1/*
2 * Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33
34#define	LINUXKPI_PARAM_PREFIX mlx4_
35
36#include <linux/page.h>
37#include <linux/mlx4/cq.h>
38#include <linux/slab.h>
39#include <linux/mlx4/qp.h>
40#include <linux/if_vlan.h>
41#include <linux/vmalloc.h>
42#include <linux/moduleparam.h>
43
44#include <netinet/in_systm.h>
45#include <netinet/in.h>
46#include <netinet/if_ether.h>
47#include <netinet/ip.h>
48#include <netinet/ip6.h>
49#include <netinet/tcp.h>
50#include <netinet/tcp_lro.h>
51#include <netinet/udp.h>
52
53#include "mlx4_en.h"
54
55enum {
56	MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */
57	MAX_BF = 256,
58	MIN_PKT_LEN = 17,
59};
60
61static int inline_thold __read_mostly = MAX_INLINE;
62
63module_param_named(inline_thold, inline_thold, uint, 0444);
64MODULE_PARM_DESC(inline_thold, "threshold for using inline data");
65
66int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
67			   struct mlx4_en_tx_ring **pring, u32 size,
68			   u16 stride, int node, int queue_idx)
69{
70	struct mlx4_en_dev *mdev = priv->mdev;
71	struct mlx4_en_tx_ring *ring;
72	uint32_t x;
73	int tmp;
74	int err;
75
76	ring = kzalloc_node(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL, node);
77	if (!ring) {
78		ring = kzalloc(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL);
79		if (!ring) {
80			en_err(priv, "Failed allocating TX ring\n");
81			return -ENOMEM;
82		}
83	}
84
85	/* Create DMA descriptor TAG */
86	if ((err = -bus_dma_tag_create(
87	    bus_get_dma_tag(mdev->pdev->dev.bsddev),
88	    1,					/* any alignment */
89	    0,					/* no boundary */
90	    BUS_SPACE_MAXADDR,			/* lowaddr */
91	    BUS_SPACE_MAXADDR,			/* highaddr */
92	    NULL, NULL,				/* filter, filterarg */
93	    MLX4_EN_TX_MAX_PAYLOAD_SIZE,	/* maxsize */
94	    MLX4_EN_TX_MAX_MBUF_FRAGS,		/* nsegments */
95	    MLX4_EN_TX_MAX_MBUF_SIZE,		/* maxsegsize */
96	    0,					/* flags */
97	    NULL, NULL,				/* lockfunc, lockfuncarg */
98	    &ring->dma_tag)))
99		goto done;
100
101	ring->size = size;
102	ring->size_mask = size - 1;
103	ring->stride = stride;
104	ring->inline_thold = MAX(MIN_PKT_LEN, MIN(inline_thold, MAX_INLINE));
105	mtx_init(&ring->tx_lock.m, "mlx4 tx", NULL, MTX_DEF);
106	mtx_init(&ring->comp_lock.m, "mlx4 comp", NULL, MTX_DEF);
107
108	/* Allocate the buf ring */
109	ring->br = buf_ring_alloc(MLX4_EN_DEF_TX_QUEUE_SIZE, M_DEVBUF,
110		M_WAITOK, &ring->tx_lock.m);
111	if (ring->br == NULL) {
112		en_err(priv, "Failed allocating tx_info ring\n");
113		err = -ENOMEM;
114		goto err_free_dma_tag;
115	}
116
117	tmp = size * sizeof(struct mlx4_en_tx_info);
118	ring->tx_info = kzalloc_node(tmp, GFP_KERNEL, node);
119	if (!ring->tx_info) {
120		ring->tx_info = kzalloc(tmp, GFP_KERNEL);
121		if (!ring->tx_info) {
122			err = -ENOMEM;
123			goto err_ring;
124		}
125	}
126
127	/* Create DMA descriptor MAPs */
128	for (x = 0; x != size; x++) {
129		err = -bus_dmamap_create(ring->dma_tag, 0,
130		    &ring->tx_info[x].dma_map);
131		if (err != 0) {
132			while (x--) {
133				bus_dmamap_destroy(ring->dma_tag,
134				    ring->tx_info[x].dma_map);
135			}
136			goto err_info;
137		}
138	}
139
140	en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
141		 ring->tx_info, tmp);
142
143	ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
144
145	/* Allocate HW buffers on provided NUMA node */
146	err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
147				 2 * PAGE_SIZE);
148	if (err) {
149		en_err(priv, "Failed allocating hwq resources\n");
150		goto err_dma_map;
151	}
152
153	err = mlx4_en_map_buffer(&ring->wqres.buf);
154	if (err) {
155		en_err(priv, "Failed to map TX buffer\n");
156		goto err_hwq_res;
157	}
158
159	ring->buf = ring->wqres.buf.direct.buf;
160
161	en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d "
162	       "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size,
163	       ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map);
164
165	err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn,
