ebp);
718		else
719			bwrite(ebp);
720	}
721	/*
722	 * Last, free the old blocks and assign the new blocks to the buffers.
723	 */
724#ifdef DEBUG
725	if (prtrealloc)
726		printf("\n\tnew:");
727#endif
728	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
729		if (!DOINGSOFTDEP(vp))
730			ffs_blkfree(ump, fs, ip->i_devvp,
731			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
732			    fs->fs_bsize, ip->i_number, vp->v_type, NULL);
733		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
734#ifdef INVARIANTS
735		if (!ffs_checkblk(ip,
736		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
737			panic("ffs_reallocblks: unallocated block 3");
738#endif
739#ifdef DEBUG
740		if (prtrealloc)
741			printf(" %d,", blkno);
742#endif
743	}
744#ifdef DEBUG
745	if (prtrealloc) {
746		prtrealloc--;
747		printf("\n");
748	}
749#endif
750	return (0);
751
752fail:
753	if (ssize < len)
754		brelse(ebp);
755	if (sbap != &ip->i_din1->di_db[0])
756		brelse(sbp);
757	return (ENOSPC);
758}
759
760static int
761ffs_reallocblks_ufs2(ap)
762	struct vop_reallocblks_args /* {
763		struct vnode *a_vp;
764		struct cluster_save *a_buflist;
765	} */ *ap;
766{
767	struct fs *fs;
768	struct inode *ip;
769	struct vnode *vp;
770	struct buf *sbp, *ebp;
771	ufs2_daddr_t *bap, *sbap, *ebap;
772	struct cluster_save *buflist;
773	struct ufsmount *ump;
774	ufs_lbn_t start_lbn, end_lbn;
775	ufs2_daddr_t soff, newblk, blkno, pref;
776	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
777	int i, cg, len, start_lvl, end_lvl, ssize;
778
779	vp = ap->a_vp;
780	ip = VTOI(vp);
781	fs = ip->i_fs;
782	ump = ip->i_ump;
783	/*
784	 * If we are not tracking block clusters or if we have less than 4%
785	 * free blocks left, then do not attempt to cluster. Running with
786	 * less than 5% free block reserve is not recommended and those that
787	 * choose to do so do not expect to have good file layout.
788	 */
789	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
790		return (ENOSPC);
791	buflist = ap->a_buflist;
792	len = buflist->bs_nchildren;
793	start_lbn = buflist->bs_children[0]->b_lblkno;
794	end_lbn = start_lbn + len - 1;
795#ifdef INVARIANTS
796	for (i = 0; i < len; i++)
797		if (!ffs_checkblk(ip,
798		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
799			panic("ffs_reallocblks: unallocated block 1");
800	for (i = 1; i < len; i++)
801		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
802			panic("ffs_reallocblks: non-logical cluster");
803	blkno = buflist->bs_children[0]->b_blkno;
804	ssize = fsbtodb(fs, fs->fs_frag);
805	for (i = 1; i < len - 1; i++)
806		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
807			panic("ffs_reallocblks: non-physical cluster %d", i);
808#endif
809	/*
810	 * If the cluster crosses the boundary for the first indirect
811	 * block, do not move anything in it. Indirect blocks are
812	 * usually initially laid out in a position between the data
813	 * blocks. Block reallocation would usually destroy locality by
814	 * moving the indirect block out of the way to make room for
815	 * data blocks if we didn't compensate here. We should also do
816	 * this for other indirect block boundaries, but it is only
817	 * important for the first one.
818	 */
819	if (start_lbn < NDADDR && end_lbn >= NDADDR)
820		return (ENOSPC);
821	/*
822	 * If the latest allocation is in a new cylinder group, assume that
823	 * the filesystem has decided to move and do not force it back to
824	 * the previous cylinder group.
825	 */
826	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
827	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
828		return (ENOSPC);
829	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
830	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
831		return (ENOSPC);
832	/*
833	 * Get the starting offset and block map for the first block.
834	 */
835	if (start_lvl == 0) {
836		sbap = &ip->i_din2->di_db[0];
837		soff = start_lbn;
838	} else {
839		idp = &start_ap[start_lvl - 1];
840		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
841			brelse(sbp);
842			return (ENOSPC);
843		}
844		sbap = (ufs2_daddr_t *)sbp->b_data;
845		soff = idp->in_off;
846	}
847	/*
848	 * If the block range spans two block maps, get the second map.
849	 */
850	ebap = NULL;
851	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
852		ssize = len;
853	} else {
854#ifdef INVARIANTS
855		if (start_lvl > 0 &&
856		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
857			panic("ffs_reallocblk: start == end");
858#endif
859		ssize = len - (idp->in_off + 1);
860		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
861			goto fail;
862		ebap = (ufs2_daddr_t *)ebp->b_data;
863	}
864	/*
865	 * Find the preferred location for the cluster. If we have not
866	 * previously failed at this endeavor, then follow our standard
867	 * preference calculation. If we have failed at it, then pick up
868	 * where we last ended our search.
869	 */
870	UFS_LOCK(ump);
871	if (ip->i_nextclustercg == -1)
872		pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
873	else
874		pref = cgdata(fs, ip->i_nextclustercg);
875	/*
876	 * Search the block map looking for an allocation of the desired size.
877	 * To avoid wasting too much time, we limit the number of cylinder
878	 * groups that we will search.
879	 */
880	cg = dtog(fs, pref);
881	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
882		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
883			break;
884		cg += 1;
885		if (cg >= fs->fs_ncg)
886			cg = 0;
887	}
888	/*
889	 * If we have failed in our search, record where we gave up for
890	 * next time. Otherwise, fall back to our usual search citerion.
891	 */
892	if (newblk == 0) {
893		ip->i_nextclustercg = cg;
894		UFS_UNLOCK(ump);
895		goto fail;
896	}
897	ip->i_nextclustercg = -1;
898	/*
899	 * We have found a new contiguous block.
900	 *
901	 * First we have to replace the old block pointers with the new
902	 * block pointers in the inode and indirect blocks associated
903	 * with the file.
904	 */
905#ifdef DEBUG
906	if (prtrealloc)
907		printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
908		    (intmax_t)start_lbn, (intmax_t)end_lbn);
909#endif
910	blkno = newblk;
911	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
912		if (i == ssize) {
913			bap = ebap;
914			soff = -i;
915		}
916#ifdef INVARIANTS
917		if (!ffs_checkblk(ip,
918		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
919			panic("ffs_reallocblks: unallocated block 2");
920		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
921			panic("ffs_reallocblks: alloc mismatch");
922#endif
923#ifdef DEBUG
924		if (prtrealloc)
925			printf(" %jd,", (intmax_t)*bap);
926#endif
927		if (DOINGSOFTDEP(vp)) {
928			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
929				softdep_setup_allocdirect(ip, start_lbn + i,
930				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
931				    buflist->bs_children[i]);
932			else
933				softdep_setup_allocindir_page(ip, start_lbn + i,
934				    i < ssize ? sbp : ebp, soff + i, blkno,
935				    *bap, buflist->bs_children[i]);
936		}
937		*bap++ = blkno;
938	}
939	/*
940	 * Next we must write out the modified inode and indirect blocks.
941	 * For strict correctness, the writes should be synchronous since
942	 * the old block values may have been written to disk. In practise
943	 * they are almost never written, but if we are concerned about
944	 * strict correctness, the `doasyncfree' flag should be set to zero.
945	 *
946	 * The test on `doasyncfree' should be changed to test a flag
947	 * that shows whether the associated buffers and inodes have
948	 * been written. The flag should be set when the cluster is
949	 * started and cleared whenever the buffer or inode is flushed.
950	 * We can then check below to see if it is set, and do the
951	 * synchronous write only when it has been cleared.
952	 */
953	if (sbap != &ip->i_din2->di_db[0]) {
954		if (doasyncfree)
955			bdwrite(sbp);
956		else
957			bwrite(sbp);
958	} else {
959		ip->i_flag |= IN_CHANGE | IN_UPDATE;
960		if (!doasyncfree)
961			ffs_update(vp, 1);
962	}
963	if (ssize < len) {
964		if (doasyncfree)
965			bdwrite(ebp);
966		else
967			bwrite(ebp);
968	}
969	/*
970	 * Last, free the old blocks and assign the new blocks to the buffers.
971	 */
972#ifdef DEBUG
973	if (prtrealloc)
974		printf("\n\tnew:");
975#endif
976	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
977		if (!DOINGSOFTDEP(vp))
978			ffs_blkfree(ump, fs, ip->i_devvp,
979			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
980			    fs->fs_bsize, ip->i_number, vp->v_type, NULL);
981		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
982#ifdef INVARIANTS
983		if (!ffs_checkblk(ip,
984		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
985			panic("ffs_reallocblks: unallocated block 3");
986#endif
987#ifdef DEBUG
988		if (prtrealloc)
989			printf(" %jd,", (intmax_t)blkno);
990#endif
991	}
992#ifdef DEBUG
993	if (prtrealloc) {
994		prtrealloc--;
995		printf("\n");
996	}
997#endif
998	return (0);
999
1000fail:
1001	if (ssize < len)
1002		brelse(ebp);
1003	if (sbap != &ip->i_din2->di_db[0])
1004		brelse(sbp);
1005	return (ENOSPC);
1006}
1007
1008/*
1009 * Allocate an inode in the filesystem.
1010 *
1011 * If allocating a directory, use ffs_dirpref to select the inode.
1012 * If allocating in a directory, the following hierarchy is followed:
1013 *   1) allocate the preferred inode.
1014 *   2) allocate an inode in the same cylinder group.
1015 *   3) quadradically rehash into other cylinder groups, until an
1016 *      available inode is located.
1017 * If no inode preference is given the following hierarchy is used
1018 * to allocate an inode:
1019 *   1) allocate an inode in cylinder group 0.
1020 *   2) quadradically rehash into other cylinder groups, until an
1021 *      available inode is located.
1022 */
1023int
1024ffs_valloc(pvp, mode, cred, vpp)
1025	struct vnode *pvp;
1026	int mode;
1027	struct ucred *cred;
1028	struct vnode **vpp;
1029{
1030	struct inode *pip;
1031	struct fs *fs;
1032	struct inode *ip;
1033	struct timespec ts;
1034	struct ufsmount *ump;
1035	ino_t ino, ipref;
1036	u_int cg;
1037	int error, error1, reclaimed;
1038	static struct timeval lastfail;
1039	static int curfail;
1040
1041	*vpp = NULL;
1042	pip = VTOI(pvp);
1043	fs = pip->i_fs;
1044	ump = pip->i_ump;
1045
1046	UFS_LOCK(ump);
1047	reclaimed = 0;
1048retry:
1049	if (fs->fs_cstotal.cs_nifree == 0)
1050		goto noinodes;
1051
1052	if ((mode & IFMT) == IFDIR)
1053		ipref = ffs_dirpref(pip);
1054	else
1055		ipref = pip->i_number;
1056	if (ipref >= fs->fs_ncg * fs->fs_ipg)
1057		ipref = 0;
1058	cg = ino_to_cg(fs, ipref);
1059	/*
1060	 * Track number of dirs created one after another
1061	 * in a same cg without intervening by files.