166				    MLX4_RESERVE_BF_QP);
167	if (err) {
168		en_err(priv, "failed reserving qp for TX ring\n");
169		goto err_map;
170	}
171
172	err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp);
173	if (err) {
174		en_err(priv, "Failed allocating qp %d\n", ring->qpn);
175		goto err_reserve;
176	}
177	ring->qp.event = mlx4_en_sqp_event;
178
179	err = mlx4_bf_alloc(mdev->dev, &ring->bf, node);
180	if (err) {
181		en_dbg(DRV, priv, "working without blueflame (%d)", err);
182		ring->bf.uar = &mdev->priv_uar;
183		ring->bf.uar->map = mdev->uar_map;
184		ring->bf_enabled = false;
185	} else
186		ring->bf_enabled = true;
187	ring->queue_index = queue_idx;
188	if (queue_idx < priv->num_tx_rings_p_up )
189		CPU_SET(queue_idx, &ring->affinity_mask);
190
191	*pring = ring;
192	return 0;
193
194err_reserve:
195	mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
196err_map:
197	mlx4_en_unmap_buffer(&ring->wqres.buf);
198err_hwq_res:
199	mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
200err_dma_map:
201	for (x = 0; x != size; x++)
202		bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map);
203err_info:
204	vfree(ring->tx_info);
205err_ring:
206	buf_ring_free(ring->br, M_DEVBUF);
207err_free_dma_tag:
208	bus_dma_tag_destroy(ring->dma_tag);
209done:
210	kfree(ring);
211	return err;
212}
213
214void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
215			     struct mlx4_en_tx_ring **pring)
216{
217	struct mlx4_en_dev *mdev = priv->mdev;
218	struct mlx4_en_tx_ring *ring = *pring;
219	uint32_t x;
220	en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
221
222	buf_ring_free(ring->br, M_DEVBUF);
223	if (ring->bf_enabled)
224		mlx4_bf_free(mdev->dev, &ring->bf);
225	mlx4_qp_remove(mdev->dev, &ring->qp);
226	mlx4_qp_free(mdev->dev, &ring->qp);
227	mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1);
228	mlx4_en_unmap_buffer(&ring->wqres.buf);
229	mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
230	for (x = 0; x != ring->size; x++)
231		bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map);
232	vfree(ring->tx_info);
233	mtx_destroy(&ring->tx_lock.m);
234	mtx_destroy(&ring->comp_lock.m);
235	bus_dma_tag_destroy(ring->dma_tag);
236	kfree(ring);
237	*pring = NULL;
238}
239
240int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
241			     struct mlx4_en_tx_ring *ring,
242			     int cq, int user_prio)
243{
244	struct mlx4_en_dev *mdev = priv->mdev;
245	int err;
246
247	ring->cqn = cq;
248	ring->prod = 0;
249	ring->cons = 0xffffffff;
250	ring->last_nr_txbb = 1;
251	ring->poll_cnt = 0;
252	ring->blocked = 0;
253	memset(ring->buf, 0, ring->buf_size);
254
255	ring->qp_state = MLX4_QP_STATE_RST;
256	ring->doorbell_qpn = ring->qp.qpn << 8;
257
258	mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
259				ring->cqn, user_prio, &ring->context);
260	if (ring->bf_enabled)
261		ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
262
263	err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
264			       &ring->qp, &ring->qp_state);
265	return err;
266}
267
268void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
269				struct mlx4_en_tx_ring *ring)
270{
271	struct mlx4_en_dev *mdev = priv->mdev;
272
273	mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
274		       MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
275}
276
277static volatile struct mlx4_wqe_data_seg *
278mlx4_en_store_inline_lso_data(volatile struct mlx4_wqe_data_seg *dseg,
279    struct mbuf *mb, int len, __be32 owner_bit)
280{
281	uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
282
283	/* copy data into place */
284	m_copydata(mb, 0, len, inl + 4);
285	dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT);
286	return (dseg);
287}
288
289static void
290mlx4_en_store_inline_lso_header(volatile struct mlx4_wqe_data_seg *dseg,
291    int len, __be32 owner_bit)
292{
293}
294
295static void
296mlx4_en_stamp_wqe(struct mlx4_en_priv *priv,
297    struct mlx4_en_tx_ring *ring, u32 index, u8 owner)
298{
299	struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