1062	 */
1063	if ((mode & IFMT) == IFDIR) {
1064		if (fs->fs_contigdirs[cg] < 255)
1065			fs->fs_contigdirs[cg]++;
1066	} else {
1067		if (fs->fs_contigdirs[cg] > 0)
1068			fs->fs_contigdirs[cg]--;
1069	}
1070	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1071					(allocfcn_t *)ffs_nodealloccg);
1072	if (ino == 0)
1073		goto noinodes;
1074	error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
1075	if (error) {
1076		error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1077		    FFSV_FORCEINSMQ);
1078		ffs_vfree(pvp, ino, mode);
1079		if (error1 == 0) {
1080			ip = VTOI(*vpp);
1081			if (ip->i_mode)
1082				goto dup_alloc;
1083			ip->i_flag |= IN_MODIFIED;
1084			vput(*vpp);
1085		}
1086		return (error);
1087	}
1088	ip = VTOI(*vpp);
1089	if (ip->i_mode) {
1090dup_alloc:
1091		printf("mode = 0%o, inum = %ju, fs = %s\n",
1092		    ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
1093		panic("ffs_valloc: dup alloc");
1094	}
1095	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
1096		printf("free inode %s/%lu had %ld blocks\n",
1097		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
1098		DIP_SET(ip, i_blocks, 0);
1099	}
1100	ip->i_flags = 0;
1101	DIP_SET(ip, i_flags, 0);
1102	/*
1103	 * Set up a new generation number for this inode.
1104	 */
1105	while (ip->i_gen == 0 || ++ip->i_gen == 0)
1106		ip->i_gen = arc4random();
1107	DIP_SET(ip, i_gen, ip->i_gen);
1108	if (fs->fs_magic == FS_UFS2_MAGIC) {
1109		vfs_timestamp(&ts);
1110		ip->i_din2->di_birthtime = ts.tv_sec;
1111		ip->i_din2->di_birthnsec = ts.tv_nsec;
1112	}
1113	ufs_prepare_reclaim(*vpp);
1114	ip->i_flag = 0;
1115	(*vpp)->v_vflag = 0;
1116	(*vpp)->v_type = VNON;
1117	if (fs->fs_magic == FS_UFS2_MAGIC)
1118		(*vpp)->v_op = &ffs_vnodeops2;
1119	else
1120		(*vpp)->v_op = &ffs_vnodeops1;
1121	return (0);
1122noinodes:
1123	if (reclaimed == 0) {
1124		reclaimed = 1;
1125		softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1126		goto retry;
1127	}
1128	UFS_UNLOCK(ump);
1129	if (ppsratecheck(&lastfail, &curfail, 1)) {
1130		ffs_fserr(fs, pip->i_number, "out of inodes");
1131		uprintf("\n%s: create/symlink failed, no inodes free\n",
1132		    fs->fs_fsmnt);
1133	}
1134	return (ENOSPC);
1135}
1136
1137/*
1138 * Find a cylinder group to place a directory.
1139 *
1140 * The policy implemented by this algorithm is to allocate a
1141 * directory inode in the same cylinder group as its parent
1142 * directory, but also to reserve space for its files inodes
1143 * and data. Restrict the number of directories which may be
1144 * allocated one after another in the same cylinder group
1145 * without intervening allocation of files.
1146 *
1147 * If we allocate a first level directory then force allocation
1148 * in another cylinder group.
1149 */
1150static ino_t
1151ffs_dirpref(pip)
1152	struct inode *pip;
1153{
1154	struct fs *fs;
1155	int cg, prefcg, dirsize, cgsize;
1156	u_int avgifree, avgbfree, avgndir, curdirsize;
1157	u_int minifree, minbfree, maxndir;
1158	u_int mincg, minndir;
1159	u_int maxcontigdirs;
1160
1161	mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED);
1162	fs = pip->i_fs;
1163
1164	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1165	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1166	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1167
1168	/*
1169	 * Force allocation in another cg if creating a first level dir.
1170	 */
1171	ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1172	if (ITOV(pip)->v_vflag & VV_ROOT) {
1173		prefcg = arc4random() % fs->fs_ncg;
1174		mincg = prefcg;
1175		minndir = fs->fs_ipg;
1176		for (cg = prefcg; cg < fs->fs_ncg; cg++)
1177			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1178			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1179			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1180				mincg = cg;
1181				minndir = fs->fs_cs(fs, cg).cs_ndir;
1182			}
1183		for (cg = 0; cg < prefcg; cg++)
1184			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1185			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1186			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1187				mincg = cg;
1188				minndir = fs->fs_cs(fs, cg).cs_ndir;
1189			}
1190		return ((ino_t)(fs->fs_ipg * mincg));
1191	}
1192
1193	/*
1194	 * Count various limits which used for
1195	 * optimal allocation of a directory inode.
1196	 */
1197	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1198	minifree = avgifree - avgifree / 4;
1199	if (minifree < 1)
1200		minifree = 1;
1201	minbfree = avgbfree - avgbfree / 4;
1202	if (minbfree < 1)
1203		minbfree = 1;
1204	cgsize = fs->fs_fsize * fs->fs_fpg;
1205	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1206	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1207	if (dirsize < curdirsize)
1208		dirsize = curdirsize;
1209	if (dirsize <= 0)
1210		maxcontigdirs = 0;		/* dirsize overflowed */
1211	else
1212		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1213	if (fs->fs_avgfpdir > 0)
1214		maxcontigdirs = min(maxcontigdirs,
1215				    fs->fs_ipg / fs->fs_avgfpdir);
1216	if (maxcontigdirs == 0)
1217		maxcontigdirs = 1;
1218
1219	/*
1220	 * Limit number of dirs in one cg and reserve space for
1221	 * regular files, but only if we have no deficit in
1222	 * inodes or space.
1223	 *
1224	 * We are trying to find a suitable cylinder group nearby
1225	 * our preferred cylinder group to place a new directory.
1226	 * We scan from our preferred cylinder group forward looking
1227	 * for a cylinder group that meets our criterion. If we get
1228	 * to the final cylinder group and do not find anything,
1229	 * we start scanning forwards from the beginning of the
1230	 * filesystem. While it might seem sensible to start scanning
1231	 * backwards or even to alternate looking forward and backward,
1232	 * this approach fails badly when the filesystem is nearly full.
1233	 * Specifically, we first search all the areas that have no space
1234	 * and finally try the one preceding that. We repeat this on
1235	 * every request and in the case of the final block end up
1236	 * searching the entire filesystem. By jumping to the front
1237	 * of the filesystem, our future forward searches always look
1238	 * in new cylinder groups so finds every possible block after
1239	 * one pass over the filesystem.
1240	 */
1241	prefcg = ino_to_cg(fs, pip->i_number);
1242	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1243		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1244		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1245		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1246			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1247				return ((ino_t)(fs->fs_ipg * cg));
1248		}
1249	for (cg = 0; cg < prefcg; cg++)
1250		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1251		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1252		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1253			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1254				return ((ino_t)(fs->fs_ipg * cg));
1255		}
1256	/*
1257	 * This is a backstop when we have deficit in space.
1258	 */
1259	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1260		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1261			return ((ino_t)(fs->fs_ipg * cg));
1262	for (cg = 0; cg < prefcg; cg++)
1263		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1264			break;
1265	return ((ino_t)(fs->fs_ipg * cg));
1266}
1267
1268/*
1269 * Select the desired position for the next block in a file.  The file is
1270 * logically divided into sections. The first section is composed of the
1271 * direct blocks and the next fs_maxbpg blocks. Each additional section
1272 * contains fs_maxbpg blocks.
1273 *
1274 * If no blocks have been allocated in the first section, the policy is to
1275 * request a block in the same cylinder group as the inode that describes
1276 * the file. The first indirect is allocated immediately following the last
1277 * direct block and the data blocks for the first indirect immediately
1278 * follow it.
1279 *
1280 * If no blocks have been allocated in any other section, the indirect
1281 * block(s) are allocated in the same cylinder group as its inode in an
1282 * area reserved immediately following the inode blocks. The policy for
1283 * the data blocks is to place them in a cylinder group with a greater than
1284 * average number of free blocks. An appropriate cylinder group is found
1285 * by using a rotor that sweeps the cylinder groups. When a new group of
1286 * blocks is needed, the sweep begins in the cylinder group following the
1287 * cylinder group from which the previous allocation was made. The sweep
1288 * continues until a cylinder group with greater than the average number
1289 * of free blocks is found. If the allocation is for the first block in an
1290 * indirect block or the previous block is a hole, then the information on
1291 * the previous allocation is unavailable; here a best guess is made based
1292 * on the logical block number being allocated.
1293 *
1294 * If a section is already partially allocated, the policy is to
1295 * allocate blocks contiguously within the section if possible.
1296 */
1297ufs2_daddr_t
1298ffs_blkpref_ufs1(ip, lbn, indx, bap)
1299	struct inode *ip;
1300	ufs_lbn_t lbn;
1301	int indx;
1302	ufs1_daddr_t *bap;
1303{
1304	struct fs *fs;
1305	u_int cg, inocg;
1306	u_int avgbfree, startcg;
1307	ufs2_daddr_t pref;
1308
1309	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1310	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1311	fs = ip->i_fs;
1312	/*
1313	 * Allocation of indirect blocks is indicated by passing negative
1314	 * values in indx: -1 for single indirect, -2 for double indirect,
1315	 * -3 for triple indirect. As noted below, we attempt to allocate
1316	 * the first indirect inline with the file data. For all later
1317	 * indirect blocks, the data is often allocated in other cylinder
1318	 * groups. However to speed random file access and to speed up
1319	 * fsck, the filesystem reserves the first fs_metaspace blocks
1320	 * (typically half of fs_minfree) of the data area of each cylinder
1321	 * group to hold these later indirect blocks.
1322	 */
1323	inocg = ino_to_cg(fs, ip->i_number);
1324	if (indx < 0) {
1325		/*
1326		 * Our preference for indirect blocks is the zone at the
1327		 * beginning of the inode's cylinder group data area that
1328		 * we try to reserve for indirect blocks.
1329		 */
1330		pref = cgmeta(fs, inocg);
1331		/*
1332		 * If we are allocating the first indirect block, try to
1333		 * place it immediately following the last direct block.
1334		 */
1335		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1336		    ip->i_din1->di_db[NDADDR - 1] != 0)
1337			pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag;
1338		return (pref);
1339	}
1340	/*
1341	 * If we are allocating the first data block in the first indirect
1342	 * block and the indirect has been allocated in the data block area,
1343	 * try to place it immediately following the indirect block.