300	struct mlx4_en_tx_desc *tx_desc = (struct mlx4_en_tx_desc *)
301	    (ring->buf + (index * TXBB_SIZE));
302	volatile __be32 *ptr = (__be32 *)tx_desc;
303	const __be32 stamp = cpu_to_be32(STAMP_VAL |
304	    ((u32)owner << STAMP_SHIFT));
305	u32 i;
306
307	/* Stamp the freed descriptor */
308	for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
309		*ptr = stamp;
310		ptr += STAMP_DWORDS;
311	}
312}
313
314static u32
315mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
316    struct mlx4_en_tx_ring *ring, u32 index)
317{
318	struct mlx4_en_tx_info *tx_info;
319	struct mbuf *mb;
320
321	tx_info = &ring->tx_info[index];
322	mb = tx_info->mb;
323
324	if (mb == NULL)
325		goto done;
326
327	bus_dmamap_sync(ring->dma_tag, tx_info->dma_map,
328	    BUS_DMASYNC_POSTWRITE);
329	bus_dmamap_unload(ring->dma_tag, tx_info->dma_map);
330
331        m_freem(mb);
332done:
333	return (tx_info->nr_txbb);
334}
335
336int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
337{
338	struct mlx4_en_priv *priv = netdev_priv(dev);
339	int cnt = 0;
340
341	/* Skip last polled descriptor */
342	ring->cons += ring->last_nr_txbb;
343	en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
344		 ring->cons, ring->prod);
345
346	if ((u32) (ring->prod - ring->cons) > ring->size) {
347                en_warn(priv, "Tx consumer passed producer!\n");
348		return 0;
349	}
350
351	while (ring->cons != ring->prod) {
352		ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
353		    ring->cons & ring->size_mask);
354		ring->cons += ring->last_nr_txbb;
355		cnt++;
356	}
357
358	if (cnt)
359		en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
360
361	return cnt;
362}
363
364static bool
365mlx4_en_tx_ring_is_full(struct mlx4_en_tx_ring *ring)
366{
367	int wqs;
368	wqs = ring->size - (ring->prod - ring->cons);
369	return (wqs < (HEADROOM + (2 * MLX4_EN_TX_WQE_MAX_WQEBBS)));
370}
371
372static int mlx4_en_process_tx_cq(struct net_device *dev,
373				 struct mlx4_en_cq *cq)
374{
375	struct mlx4_en_priv *priv = netdev_priv(dev);
376	struct mlx4_cq *mcq = &cq->mcq;
377	struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
378	struct mlx4_cqe *cqe;
379	u16 index;
380	u16 new_index, ring_index, stamp_index;
381	u32 txbbs_skipped = 0;
382	u32 txbbs_stamp = 0;
383	u32 cons_index = mcq->cons_index;
384	int size = cq->size;
385	u32 size_mask = ring->size_mask;
386	struct mlx4_cqe *buf = cq->buf;
387	int factor = priv->cqe_factor;
388
389	if (!priv->port_up)
390		return 0;
391
392	index = cons_index & size_mask;
393	cqe = &buf[(index << factor) + factor];
394	ring_index = ring->cons & size_mask;
395	stamp_index = ring_index;
396
397	/* Process all completed CQEs */
398	while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
399			cons_index & size)) {
400		/*
401		 * make sure we read the CQE after we read the
402		 * ownership bit
403		 */
404		rmb();
405
406		if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
407			     MLX4_CQE_OPCODE_ERROR)) {
408			en_err(priv, "CQE completed in error - vendor syndrom: 0x%x syndrom: 0x%x\n",
409			       ((struct mlx4_err_cqe *)cqe)->
410				       vendor_err_syndrome,
411			       ((struct mlx4_err_cqe *)cqe)->syndrome);
412		}
413
414		/* Skip over last polled CQE */
415		new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
416
417		do {
418			txbbs_skipped += ring->last_nr_txbb;
419			ring_index = (ring_index + ring->last_nr_txbb) & size_mask;
420			/* free next descriptor */
421			ring->last_nr_txbb = mlx4_en_free_tx_desc(
422			    priv, ring, ring_index);
423			mlx4_en_stamp_wqe(priv, ring, stamp_index,
424					  !!((ring->cons + txbbs_stamp) &
425						ring->size));
426			stamp_index = ring_index;
427			txbbs_stamp = txbbs_skipped;
428		} while (ring_index != new_index);
429
430		++cons_index;
431		index = cons_index & size_mask;
432		cqe = &buf[(index << factor) + factor];
433	}
434
435
436	/*
437	 * To prevent CQ overflow we first update CQ consumer and only then
438	 * the ring consumer.
439	 */
440	mcq->cons_index = cons_index;
441	mlx4_cq_set_ci(mcq);
442	wmb();
443	ring->cons += txbbs_skipped;
444
445	/* Wakeup Tx queue if it was stopped and ring is not full */
446	if (unlikely(ring->blocked) && !mlx4_en_tx_ring_is_full(ring)) {
447		ring->blocked = 0;
448		if (atomic_fetchadd_int(&priv->blocked, -1) == 1)
449			atomic_clear_int(&dev->if_drv_flags ,IFF_DRV_OACTIVE);
450		ring->wake_queue++;
451		priv->port_stats.wake_queue++;
452	}
453	return (0);
454}
455
456void mlx4_en_tx_irq(struct mlx4_cq *mcq)
457{
458	struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
459	struct mlx4_en_priv *priv = netdev_priv(cq->dev);
460	struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
461
462	if (priv->port_up == 0 || !spin_trylock(&ring->comp_lock))
463		return;
464	mlx4_en_process_tx_cq(cq->dev, cq);
465	mod_timer(&cq->timer, jiffies + 1);
466	spin_unlock(&ring->comp_lock);
467}
468
469void mlx4_en_poll_tx_cq(unsigned long data)
470{
471	struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data;
472	struct mlx4_en_priv *priv = netdev_priv(cq->dev);
473	struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
474	u32 inflight;
475
476	INC_PERF_COUNTER(priv->pstats.tx_poll);
477
478	if (priv->port_up == 0)
479		return;
480	if (!spin_trylock(&ring->comp_lock)) {
481		mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
482		return;
483	}
484	mlx4_en_process_tx_cq(cq->dev, cq);
485	inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb);
486
487	/* If there are still packets in flight and the timer has not already
488	 * been scheduled by the Tx routine then schedule it here to guarantee
489	 * completion processing of these packets */
490	if (inflight && priv->port_up)
491		mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
492
493	spin_unlock(&ring->comp_lock);
494}
495
496static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind)
497{
498	struct mlx4_en_cq *cq = priv->tx_cq[tx_ind];
499	struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind];
500
501	if (priv->port_up == 0)
502		return;
503
504	/* If we don't have a pending timer, set one up to catch our recent
505	   post in case the interface becomes idle */
506	if (!timer_pending(&cq->timer))
507		mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
508
509	/* Poll the CQ every mlx4_en_TX_MODER_POLL packets */
510	if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0)
511		if (spin_trylock(&ring->comp_lock)) {
512			mlx4_en_process_tx_cq(priv->dev, cq);
513			spin_unlock(&ring->comp_lock);
514		}
515}
516
517static u16
518mlx4_en_get_inline_hdr_size(struct mlx4_en_tx_ring *ring, struct mbuf *mb)
519{
520	u16 retval;
521
522	/* only copy from first fragment, if possible */
523	retval = MIN(ring->inline_thold, mb->m_len);
524
525	/* check for too little data */
526	if (unlikely(retval < MIN_PKT_LEN))
527		retval = MIN(ring->inline_thold, mb->m_pkthdr.len);
528	return (retval);
529}
530
531static int
532mlx4_en_get_header_size(struct mbuf *mb)
533{
534	struct ether_vlan_header *eh;
535        struct tcphdr *th;
536        struct ip *ip;
537        int ip_hlen, tcp_hlen;
538	struct ip6_hdr *ip6;
539	uint16_t eth_type;
540	int eth_hdr_len;
541
542	eh = mtod(mb, struct ether_vlan_header *);
543	if (mb->m_len < ETHER_HDR_LEN)
544		return (0);
545	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
546		eth_type = ntohs(eh->evl_proto);
547		eth_hdr_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
548	} else {
549		eth_type = ntohs(eh->evl_encap_proto);
550		eth_hdr_len = ETHER_HDR_LEN;
551	}
552	if (mb->m_len < eth_hdr_len)
553		return (0);
554	switch (eth_type) {
555	case ETHERTYPE_IP:
556		ip = (struct ip *)(mb->m_data + eth_hdr_len);
557		if (mb->m_len < eth_hdr_len + sizeof(*ip))
558			return (0);
559		if (ip->ip_p != IPPROTO_TCP)
560			return (0);
561		ip_hlen = ip->ip_hl << 2;
562		eth_hdr_len += ip_hlen;
563		break;
564	case ETHERTYPE_IPV6:
565		ip6 = (struct ip6_hdr *)(mb->m_data + eth_hdr_len);
566		if (mb->m_len < eth_hdr_len + sizeof(*ip6))
567			return (0);
568		if (ip6->ip6_nxt != IPPROTO_TCP)
569			return (0);
570		eth_hdr_len += sizeof(*ip6);
571		break;
572	default:
573		return (0);
574	}
575	if (mb->m_len < eth_hdr_len + sizeof(*th))
576		return (0);
577	th = (struct tcphdr *)(mb->m_data + eth_hdr_len);
578	tcp_hlen = th->th_off << 2;
579	eth_hdr_len += tcp_hlen;
580	if (mb->m_len < eth_hdr_len)
581		return (0);
582	return (eth_hdr_len);
583}
584
585static volatile struct mlx4_wqe_data_seg *
586mlx4_en_store_inline_data(volatile struct mlx4_wqe_data_seg *dseg,
587    struct mbuf *mb, int len, __be32 owner_bit)
588{
589	uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