1344	 */
1345	if (lbn == NDADDR) {
1346		pref = ip->i_din1->di_ib[0];
1347		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1348		    pref < cgbase(fs, inocg + 1))
1349			return (pref + fs->fs_frag);
1350	}
1351	/*
1352	 * If we are at the beginning of a file, or we have already allocated
1353	 * the maximum number of blocks per cylinder group, or we do not
1354	 * have a block allocated immediately preceding us, then we need
1355	 * to decide where to start allocating new blocks.
1356	 */
1357	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1358		/*
1359		 * If we are allocating a directory data block, we want
1360		 * to place it in the metadata area.
1361		 */
1362		if ((ip->i_mode & IFMT) == IFDIR)
1363			return (cgmeta(fs, inocg));
1364		/*
1365		 * Until we fill all the direct and all the first indirect's
1366		 * blocks, we try to allocate in the data area of the inode's
1367		 * cylinder group.
1368		 */
1369		if (lbn < NDADDR + NINDIR(fs))
1370			return (cgdata(fs, inocg));
1371		/*
1372		 * Find a cylinder with greater than average number of
1373		 * unused data blocks.
1374		 */
1375		if (indx == 0 || bap[indx - 1] == 0)
1376			startcg = inocg + lbn / fs->fs_maxbpg;
1377		else
1378			startcg = dtog(fs, bap[indx - 1]) + 1;
1379		startcg %= fs->fs_ncg;
1380		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1381		for (cg = startcg; cg < fs->fs_ncg; cg++)
1382			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1383				fs->fs_cgrotor = cg;
1384				return (cgdata(fs, cg));
1385			}
1386		for (cg = 0; cg <= startcg; cg++)
1387			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1388				fs->fs_cgrotor = cg;
1389				return (cgdata(fs, cg));
1390			}
1391		return (0);
1392	}
1393	/*
1394	 * Otherwise, we just always try to lay things out contiguously.
1395	 */
1396	return (bap[indx - 1] + fs->fs_frag);
1397}
1398
1399/*
1400 * Same as above, but for UFS2
1401 */
1402ufs2_daddr_t
1403ffs_blkpref_ufs2(ip, lbn, indx, bap)
1404	struct inode *ip;
1405	ufs_lbn_t lbn;
1406	int indx;
1407	ufs2_daddr_t *bap;
1408{
1409	struct fs *fs;
1410	u_int cg, inocg;
1411	u_int avgbfree, startcg;
1412	ufs2_daddr_t pref;
1413
1414	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1415	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1416	fs = ip->i_fs;
1417	/*
1418	 * Allocation of indirect blocks is indicated by passing negative
1419	 * values in indx: -1 for single indirect, -2 for double indirect,
1420	 * -3 for triple indirect. As noted below, we attempt to allocate
1421	 * the first indirect inline with the file data. For all later
1422	 * indirect blocks, the data is often allocated in other cylinder
1423	 * groups. However to speed random file access and to speed up
1424	 * fsck, the filesystem reserves the first fs_metaspace blocks
1425	 * (typically half of fs_minfree) of the data area of each cylinder
1426	 * group to hold these later indirect blocks.
1427	 */
1428	inocg = ino_to_cg(fs, ip->i_number);
1429	if (indx < 0) {
1430		/*
1431		 * Our preference for indirect blocks is the zone at the
1432		 * beginning of the inode's cylinder group data area that
1433		 * we try to reserve for indirect blocks.
1434		 */
1435		pref = cgmeta(fs, inocg);
1436		/*
1437		 * If we are allocating the first indirect block, try to
1438		 * place it immediately following the last direct block.
1439		 */
1440		if (indx == -1 && lbn < NDADDR + NINDIR(fs) &&
1441		    ip->i_din2->di_db[NDADDR - 1] != 0)
1442			pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag;
1443		return (pref);
1444	}
1445	/*
1446	 * If we are allocating the first data block in the first indirect
1447	 * block and the indirect has been allocated in the data block area,
1448	 * try to place it immediately following the indirect block.
1449	 */
1450	if (lbn == NDADDR) {
1451		pref = ip->i_din2->di_ib[0];
1452		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1453		    pref < cgbase(fs, inocg + 1))
1454			return (pref + fs->fs_frag);
1455	}
1456	/*
1457	 * If we are at the beginning of a file, or we have already allocated
1458	 * the maximum number of blocks per cylinder group, or we do not
1459	 * have a block allocated immediately preceding us, then we need
1460	 * to decide where to start allocating new blocks.
1461	 */
1462	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1463		/*
1464		 * If we are allocating a directory data block, we want
1465		 * to place it in the metadata area.
1466		 */
1467		if ((ip->i_mode & IFMT) == IFDIR)
1468			return (cgmeta(fs, inocg));
1469		/*
1470		 * Until we fill all the direct and all the first indirect's
1471		 * blocks, we try to allocate in the data area of the inode's
1472		 * cylinder group.
1473		 */
1474		if (lbn < NDADDR + NINDIR(fs))
1475			return (cgdata(fs, inocg));
1476		/*
1477		 * Find a cylinder with greater than average number of
1478		 * unused data blocks.
1479		 */
1480		if (indx == 0 || bap[indx - 1] == 0)
1481			startcg = inocg + lbn / fs->fs_maxbpg;
1482		else
1483			startcg = dtog(fs, bap[indx - 1]) + 1;
1484		startcg %= fs->fs_ncg;
1485		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1486		for (cg = startcg; cg < fs->fs_ncg; cg++)
1487			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1488				fs->fs_cgrotor = cg;
1489				return (cgdata(fs, cg));
1490			}
1491		for (cg = 0; cg <= startcg; cg++)
1492			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1493				fs->fs_cgrotor = cg;
1494				return (cgdata(fs, cg));
1495			}
1496		return (0);
1497	}
1498	/*
1499	 * Otherwise, we just always try to lay things out contiguously.
1500	 */
1501	return (bap[indx - 1] + fs->fs_frag);
1502}
1503
1504/*
1505 * Implement the cylinder overflow algorithm.
1506 *
1507 * The policy implemented by this algorithm is:
1508 *   1) allocate the block in its requested cylinder group.
1509 *   2) quadradically rehash on the cylinder group number.
1510 *   3) brute force search for a free block.
1511 *
1512 * Must be called with the UFS lock held.  Will release the lock on success
1513 * and return with it held on failure.
1514 */
1515/*VARARGS5*/
1516static ufs2_daddr_t
1517ffs_hashalloc(ip, cg, pref, size, rsize, allocator)
1518	struct inode *ip;
1519	u_int cg;
1520	ufs2_daddr_t pref;
1521	int size;	/* Search size for data blocks, mode for inodes */
1522	int rsize;	/* Real allocated size. */
1523	allocfcn_t *allocator;
1524{
1525	struct fs *fs;
1526	ufs2_daddr_t result;
1527	u_int i, icg = cg;
1528
1529	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1530#ifdef INVARIANTS
1531	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1532		panic("ffs_hashalloc: allocation on suspended filesystem");
1533#endif
1534	fs = ip->i_fs;
1535	/*
1536	 * 1: preferred cylinder group
1537	 */
1538	result = (*allocator)(ip, cg, pref, size, rsize);
1539	if (result)
1540		return (result);
1541	/*
1542	 * 2: quadratic rehash
1543	 */
1544	for (i = 1; i < fs->fs_ncg; i *= 2) {
1545		cg += i;
1546		if (cg >= fs->fs_ncg)
1547			cg -= fs->fs_ncg;
1548		result = (*allocator)(ip, cg, 0, size, rsize);
1549		if (result)
1550			return (result);
1551	}
1552	/*
1553	 * 3: brute force search
1554	 * Note that we start at i == 2, since 0 was checked initially,
1555	 * and 1 is always checked in the quadratic rehash.
1556	 */
1557	cg = (icg + 2) % fs->fs_ncg;
1558	for (i = 2; i < fs->fs_ncg; i++) {
1559		result = (*allocator)(ip, cg, 0, size, rsize);
1560		if (result)
1561			return (result);
1562		cg++;
1563		if (cg == fs->fs_ncg)
1564			cg = 0;
1565	}
1566	return (0);
1567}
1568
1569/*
1570 * Determine whether a fragment can be extended.
1571 *
1572 * Check to see if the necessary fragments are available, and
1573 * if they are, allocate them.
1574 */
1575static ufs2_daddr_t
1576ffs_fragextend(ip, cg, bprev, osize, nsize)
1577	struct inode *ip;
1578	u_int cg;
1579	ufs2_daddr_t bprev;
1580	int osize, nsize;
1581{
1582	struct fs *fs;
1583	struct cg *cgp;
1584	struct buf *bp;
1585	struct ufsmount *ump;
1586	int nffree;
1587	long bno;
1588	int frags, bbase;
1589	int i, error;
1590	u_int8_t *blksfree;
1591
1592	ump = ip->i_ump;
1593	fs = ip->i_fs;
1594	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1595		return (0);
1596	frags = numfrags(fs, nsize);
1597	bbase = fragnum(fs, bprev);
1598	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1599		/* cannot extend across a block boundary */
1600		return (0);
1601	}
1602	UFS_UNLOCK(ump);
1603	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1604		(int)fs->fs_cgsize, NOCRED, &bp);
1605	if (error)
1606		goto fail;
1607	cgp = (struct cg *)bp->b_data;
1608	if (!cg_chkmagic(cgp))
1609		goto fail;
1610	bp->b_xflags |= BX_BKGRDWRITE;
1611	cgp->cg_old_time = cgp->cg_time = time_second;
1612	bno = dtogd(fs, bprev);
1613	blksfree = cg_blksfree(cgp);
1614	for (i = numfrags(fs, osize); i < frags; i++)
1615		if (isclr(blksfree, bno + i))
1616			goto fail;
1617	/*
1618	 * the current fragment can be extended
1619	 * deduct the count on fragment being extended into
1620	 * increase the count on the remaining fragment (if any)
1621	 * allocate the extended piece
1622	 */
1623	for (i = frags; i < fs->fs_frag - bbase; i++)
1624		if (isclr(blksfree, bno + i))
1625			break;
1626	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1627	if (i != frags)
1628		cgp->cg_frsum[i - frags]++;
1629	for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1630		clrbit(blksfree, bno + i);
1631		cgp->cg_cs.cs_nffree--;
1632		nffree++;
1633	}
1634	UFS_LOCK(ump);
1635	fs->fs_cstotal.cs_nffree -= nffree;
1636	fs->fs_cs(fs, cg).cs_nffree -= nffree;
1637	fs->fs_fmod = 1;
1638	ACTIVECLEAR(fs, cg);
1639	UFS_UNLOCK(ump);
1640	if (DOINGSOFTDEP(ITOV(ip)))
1641		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1642		    frags, numfrags(fs, osize));
1643	bdwrite(bp);
1644	return (bprev);
1645
1646fail:
1647	brelse(bp);
1648	UFS_LOCK(ump);
1649	return (0);
1650
1651}
1652
1653/*
1654 * Determine whether a block can be allocated.