590	const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4;
591
592	if (unlikely(len < MIN_PKT_LEN)) {
593		m_copydata(mb, 0, len, inl + 4);
594		memset(inl + 4 + len, 0, MIN_PKT_LEN - len);
595		dseg += DIV_ROUND_UP(4 + MIN_PKT_LEN, DS_SIZE_ALIGNMENT);
596	} else if (len <= spc) {
597		m_copydata(mb, 0, len, inl + 4);
598		dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT);
599	} else {
600		m_copydata(mb, 0, spc, inl + 4);
601		m_copydata(mb, spc, len - spc, inl + 8 + spc);
602		dseg += DIV_ROUND_UP(8 + len, DS_SIZE_ALIGNMENT);
603	}
604	return (dseg);
605}
606
607static void
608mlx4_en_store_inline_header(volatile struct mlx4_wqe_data_seg *dseg,
609    int len, __be32 owner_bit)
610{
611	uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
612	const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4;
613
614	if (unlikely(len < MIN_PKT_LEN)) {
615		*(volatile uint32_t *)inl =
616		    SET_BYTE_COUNT((1 << 31) | MIN_PKT_LEN);
617	} else if (len <= spc) {
618		*(volatile uint32_t *)inl =
619		    SET_BYTE_COUNT((1 << 31) | len);
620	} else {
621		*(volatile uint32_t *)(inl + 4 + spc) =
622		    SET_BYTE_COUNT((1 << 31) | (len - spc));
623		wmb();
624		*(volatile uint32_t *)inl =
625		    SET_BYTE_COUNT((1 << 31) | spc);
626	}
627}
628
629static uint32_t hashrandom;
630static void hashrandom_init(void *arg)
631{
632	/*
633	 * It is assumed that the random subsystem has been
634	 * initialized when this function is called:
635	 */
636	hashrandom = m_ether_tcpip_hash_init();
637}
638SYSINIT(hashrandom_init, SI_SUB_RANDOM, SI_ORDER_ANY, &hashrandom_init, NULL);
639
640u16 mlx4_en_select_queue(struct net_device *dev, struct mbuf *mb)
641{
642	struct mlx4_en_priv *priv = netdev_priv(dev);
643	u32 rings_p_up = priv->num_tx_rings_p_up;
644	u32 up = 0;
645	u32 queue_index;
646
647#if (MLX4_EN_NUM_UP > 1)
648	/* Obtain VLAN information if present */
649	if (mb->m_flags & M_VLANTAG) {
650		u32 vlan_tag = mb->m_pkthdr.ether_vtag;
651	        up = (vlan_tag >> 13) % MLX4_EN_NUM_UP;
652	}
653#endif
654	queue_index = m_ether_tcpip_hash(MBUF_HASHFLAG_L3 | MBUF_HASHFLAG_L4, mb, hashrandom);
655
656	return ((queue_index % rings_p_up) + (up * rings_p_up));
657}
658
659static void mlx4_bf_copy(void __iomem *dst, volatile unsigned long *src, unsigned bytecnt)
660{
661	__iowrite64_copy(dst, __DEVOLATILE(void *, src), bytecnt / 8);
662}
663
664static u64 mlx4_en_mac_to_u64(u8 *addr)
665{
666        u64 mac = 0;
667        int i;
668
669        for (i = 0; i < ETHER_ADDR_LEN; i++) {
670                mac <<= 8;
671                mac |= addr[i];
672        }
673        return mac;
674}
675
676static int mlx4_en_xmit(struct mlx4_en_priv *priv, int tx_ind, struct mbuf **mbp)
677{
678	enum {
679		DS_FACT = TXBB_SIZE / DS_SIZE_ALIGNMENT,
680		CTRL_FLAGS = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE |
681		    MLX4_WQE_CTRL_SOLICITED),
682	};
683	bus_dma_segment_t segs[MLX4_EN_TX_MAX_MBUF_FRAGS];
684	volatile struct mlx4_wqe_data_seg *dseg;
685	volatile struct mlx4_wqe_data_seg *dseg_inline;
686	volatile struct mlx4_en_tx_desc *tx_desc;
687	struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind];
688	struct ifnet *ifp = priv->dev;
689	struct mlx4_en_tx_info *tx_info;
690	struct mbuf *mb = *mbp;
691	struct mbuf *m;
692	__be32 owner_bit;
693	int nr_segs;
694	int pad;
695	int err;
696	u32 bf_size;
697	u32 bf_prod;
698	u32 opcode;
699	u16 index;
700	u16 ds_cnt;
701	u16 ihs;
702
703	if (unlikely(!priv->port_up)) {
704		err = EINVAL;
705		goto tx_drop;
706	}
707
708	/* check if TX ring is full */
709	if (unlikely(mlx4_en_tx_ring_is_full(ring))) {
710			/* every full native Tx ring stops queue */
711			if (ring->blocked == 0)
712				atomic_add_int(&priv->blocked, 1);
713			/* Set HW-queue-is-full flag */
714			atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
715			priv->port_stats.queue_stopped++;
716		ring->blocked = 1;
717		priv->port_stats.queue_stopped++;
718		ring->queue_stopped++;
719
720		/* Use interrupts to find out when queue opened */
721		mlx4_en_arm_cq(priv, priv->tx_cq[tx_ind]);
722		return (ENOBUFS);
723        }
724
725	/* sanity check we are not wrapping around */
726	KASSERT(((~ring->prod) & ring->size_mask) >=
727	    (MLX4_EN_TX_WQE_MAX_WQEBBS - 1), ("Wrapping around TX ring"));
728
729	/* Track current inflight packets for performance analysis */
730	AVG_PERF_COUNTER(priv->pstats.inflight_avg,
731			 (u32) (ring->prod - ring->cons - 1));
732
733	/* Track current mbuf packet header length */
734	AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, mb->m_pkthdr.len);
735
736	/* Grab an index and try to transmit packet */
737	owner_bit = (ring->prod & ring->size) ?