1655 *
1656 * Check to see if a block of the appropriate size is available,
1657 * and if it is, allocate it.
1658 */
1659static ufs2_daddr_t
1660ffs_alloccg(ip, cg, bpref, size, rsize)
1661	struct inode *ip;
1662	u_int cg;
1663	ufs2_daddr_t bpref;
1664	int size;
1665	int rsize;
1666{
1667	struct fs *fs;
1668	struct cg *cgp;
1669	struct buf *bp;
1670	struct ufsmount *ump;
1671	ufs1_daddr_t bno;
1672	ufs2_daddr_t blkno;
1673	int i, allocsiz, error, frags;
1674	u_int8_t *blksfree;
1675
1676	ump = ip->i_ump;
1677	fs = ip->i_fs;
1678	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1679		return (0);
1680	UFS_UNLOCK(ump);
1681	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1682		(int)fs->fs_cgsize, NOCRED, &bp);
1683	if (error)
1684		goto fail;
1685	cgp = (struct cg *)bp->b_data;
1686	if (!cg_chkmagic(cgp) ||
1687	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1688		goto fail;
1689	bp->b_xflags |= BX_BKGRDWRITE;
1690	cgp->cg_old_time = cgp->cg_time = time_second;
1691	if (size == fs->fs_bsize) {
1692		UFS_LOCK(ump);
1693		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1694		ACTIVECLEAR(fs, cg);
1695		UFS_UNLOCK(ump);
1696		bdwrite(bp);
1697		return (blkno);
1698	}
1699	/*
1700	 * check to see if any fragments are already available
1701	 * allocsiz is the size which will be allocated, hacking
1702	 * it down to a smaller size if necessary
1703	 */
1704	blksfree = cg_blksfree(cgp);
1705	frags = numfrags(fs, size);
1706	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1707		if (cgp->cg_frsum[allocsiz] != 0)
1708			break;
1709	if (allocsiz == fs->fs_frag) {
1710		/*
1711		 * no fragments were available, so a block will be
1712		 * allocated, and hacked up
1713		 */
1714		if (cgp->cg_cs.cs_nbfree == 0)
1715			goto fail;
1716		UFS_LOCK(ump);
1717		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1718		ACTIVECLEAR(fs, cg);
1719		UFS_UNLOCK(ump);
1720		bdwrite(bp);
1721		return (blkno);
1722	}
1723	KASSERT(size == rsize,
1724	    ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1725	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1726	if (bno < 0)
1727		goto fail;
1728	for (i = 0; i < frags; i++)
1729		clrbit(blksfree, bno + i);
1730	cgp->cg_cs.cs_nffree -= frags;
1731	cgp->cg_frsum[allocsiz]--;
1732	if (frags != allocsiz)
1733		cgp->cg_frsum[allocsiz - frags]++;
1734	UFS_LOCK(ump);
1735	fs->fs_cstotal.cs_nffree -= frags;
1736	fs->fs_cs(fs, cg).cs_nffree -= frags;
1737	fs->fs_fmod = 1;
1738	blkno = cgbase(fs, cg) + bno;
1739	ACTIVECLEAR(fs, cg);
1740	UFS_UNLOCK(ump);
1741	if (DOINGSOFTDEP(ITOV(ip)))
1742		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1743	bdwrite(bp);
1744	return (blkno);
1745
1746fail:
1747	brelse(bp);
1748	UFS_LOCK(ump);
1749	return (0);
1750}
1751
1752/*
1753 * Allocate a block in a cylinder group.
1754 *
1755 * This algorithm implements the following policy:
1756 *   1) allocate the requested block.
1757 *   2) allocate a rotationally optimal block in the same cylinder.
1758 *   3) allocate the next available block on the block rotor for the
1759 *      specified cylinder group.
1760 * Note that this routine only allocates fs_bsize blocks; these
1761 * blocks may be fragmented by the routine that allocates them.
1762 */
1763static ufs2_daddr_t
1764ffs_alloccgblk(ip, bp, bpref, size)
1765	struct inode *ip;
1766	struct buf *bp;
1767	ufs2_daddr_t bpref;
1768	int size;
1769{
1770	struct fs *fs;
1771	struct cg *cgp;
1772	struct ufsmount *ump;
1773	ufs1_daddr_t bno;
1774	ufs2_daddr_t blkno;
1775	u_int8_t *blksfree;
1776	int i, cgbpref;
1777
1778	fs = ip->i_fs;
1779	ump = ip->i_ump;
1780	mtx_assert(UFS_MTX(ump), MA_OWNED);
1781	cgp = (struct cg *)bp->b_data;
1782	blksfree = cg_blksfree(cgp);
1783	if (bpref == 0) {
1784		bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1785	} else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1786		/* map bpref to correct zone in this cg */
1787		if (bpref < cgdata(fs, cgbpref))
1788			bpref = cgmeta(fs, cgp->cg_cgx);
1789		else
1790			bpref = cgdata(fs, cgp->cg_cgx);
1791	}
1792	/*
1793	 * if the requested block is available, use it
1794	 */
1795	bno = dtogd(fs, blknum(fs, bpref));
1796	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1797		goto gotit;
1798	/*
1799	 * Take the next available block in this cylinder group.
1800	 */
1801	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1802	if (bno < 0)
1803		return (0);
1804	/* Update cg_rotor only if allocated from the data zone */
1805	if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1806		cgp->cg_rotor = bno;
1807gotit:
1808	blkno = fragstoblks(fs, bno);
1809	ffs_clrblock(fs, blksfree, (long)blkno);
1810	ffs_clusteracct(fs, cgp, blkno, -1);
1811	cgp->cg_cs.cs_nbfree--;
1812	fs->fs_cstotal.cs_nbfree--;
1813	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1814	fs->fs_fmod = 1;
1815	blkno = cgbase(fs, cgp->cg_cgx) + bno;
1816	/*
1817	 * If the caller didn't want the whole block free the frags here.
1818	 */
1819	size = numfrags(fs, size);
1820	if (size != fs->fs_frag) {
1821		bno = dtogd(fs, blkno);
1822		for (i = size; i < fs->fs_frag; i++)
1823			setbit(blksfree, bno + i);
1824		i = fs->fs_frag - size;
1825		cgp->cg_cs.cs_nffree += i;
1826		fs->fs_cstotal.cs_nffree += i;
1827		fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1828		fs->fs_fmod = 1;
1829		cgp->cg_frsum[i]++;
1830	}
1831	/* XXX Fixme. */
1832	UFS_UNLOCK(ump);
1833	if (DOINGSOFTDEP(ITOV(ip)))
1834		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno,
1835		    size, 0);
1836	UFS_LOCK(ump);
1837	return (blkno);
1838}
1839
1840/*
1841 * Determine whether a cluster can be allocated.
1842 *
1843 * We do not currently check for optimal rotational layout if there
1844 * are multiple choices in the same cylinder group. Instead we just
1845 * take the first one that we find following bpref.
1846 */
1847static ufs2_daddr_t
1848ffs_clusteralloc(ip, cg, bpref, len)
1849	struct inode *ip;
1850	u_int cg;
1851	ufs2_daddr_t bpref;
1852	int len;
1853{
1854	struct fs *fs;
1855	struct cg *cgp;
1856	struct buf *bp;
1857	struct ufsmount *ump;
1858	int i, run, bit, map, got;
1859	ufs2_daddr_t bno;
1860	u_char *mapp;
1861	int32_t *lp;
1862	u_int8_t *blksfree;
1863
1864	fs = ip->i_fs;
1865	ump = ip->i_ump;
1866	if (fs->fs_maxcluster[cg] < len)
1867		return (0);
1868	UFS_UNLOCK(ump);
1869	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1870	    NOCRED, &bp))
1871		goto fail_lock;
1872	cgp = (struct cg *)bp->b_data;
1873	if (!cg_chkmagic(cgp))
1874		goto fail_lock;
1875	bp->b_xflags |= BX_BKGRDWRITE;
1876	/*
1877	 * Check to see if a cluster of the needed size (or bigger) is
1878	 * available in this cylinder group.
1879	 */
1880	lp = &cg_clustersum(cgp)[len];
1881	for (i = len; i <= fs->fs_contigsumsize; i++)
1882		if (*lp++ > 0)
1883			break;
1884	if (i > fs->fs_contigsumsize) {
1885		/*
1886		 * This is the first time looking for a cluster in this
1887		 * cylinder group. Update the cluster summary information
1888		 * to reflect the true maximum sized cluster so that
1889		 * future cluster allocation requests can avoid reading
1890		 * the cylinder group map only to find no clusters.
1891		 */
1892		lp = &cg_clustersum(cgp)[len - 1];
1893		for (i = len - 1; i > 0; i--)
1894			if (*lp-- > 0)
1895				break;
1896		UFS_LOCK(ump);
1897		fs->fs_maxcluster[cg] = i;
1898		goto fail;
1899	}
1900	/*
1901	 * Search the cluster map to find a big enough cluster.
1902	 * We take the first one that we find, even if it is larger
1903	 * than we need as we prefer to get one close to the previous
1904	 * block allocation. We do not search before the current
1905	 * preference point as we do not want to allocate a block
1906	 * that is allocated before the previous one (as we will
1907	 * then have to wait for another pass of the elevator
1908	 * algorithm before it will be read). We prefer to fail and
1909	 * be recalled to try an allocation in the next cylinder group.
1910	 */
1911	if (dtog(fs, bpref) != cg)
1912		bpref = cgdata(fs, cg);
1913	else
1914		bpref = blknum(fs, bpref);
1915	bpref = fragstoblks(fs, dtogd(fs, bpref));
1916	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1917	map = *mapp++;
1918	bit = 1 << (bpref % NBBY);
1919	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1920		if ((map & bit) == 0) {
1921			run = 0;
1922		} else {
1923			run++;
1924			if (run == len)
1925				break;
1926		}
1927		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1928			bit <<= 1;
1929		} else {
1930			map = *mapp++;
1931			bit = 1;
1932		}
1933	}
1934	if (got >= cgp->cg_nclusterblks)
1935		goto fail_lock;
1936	/*
1937	 * Allocate the cluster that we have found.