738		cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0;
739	index = ring->prod & ring->size_mask;
740	tx_desc = (volatile struct mlx4_en_tx_desc *)
741	    (ring->buf + index * TXBB_SIZE);
742	tx_info = &ring->tx_info[index];
743	dseg = &tx_desc->data;
744
745	/* send a copy of the frame to the BPF listener, if any */
746	if (ifp != NULL && ifp->if_bpf != NULL)
747		ETHER_BPF_MTAP(ifp, mb);
748
749	/* get default flags */
750	tx_desc->ctrl.srcrb_flags = CTRL_FLAGS;
751
752	if (mb->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
753		tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM);
754
755	if (mb->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP |
756	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
757		tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_TCP_UDP_CSUM);
758
759	/* do statistics */
760	if (likely(tx_desc->ctrl.srcrb_flags != CTRL_FLAGS)) {
761		priv->port_stats.tx_chksum_offload++;
762		ring->tx_csum++;
763	}
764
765	/* check for VLAN tag */
766	if (mb->m_flags & M_VLANTAG) {
767		tx_desc->ctrl.vlan_tag = cpu_to_be16(mb->m_pkthdr.ether_vtag);
768		tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN;
769	} else {
770		tx_desc->ctrl.vlan_tag = 0;
771		tx_desc->ctrl.ins_vlan = 0;
772	}
773
774	/* clear immediate field */
775	tx_desc->ctrl.imm = 0;
776
777	/* Handle LSO (TSO) packets */
778	if (mb->m_pkthdr.csum_flags & CSUM_TSO) {
779		u32 payload_len;
780		u32 mss = mb->m_pkthdr.tso_segsz;
781		u32 num_pkts;
782
783		opcode = cpu_to_be32(MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR) |
784		    owner_bit;
785		ihs = mlx4_en_get_header_size(mb);
786		if (unlikely(ihs > MAX_INLINE)) {
787			ring->oversized_packets++;
788			err = EINVAL;
789			goto tx_drop;
790		}
791		tx_desc->lso.mss_hdr_size = cpu_to_be32((mss << 16) | ihs);
792		payload_len = mb->m_pkthdr.len - ihs;
793		if (unlikely(payload_len == 0))
794			num_pkts = 1;
795		else
796			num_pkts = DIV_ROUND_UP(payload_len, mss);
797		ring->bytes += payload_len + (num_pkts * ihs);
798		ring->packets += num_pkts;
799		priv->port_stats.tso_packets++;
800		/* store pointer to inline header */
801		dseg_inline = dseg;
802		/* copy data inline */
803		dseg = mlx4_en_store_inline_lso_data(dseg,
804		    mb, ihs, owner_bit);
805	} else {
806		opcode = cpu_to_be32(MLX4_OPCODE_SEND) |
807		    owner_bit;
808		ihs = mlx4_en_get_inline_hdr_size(ring, mb);
809		ring->bytes += max_t (unsigned int,
810		    mb->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN);
811		ring->packets++;
812		/* store pointer to inline header */
813		dseg_inline = dseg;
814		/* copy data inline */
815		dseg = mlx4_en_store_inline_data(dseg,
816		    mb, ihs, owner_bit);
817	}
818	m_adj(mb, ihs);
819
820	/* trim off empty mbufs */
821	while (mb->m_len == 0) {
822		mb = m_free(mb);
823		/* check if all data has been inlined */
824		if (mb == NULL) {
825			nr_segs = 0;
826			goto skip_dma;
827		}
828	}
829
830	err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map,
831	    mb, segs, &nr_segs, BUS_DMA_NOWAIT);
832	if (unlikely(err == EFBIG)) {
833		/* Too many mbuf fragments */
834		m = m_defrag(mb, M_NOWAIT);
835		if (m == NULL) {
836			ring->oversized_packets++;
837			goto tx_drop;
838		}
839		mb = m;
840		/* Try again */
841		err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map,
842		    mb, segs, &nr_segs, BUS_DMA_NOWAIT);
843	}
844	/* catch errors */
845	if (unlikely(err != 0)) {
846		ring->oversized_packets++;
847		goto tx_drop;
848	}
849	/* make sure all mbuf data is written to RAM */
850	bus_dmamap_sync(ring->dma_tag, tx_info->dma_map,
851	    BUS_DMASYNC_PREWRITE);
852
853skip_dma:
854	/* compute number of DS needed */
855	ds_cnt = (dseg - ((volatile struct mlx4_wqe_data_seg *)tx_desc)) + nr_segs;
856
857	/*
858	 * Check if the next request can wrap around and fill the end
859	 * of the current request with zero immediate data:
860	 */
861	pad = DIV_ROUND_UP(ds_cnt, DS_FACT);
862	pad = (~(ring->prod + pad)) & ring->size_mask;
863
864	if (unlikely(pad < (MLX4_EN_TX_WQE_MAX_WQEBBS - 1))) {
865		/*
866		 * Compute the least number of DS blocks we need to
867		 * pad in order to achieve a TX ring wraparound:
868		 */
869		pad = (DS_FACT * (pad + 1));
870	} else {
871		/*
872		 * The hardware will automatically jump to the next
873		 * TXBB. No need for padding.