1938	 */
1939	blksfree = cg_blksfree(cgp);
1940	for (i = 1; i <= len; i++)
1941		if (!ffs_isblock(fs, blksfree, got - run + i))
1942			panic("ffs_clusteralloc: map mismatch");
1943	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
1944	if (dtog(fs, bno) != cg)
1945		panic("ffs_clusteralloc: allocated out of group");
1946	len = blkstofrags(fs, len);
1947	UFS_LOCK(ump);
1948	for (i = 0; i < len; i += fs->fs_frag)
1949		if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
1950			panic("ffs_clusteralloc: lost block");
1951	ACTIVECLEAR(fs, cg);
1952	UFS_UNLOCK(ump);
1953	bdwrite(bp);
1954	return (bno);
1955
1956fail_lock:
1957	UFS_LOCK(ump);
1958fail:
1959	brelse(bp);
1960	return (0);
1961}
1962
1963static inline struct buf *
1964getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags)
1965{
1966	struct fs *fs;
1967
1968	fs = ip->i_fs;
1969	return (getblk(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs,
1970	    cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
1971	    gbflags));
1972}
1973
1974/*
1975 * Determine whether an inode can be allocated.
1976 *
1977 * Check to see if an inode is available, and if it is,
1978 * allocate it using the following policy:
1979 *   1) allocate the requested inode.
1980 *   2) allocate the next available inode after the requested
1981 *      inode in the specified cylinder group.
1982 */
1983static ufs2_daddr_t
1984ffs_nodealloccg(ip, cg, ipref, mode, unused)
1985	struct inode *ip;
1986	u_int cg;
1987	ufs2_daddr_t ipref;
1988	int mode;
1989	int unused;
1990{
1991	struct fs *fs;
1992	struct cg *cgp;
1993	struct buf *bp, *ibp;
1994	struct ufsmount *ump;
1995	u_int8_t *inosused, *loc;
1996	struct ufs2_dinode *dp2;
1997	int error, start, len, i;
1998	u_int32_t old_initediblk;
1999
2000	fs = ip->i_fs;
2001	ump = ip->i_ump;
2002check_nifree:
2003	if (fs->fs_cs(fs, cg).cs_nifree == 0)
2004		return (0);
2005	UFS_UNLOCK(ump);
2006	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
2007		(int)fs->fs_cgsize, NOCRED, &bp);
2008	if (error) {
2009		brelse(bp);
2010		UFS_LOCK(ump);
2011		return (0);
2012	}
2013	cgp = (struct cg *)bp->b_data;
2014restart:
2015	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
2016		brelse(bp);
2017		UFS_LOCK(ump);
2018		return (0);
2019	}
2020	bp->b_xflags |= BX_BKGRDWRITE;
2021	inosused = cg_inosused(cgp);
2022	if (ipref) {
2023		ipref %= fs->fs_ipg;
2024		if (isclr(inosused, ipref))
2025			goto gotit;
2026	}
2027	start = cgp->cg_irotor / NBBY;
2028	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2029	loc = memcchr(&inosused[start], 0xff, len);
2030	if (loc == NULL) {
2031		len = start + 1;
2032		start = 0;
2033		loc = memcchr(&inosused[start], 0xff, len);
2034		if (loc == NULL) {
2035			printf("cg = %d, irotor = %ld, fs = %s\n",
2036			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2037			panic("ffs_nodealloccg: map corrupted");
2038			/* NOTREACHED */
2039		}
2040	}
2041	ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2042gotit:
2043	/*
2044	 * Check to see if we need to initialize more inodes.
2045	 */
2046	if (fs->fs_magic == FS_UFS2_MAGIC &&
2047	    ipref + INOPB(fs) > cgp->cg_initediblk &&
2048	    cgp->cg_initediblk < cgp->cg_niblk) {
2049		old_initediblk = cgp->cg_initediblk;
2050
2051		/*
2052		 * Free the cylinder group lock before writing the
2053		 * initialized inode block.  Entering the
2054		 * babarrierwrite() with the cylinder group lock
2055		 * causes lock order violation between the lock and
2056		 * snaplk.
2057		 *
2058		 * Another thread can decide to initialize the same
2059		 * inode block, but whichever thread first gets the
2060		 * cylinder group lock after writing the newly
2061		 * allocated inode block will update it and the other
2062		 * will realize that it has lost and leave the
2063		 * cylinder group unchanged.
2064		 */
2065		ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2066		brelse(bp);
2067		if (ibp == NULL) {
2068			/*
2069			 * The inode block buffer is already owned by
2070			 * another thread, which must initialize it.
2071			 * Wait on the buffer to allow another thread
2072			 * to finish the updates, with dropped cg
2073			 * buffer lock, then retry.
2074			 */
2075			ibp = getinobuf(ip, cg, old_initediblk, 0);
2076			brelse(ibp);
2077			UFS_LOCK(ump);
2078			goto check_nifree;
2079		}
2080		bzero(ibp->b_data, (int)fs->fs_bsize);
2081		dp2 = (struct ufs2_dinode *)(ibp->b_data);
2082		for (i = 0; i < INOPB(fs); i++) {
2083			while (dp2->di_gen == 0)
2084				dp2->di_gen = arc4random();
2085			dp2++;
2086		}
2087		/*
2088		 * Rather than adding a soft updates dependency to ensure
2089		 * that the new inode block is written before it is claimed
2090		 * by the cylinder group map, we just do a barrier write
2091		 * here. The barrier write will ensure that the inode block
2092		 * gets written before the updated cylinder group map can be
2093		 * written. The barrier write should only slow down bulk
2094		 * loading of newly created filesystems.
2095		 */
2096		babarrierwrite(ibp);
2097
2098		/*
2099		 * After the inode block is written, try to update the
2100		 * cg initediblk pointer.  If another thread beat us
2101		 * to it, then leave it unchanged as the other thread
2102		 * has already set it correctly.
2103		 */
2104		error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
2105		    (int)fs->fs_cgsize, NOCRED, &bp);
2106		UFS_LOCK(ump);
2107		ACTIVECLEAR(fs, cg);
2108		UFS_UNLOCK(ump);
2109		if (error != 0) {
2110			brelse(bp);
2111			return (error);
2112		}
2113		cgp = (struct cg *)bp->b_data;
2114		if (cgp->cg_initediblk == old_initediblk)
2115			cgp->cg_initediblk += INOPB(fs);
2116		goto restart;
2117	}
2118	cgp->cg_old_time = cgp->cg_time = time_second;
2119	cgp->cg_irotor = ipref;
2120	UFS_LOCK(ump);
2121	ACTIVECLEAR(fs, cg);
2122	setbit(inosused, ipref);
2123	cgp->cg_cs.cs_nifree--;
2124	fs->fs_cstotal.cs_nifree--;
2125	fs->fs_cs(fs, cg).cs_nifree--;
2126	fs->fs_fmod = 1;
2127	if ((mode & IFMT) == IFDIR) {
2128		cgp->cg_cs.cs_ndir++;
2129		fs->fs_cstotal.cs_ndir++;
2130		fs->fs_cs(fs, cg).cs_ndir++;
2131	}
2132	UFS_UNLOCK(ump);
2133	if (DOINGSOFTDEP(ITOV(ip)))
2134		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2135	bdwrite(bp);
2136	return ((ino_t)(cg * fs->fs_ipg + ipref));
2137}
2138
2139/*
2140 * Free a block or fragment.
2141 *
2142 * The specified block or fragment is placed back in the
2143 * free map. If a fragment is deallocated, a possible
2144 * block reassembly is checked.
2145 */
2146static void
2147ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd)
2148	struct ufsmount *ump;
2149	struct fs *fs;
2150	struct vnode *devvp;
2151	ufs2_daddr_t bno;
2152	long size;
2153	ino_t inum;
2154	struct workhead *dephd;
2155{
2156	struct mount *mp;
2157	struct cg *cgp;
2158	struct buf *bp;
2159	ufs1_daddr_t fragno, cgbno;
2160	ufs2_daddr_t cgblkno;
2161	int i, blk, frags, bbase;
2162	u_int cg;
2163	u_int8_t *blksfree;
2164	struct cdev *dev;
2165
2166	cg = dtog(fs, bno);
2167	if (devvp->v_type == VREG) {
2168		/* devvp is a snapshot */
2169		dev = VTOI(devvp)->i_devvp->v_rdev;
2170		cgblkno = fragstoblks(fs, cgtod(fs, cg));
2171	} else {
2172		/* devvp is a normal disk device */
2173		dev = devvp->v_rdev;
2174		cgblkno = fsbtodb(fs, cgtod(fs, cg));
2175		ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg");
2176	}
2177#ifdef INVARIANTS
2178	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2179	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2180		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2181		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2182		    size, fs->fs_fsmnt);
2183		panic("ffs_blkfree_cg: bad size");
2184	}
2185#endif
2186	if ((u_int)bno >= fs->fs_size) {
2187		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
2188		    (u_long)inum);
2189		ffs_fserr(fs, inum, "bad block");
2190		return;
2191	}
2192	if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2193		brelse(bp);
2194		return;
2195	}
2196	cgp = (struct cg *)bp->b_data;
2197	if (!cg_chkmagic(cgp)) {
2198		brelse(bp);
2199		return;
2200	}
2201	bp->b_xflags |= BX_BKGRDWRITE;
2202	cgp->cg_old_time = cgp->cg_time = time_second;
2203	cgbno = dtogd(fs, bno);
2204	blksfree = cg_blksfree(cgp);
2205	UFS_LOCK(ump);
2206	if (size == fs->fs_bsize) {
2207		fragno = fragstoblks(fs, cgbno);
2208		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2209			if (devvp->v_type == VREG) {
2210				UFS_UNLOCK(ump);
2211				/* devvp is a snapshot */
2212				brelse(bp);
2213				return;
2214			}
2215			printf("dev = %s, block = %jd, fs = %s\n",
2216			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2217			panic("ffs_blkfree_cg: freeing free block");
2218		}
2219		ffs_setblock(fs, blksfree, fragno);
2220		ffs_clusteracct(fs, cgp, fragno, 1);
2221		cgp->cg_cs.cs_nbfree++;
2222		fs->fs_cstotal.cs_nbfree++;
2223		fs->fs_cs(fs, cg).cs_nbfree++;
2224	} else {
2225		bbase = cgbno - fragnum(fs, cgbno);
2226		/*
2227		 * decrement the counts associated with the old frags
2228		 */
2229		blk = blkmap(fs, blksfree, bbase);
2230		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2231		/*
2232		 * deallocate the fragment
2233		 */
2234		frags = numfrags(fs, size);
2235		for (i = 0; i < frags; i++) {
2236			if (isset(blksfree, cgbno + i)) {
2237				printf("dev = %s, block = %jd, fs = %s\n",
2238				    devtoname(dev), (intmax_t)(bno + i),
2239				    fs->fs_fsmnt);
2240				panic("ffs_blkfree_cg: freeing free frag");
2241			}
2242			setbit(blksfree, cgbno + i);
2243		}
2244		cgp->cg_cs.cs_nffree += i;
2245		fs->fs_cstotal.cs_nffree += i;
2246		fs->fs_cs(fs, cg).cs_nffree += i;
2247		/*
2248		 * add back in counts associated with the new frags
2249		 */
2250		blk = blkmap(fs, blksfree, bbase);
2251		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2252		/*
2253		 * if a complete block has been reassembled, account for it
2254		 */
2255		fragno = fragstoblks(fs, bbase);
2256		if (ffs_isblock(fs, blksfree, fragno)) {
2257			cgp->cg_cs.cs_nffree -= fs->fs_frag;
2258			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2259			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2260			ffs_clusteracct(fs, cgp, fragno, 1);
2261			cgp->cg_cs.cs_nbfree++;
2262			fs->fs_cstotal.cs_nbfree++;
2263			fs->fs_cs(fs, cg).cs_nbfree++;
2264		}
2265	}
2266	fs->fs_fmod = 1;
2267	ACTIVECLEAR(fs, cg);
2268	UFS_UNLOCK(ump);
2269	mp = UFSTOVFS(ump);
2270	if (MOUNTEDSOFTDEP(mp) && devvp->v_type != VREG)
2271		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2272		    numfrags(fs, size), dephd);
2273	bdwrite(bp);
2274}
2275
2276struct ffs_blkfree_trim_params {
2277	struct task task;
2278	struct ufsmount *ump;
2279	struct vnode *devvp;
2280	ufs2_daddr_t bno;
2281	long size;
2282	ino_t inum;
2283	struct workhead *pdephd;
2284	struct workhead dephd;
2285};
2286
2287static void
2288ffs_blkfree_trim_task(ctx, pending)
2289	void *ctx;
2290	int pending;
2291{
2292	struct ffs_blkfree_trim_params *tp;
2293
2294	tp = ctx;
2295	ffs_blkfree_cg(tp->ump, tp->ump->um_fs, tp->devvp, tp->bno, tp->size,
2296	    tp->inum, tp->pdephd);
2297	vn_finished_secondary_write(UFSTOVFS(tp->ump));
2298	atomic_add_int(&tp->ump->um_trim_inflight, -1);
2299	free(tp, M_TEMP);
2300}
2301
2302static void
2303ffs_blkfree_trim_completed(bip)
2304	struct bio *bip;
2305{
2306	struct ffs_blkfree_trim_params *tp;
2307
2308	tp = bip->bio_caller2;
2309	g_destroy_bio(bip);
2310	TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2311	taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2312}
2313
2314void
2315ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd)
2316	struct ufsmount *ump;
2317	struct fs *fs;
2318	struct vnode *devvp;
2319	ufs2_daddr_t bno;
2320	long size;
2321	ino_t inum;
2322	enum vtype vtype;
2323	struct workhead *dephd;
2324{
2325	struct mount *mp;
2326	struct bio *bip;
2327	struct ffs_blkfree_trim_params *tp;
2328
2329	/*
2330	 * Check to see if a snapshot wants to claim the block.