874		 */
875		pad = 0;
876	}
877
878	/* compute total number of DS blocks */
879	ds_cnt += pad;
880	/*
881	 * When modifying this code, please ensure that the following
882	 * computation is always less than or equal to 0x3F:
883	 *
884	 * ((MLX4_EN_TX_WQE_MAX_WQEBBS - 1) * DS_FACT) +
885	 * (MLX4_EN_TX_WQE_MAX_WQEBBS * DS_FACT)
886	 *
887	 * Else the "ds_cnt" variable can become too big.
888	 */
889	tx_desc->ctrl.fence_size = (ds_cnt & 0x3f);
890
891	/* store pointer to mbuf */
892	tx_info->mb = mb;
893	tx_info->nr_txbb = DIV_ROUND_UP(ds_cnt, DS_FACT);
894	bf_size = ds_cnt * DS_SIZE_ALIGNMENT;
895	bf_prod = ring->prod;
896
897	/* compute end of "dseg" array */
898	dseg += nr_segs + pad;
899
900	/* pad using zero immediate dseg */
901	while (pad--) {
902		dseg--;
903		dseg->addr = 0;
904		dseg->lkey = 0;
905		wmb();
906		dseg->byte_count = SET_BYTE_COUNT((1 << 31)|0);
907	}
908
909	/* fill segment list */
910	while (nr_segs--) {
911		if (unlikely(segs[nr_segs].ds_len == 0)) {
912			dseg--;
913			dseg->addr = 0;
914			dseg->lkey = 0;
915			wmb();
916			dseg->byte_count = SET_BYTE_COUNT((1 << 31)|0);
917		} else {
918			dseg--;
919			dseg->addr = cpu_to_be64((uint64_t)segs[nr_segs].ds_addr);
920			dseg->lkey = cpu_to_be32(priv->mdev->mr.key);
921			wmb();
922			dseg->byte_count = SET_BYTE_COUNT((uint32_t)segs[nr_segs].ds_len);
923		}
924	}
925
926	wmb();
927
928	/* write owner bits in reverse order */
929	if ((opcode & cpu_to_be32(0x1F)) == cpu_to_be32(MLX4_OPCODE_LSO))
930		mlx4_en_store_inline_lso_header(dseg_inline, ihs, owner_bit);
931	else
932		mlx4_en_store_inline_header(dseg_inline, ihs, owner_bit);
933
934	if (unlikely(priv->validate_loopback)) {
935		/* Copy dst mac address to wqe */
936                struct ether_header *ethh;
937                u64 mac;
938                u32 mac_l, mac_h;
939
940                ethh = mtod(mb, struct ether_header *);
941                mac = mlx4_en_mac_to_u64(ethh->ether_dhost);
942                if (mac) {
943                        mac_h = (u32) ((mac & 0xffff00000000ULL) >> 16);
944                        mac_l = (u32) (mac & 0xffffffff);
945                        tx_desc->ctrl.srcrb_flags |= cpu_to_be32(mac_h);
946                        tx_desc->ctrl.imm = cpu_to_be32(mac_l);
947                }
948	}
949
950	/* update producer counter */
951	ring->prod += tx_info->nr_txbb;
952
953	if (ring->bf_enabled && bf_size <= MAX_BF &&
954	    (tx_desc->ctrl.ins_vlan != MLX4_WQE_CTRL_INS_VLAN)) {
955
956		/* store doorbell number */
957		*(volatile __be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn);
958
959		/* or in producer number for this WQE */
960		opcode |= cpu_to_be32((bf_prod & 0xffff) << 8);
961
962		/*
963		 * Ensure the new descriptor hits memory before
964		 * setting ownership of this descriptor to HW:
965		 */
966		wmb();
967		tx_desc->ctrl.owner_opcode = opcode;
968		wmb();
969		mlx4_bf_copy(((u8 *)ring->bf.reg) + ring->bf.offset,
970		     (volatile unsigned long *) &tx_desc->ctrl, bf_size);
971		wmb();
972		ring->bf.offset ^= ring->bf.buf_size;
973	} else {
974		/*
975		 * Ensure the new descriptor hits memory before
976		 * setting ownership of this descriptor to HW:
977		 */
978		wmb();
979		tx_desc->ctrl.owner_opcode = opcode;
980		wmb();
981		writel(cpu_to_be32(ring->doorbell_qpn),
982		    ((u8 *)ring->bf.uar->map) + MLX4_SEND_DOORBELL);
983	}
984
985	return (0);
986tx_drop:
987	*mbp = NULL;
988	m_freem(mb);
989	return (err);
990}
991
992static int
993mlx4_en_transmit_locked(struct ifnet *dev, int tx_ind, struct mbuf *m)
994{
995	struct mlx4_en_priv *priv = netdev_priv(dev);
996	struct mlx4_en_tx_ring *ring;
997	struct mbuf *next;
998	int enqueued, err = 0;
999
1000	ring = priv->tx_ring[tx_ind];
1001	if ((dev->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1002	    IFF_DRV_RUNNING || priv->port_up == 0) {
1003		if (m != NULL)
1004			err = drbr_enqueue(dev, ring->br, m);
1005		return (err);
1006	}
1007
1008	enqueued = 0;
1009	if (m != NULL)
1010		/*
1011		 * If we can't insert mbuf into drbr, try to xmit anyway.