2331	 * Check that devvp is a normal disk device, not a snapshot,
2332	 * it has a snapshot(s) associated with it, and one of the
2333	 * snapshots wants to claim the block.
2334	 */
2335	if (devvp->v_type != VREG &&
2336	    (devvp->v_vflag & VV_COPYONWRITE) &&
2337	    ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2338		return;
2339	}
2340	/*
2341	 * Nothing to delay if TRIM is disabled, or the operation is
2342	 * performed on the snapshot.
2343	 */
2344	if (!ump->um_candelete || devvp->v_type == VREG) {
2345		ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2346		return;
2347	}
2348
2349	/*
2350	 * Postpone the set of the free bit in the cg bitmap until the
2351	 * BIO_DELETE is completed.  Otherwise, due to disk queue
2352	 * reordering, TRIM might be issued after we reuse the block
2353	 * and write some new data into it.
2354	 */
2355	atomic_add_int(&ump->um_trim_inflight, 1);
2356	tp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
2357	tp->ump = ump;
2358	tp->devvp = devvp;
2359	tp->bno = bno;
2360	tp->size = size;
2361	tp->inum = inum;
2362	if (dephd != NULL) {
2363		LIST_INIT(&tp->dephd);
2364		LIST_SWAP(dephd, &tp->dephd, worklist, wk_list);
2365		tp->pdephd = &tp->dephd;
2366	} else
2367		tp->pdephd = NULL;
2368
2369	bip = g_alloc_bio();
2370	bip->bio_cmd = BIO_DELETE;
2371	bip->bio_offset = dbtob(fsbtodb(fs, bno));
2372	bip->bio_done = ffs_blkfree_trim_completed;
2373	bip->bio_length = size;
2374	bip->bio_caller2 = tp;
2375
2376	mp = UFSTOVFS(ump);
2377	vn_start_secondary_write(NULL, &mp, 0);
2378	g_io_request(bip, (struct g_consumer *)devvp->v_bufobj.bo_private);
2379}
2380
2381#ifdef INVARIANTS
2382/*
2383 * Verify allocation of a block or fragment. Returns true if block or
2384 * fragment is allocated, false if it is free.
2385 */
2386static int
2387ffs_checkblk(ip, bno, size)
2388	struct inode *ip;
2389	ufs2_daddr_t bno;
2390	long size;
2391{
2392	struct fs *fs;
2393	struct cg *cgp;
2394	struct buf *bp;
2395	ufs1_daddr_t cgbno;
2396	int i, error, frags, free;
2397	u_int8_t *blksfree;
2398
2399	fs = ip->i_fs;
2400	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2401		printf("bsize = %ld, size = %ld, fs = %s\n",
2402		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
2403		panic("ffs_checkblk: bad size");
2404	}
2405	if ((u_int)bno >= fs->fs_size)
2406		panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
2407	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
2408		(int)fs->fs_cgsize, NOCRED, &bp);
2409	if (error)
2410		panic("ffs_checkblk: cg bread failed");
2411	cgp = (struct cg *)bp->b_data;
2412	if (!cg_chkmagic(cgp))
2413		panic("ffs_checkblk: cg magic mismatch");
2414	bp->b_xflags |= BX_BKGRDWRITE;
2415	blksfree = cg_blksfree(cgp);
2416	cgbno = dtogd(fs, bno);
2417	if (size == fs->fs_bsize) {
2418		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2419	} else {
2420		frags = numfrags(fs, size);
2421		for (free = 0, i = 0; i < frags; i++)
2422			if (isset(blksfree, cgbno + i))
2423				free++;
2424		if (free != 0 && free != frags)
2425			panic("ffs_checkblk: partially free fragment");
2426	}
2427	brelse(bp);
2428	return (!free);
2429}
2430#endif /* INVARIANTS */
2431
2432/*
2433 * Free an inode.
2434 */
2435int
2436ffs_vfree(pvp, ino, mode)
2437	struct vnode *pvp;
2438	ino_t ino;
2439	int mode;
2440{
2441	struct inode *ip;
2442
2443	if (DOINGSOFTDEP(pvp)) {
2444		softdep_freefile(pvp, ino, mode);
2445		return (0);
2446	}
2447	ip = VTOI(pvp);
2448	return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode,
2449	    NULL));
2450}
2451
2452/*
2453 * Do the actual free operation.
2454 * The specified inode is placed back in the free map.
2455 */
2456int
2457ffs_freefile(ump, fs, devvp, ino, mode, wkhd)
2458	struct ufsmount *ump;
2459	struct fs *fs;
2460	struct vnode *devvp;
2461	ino_t ino;
2462	int mode;
2463	struct workhead *wkhd;
2464{
2465	struct cg *cgp;
2466	struct buf *bp;
2467	ufs2_daddr_t cgbno;
2468	int error;
2469	u_int cg;
2470	u_int8_t *inosused;
2471	struct cdev *dev;
2472
2473	cg = ino_to_cg(fs, ino);
2474	if (devvp->v_type == VREG) {
2475		/* devvp is a snapshot */
2476		dev = VTOI(devvp)->i_devvp->v_rdev;
2477		cgbno = fragstoblks(fs, cgtod(fs, cg));
2478	} else {
2479		/* devvp is a normal disk device */
2480		dev = devvp->v_rdev;
2481		cgbno = fsbtodb(fs, cgtod(fs, cg));
2482	}
2483	if (ino >= fs->fs_ipg * fs->fs_ncg)
2484		panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2485		    devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2486	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
2487		brelse(bp);
2488		return (error);
2489	}
2490	cgp = (struct cg *)bp->b_data;
2491	if (!cg_chkmagic(cgp)) {
2492		brelse(bp);
2493		return (0);
2494	}
2495	bp->b_xflags |= BX_BKGRDWRITE;
2496	cgp->cg_old_time = cgp->cg_time = time_second;
2497	inosused = cg_inosused(cgp);
2498	ino %= fs->fs_ipg;
2499	if (isclr(inosused, ino)) {
2500		printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2501		    (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt);
2502		if (fs->fs_ronly == 0)
2503			panic("ffs_freefile: freeing free inode");
2504	}
2505	clrbit(inosused, ino);
2506	if (ino < cgp->cg_irotor)
2507		cgp->cg_irotor = ino;
2508	cgp->cg_cs.cs_nifree++;
2509	UFS_LOCK(ump);
2510	fs->fs_cstotal.cs_nifree++;
2511	fs->fs_cs(fs, cg).cs_nifree++;
2512	if ((mode & IFMT) == IFDIR) {
2513		cgp->cg_cs.cs_ndir--;
2514		fs->fs_cstotal.cs_ndir--;
2515		fs->fs_cs(fs, cg).cs_ndir--;
2516	}
2517	fs->fs_fmod = 1;
2518	ACTIVECLEAR(fs, cg);
2519	UFS_UNLOCK(ump);
2520	if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type != VREG)
2521		softdep_setup_inofree(UFSTOVFS(ump), bp,
2522		    ino + cg * fs->fs_ipg, wkhd);
2523	bdwrite(bp);
2524	return (0);
2525}
2526
2527/*
2528 * Check to see if a file is free.
2529 */
2530int
2531ffs_checkfreefile(fs, devvp, ino)
2532	struct fs *fs;
2533	struct vnode *devvp;
2534	ino_t ino;
2535{
2536	struct cg *cgp;
2537	struct buf *bp;
2538	ufs2_daddr_t cgbno;
2539	int ret;
2540	u_int cg;
2541	u_int8_t *inosused;
2542
2543	cg = ino_to_cg(fs, ino);
2544	if (devvp->v_type == VREG) {
2545		/* devvp is a snapshot */
2546		cgbno = fragstoblks(fs, cgtod(fs, cg));
2547	} else {
2548		/* devvp is a normal disk device */
2549		cgbno = fsbtodb(fs, cgtod(fs, cg));
2550	}
2551	if (ino >= fs->fs_ipg * fs->fs_ncg)
2552		return (1);
2553	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2554		brelse(bp);
2555		return (1);
2556	}
2557	cgp = (struct cg *)bp->b_data;
2558	if (!cg_chkmagic(cgp)) {
2559		brelse(bp);
2560		return (1);
2561	}
2562	inosused = cg_inosused(cgp);
2563	ino %= fs->fs_ipg;
2564	ret = isclr(inosused, ino);
2565	brelse(bp);
2566	return (ret);
2567}
2568
2569/*
2570 * Find a block of the specified size in the specified cylinder group.