1012		 * We keep the error we got so we could return that after xmit.
1013		 */
1014		err = drbr_enqueue(dev, ring->br, m);
1015
1016	/* Process the queue */
1017	while ((next = drbr_peek(dev, ring->br)) != NULL) {
1018		if (mlx4_en_xmit(priv, tx_ind, &next) != 0) {
1019			if (next == NULL) {
1020				drbr_advance(dev, ring->br);
1021			} else {
1022				drbr_putback(dev, ring->br, next);
1023			}
1024			break;
1025		}
1026		drbr_advance(dev, ring->br);
1027		enqueued++;
1028		if ((dev->if_drv_flags & IFF_DRV_RUNNING) == 0)
1029			break;
1030	}
1031
1032	if (enqueued > 0)
1033		ring->watchdog_time = ticks;
1034
1035	return (err);
1036}
1037
1038void
1039mlx4_en_tx_que(void *context, int pending)
1040{
1041	struct mlx4_en_tx_ring *ring;
1042	struct mlx4_en_priv *priv;
1043	struct net_device *dev;
1044	struct mlx4_en_cq *cq;
1045	int tx_ind;
1046	cq = context;
1047	dev = cq->dev;
1048	priv = dev->if_softc;
1049	tx_ind = cq->ring;
1050	ring = priv->tx_ring[tx_ind];
1051
1052	if (priv->port_up != 0 &&
1053	    (dev->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1054		mlx4_en_xmit_poll(priv, tx_ind);
1055		spin_lock(&ring->tx_lock);
1056                if (!drbr_empty(dev, ring->br))
1057			mlx4_en_transmit_locked(dev, tx_ind, NULL);
1058		spin_unlock(&ring->tx_lock);
1059	}
1060}
1061
1062int
1063mlx4_en_transmit(struct ifnet *dev, struct mbuf *m)
1064{
1065	struct mlx4_en_priv *priv = netdev_priv(dev);
1066	struct mlx4_en_tx_ring *ring;
1067	struct mlx4_en_cq *cq;
1068	int i, err = 0;
1069
1070	if (priv->port_up == 0) {
1071		m_freem(m);
1072		return (ENETDOWN);
1073	}
1074
1075	/* Compute which queue to use */
1076	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
1077		i = (m->m_pkthdr.flowid % 128) % priv->tx_ring_num;
1078	}
1079	else {
1080		i = mlx4_en_select_queue(dev, m);
1081	}
1082
1083	ring = priv->tx_ring[i];
1084	if (spin_trylock(&ring->tx_lock)) {
1085		err = mlx4_en_transmit_locked(dev, i, m);
1086		spin_unlock(&ring->tx_lock);
1087		/* Poll CQ here */
1088		mlx4_en_xmit_poll(priv, i);
1089	} else {
1090		err = drbr_enqueue(dev, ring->br, m);
1091		cq = priv->tx_cq[i];
1092		taskqueue_enqueue(cq->tq, &cq->cq_task);
1093	}
1094
1095	return (err);
1096}
1097
1098/*
1099 * Flush ring buffers.
1100 */
1101void
1102mlx4_en_qflush(struct ifnet *dev)
1103{
1104	struct mlx4_en_priv *priv = netdev_priv(dev);
1105	struct mlx4_en_tx_ring *ring;
1106	struct mbuf *m;
1107
1108	if (priv->port_up == 0)
1109		return;
1110
1111	for (int i = 0; i < priv->tx_ring_num; i++) {
1112		ring = priv->tx_ring[i];
1113		spin_lock(&ring->tx_lock);
1114		while ((m = buf_ring_dequeue_sc(ring->br)) != NULL)
1115			m_freem(m);
1116		spin_unlock(&ring->tx_lock);
1117	}
1118	if_qflush(dev);
1119}
1120