2571 *
2572 * It is a panic if a request is made to find a block if none are
2573 * available.
2574 */
2575static ufs1_daddr_t
2576ffs_mapsearch(fs, cgp, bpref, allocsiz)
2577	struct fs *fs;
2578	struct cg *cgp;
2579	ufs2_daddr_t bpref;
2580	int allocsiz;
2581{
2582	ufs1_daddr_t bno;
2583	int start, len, loc, i;
2584	int blk, field, subfield, pos;
2585	u_int8_t *blksfree;
2586
2587	/*
2588	 * find the fragment by searching through the free block
2589	 * map for an appropriate bit pattern
2590	 */
2591	if (bpref)
2592		start = dtogd(fs, bpref) / NBBY;
2593	else
2594		start = cgp->cg_frotor / NBBY;
2595	blksfree = cg_blksfree(cgp);
2596	len = howmany(fs->fs_fpg, NBBY) - start;
2597	loc = scanc((u_int)len, (u_char *)&blksfree[start],
2598		fragtbl[fs->fs_frag],
2599		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2600	if (loc == 0) {
2601		len = start + 1;
2602		start = 0;
2603		loc = scanc((u_int)len, (u_char *)&blksfree[0],
2604			fragtbl[fs->fs_frag],
2605			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2606		if (loc == 0) {
2607			printf("start = %d, len = %d, fs = %s\n",
2608			    start, len, fs->fs_fsmnt);
2609			panic("ffs_alloccg: map corrupted");
2610			/* NOTREACHED */
2611		}
2612	}
2613	bno = (start + len - loc) * NBBY;
2614	cgp->cg_frotor = bno;
2615	/*
2616	 * found the byte in the map
2617	 * sift through the bits to find the selected frag
2618	 */
2619	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2620		blk = blkmap(fs, blksfree, bno);
2621		blk <<= 1;
2622		field = around[allocsiz];
2623		subfield = inside[allocsiz];
2624		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2625			if ((blk & field) == subfield)
2626				return (bno + pos);
2627			field <<= 1;
2628			subfield <<= 1;
2629		}
2630	}
2631	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2632	panic("ffs_alloccg: block not in map");
2633	return (-1);
2634}
2635
2636/*
2637 * Fserr prints the name of a filesystem with an error diagnostic.
2638 *
2639 * The form of the error message is:
2640 *	fs: error message
2641 */
2642void
2643ffs_fserr(fs, inum, cp)
2644	struct fs *fs;
2645	ino_t inum;
2646	char *cp;
2647{
2648	struct thread *td = curthread;	/* XXX */
2649	struct proc *p = td->td_proc;
2650
2651	log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
2652	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
2653	    fs->fs_fsmnt, cp);
2654}
2655
2656/*
2657 * This function provides the capability for the fsck program to
2658 * update an active filesystem. Fourteen operations are provided:
2659 *
2660 * adjrefcnt(inode, amt) - adjusts the reference count on the
2661 *	specified inode by the specified amount. Under normal
2662 *	operation the count should always go down. Decrementing
2663 *	the count to zero will cause the inode to be freed.
2664 * adjblkcnt(inode, amt) - adjust the number of blocks used by the
2665 *	inode by the specified amount.
2666 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
2667 *	adjust the superblock summary.
2668 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2669 *	are marked as free. Inodes should never have to be marked
2670 *	as in use.
2671 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2672 *	are marked as free. Inodes should never have to be marked
2673 *	as in use.
2674 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2675 *	are marked as free. Blocks should never have to be marked
2676 *	as in use.
2677 * setflags(flags, set/clear) - the fs_flags field has the specified
2678 *	flags set (second parameter +1) or cleared (second parameter -1).
2679 * setcwd(dirinode) - set the current directory to dirinode in the
2680 *	filesystem associated with the snapshot.
2681 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
2682 *	in the current directory is oldvalue then change it to newvalue.
2683 * unlink(nameptr, oldvalue) - Verify that the inode number associated
2684 *	with nameptr in the current directory is oldvalue then unlink it.
2685 *
2686 * The following functions may only be used on a quiescent filesystem
2687 * by the soft updates journal. They are not safe to be run on an active
2688 * filesystem.
2689 *
2690 * setinode(inode, dip) - the specified disk inode is replaced with the
2691 *	contents pointed to by dip.
2692 * setbufoutput(fd, flags) - output associated with the specified file
2693 *	descriptor (which must reference the character device supporting
2694 *	the filesystem) switches from using physio to running through the
2695 *	buffer cache when flags is set to 1. The descriptor reverts to
2696 *	physio for output when flags is set to zero.
2697 */
2698
2699static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2700
2701SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2702	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2703
2704static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2705	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2706
2707static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
2708	sysctl_ffs_fsck, "Adjust number of directories");
2709
2710static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
2711	sysctl_ffs_fsck, "Adjust number of free blocks");
2712
2713static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
2714	sysctl_ffs_fsck, "Adjust number of free inodes");
2715
2716static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
2717	sysctl_ffs_fsck, "Adjust number of free frags");
2718
2719static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
2720	sysctl_ffs_fsck, "Adjust number of free clusters");
2721
2722static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2723	sysctl_ffs_fsck, "Free Range of Directory Inodes");
2724
2725static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2726	sysctl_ffs_fsck, "Free Range of File Inodes");
2727
2728static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2729	sysctl_ffs_fsck, "Free Range of Blocks");
2730
2731static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2732	sysctl_ffs_fsck, "Change Filesystem Flags");
2733
2734static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR,
2735	sysctl_ffs_fsck, "Set Current Working Directory");
2736
2737static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR,
2738	sysctl_ffs_fsck, "Change Value of .. Entry");
2739
2740static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR,
2741	sysctl_ffs_fsck, "Unlink a Duplicate Name");
2742
2743static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR,
2744	sysctl_ffs_fsck, "Update an On-Disk Inode");
2745
2746static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR,
2747	sysctl_ffs_fsck, "Set Buffered Writing for Descriptor");
2748
2749#define DEBUG 1
2750#ifdef DEBUG
2751static int fsckcmds = 0;
2752SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2753#endif /* DEBUG */
2754
2755static int buffered_write(struct file *, struct uio *, struct ucred *,
2756	int, struct thread *);
2757
2758static int
2759sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2760{
2761	struct thread *td = curthread;
2762	struct fsck_cmd cmd;
2763	struct ufsmount *ump;
2764	struct vnode *vp, *dvp, *fdvp;
2765	struct inode *ip, *dp;
2766	struct mount *mp;
2767	struct fs *fs;
2768	ufs2_daddr_t blkno;
2769	long blkcnt, blksize;
2770	struct file *fp, *vfp;
2771	cap_rights_t rights;
2772	int filetype, error;
2773	static struct fileops *origops, bufferedops;
2774
2775	if (req->newlen > sizeof cmd)
2776		return (EBADRPC);
2777	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2778		return (error);
2779	if (cmd.version != FFS_CMD_VERSION)
2780		return (ERPCMISMATCH);
2781	if ((error = getvnode(td, cmd.handle,
2782	    cap_rights_init(&rights, CAP_FSCK), &fp)) != 0)
2783		return (error);
2784	vp = fp->f_data;
2785	if (vp->v_type != VREG && vp->v_type != VDIR) {
2786		fdrop(fp, td);
2787		return (EINVAL);
2788	}
2789	vn_start_write(vp, &mp, V_WAIT);
2790	if (mp == NULL ||
2791	    strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2792		vn_finished_write(mp);
2793		fdrop(fp, td);
2794		return (EINVAL);
2795	}
2796	ump = VFSTOUFS(mp);
2797	if ((mp->mnt_flag & MNT_RDONLY) &&
2798	    ump->um_fsckpid != td->td_proc->p_pid) {
2799		vn_finished_write(mp);
2800		fdrop(fp, td);
2801		return (EROFS);
2802	}
2803	fs = ump->um_fs;
2804	filetype = IFREG;
2805
2806	switch (oidp->oid_number) {
2807
2808	case FFS_SET_FLAGS:
2809#ifdef DEBUG
2810		if (fsckcmds)
2811			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2812			    cmd.size > 0 ? "set" : "clear");
2813#endif /* DEBUG */
2814		if (cmd.size > 0)
2815			fs->fs_flags |= (long)cmd.value;
2816		else
2817			fs->fs_flags &= ~(long)cmd.value;
2818		break;
2819
2820	case FFS_ADJ_REFCNT:
2821#ifdef DEBUG
2822		if (fsckcmds) {
2823			printf("%s: adjust inode %jd link count by %jd\n",
2824			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2825			    (intmax_t)cmd.size);
2826		}
2827#endif /* DEBUG */
2828		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2829			break;
2830		ip = VTOI(vp);
2831		ip->i_nlink += cmd.size;
2832		DIP_SET(ip, i_nlink, ip->i_nlink);
2833		ip->i_effnlink += cmd.size;
2834		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2835		error = ffs_update(vp, 1);
2836		if (DOINGSOFTDEP(vp))
2837			softdep_change_linkcnt(ip);
2838		vput(vp);
2839		break;
2840
2841	case FFS_ADJ_BLKCNT:
2842#ifdef DEBUG
2843		if (fsckcmds) {
2844			printf("%s: adjust inode %jd block count by %jd\n",
2845			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2846			    (intmax_t)cmd.size);
2847		}
2848#endif /* DEBUG */
2849		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2850			break;
2851		ip = VTOI(vp);
2852		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
2853		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
2854		error = ffs_update(vp, 1);
2855		vput(vp);
2856		break;
2857
2858	case FFS_DIR_FREE:
2859		filetype = IFDIR;
2860		/* fall through */
2861
2862	case FFS_FILE_FREE:
2863#ifdef DEBUG
2864		if (fsckcmds) {
2865			if (cmd.size == 1)
2866				printf("%s: free %s inode %ju\n",
2867				    mp->mnt_stat.f_mntonname,
2868				    filetype == IFDIR ? "directory" : "file",
2869				    (uintmax_t)cmd.value);
2870			else
2871				printf("%s: free %s inodes %ju-%ju\n",
2872				    mp->mnt_stat.f_mntonname,
2873				    filetype == IFDIR ? "directory" : "file",
2874				    (uintmax_t)cmd.value,
2875				    (uintmax_t)(cmd.value + cmd.size - 1));
2876		}
2877#endif /* DEBUG */
2878		while (cmd.size > 0) {
2879			if ((error = ffs_freefile(ump, fs, ump->um_devvp,
2880			    cmd.value, filetype, NULL)))
2881				break;
2882			cmd.size -= 1;
2883			cmd.value += 1;
2884		}
2885		break;
2886
2887	case FFS_BLK_FREE:
2888#ifdef DEBUG
2889		if (fsckcmds) {
2890			if (cmd.size == 1)
2891				printf("%s: free block %jd\n",
2892				    mp->mnt_stat.f_mntonname,
2893				    (intmax_t)cmd.value);
2894			else
2895				printf("%s: free blocks %jd-%jd\n",
2896				    mp->mnt_stat.f_mntonname,
2897				    (intmax_t)cmd.value,
2898				    (intmax_t)cmd.value + cmd.size - 1);
2899		}
2900#endif /* DEBUG */
2901		blkno = cmd.value;
2902		blkcnt = cmd.size;
2903		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2904		while (blkcnt > 0) {
2905			if (blksize > blkcnt)
2906				blksize = blkcnt;
2907			ffs_blkfree(ump, fs, ump->um_devvp, blkno,
2908			    blksize * fs->fs_fsize, ROOTINO, VDIR, NULL);
2909			blkno += blksize;
2910			blkcnt -= blksize;
2911			blksize = fs->fs_frag;
2912		}
2913		break;
2914
2915	/*
2916	 * Adjust superblock summaries.  fsck(8) is expected to
2917	 * submit deltas when necessary.
2918	 */
2919	case FFS_ADJ_NDIR:
2920#ifdef DEBUG
2921		if (fsckcmds) {
2922			printf("%s: adjust number of directories by %jd\n",
2923			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2924		}
2925#endif /* DEBUG */
2926		fs->fs_cstotal.cs_ndir += cmd.value;
2927		break;
2928
2929	case FFS_ADJ_NBFREE:
2930#ifdef DEBUG
2931		if (fsckcmds) {
2932			printf("%s: adjust number of free blocks by %+jd\n",
2933			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2934		}
2935#endif /* DEBUG */
2936		fs->fs_cstotal.cs_nbfree += cmd.value;
2937		break;
2938
2939	case FFS_ADJ_NIFREE:
2940#ifdef DEBUG
2941		if (fsckcmds) {
2942			printf("%s: adjust number of free inodes by %+jd\n",
2943			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2944		}
2945#endif /* DEBUG */
2946		fs->fs_cstotal.cs_nifree += cmd.value;
2947		break;
2948
2949	case FFS_ADJ_NFFREE:
2950#ifdef DEBUG
2951		if (fsckcmds) {
2952			printf("%s: adjust number of free frags by %+jd\n",
2953			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2954		}
2955#endif /* DEBUG */
2956		fs->fs_cstotal.cs_nffree += cmd.value;
2957		break;
2958
2959	case FFS_ADJ_NUMCLUSTERS:
2960#ifdef DEBUG
2961		if (fsckcmds) {
2962			printf("%s: adjust number of free clusters by %+jd\n",
2963			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2964		}
2965#endif /* DEBUG */
2966		fs->fs_cstotal.cs_numclusters += cmd.value;
2967		break;
2968
2969	case FFS_SET_CWD:
2970#ifdef DEBUG
2971		if (fsckcmds) {
2972			printf("%s: set current directory to inode %jd\n",
2973			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2974		}
2975#endif /* DEBUG */
2976		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
2977			break;
2978		AUDIT_ARG_VNODE1(vp);
2979		if ((error = change_dir(vp, td)) != 0) {
2980			vput(vp);
2981			break;
2982		}
2983		VOP_UNLOCK(vp, 0);
2984		pwd_chdir(td, vp);
2985		break;
2986
2987	case FFS_SET_DOTDOT:
2988#ifdef DEBUG
2989		if (fsckcmds) {
2990			printf("%s: change .. in cwd from %jd to %jd\n",
2991			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2992			    (intmax_t)cmd.size);
2993		}
2994#endif /* DEBUG */
2995		/*
2996		 * First we have to get and lock the parent directory
2997		 * to which ".." points.
2998		 */
2999		error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
3000		if (error)
3001			break;
3002		/*
3003		 * Now we get and lock the child directory containing "..".
3004		 */
3005		FILEDESC_SLOCK(td->td_proc->p_fd);
3006		dvp = td->td_proc->p_fd->fd_cdir;
3007		FILEDESC_SUNLOCK(td->td_proc->p_fd);
3008		if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) {
3009			vput(fdvp);
3010			break;
3011		}
3012		dp = VTOI(dvp);
3013		dp->i_offset = 12;	/* XXX mastertemplate.dot_reclen */
3014		error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3015		    DT_DIR, 0);
3016		cache_purge(fdvp);
3017		cache_purge(dvp);
3018		vput(dvp);
3019		vput(fdvp);
3020		break;
3021
3022	case FFS_UNLINK:
3023#ifdef DEBUG
3024		if (fsckcmds) {
3025			char buf[32];
3026
3027			if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3028				strncpy(buf, "Name_too_long", 32);
3029			printf("%s: unlink %s (inode %jd)\n",
3030			    mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3031		}
3032#endif /* DEBUG */
3033		/*
3034		 * kern_unlinkat will do its own start/finish writes and
3035		 * they do not nest, so drop ours here. Setting mp == NULL
3036		 * indicates that vn_finished_write is not needed down below.
3037		 */
3038		vn_finished_write(mp);
3039		mp = NULL;
3040		error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value,
3041		    UIO_USERSPACE, (ino_t)cmd.size);
3042		break;
3043
3044	case FFS_SET_INODE:
3045		if (ump->um_fsckpid != td->td_proc->p_pid) {
3046			error = EPERM;
3047			break;
3048		}
3049#ifdef DEBUG
3050		if (fsckcmds) {
3051			printf("%s: update inode %jd\n",
3052			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3053		}
3054#endif /* DEBUG */
3055		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3056			break;
3057		AUDIT_ARG_VNODE1(vp);
3058		ip = VTOI(vp);
3059		if (ip->i_ump->um_fstype == UFS1)
3060			error = copyin((void *)(intptr_t)cmd.size, ip->i_din1,
3061			    sizeof(struct ufs1_dinode));
3062		else
3063			error = copyin((void *)(intptr_t)cmd.size, ip->i_din2,
3064			    sizeof(struct ufs2_dinode));
3065		if (error) {
3066			vput(vp);
3067			break;
3068		}
3069		ip->i_flag |= IN_CHANGE | IN_MODIFIED;
3070		error = ffs_update(vp, 1);
3071		vput(vp);
3072		break;
3073
3074	case FFS_SET_BUFOUTPUT:
3075		if (ump->um_fsckpid != td->td_proc->p_pid) {
3076			error = EPERM;
3077			break;
3078		}
3079		if (VTOI(vp)->i_ump != ump) {
3080			error = EINVAL;
3081			break;
3082		}
3083#ifdef DEBUG
3084		if (fsckcmds) {
3085			printf("%s: %s buffered output for descriptor %jd\n",
3086			    mp->mnt_stat.f_mntonname,
3087			    cmd.size == 1 ? "enable" : "disable",
3088			    (intmax_t)cmd.value);
3089		}
3090#endif /* DEBUG */
3091		if ((error = getvnode(td, cmd.value,
3092		    cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0)
3093			break;
3094		if (vfp->f_vnode->v_type != VCHR) {
3095			fdrop(vfp, td);
3096			error = EINVAL;
3097			break;
3098		}
3099		if (origops == NULL) {
3100			origops = vfp->f_ops;
3101			bcopy((void *)origops, (void *)&bufferedops,
3102			    sizeof(bufferedops));
3103			bufferedops.fo_write = buffered_write;
3104		}
3105		if (cmd.size == 1)
3106			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3107			    (uintptr_t)&bufferedops);
3108		else
3109			atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops,
3110			    (uintptr_t)origops);
3111		fdrop(vfp, td);
3112		break;
3113
3114	default:
3115#ifdef DEBUG
3116		if (fsckcmds) {
3117			printf("Invalid request %d from fsck\n",
3118			    oidp->oid_number);
3119		}
3120#endif /* DEBUG */
3121		error = EINVAL;
3122		break;
3123
3124	}
3125	fdrop(fp, td);
3126	vn_finished_write(mp);
3127	return (error);
3128}
3129
3130/*
3131 * Function to switch a descriptor to use the buffer cache to stage
3132 * its I/O. This is needed so that writes to the filesystem device
3133 * will give snapshots a chance to copy modified blocks for which it
3134 * needs to retain copies.
3135 */
3136static int
3137buffered_write(fp, uio, active_cred, flags, td)
3138	struct file *fp;
3139	struct uio *uio;
3140	struct ucred *active_cred;
3141	int flags;
3142	struct thread *td;
3143{
3144	struct vnode *devvp, *vp;
3145	struct inode *ip;
3146	struct buf *bp;
3147	struct fs *fs;
3148	struct filedesc *fdp;
3149	int error;
3150	daddr_t lbn;
3151
3152	/*
3153	 * The devvp is associated with the /dev filesystem. To discover
3154	 * the filesystem with which the device is associated, we depend
3155	 * on the application setting the current directory to a location
3156	 * within the filesystem being written. Yes, this is an ugly hack.
3157	 */
3158	devvp = fp->f_vnode;
3159	if (!vn_isdisk(devvp, NULL))
3160		return (EINVAL);
3161	fdp = td->td_proc->p_fd;
3162	FILEDESC_SLOCK(fdp);
3163	vp = fdp->fd_cdir;
3164	vref(vp);
3165	FILEDESC_SUNLOCK(fdp);
3166	vn_lock(vp, LK_SHARED | LK_RETRY);
3167	/*
3168	 * Check that the current directory vnode indeed belongs to
3169	 * UFS before trying to dereference UFS-specific v_data fields.
3170	 */
3171	if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) {
3172		vput(vp);
3173		return (EINVAL);
3174	}
3175	ip = VTOI(vp);
3176	if (ip->i_devvp != devvp) {
3177		vput(vp);
3178		return (EINVAL);
3179	}
3180	fs = ip->i_fs;
3181	vput(vp);
3182	foffset_lock_uio(fp, uio, flags);
3183	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
3184#ifdef DEBUG
3185	if (fsckcmds) {
3186		printf("%s: buffered write for block %jd\n",
3187		    fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset));
3188	}
3189#endif /* DEBUG */
3190	/*
3191	 * All I/O must be contained within a filesystem block, start on
3192	 * a fragment boundary, and be a multiple of fragments in length.
3193	 */
3194	if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) ||
3195	    fragoff(fs, uio->uio_offset) != 0 ||
3196	    fragoff(fs, uio->uio_resid) != 0) {
3197		error = EINVAL;
3198		goto out;
3199	}
3200	lbn = numfrags(fs, uio->uio_offset);
3201	bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0);
3202	bp->b_flags |= B_RELBUF;
3203	if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) {
3204		brelse(bp);
3205		goto out;
3206	}
3207	error = bwrite(bp);
3208out:
3209	VOP_UNLOCK(devvp, 0);
3210	foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF);
3211	return (error);
3212}
3213